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Abstract

This thesis investigates the behaviour of viscoelastic fluids, such as stress relaxation

under constant deformation and time-dependent deformation recovery following load re-

moval, and explores how to characterize this behaviour using mechanical models. These

models demonstrate how fractional viscoelastic models can be derived using spring-pot

elements arranged in series and/or parallel. To accurately capture the complex behaviour

of viscoelastic fluids, numerical techniques for solving fractional viscoelastic models are

developed, as these models frequently employ fractional differential equations to account

for the material’s characteristics and memory effects.

New fractional viscoelastic models have been derived by extending the single-mode

fractional Maxwell model to a multi-mode framework by considering springpots arranged

in series and/or parallel to study more complex behaviour. Our theoretical analysis

has derived new expressions for the exact solution of these models equations—using the

Laplace transform of the Green’s function and expanding in terms of the Mittag-Leffler

function (MLF)—as well as for the relaxation time and the dynamic moduli in both single-

mode and multi-mode settings. This method highlights its effectiveness as a powerful tool

for solving various fractional differential equations and boundary value problems in real-

world applications, while also providing a strong foundation for future studies.

Furthermore, an accurate numerical method has been developed to solve two coupled

fractional differential equations for Taylor-Couette flow by employing a spectral approxi-

mation for spatial discretization and a finite difference scheme for temporal discretization.

High-order schemes ensure accurate modelling of complex fluid behaviour, and the conver-

gence properties of the numerical scheme are investigated. Numerical results are presented

which highlight the influence of the parameters in the fractional viscoelastic models on

the numerical predictions.
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Chapter 1

Introduction

In our daily lives, we come into contact with many different kinds of fluid, each with

unique properties. These include complex fluids, which are characterized by their complex

internal interactions and structures which produce unusual and frequently unexpected be-

haviours. Unlike simple fluids such as water or oil, complex fluids can transition between

solid-like and fluid-like states depending on external conditions, making them a fascinating

subject of study across diverse fields including industry, engineering, biology, and other

scientific disciplines. Complex fluids are typically classified as non-Newtonian and often

viscoelastic since their mechanical behaviour deviates from that of classical Newtonian

fluids, such as water under standard conditions (Shah Driscoll, 2024; Toschi Sega, 2019;

Deville Gatski, 2012).

Many industrial processes, such as those in the food, cosmetics, and pharmaceutical in-

dustries, are dependent on complex fluids. For example, the smoothness and stability of

products such as lotions, toothpaste, and mayonnaise are determined by their complex

fluid characteristics. Understanding these features aids to raise the quality of products

and streamline production processes (Galindo-Rosales, 2018).

The study of complex fluids in engineering can result in innovative products and proce-

dures. This involves developing cutting-edge materials with special qualities, improving

drilling fluids, and processes lubricants that work better (Saramito, 2016). An understand-

ing of the behaviour and properties of complex fluids like blood and mucus is important

for many physiological processes in medicine. The design of medical equipment and ther-

apies can be enhanced by characterising the flow characteristics of biological fluids, such

as blood. For instance, improving medicine delivery systems or creating better blood

substitutes (Barbati ., 2016; Saramito, 2016).
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The optimization of these processes significantly depends on the ability to understand

and model viscoelasticity.

1.1 Challenges in Modeling

Viscoelastic fluids exhibit both fluid-like (viscous) and solid-like (elastic) behaviour, in

contrast to Newtonian fluids, which have a linear relationship between stress and strain.

These fluids exhibit dual behaviour, meaning that depending on variables such as the

rate and duration of applied stresses, they could resist flow (elastic behaviour), flow in

response to applied stress (viscous behaviour), or do both. Predicting these interactions in

real world situations requires accurate modelling, particularly for complex flows observed

in biological, engineering, and industrial settings (Giga ., 2017; Bird ., 1987). To study

challenges in modelling viscoelastic fluids, it is necessary to account for history-dependent

effects when analysing time-dependent characteristics, like rheopexy or thixotropy (Ho-

henegger McKinley, 2018). In industrial applications, these fluids frequently flow through

complex geometries, creating complex flow patterns driven by normal stress variations,

shear thickening, and shear thinning. Furthermore, sophisticated methods and computa-

tional resources are required to model their multiscale interactions at the molecular and

macroscopic levels (Afonso, 2018). A further level of complexity is added by boundary

conditions, such as slip, wall effects, and surface tension variations, which makes precise

simulation and prediction particularly challenging (for an overview, see Bird . (1987), for

example).

