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Abstract
Regression by composition is a new and flexible toolkit for building and understanding statistical models. 
Focusing here on regression models for a binary outcome conditional on a binary treatment and other 
covariates, we motivate the need for regression by composition. We do this first by exhibiting—using 
L’Abbé plots—the families of relationships between untreated and treated conditional outcome risks that 
emerge from generalized linear models for many different link functions. These are compared with the 
relationships (between untreated and treated risks) that arise from mechanistic sufficient component cause 
models, which are first principles causal models for binary outcomes. By considering mechanistic models 
that allow for non-monotone causal effects and by allowing sufficient causes to be associated, we expand 
upon similar discussions in the recent literature. We discuss conditions under which commonly used 
statistical models for binary data, such as logistic regression, arise from mechanistic models where the 
sufficient causes are associated in a particular way, as well as other situations in which the statistical 
models arising do not correspond to a generalized linear model but can be naturally expressed as a 
regression by composition model.
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1 Introduction
The spirited debate among statisticians and other users of statistics over how to analyse binary 
outcome data—and whether to report results as estimated odds ratios, risk ratios, risk differences, 
or other measures—has been going on for decades (Altman et al., 1998; Choi, 2016; Cook, 2002; 
Doi et al., 2022; Huitfeldt, 2017, 2023; Huitfeldt et al., 2021, 2018; Permutt, 2020; Rohrer & 
Arslan, 2021; Rudolph et al., 2023; Senn, 2011; Sheps, 1958; Sonis, 2018; Van Der Laan et al., 
2007; White et al., 2021; Xiao et al., 2022; Zipkin et al., 2014). Views on this controversy focus 
on many different aspects, including interpretability, transportability, parsimony, and the poten
tial for robust estimation of marginal estimands. Contributions come from various angles, includ
ing philosophical, statistical, and empirical viewpoints.

Recent contributions by Huitfeldt et al. (2021) and Huitfeldt (2023) have approached the ques
tion of transportability from first principles, using sufficient component cause (‘causal pie’) models 
(Rothman, 1976) for the heterogeneity of exposure effects on binary outcomes. They advocate for 
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an effect measure known as the switch relative risk (Van Der Laan et al., 2007) in a wide (but by no 
means exhaustive) range of settings.

In Section 3, we take Huitfeldt’s argument further by allowing the sufficient causes to be asso
ciated and by relaxing the assumption that treatment effects are monotonic (i.e. that all individuals 
affected by the treatment are affected in the same direction). The former relaxation leads us to un
cover a form of association between sufficient causes that would make logistic regression the cor
rect model and the odds ratio a transportable measure of effect: the conditions under which God 
tosses logistic coins. We describe similar conditions for other link functions.

We also exhibit novel families of effects that do not align with a generalized linear model (GLM) 
for any link function. In Section 4, we briefly describe a general modelling framework, regression 
by composition, that admits such effects.

We conclude in Section 5 with a discussion that briefly touches on how these ideas extend beyond 
binary regression, and begin in Section 2 with a view of GLMs as relevant to the rest of the paper.

2 Risk transformations implied by generalized linear models
Consider a binary outcome Y, and a parametric model for the conditional distribution of Y given 
binary exposure or treatment X and baseline covariates C. A consequence of such a model for the 
conditional dependence on X can be viewed as the implied transformation that maps the condi
tional outcome risk (given C) in the untreated to the conditional risk in the treated. Let

Px := Pr(Y = 1 |C, X = x), 

where the choice of a capital letter for Px is made to emphasize that Px is a random variable 
through its dependence on C, and the bold-face letter C reminds us that the covariates will typic
ally be multidimensional.

The aforementioned transformation maps P0 to P1. A choice of parametric model confers a par
ticular shape on this transformation, with the magnitude of the transformation typically estimated 
from data. For example, a GLM (McCullagh & Nelder, 1989) with link function g is of the form

g(Px) = α(C) + β(C) x (1) 

where, often, α(C) is a linear combination of the variables in C, with unknown coefficients, and 
β(C) is either a function of only a few variables in C (the few by which effect measure 
modification (Greenland, 2014) are being considered on this particular scale), or is assumed to 
be a constant, β.

Model (1) coincides with the following transformation of conditional risks, p:

f (p; v) = g−1 g(p) + v
􏼈 􏼉

with P1 = f (P0; β(C)) under this model.
For example, for logistic regression (Cox, 1958), g is logit (g(p) = log {p/(1 − p)}) and we have:

f (p; v) =
pev

1 − p + pev . (2) 

The first panel in Figure 1 shows this transformation for several different values of a constant con
ditional log odds ratio v = β(C) = β in what is known as a L’Abbé plot (L’Abbé et al., 1987). For 
our purposes, a L’Abbé plot shows all pairs (P0, P1) of untreated and treated conditional risks 
across the range of possible values of C.

Model (1) when g = log leads instead to a proportional risks model, with the following trans
formation:

f (p; v) = pev.
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If g is the complementary log link (g(p) = log (1 − p)) this leads to a proportional survival probabil
ity model:

f (p; v) = 1 − (1 − p)ev.

And for an identity link—i.e. the linear probability model (Battey et al., 2019)—the transform
ation is simply:

f (p; v) = p + v.

The corresponding L’Abbé plots for a range of v = β (not dependent on C) are shown in panels 
two, three, and four of Figure 1. In these panels, the different values of β giving rise to the different 
lines, are respectively interpreted as log risk ratios, log survival probability ratios, and risk differ
ences. The remaining six panels show similar plots for six further GLM link functions, namely pro
bit, log–log, complementary log–log, Cauchit, inverse, and square-root.