1.2 Material characterization.

Shear and Extensional Viscosity

Basic characteristics that are utilised to describe fluid behaviour include shear viscosity

and extensional viscosity. Shear viscosity is the ratio of shear stress to shear rate and is

used to measure a fluid’s resistance to shear flow, in which fluid layers move parallel to
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one another at varying speeds:

η =
τ

γ̇
(1.1)

where η is the shear viscosity, τ is the shear stress, and γ̇ is the shear rate (Yahia ., 2016).

As an illustration, consider honey flowing down a slope, where its layers are resistant to

slipping past one another.

However, extensional viscosity, which is the ratio of extensional stress to the rate of

extension, measures a fluid’s resistance to elongational flow, such as pulling or stretching:

ηe =
τe
ϵ̇

(1.2)

where ηe is the extensional viscosity, τe is the extensional stress, and ϵ̇ is the rate of

extension.

Chewing gum’s resistance to the applied pulling force during stretching serves as an

example of extensional viscosity.

Stress and Strain

In fluid deformation, stress and strain are key concepts. Stress is the internal force per

unit area resulting from external forces,

τ =
F

A
(1.3)

where τ is the stress, F is the applied force, and A is the area over which the force is

applied.

The unit of stress is a Pascal (Pa), which is equivalent to Newtons per square meter N/m2.

Furthermore, strain is a measurement of deformation that indicates how far apart particles

are in a material body when compared to a reference length.

ϵ =
∆L

L0

(1.4)

where ∆L = L − L0 represents the change in length of the material due to the applied

force or deformation, where L is the final length of the material after deformation, and L0
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is the original length of the material before any force or deformation is applied. It serves

as the reference length for measuring strain.

Since strain has no units, it is a dimensionless quantity. A percentage is frequently used to

express it. These formulas and units are essential for understanding how various stresses

and deformations affect materials.

Stress comes in many different forms, shear stress results from forces that are parallel to

and lay in the plane of the cross-sectional area, whereas normal stress results from forces

that are perpendicular to a cross-sectional area of the material.

Two different forms of stress can be applied to a material: Tensile stress is the external

force applied to a material’s surface area that causes it to stretch. The force that causes

a material to deform, resulting in a decrease in volume, is known as compression stress.

According to how the stress is applied, there are two different forms of strain that a body

can experience: Tensile strain is the term for a solid body’s deformation or lengthening

brought on by the application of a tensile force or stress. In contrast, when equal and

opposing pressures are used to compress a body, compressive strain is created.

The definitions of stress and strain given above can be applied to forces that cause com-

pression or tension. Tensile stress and strain result from the application of a tensile force.

Compressive stress and strain result from the application of a compressive force.

(see e.g (Halliday ., 2010; Tattersall Banfill, 1983; Barnes, 2000; Owens Phillips, 2002).

The simplest model for describing the constitutive response of viscoelastic fluids was

introduced by Maxwell. Through the use of a differential equation, the Maxwell model

describes linear viscoelastic materials by combining their viscous and elastic properties.

τ(t) + λ
dτ

dt
= η0

dγ

dt
(1.5)

where τ is the shear stress, λ = η0
G0

is the characteristic relaxation time of the fluid,η0 is

the viscosity (rate-independent) and G0 is the elastic modulus of the material, and dγ
dt

is

the rate of strain.

As an alternative, the stress response can be represented by an equivalent integral form
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as

τ(t) =

∫ t

−∞
γ̇(t′)G0e

−t/λ dt′, (1.6)

where the time-dependent relaxation modulus of the linear Maxwell model (the response

of the stress to a jump in deformation at t′ = 0) is G(t) = G0e
−t/λ, and it is assumed that

the fluid is at rest for t < 0. We can write Eq. (1.6) in terms of G as follow,

τ(t) =

∫ t

−∞
G(t− t′)γ̇(t′) dt′, (1.7)

For linear viscoelastic deformations of complicated materials, this is one particular form

of the Boltzman integral (Bird ., 1987). Several complex viscoelastic fluids exhibit this

kind of Maxwell–Debye relaxation (exponential decay), but other materials exhibit other

kinds of fading memory, such as algebraic decay (see, for instance, the work by Keshavarz

et al. (Keshavarz ., 2017) on biopolymer gels and Ng et al. (Ng ., 2006) on bread dough),

where the relaxation modulus with 0 < β < 1 is expressed as,

G(t) = St−β (1.8)

where S a scalar measure of the gel strength.