Remarks
Many features of binary regression can be understood from Figure 1. First, some models (logistic re
gression is an example, as are GLMs with probit, log–log, complementary log–log and Cauchit links) 
are closed in the sense that any probability P0 (in [0, 1]) is mapped to another probability P1 (in 
[0, 1]) no matter the value of β. This is not the case for the other five models shown. For example, 
for the proportional risks model (log link), some untreated risks are transformed to risks greater 
than 1 for β > 0 and for the proportional survival probabilities model (clog link), some untreated risks 
are transformed to negative risks for β > 0. Second, some transformations are affine (straight lines), 
whereas most (such as logistic regression) are not. Affinity of the transformation leads to collapsibility 

Figure 1. L’Abbé plots for GLMs with 10 different link functions. For each link function, the L’Abbé plot is given for 
many different values of β(C) = β, not dependent on C. The increasingly bright red lines correspond to risk-raising 
choices of β of increasing magnitude, and the increasingly bright green lines correspond to risk-lowering choices of 
β of increasing magnitude. For each panel, seven values of β were initially chosen for illustration, such that, for each 
panel, an untreated conditional risk of 0.5 would be transformed to treated risks of each of 0.95, 0.80, 0.65, 0.50 (the 
identity transformation, shown in black), 0.35, 0.20, and 0.05, respectively. The two points denote the same two 
pairs of untreated and treated risks in each panel, namely (0.25, 0.077) and (0.75, 0.429). The risks 0.077 and 0.429 
are the transformed values of 0.25 and 0.75, respectively, under logistic regression (panel 1) for the sixth choice of 
β (namely that which transforms 0.5 to 0.2). By construction, therefore, the points lie on the same curve for the logit 
link, but on different curves for all the other link functions, and two additional green curves, one through each of the 
points, have been added to each panel to illustrate this. We have used the conventional definition of each link 
function, so that g = Φ for the probit link, where Φ is the cumulative distribution function of a standard normal variate, 
and g(p) is respectively, log ( −log (p)), log ( −log (1 − p)), tan(π(p − 0.5)), p−1, and 

��
p
√

for the loglog, cloglog, Cauchit, 
inverse and square-root link.
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of the associated effect measure (Daniel et al., 2021; Farewell et al., under revision). Third, some 
transformation families have no fixed points (e.g. identity and square-root links), others have one 
fixed point (for the log and inverse links, an untreated risk of 0 is always mapped to a treated 
risk of 0; likewise an untreated risk of 1 is unaltered by a GLM with the clog link), and others 
(such as GLMs with logit, probit, loglog, cloglog, and Cauchit links) have two fixed points 
(0 and 1).

Another aspect illustrated by the L’Abbé plots is that (as long as P0 varies with C and 
P1 ≢ P0), at most one model can be correct with a constant β. This is equivalent to the well- 
known observation that if ‘no effect modification’ holds on, say, the proportional odds scale, 
then it will not hold on any other scale (Miettinen, 1974). This is seen from the L’Abbé plots 
by observing that if two different points lie on the same line for one of the link functions 
(e.g. those shown in the first panel) they will be on different lines for each of the other link 
functions.

Finally, the plots illustrate the importance of model choice for extrapolation, and hence for con
siderations of generalizability and the transportability of effects. For example, at low risks, panels 
1 and 2 contain similar transformations; at high risks, panels 1 and 3 contain similar transforma
tions; and at medium risks, panels 1 and 4 contain similar transformations. Thus, if a study con
tains only healthy participants at relatively low risk of the outcome, a proportional odds and 
proportional risks model, each assuming a constant odds or risk ratio, respectively, would lead 
to similar fits to the observed data, but would imply very different predictions for the transformed 
risks of less healthy patients, outside the study, at higher risk of the outcome. It is common for the 
published results of clinical trials conducted on highly selected patient populations to be used by 
clinicians to inform treatment choice in practice for patients with a wider variety of untreated 
risks. Whether the results are published as an estimated odds ratio, risk ratio, survival probability 
ratio, risk difference, or any other choice of measure, is therefore of great importance, and the 
data—especially when the trial participants are relatively homogeneous—are not always useful 
in informing this choice.

3 Fundamental causal models and the risk transformations they imply
In this section, we discuss situations in which biological or other subject-matter knowledge about 
how outcomes arise may guide the choice of model, starting with two examples from Huitfeldt 
et al. (2021).

3.1 Example 1: penicillin and the prevention of rheumatic fever
Consider an RCT comparing treatment (X) with penicillin vs. placebo for the prevention of acute 
rheumatic fever (Y) in UK children with suspected group A streptococcus pharyngitis (strep throat) 
(Huitfeldt et al., 2021). Let D be 1 if all three of the following occur: (1) the child takes the assigned 
medication as directed, (2) the child’s particular infection strain is susceptible to the action of peni
cillin, and (3) the child can metabolize penicillin normally at the assigned dose; let D be 0 other
wise. Let W be 1 if the child’s immune system would on its own clear the infection irrespective of 
antibiotic treatment, and thus a prolonged infection leading to rheumatic fever would be avoided, 
and let W be 0 otherwise. Both D and W are typically unobserved, but at least in principle it could 
be argued that

¬Y = W ∨ X ∧ D( ), 

where ¬Y = 1 − Y, and where ∨ and ∧ denote maximum and minimum, corresponding to OR and 
AND for binary variables, respectively. That is, rheumatic fever would be avoided (Y = 0) either if 
the child’s own immune system would clear the infection (W = 1), or if the child is assigned to the 
penicillin arm, takes it as directed, metabolizes it normally and it is effective against the child’s in
fection strain (X = D = 1), or both (W = X = D = 1). This implies that

Y = ¬W ∧ ¬X ∨ ¬D( ),

J R Stat Soc Series A: Statistics in Society, 2024, Vol. 187, No. 3                                                          639
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssa/article/187/3/636/7755773 by guest on 03 Septem
ber 2025



which leads (by writing down the probability of each side being equal to 1 given C and given X = 1 
and 0, in turn) to

P1 = Pr(W = 0 |X = 1, C)Pr(D = 0 |W = 0, X = 1, C) 

and

P0 = Pr(W = 0 |X = 0, C).

This is an example of a sufficient component cause model as introduced by Rothman (1976); see 
also Chapter 5 of Hernán and Robins (2020).

An aside: a brief introduction to Rothman’s sufficient component cause models
A sufficient component cause model assumes the existence of a set of sufficient binary causes that 
bring about a binary outcome, where each sufficient cause comprises a set of necessary binary com
ponents. For example, suppose the binary outcome Y can arise in five ways: either (1) U1 happens 
(that is, the binary U1 takes value 1), or (2) U2, U3 and U4 all happen, or (3) X, A1 and A2 all hap
pen, or (4) X, A2, A3 and A4 all happen, or (5) X does not happen, and B1 and B2 both happen. If 
any two or more of (1)–(5) happen, then Y still happens. This is an example of a sufficient com
ponent cause model for Y, with:

Y = U1 ∨ (U2 ∧ U3 ∧ U4) ∨ (X ∧ A1 ∧ A2) ∨ (X ∧ A2 ∧ A3 ∧ A4) ∨ (¬X ∧ B1 ∧ B2). (3) 

This model for Y is depicted in the top row of Figure 2, with shaded examples for different hypo
thetical individuals depicted in subsequent rows. The model states that the outcome Y happens if 
and only if at least one of the sufficient causes (depicted as circles, or ‘pies’) happens, and a suffi
cient cause happens only if all of its components (or ‘slices’) happen. When studying the effect of X 
on Y, there is particular interest in pies that contain X (or ¬X), since the slices that accompany X 
(or ¬X) in such pies explain why X causes (or prevents) Y for some individuals but not others. 
Moreover, if the same sufficient component cause model holds for two different populations, 
but the probability of the U-, A-, and B-slices differ between the two populations, then this ex
plains the heterogeneity of the treatment effect between the two populations.

In some settings, it may be more natural to think of sufficient component cause models for 
avoiding the outcome, i.e. for ¬Y as opposed to Y (although one can always be constructed 
from the other); this is why we include ‘For Y’ in Figure 2. Although sufficient component cause 
models can be extremely complex (many pies, each containing many slices), they can be simplified 
by defining summary binary variables as follows. Let U be 1 if at least one of the U-pies has all its 
slices filled (and U = 0 otherwise), let A be 1 if at least one of the X-pies has all of its non-X slices 
filled (A = 0 otherwise) and let B be 1 if at least one of the ¬X-pies has all of its non-¬X slices filled. 
In the above example, U, A, and B would be defined as follows:

U = U1 ∨ (U2 ∧ U3 ∧ U4)

A = A2 ∧ (A1 ∨ (A3 ∧ A4))

B = B1 ∧ B2.

Thus if (3) holds, so does:

Y = U ∨ (X ∧ A) ∨ (¬X ∧ B), 

which is depicted in Figure 3a. Similarly, any sufficient component cause model for ¬Y can be sum
marized as:

¬Y = W ∨ (X ∧ D) ∨ (¬X ∧ E) 

and is depicted in Figure 3b.
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Returning now to Example 1, this is an example of a sufficient component cause model 
for ¬Y with two sufficient causes: W and X ∧ D. In this example, there are no sufficient 
causes that contain ¬X as a component, which is why E is not defined. We return to this in 
Section 3.3.

Figure 4d shows the random variables corresponding to Figure 3b (with the bold red ar
rows signifying a determinism from (X, D, W) to Y) together with the baseline covariates C 
under a particular set of additional assumptions, namely that (X, D, W) are independent, 
and that (X, D) are independent of C so that these covariates affect Y only via their effect 
on W. Under the assumptions in Figure 4d, Pr(W = 0 |X = 1, C) = Pr(W = 0 |X = 0, C) = Pr(W = 
0 |C) and Pr(D = 0 |W = 0, X = 1, C) = Pr(D = 0). Thus the risk ratio P1/P0 is equal to a constant, 
Pr(D = 0), suggesting that a GLM with a log link would be an appropriate choice, at least from the 
point of view of the dependence on X. We discuss relaxations of these assumptions in Section 3.3 and 
return to the issue of model choice for the C-dependence in Section 4.

3.2 Example 2: penicillin and anaphylaxis
Again taken from Huitfeldt et al. (2021), consider the same example but with a different outcome 
Y, namely the occurrence of anaphylactic shock on the same day as treatment initiation. Let A be 1 
if the assigned treatment is taken and the child has an underlying severe allergy to penicillin (with 
A = 0 otherwise), and let U be 1 if both (1) the child has an underlying severe allergy to some other 
allergen, e.g. peanuts or bee sting, and that (2) the child is exposed to such an allergen on the same 
day as treatment initiation (with U = 0 otherwise). Then it could be argued, again with U and A 
potentially unobserved, that:

Y = U ∨ X ∧ A( )

that is, that anaphylactic shock occurs on the day of treatment initiation either if the child is as
signed to the penicillin arm, takes it, and has a severe reaction to it, or the child has a severe allergic 
reaction to a different allergen on the same day, or both. This is an example of a sufficient com
ponent cause model for Y as shown in Figure 3a, and leads to 

Figure 2. An example of a sufficient component cause model for Y (top row). The subsequent rows show the same 
example specifically for different individuals where the shading indicates that the relevant binary component is 1, 
and unshaded components are 0. The untreated individual in the second row does not experience the outcome Y (no 
pie has all slices shaded for them), whereas the untreated and treated individuals in rows 3 and 4, respectively, both 
experience the outcome (there is one fully-shaded pie in row 3 and two fully-shaded pies in row 4).
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1 − P1 = Pr(U = 0 |X = 1, C)Pr(A = 0 |U = 0, X = 1, C) 

and

1 − P0 = Pr(U = 0 |X = 0, C).

Under the assumptions shown in Figure 4a, Pr(U = 0 |X = 1, C) = Pr(U = 0 |X = 0, C)= 
Pr(U = 0 |C), and Pr(A = 0 |U = 0, X = 1, C) = Pr(A = 0). Thus the ratio of survival probabilities 
(1 − P1)/(1 − P0) is equal to a constant, Pr(A = 0), suggesting that a GLM with a complementary 
log link would be an appropriate choice, at least for the X-dependence.

As with Example 1, the plausibility of these assumptions are questionable: there are likely un
measured (F) as well as measured (C) reasons why an individual prone to a penicillin allergy would 
also be prone to other allergies. We consider relaxations to these assumptions below.

3.3 Remarks on Examples 1 and 2

Monotonicity and the absence of B and E
In the two examples discussed thus far, there were no sufficient causes with ¬X as a component. 
Thus, there was no E in Example 1, and no B in Example 2. Penicillin was thought to be sufficient 
to prevent rheumatic fever in some children and sufficient to cause anaphylactic shock in some 
children, but the absence of penicillin was not thought to be sufficient to prevent rheumatic fever 
nor to cause anaphylactic shock in any children. In both examples, the action of pencillin was tak
en to be monotonic. Monotonicity is a counterfactual concept and states that if a treatment is pro
tective for at least one individual, then for all other individuals it must either have no effect or also 
be protective; it cannot be harmful for any individual. Similarly, if the treatment is harmful for at 
least one individual, then it cannot be protective for anyone (Angrist & Pischke, 2008).

Although probably a reasonable assumption in these examples, we consider in Section 3.6 set
tings where monotonicity is not assumed.

The choice between Figure 3a and b and the switch relative risk
If a sufficient component cause model for Y (Figure 3a) exists, then so does a sufficient component 
cause model for ¬Y (Figure 3b), e.g. by choosing W = ¬U ∧ ¬A ∧ ¬B, D = ¬U ∧ ¬A, and 
E = ¬U ∧ ¬B. Due to their nested nature, W and D cannot in general be independent when defined 
in this way, nor can W and E. However, sufficient component cause models are not unique, and so 
this does not rule out there being an alternative such model for ¬Y for which the alternatively de
fined W and D are independent. Huitfeldt et al. (2021) argue that for a reasonably large class of 
biological examples (that by no means covers all settings), a sufficient component cause model that 
satisfies the independence assumptions (depicted in Figure 4a and d) is more plausible for models 
for Y (Figure 3a) when X raises the risk of Y and for models for ¬Y (Figure 3b) when X lowers the 
risk of Y. This leads them to favour an effect measure known as the switch relative risk (Van Der 
Laan et al., 2007), that chooses the survival probability ratio for harmful treatments and the risk 
ratio for protective treatments. We return to this effect measure, which also has the two desirable 
properties of being both closed and collapsible, in Section 3.6.

Relaxing the independence assumptions
In certain settings, some of the independence assumptions in Figure 4a and d can be justified, e.g. in 
a randomized trial, the absence of any arrow into X is justified. Others, however, such as the 

(a) (b)

Figure 3. Summary versions of Rothman’s sufficient component causes for Y (in panel a) and for ¬Y (in b).
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independence of A and U in Figure 4a or of D and W in Figure 4d, may be difficult to justify, even 
when the most amenable choice between the two options (i.e. whether to consider sufficient com
ponent causes of Y or ¬Y) has been made. Relaxing these independence assumptions gives rise to 
non-affine L’Abbé plots, as we see in the next sections.

Non-affine risk transformations
Suppose there are common causes F of D and W, as shown in Figure 4e for Example 1. Note that 
we allow F to depend on C but we suppose that D is conditionally independent of C given F. We 
also suppose that F is unmeasured, so that its inclusion in C is not possible. For simplicity of no
tation, we will also take F to be discrete, but extensions to continuous F (replacing sums by inte
grals and mass functions by density functions) are natural. It is straightforward to show that under 
the assumptions in Figure 4e,

P1 =
􏽘

f

Pr(D = 0 |F = f)Pr(W = 0 |F = f, C)Pr(F = f |C)

P0 =
􏽘

f

Pr(W = 0 | F = f, C)Pr(F = f |C).

When Pr(D = 0 |F = f) is the same for all f, this is the setting considered in Example 1, leading to 
the constant risk ratio Pr(D = 0). But whenever Pr(D = 0 |F = f) depends on f, the ratio P1/P0 de
pends, in general, on C, leading to a non-affine L’Abbé plot. Note that P0 = 0 only if Pr(W = 0 |F = 
f, C) = 0 for all f, which implies that P1 = 0 whenever P0 = 0, thus p = 0 is a fixed point of this 
transformation, whether or not D depends on F. If P0 = 1 then Pr(W = 0 |F = f, C) = 1 for all f, 
which implies that P1 = Pr(D = 0) whenever P0 = 1, again, whether or not D depends on F.

Figure 5 shows examples where F = F is a single binary variable, independent of C, for different 
combinations of the marginal probabilities Pr(F = 1) and Pr(D = 1). In each panel, the transform
ation from P0 to P1 is shown for different strengths (and directions) of association between D and 
W achieved by altering the dependencies of D and W on F. The straight line in the middle of each 
cluster of curves represents the situation where D and W are independent. The convex curves be
low this straight line represent situations with an increasingly strong negative association between 
D and W (induced by their mutual dependence on F), and the concave curves above the straight 

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Causal directed acyclic graphs (DAGs) depicting how the component causes from the mechanistic 
models discussed in Section 3 may depend on covariates C. The DAGs in (a), (b), and (c) refer to Example 2 
(anaphylaxis); the DAGs in (d), (e), and (f) refer to Example 1 (rheumatic fever); and the DAGs in (g) and (h) refer to 
Example 3 (COVID-19). Bold (red) arrows are used to depict deterministic relationships and circled variables are 
typically unobserved.
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line represent situations of increasingly strong positive association. It may be the case, for example, 
that frailer children (F = 1) are less likely to be able to clear the infection without treatment and 
also that the treatment is less likely to work for them, in which case D and W would be positively 
associated via F. However, if frailer children were more likely to take the treatment as directed 
(due to closer management), then a negative association would be expected. The third panel in 
Figure 5 represents a somewhat plausible setting with 10% frailty and overall a proportion of 
0.75 of children who would take the treatment as directed, would metabolize it normally and 
whose strain of infection would be susceptible to penicillin.

If F were measured, then the analysis could be stratified on F to obtain f-specific risk ratios 
Pr(D = 0 |F = f ) for f = 0, 1, which would not depend on C. The curves in Figure 5 arise from tak
ing weighted averages (over the distribution of F) of the f-specific straight lines.

This is made clearer in Figure 6 where a number of marginal transformations (corresponding to 
different associations between F and W and between F and D) are shown on separate axes, to
gether with the two stratum-specific risk ratio transformations and the two stratum-specific distri
butions of P0, so that the nature and consequences of the averaging can be understood.

Similar non-affine L’Abbé plots can also be exhibited from Example 2 with associations be
tween U and A as indicated in Figure 4b. Analogous to Figure 5, these transformations have a fixed 
point at (P0, P1) = (1, 1) and P0 = 0 is mapped to P1 = Pr(A = 1) irrespective of the association be
tween U and A. Such plots are included in the online supplementary material.

3.4 Logistic regression
A natural question when inspecting the non-affine L’Abbé plots discussed above (and the corre
sponding plots above the identity line included in the online supplementary material) is whether 
any association between W and D due to F (or between U and A due to F for the mechanistic mod
els of the other type) could give rise to the risk transformations implied by logistic regression (first 
panel, Figure 1). The immediate answer is ‘no’, and the fact that all such plots pass through either 
(P0, P1) = (1, Pr(D = 0)) or (P0, P1) = (0, Pr(A = 1)), whereas transformations arising from logis
tic regression pass through both (0, 0) and (1, 1), is one way of demonstrating this. In fact, as we 
show in the Appendix, the family of non-affine plots discussed above does not arise from a GLM 
for any link function. This claim needs to made carefully, since we are considering one-parameter 
GLM models, and asking if they give rise to transformation families (such as those illustrated in 
Figure 5) that are clearly characterized by at least two parameters. A fairer question, therefore, 
is ‘is there a GLM link function that gives rise to a subset of the types of transformations illustrated 
in Figure 5, where this subset exhibits some of the interesting features seen in Figure 5?’, where 
what constitutes an ‘interesting feature’ is of course subjective. In the Appendix, we carefully de
scribe such a claim, based on the existence of both everywhere-convex and everywhere-concave 
risk transformations on the same side of the identity transformation, and show that this feature 
cannot arise from a GLM for any link function.

Figure 5. L’Abbé plots for Example 1 under the DAG shown in Figure 4e, varying the strength (and direction) of the 
association between D and W by introducing a common binary cause F. The panels illustrate examples with different 
values of Pr(F = 1) and Pr(D = 1), as indicated.
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The non-affine transformations considered thus far arose from an unmeasured common cause F 
of W and D (Figure 4e). If instead we remove F and include an arrow from C to D directly (so that 
the association between W and D is due to the covariates conditioned upon in the analysis), as in 
Figure 4f, then it is possible to recover logistic regression by carefully choosing the relationship 
between Pr(D = 0 |C) and Pr(W = 0 |C). This can similarly be achieved by the sufficient compo
nent cause model for Y by including an arrow directly from C to A (Figure 4c) and carefully choos
ing the relationship between Pr(A = 0 |C) and Pr(U = 0 |C) (see online supplementary material).

Under the directed acyclic graph (DAG) in Figure 4f,

P1 = Pr(D = 0 |C)P0 = Pr(D = 0 |C)Pr(W = 0 |C) 

and by comparing this with (2), we see that if

Pr(D = 0 |C) =
eβ

1 − Pr(W = 0 |C)(1 − eβ)
(4) 

Figure 6. An illustration of how the curves in the left-most panel of Figure 5 can arise. The blue and red lines represent 
risk ratio transformations for F = 1 and F = 0, respectively. Density plots under each P0-axis show the distribution of P0 
for F = 1 (blue) and F = 0 (red). The purple line shows the marginal risk transformation from appropriately averaging the 
two stratum-specific transformations. Moving down the rows and right through the columns, respectively, shows 
decreasing associations between F and W and between F and D from strong positive to strong negative. The nine panels 
on the central ‘cross’ depict situations where W and D are independent. The top left and bottom right quadrants show W 
and D positively associated, while the top right and bottom left quadrants show them negatively associated.
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then the transformation from P0 to P1 corresponds to logistic regression with a constant condi
tional (on C) log odds ratio of β.

This can be understood intuitively by imagining a single discrete C. If C were binary, say, with 
Pr(Y = 1 |X = 0, C = 0) = 0.25 and Pr(Y = 1 |X = 0, C = 1) = 0.75 then Pr(W = 0 |C = 0) = 0.25 
and Pr(W = 0 |C = 1) = 0.75 so that were the two stratum-specific risk ratios to be

Pr(D = 0 |C = 0) =
1

0.75e2 + 0.25 

and

Pr(D = 0 |C = 1) =
1

0.25e2 + 0.75 

then the transformation from P0 to P1 would coincide with logistic regression with a conditional 
log odds ratio of −2 (Figure 7, left).

Figure 7 illustrates the corresponding stratum-specific risk ratios for a discrete C with more lev
els, intuitively leading to logistic regression for a continuous C in the limit.

The relationship (4) for nine different values of β is shown in the first panel of Figure 8.
If we believe that the variation in binary outcomes given binary exposures can be understood in 

terms of Rothman’s sufficient component cause model, then the above shows that a logistic regres
sion model can be correct (and the odds ratio transportable), but only if the sufficient causes are 
associated, and if this association takes a very particular form, notable in at least three ways: 

(a) Any of the measured covariates C (those on which the analysis will be conditioned) associ
ated with one sufficient cause must also be associated with the other. This is seen directly 
from (4): D can only be independent of a variable, C1 say, in C if W is also independent 
of C1.

(b) There can be no other sources of association between the sufficient causes. Intuitively, this is 
because associations due to F (not in C), as seen above, remove one of logistic regression’s 
fixed points.

(c) The strength of the association between the sufficient causes is a function of the value of the 
conditional log odds ratio, β.

Even in a setting where (a) and (b) could be deemed plausible, it seems unlikely that the quantita
tive relationship (4) for logistic regression could be deemed a priori plausible without knowledge 
of β.

This does not mean that a more natural (i.e. qualitative rather than quantitative) first principles 
justification of logistic regression does not exist. It is possible that a more complex mechanistic 
model—with more binary variables used to determine Y together with X in different combinations 
of ∧ and ∨ operations—could lead to logistic regression under assumptions of a more qualitative 
nature, e.g. that certain binary variables in that more complex generating causal model are inde
pendent, or even that logistic regression could be justified using a mechanistic model other than 
Rothman’s sufficient component cause model.

3.5 Other link functions
Using similar reasoning, we can uncover the nature of the association between W and D due to C 
that would lead to other forms for the dependence of P1 on P0. For example, for a GLM model 
with link function g and constant treatment coefficient v (not dependent on C), the relationship 
between Pr(W = 0 |C) and Pr(D = 0 |C) leading to that model (given that treatment is random
ized) is:

Pr(D = 0 |C) =
g−1 g Pr(W = 0 |C){ } + v

􏼂 􏼃

Pr(W = 0 |C)
. (5) 
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As we know, if g = log, Pr(W = 0 |C) disappears from the right-hand side, and Pr(D = 0 |C) is a 
constant, ev. Other choices of g lead to non-trivial relationships as was discussed in Section 3.4
for g = logit.

Figure 8 shows the relationship between Pr(W = 0 |C), and Pr(D = 0 |C) for 9 choices of a 
risk-lowering v and for 10 different link functions g. The nine horizontal lines for the log link in
dicate that Pr(D = 0 |C) = Pr(D = 0) = ev is a constant (and here illustrated for nine different val
ues of v), and hence unrelated to Pr(W = 0 |C), which is not true for any of the other link functions. 
Similar figures for risk-raising v and for the sufficient component cause model of the other type 
(Figure 3a) are given in the online supplementary material.

Of note are the qualitative differences between the relationships shown in Figure 8 for 
different link functions, even though all refer to risk-lowering treatment effects. The 
implied function mapping Pr(W = 0 |C) to Pr(D = 0 |C) can be a constant, strictly increasing, 
strictly decreasing, or none of these, with a variety of different curvature patterns and fixed 
points.

At least in some situations, a data analyst may know that some of these are (im)plausible based 
on subject-matter knowledge of how the binary variables D and W are likely to be associated via 
their common dependence on C, including when the dependence can plausibly be deemed to be 
null. It is difficult, however, to imagine that a data analyst could commit to any one particular 
link function, other than g = log, via such knowledge, for the reasons discussed in Section 3.4
in the particular case of logistic regression.

3.6 Non-monotone risk transformations, including Example 3: vaccination and 
hospitalization from COVID-19
Thus far, we have discussed settings in which the underlying mechanistic causal model is mono
tonic, in the sense described in Section 3.3. As a consequence, we have discussed only L’Abbé plots 
that either lie entirely above, entirely below, or entirely on the identity line (P1 = P0); no L’Abbé 
plot considered thus far has crossed the identity line. We now relax this, starting with an example, 
which we label Example 3.

Consider the period in 2021 when vaccinations against COVID-19 were first being rolled out. 
Let X be the binary treatment of receiving the vaccine, let Y be the binary outcome of hospitaliza
tion due to a severe COVID-19 infection, and let G, H, and V be binary latent variables defined as 
follows. G denotes whether or not a participant would have a normal immune response to the vac
cine if vaccinated, H whether or not they would substantially increase the extent to which they mix 
with others if vaccinated, and V whether or not they would be hospitalized due to COVID-19 in
fection if unvaccinated.

It could then be argued that

Y = (V ∧ ¬X) ∨ [¬G ∧ (H ∨ V) ∧ X] (6) 

i.e. that hospitalization occurs in the vaccinated if (1) they have no immune response to the vaccine 
and (2) they either would have been hospitalized if unvaccinated or their social mixing was 

Figure 7. L’Abbé plots illustrating how logistic regression for a risk-lowering treatment can arise from the sufficient 
component cause model in Figure 3b, the DAG in Figure 4f, and the particular relationship shown in (4).
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substantially increased (i.e. sufficiently so to cause serious infection) by the knowledge that they 
were vaccinated, (or both).

Suppose that the DAG shown in Figure 4g holds, then (6) implies that:

P0 = Pr(V = 1 |C) 

and

P1 = Pr(G = 0) 1 − Pr(H = 0 |G = 0)Pr(V = 0 |C){ }

= Pr(G = 0) 1 − Pr(H = 0 |G = 0) 1 − P0{ }[ ].

P1 can thus be obtained from P0 first by multiplying the complement of P0 by Pr(H = 0 |G = 0) 
and finding its complement (a GLM transformation with a complementary log link) and then 
multiplying the result by Pr(G = 0) (a GLM transformation with a log link). That is, P1 is obtained 
from P0 by composing two GLM transformations: those corresponding to a clog and a log link.

By composing any GLM-clog transformation with any GLM-log transformation, the resulting 
L’Abbé plots are all the straight lines with positive slope:

P1 = eβ2 1 − eβ1 1 − P0( )
􏼈 􏼉

= eβ2 1 − eβ1
( 􏼁

+ eβ1+β2 P0.

Figure 9a shows a selection of such plots.
In fact, since the survival ratio in the first transformation is Pr(H = 0 |G = 0) and the risk ratio in 

the second transformation is Pr(G = 0), both probabilities, the resulting dual transformation (the 
composition) arising from (6) together with Figure 4g can be shown to give rise to straight line 
L’Abbé plots where both intercept and slope are in the interval [0, 1], and where the slope is always 
less than or equal to the complement of the intercept; that is, these transformations are the subset 
of all the clog-log compositions that are closed in the sense described in Section 2. A selection is 
shown in Figure 9b.

As in Section 3.3, there may often be no good reason to believe that G and H are independent of 
V, and thus that a more plausible DAG is the one shown in Figure 4h, which, together with (6), 
leads to:

P1 = Pr(G = 0) −
􏽘

f

Pr(G = 0, H = 0 |F = f)Pr(V = 0 |C, F = f)Pr(F = f |C) 

Figure 8. The relationship between Pr(W = 0 |C) and Pr(D = 0 |C) for 9 choices of a risk-lowering v and for 10 
different link functions g, as described by (5). The link functions are defined as described in the caption of Figure 1
and the nine values of v were chosen such that a baseline risk of 0.5 would be transformed, respectively, to 0.45, 
0.4, 0.35, 0.3, 0.25, 0.2, 0.15, 0.1, and 0.05, by each different v for each link function.
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and

P0 = Pr(V = 1 |C).

As in Section 3.3, this leads to non-affine extensions of the transformations in Figure 9b.

Remarks
All the lines in Figure 9b meet the identity line. When Pr(G = 0) = 1 and Pr(H = 0 |G = 0) = 1 then 
P1 ≡ P0 and the transformation is the identity transformation. Otherwise, it can be shown that the 
line meets the identity line at

P0 =
Pr(G = 0) 1 − Pr(H = 0 |G = 0){ }

1 − Pr(G = 0)Pr(H = 0 |G = 0) 

If Pr(H = 0 |G = 0) = 1, then the point at which the line meets the identity is P0 = P1 = 0 and if 
Pr(G = 0) = 1, then the point at which the line meets the identity is P0 = 1. For all other values 
of these two probabilities, P0 is strictly between 0 and 1 at the point at which the line meets the 
identity, i.e. the line crosses the identity line. This feature is not shared by a GLM for any link func
tion, as we show in the Appendix.

The aforementioned special cases, where one or other of Pr(H = 0 |G = 0) and Pr(G = 0) is 1, 
correspond to the subset of transformations possible under the switch relative risk parameter: 
GLM transformations corresponding to both a log- and clog-link with a negative β are composed, 
but at most one of them is non-null. This subset of transformations is shown in Figure 9c.

It is important to note that non-monotonicity, as described in Section 3.3, does not imply that 
the L’Abbé plot must cross the identity line; however the converse is true, namely that if the L’Abbé 
plot crosses the identity line then monotonicity cannot hold. This can be understood by noting that 
monotonicity is defined on an individual level, whereas the L’Abbé plots show averages across in
dividuals with the same values of C.

Although we moved in this section to an example with causal non-monotonicity, note that we 
did not choose simply to express our fundamental causal model as Figure 3a with both A and B or 
as Figure 3b with both D and E. Put another way, our model (6) is in fact of both types, with 
U = W = ∅, A = ¬D = ¬G ∧ (H ∨ V), and B = ¬E = V. The reason for this is that the first princi
ples thinking led us directly to (6), but it was also useful since an assumption that (G, H) be 
independent of V then led us to an interesting new model of all the closed increasing affine 
risk transformations. Had we re-expressed the model (as we could have done) using either 
(U, A, B) or (W, D, E), and then assumed that (A, B) be independent of U or that (D, E) be 
independent of W (which are different from assuming that (G, H) be independent of V), these 

Figure 9. L’Abbé plots corresponding to, in panel (a), the general compositions of clog- and log-link GLMs, in (b) the 
closed subset of composed clog- and log-link GLM transformations implied by mechanistic model (6) for our 
Example 3 (COVID-19), and in (c) the subset of these corresponding to a switch relative risk transformation.

J R Stat Soc Series A: Statistics in Society, 2024, Vol. 187, No. 3                                                          649
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssa/article/187/3/636/7755773 by guest on 03 Septem
ber 2025



independence constraints would have led us back to the GLM with a clog or a log link, 
respectively.

Although we motivated this section with an example from COVID-19 vaccination, similar 
examples arise in many different settings. Whenever an intervention is designed to protect, 
but is not efficacious in everyone, and knowledge of its receipt (without knowledge of 
its efficacy) may lead to the relaxation of other protective measures, then—under 
independence—relationships such as those shown in Figure 9b are plausible. For example, 
it may apply to the effect of safety measures such as protective clothing on the risk of serious 
injury in sport, or to the effect of energy-saving initiatives on the risk of unplanned outages in 
electricity systems.

4 Regression by composition: allowing for non-GLM risk transformations 
in a statistical model
In earlier sections of this manuscript, we have uncovered families of risk transformations (i.e. how 
the risk of a binary outcome conditional on covariates is transformed by a binary treatment) that 
arise from plausible fundamental causal models but that do not correspond to a GLM for any link 
function.

We have already seen how the non-monotone set of transformations (inspired by Example 3) 
arises from composing two different GLM transformations, namely those corresponding to a 
clog and log link.

In recent work (Farewell et al., under revision), we have proposed a novel and general frame
work for regression modelling, called regression by composition, that admits models such as those 
that compose both a clog-link and a log-link GLM transformation for the dependence on a par
ticular variable in the model.

Let P be a set of distributions of Y. A regression by composition consists of 

(a) a deterministic reference distribution p0 ∈ P, and
(b) a tuple η1, η2, η3, . . . ∈ V1 × V2 × V3 · · · of covariate-dependent linear predictors, in 

which the vector spaces V1, V2, V3, . . . have prescribed group actions that transform 
the set P.

Regression by composition models the conditional distribution of Y, given covariates, as

P = ((p0 · η1) · η2) · η3 · · · , 

writing group action on the right, so that (p0 · η1) ∈ P is the result of the action of the linear pre
dictor η1 on the distribution p0, and so on. In this general formulation, the word ‘covariate’ is used 
to include both C and X from our earlier discussions. The unknown parameters in each of the lin
ear predictors η j are estimated by maximum likelihood.

As well as including most existing regression models, new flavours of regression models can be 
formed by composing different transformation types (more formally, different group actions) for 
different covariates, or more than one group action for the same covariate. For example, with a 
binary Y as in the examples discussed thus far, p0 could be the Bernoulli distribution with prob
ability 0.5, η1 ∈ R+ a C-dependent linear predictor that transforms this distribution by scaling the 
odds, η2 ∈ R+ an X-dependent linear predictor that scales the survival probability, and η3 ∈ R+ an 
X-dependent linear predictor that scales the risk. The model could then be thought of as layered as 
follows:

Bern(0.5)→ Bern
η1

1 + η1

􏼒 􏼓

→ Bern 1 − 1 −
η1

1 + η1

􏼚 􏼛

η2

􏼒 􏼓

→ Bern η3 1 − 1 −
η1

1 + η1

􏼚 􏼛

η2

􏼔 􏼕􏼒 􏼓

.
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We refer any reader interested in the theoretical underpinnings and wider scope of regression by 
composition to Farewell et al. (under revision), and instead here conclude with a simple illustrative 
simulated example to demonstrate the potential of the approach.

We simulated data in accordance with ¬Y = W ∨ (X ∧ D) and Figure 4e. A single continuous 
covariate C was simulated from a standard normal distribution and both X and F were simulated 
independently from Bernoulli distributions with mean 0.5. W was simulated, dependent on C and 
F, from a Bernoulli distribution with mean expit(1 − C − 2F) and D was simulated, dependent on 
F, from a Bernoulli distribution with mean 0.88 or 0.12, depending on whether F was 0 or 1, re
spectively. Y was generated deterministically from W, D, and X, using ¬Y = W ∨ (X ∧ D).

Three models were compared for Y |C, X. First a standard logistic regression model (without a 
product term in CX), then a regression by composition model formed from a proportional odds 
(i.e. logistic regression) component for C composed with a proportional risks component for X, 
and finally a regression by composition formed from a proportional odds component for C com
posed with both a proportional risks component and a proportional odds component for X. 
Although the final model does not correspond exactly to the non-affine transformation implied 
by the dependence between W and D in the data-generating process, the hope is that the compos
ition employed for X will approximate this reasonably well.

Although such an approach may successfully approximate the whole transformation when the 
data include individuals across the spectrum of untreated risks, it is unlikely to do so beyond the 
range of the data when only individuals with very low outcome risks, say, are observed. To inves
tigate this, we repeated the three analyses across five datasets. In the first dataset, only individuals 
with a true untreated conditional risk of the outcome less than 0.2 are included, to mimic an RCT, 
say, with eligibility criteria that only admit the healthiest participants into the trial. In the second 
dataset, this threshold is increased to 0.4, and so on, and the fifth dataset includes all participants.

The results in Figure 10 show that the composition of the proportional risks and proportional 
odds transformations does indeed approximate the non-affine relationship between P0 and P1 

quite well when data across the range of untreated risks are included, whereas the same is not 
true for either of the other models that do not admit transformations of approximately the correct 
form. Also of note is the stark difference in the width of confidence intervals across the different 
models when the datasets are limited to low-risk participants. Although none of the models suc
cessfully estimates the shape of the transformation when only low-risk participants are included, 
the model with the dual-transformation for treatment is the only one that appropriately reflects its 
uncertainty about this form. By relying on untestable assumptions, the other two models make 
precise (but incorrect) predictions about the nature of the risk transformation for risks very dis
similar to the ones on which the estimation was based.

5 Discussion
When introducing logistic regression in 1958, the late Professor Sir David Cox wrote:

‘A linear relation is unsuitable, except over a narrow range, because of the restriction that [the 
outcome probability] must lie in [0, 1] and, in the absence of special considerations for a particu
lar problem, the best form seems to be the logistic law.’

In this paper, we have attempted to describe situations in which the ‘special considerations for a 
particular problem’ would steer us away from logistic regression and towards more flexible binary 
regression models that better align with the plausible underlying causal mechanisms that gener
ated the data.

To this end, we have followed Huitfeldt et al. (2021) in finding Rothman’s sufficient component 
cause framework (Rothman, 1976), particularly when allowing the sufficient causes to be associ
ated, to be a helpful guide towards a suitable choice of model. In so doing, we have partially an
swered the following call by Hernán & Robins in their recent book on causal inference:

‘Though the sufficient component cause framework is useful from a pedagogic standpoint, its 
relevance to actual data analysis is yet to be determined.’
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Although space has not permitted further exposition here, the idea of composing transforma
tions of binary-data distributions can be extended to, for example, time-to-event data, with simi
larly attractive results. Just as proportional risks and proportional survival probability 
transformations can be composed to form flexible non-monotone affine models for binary out
comes, the parametric version of the Aalen additive hazards model (Aalen, 1989) can be composed 
with its complement (a scaling of the survivor function) to form fairly flexible parametric models 
that exhibit features such as crossing survivor curves with low-dimensional parameters.

Conflicts of interest: We have no conflicts of interest nor funding sources to declare.
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The code for generating and analysing the simulated data presented in Section 4 is available by 
following the link given in the online supplementary material.

Supplementary material
Supplementary material is available online at Journal of the Royal Statistical Society: Series A.

Appendix. Two claims about generalized linear models
In Section 3 of this paper, we exhibited families of risk transformations arising from first principles 
causal models. In particular, in Section 3.3, we discussed non-affine risk-lowering transformations 
arising from causal models of the type ¬Y = W ∨ (X ∧ D) where W and D are associated due to 
their dependence on an unmeasured binary F. And in Section 3.6, we discussed non-monotone 

Figure 10. The results of the analysis of the simulated data. In each plot, the green curve shows the true relationship 
between P0 and P1 from the data-generating process. The purple curves in the top row are the risk transformations 
for the treatment as estimated from logistic regression, the orange lines in the middle row are the estimated risk 
transformations for the treatment from a regression by composition model that composes a logistic regression model for 
the dependence on C with a log-link GLM dependence (risk ratio transformation) on X, and the navy curves in the bottom 
row are from a similar model that includes both an odds ratio and a risk ratio transformation for X. 95% confidence 
regions are shaded in grey. The columns correspond to the increasing subsets of the data included in the analyses—from 
only low-risk individuals in the left-most column to all individuals in the right-most column. The points on the horizontal 
axis show the estimated untreated conditional risks from each model for the individuals included in the analysis.
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affine transformations arising from the causal model Y = (V ∧ ¬X) ∨ [¬G ∧ (H ∨ V) ∧ X] when 
(G, H) are independent of V.

Both families are inherently characterized by more than one parameter for the treatment effect 
and it would thus be unreasonable to ask (and trivial to answer with ‘no’) if either family corre
sponds to a GLM (with a single treatment parameter) for some link function. As noted in 
Section 3.4, therefore, a more reasonable question to ask is whether a GLM link function exists 
such that the family of risk transformations arising from it constitutes an ‘interesting’ subset of 
either of our first principles families.

We contend that an important feature of our family of non-affine transformations (see Figure 5) 
is that it includes both convex and concave risk transformations on the same side (both 
risk-lowering) of the identity. The main feature of our non-monotone family (see Figure 9b) is 
that each transformation (other than those passing through (0, 0) or (1, 1)) crosses the identity 
line. In Claims 1 and 2, we show that these are features not exhibited by a GLM with a single treat
ment parameter, for any link function.

Claim 1 Suppose a GLM for a binary outcome (with conditional outcome risk p, and 
treatment coefficient v) gives rise to the transformation f (p; v) = g−1{g(p) + v} 
for some monotonic link function g, sufficiently smooth for the necessary deriv
atives of f to exist. Suppose also that there exists some v∗ < 0 such that 
f ′′(p; v) ≤ 0 ∀ p ∀ v ∈ [v∗, 0), where differentiation is with respect to p. Then, 
for any v ∈ ( −∞, v∗), f ′′(p; v) ≤ 0 ∀ p. That is, if f (p; v) is everywhere-concave 
in p for all negative v between some v∗ and 0, then it is everywhere-concave in 
p for all negative v.

Proof. For any v ∈ ( −∞, v∗), let m be the smallest positive integer such that

|v − v∗|
m

< |v∗|

and let

u =
v − v∗

m 

so that by construction, v = v∗ + mu and u ∈ (v∗, 0).
For a given v∗ and u, write

hk(p) := f (p; v∗ + ku) 

for k ∈ N ∪ {0}. Thus

hk+1(p) ≡ f (hk(p); u) 

and it can easily be shown that

h′′k+1(p) = f ′′(hk(p); u) h′k(p)
􏼈 􏼉2+f ′(hk(p); u)h′′k(p).

By supposition, f ′′(hk(p); u) ≤ 0 ∀ p, and by monotonicity of g, 
f ′(hk(p); u) ≥ 0 ∀ p. Thus, if h′′k(p) ≤ 0 ∀ p then h′′k+1(p) ≤ 0 ∀ p also. Since 
h0(p) ≡ f (p; v∗), we have by supposition that h′′0(p) ≤ 0 ∀ p, and thus h′′k(p) ≤ 
0 ∀ p for all k ∈ N ∪ {0} by induction.

In particular, hm(p) ≡ f (p; v), which proves the claim.           □

Claim 2 Suppose a GLM for a binary outcome (with conditional outcome risk p, and 
treatment coefficient v) gives rise to the transformation f (p; v) = g−1{g(p) + v} 
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for some monotonic link function g. If there exists p∗ such that f (p∗; v) > p∗, then 
f (p; v) > p for all p, and if there exists a p∗ such that f (p∗; v) < p∗ for some p∗, 
then f (p; v) < p for all p.

Proof. Write p1 = f (p0; v) for some value p0 of p. If g is increasing, then

p1 > p0 ⇔ g(p1) > g(p0)

⇔ g(p0) + v > g(p0)

⇔ v > 0 

and similarly p1 < p0 ⇔ g(p1) < g(p0) ⇔ v < 0. If g is decreasing, then p1 > p0 ⇔ 
g(p1) < g(p0) ⇔ v < 0 and p1 < p0 ⇔ g(p1) > g(p0) ⇔ v > 0. In all cases, the sign 
of v dictates the sign of the difference between p0 and p1 for any such pair, which 
proves the claim.                           □
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