Additionally, under oscillatory stress or strain, the viscoelastic response can be described

in terms of the storage modulus G′ and loss modulus G′′, which characterise the material’s

elastic energy and dissipative energy, respectively. These moduli depend on frequency (ω),

and are given by

G′(ω) =
G0ω

2λ2

1 + ω2λ2
, (1.9)

and

G′′(ω) =
G0ωλ

1 + ω2λ2
. (1.10)

The dimensionless product ωλ is known as the Deborah number. It has been demonstrated

that, at least in the limit of small deformations, several types of complex materials exhibit

Maxwell behaviour with a single relaxation time scale. Specifically, complex fluids com-
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posed of self-assembling worm-like surfactants or perfectly reversible networks frequently

display Maxwell-like behaviour for small deformation amplitudes and a single dominant

relaxation time scale (Parada Zhao, 2018; Rehage Hoffmann, 1991; Pipe ., 2010).

The relationships in Eq. (1.9) and Eq. (1.10) illustrate how the balance between elastic

and viscous responses changes with frequency, providing critical insights into material be-

haviour (see Maxwell (1867); Bird . (1987); Tschoegl (2012); Ferras . (2018); Rathinaraj

. (2021), for example).

1.3 Fractional Constitutive Modelling

While fundamental ’Classical Constitutive Modelling’ was covered briefly in the previous

section, fractional models are a natural generalisation and enhance their predictive ca-

pability. Currently, fractional calculus is crucial for studying relaxation processes, which

include the connections between stress and strain in polymeric materials. This is the pro-

cess in which first-order derivatives in the rheological constitutive equations are replaced

by fractional derivatives, as described by Ferras . (2018) after Schiessel Blumen (1993).

Ferras . (2018) redefined the relaxation modulus for such materials as

G(t) =
V

Γ(1− β)
t−β (1.11)

then, Eq. (1.6) can be expressed as follows:

τ(t) =
1

Γ(1− β)

∫ t

0

V(t− t′)−βγ̇(t′)dt′ (1.12)

Here, V is a constant for a given β, with physical dimensions of Pa · sβ. It represents a

generalized modulus or a quasi-property.

The Caputo fractional derivative is defined as a generalized derivative. For 0 < β < 1,

the Caputo derivative of a function F is given by:

c
0D

β
t F (t) =

1

Γ(1− β)

∫ t

0

(t− t′)−β dF

dt′
dt′ (1.13)
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(see e.g Caputo (1969); Diethelm (2010); Ferras . (2018); Mainardi (2010)).

The constitutive relationship Eq.(1.12) for a material showing power law relaxation of the

form in Eq. (1.8) can be modified to

τ(t) = V c
0D

β
t γ(t) (1.14)

because of the clear similarity between Eq. (1.12) and the Caputo derivative Eq. (1.13).

c
0D

β
t γ(t) =

dβγ

dtβ
is the concise notation that yields the fractional constitutive law

τ(t) = V
dβγ(t)

dtβ
(1.15)

The Riemann–Liouville fractional derivative is an alternative fractional derivative that

could have been utilized. However, we have decided to use the Caputo derivative in this

thesis since the initial conditions are much simpler to interpret in this setting, and also

the Caputo derivative of a constant is zero (c0D
β
t a ≡ 0, when a is a constant).

Therefore, the following differential equation describes the fractional Maxwell model

(FMM) that relates the stress and strain rate:

τ(t) +
V
G
dατ(t)

dtα
= V

dβγ(t)

dtβ
, (1.16)

where we assume that 0 < α ≤ β ≤ 1 without loss of generality.

Regression to experimental data is required to find the four parameters for this model,

which include two quasi-properties V,G and two fractional exponents α, β. Compared to

the classical Maxwell model, this four-parameter linear viscoelastic model is capable of

describing a much larger class of complex fluid dynamics. The FMM takes into account

a wide variety of distinct relaxation processes.
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1.4 Numerical Methods for Fractional Models

A fascinating area of study in fractional differential equations (FDE) research is de-

termining how to approximate various types of FDEs analytically and/or numerically

(Daftardar-Gejji Babakhani, 2004; Podlubny, 1999). Solving fractional differential equa-

tions (FDEs) presents several challenges due to the complexity of fractional derivatives,

which contain integral operators with memory effects, making them computationally in-

tensive and difficult to interpret (Troparevsky ., 2019). Since many problems have no

precise or exact solutions, various series analytical and numerical techniques have been

proposed and investigated in recent decades to solve FDEs, particularly nonlinear FDEs.

Furthermore, providing appropriate initial or boundary conditions is challenging, as frac-

tional derivatives depend on the entire history of the function rather than local values

(Garrappa, 2018). A lack of standardised tools equivalent to those for classical differential

equations and high computing costs are other challenges faced by numerical approaches,

particularly when dealing with high-dimensional problems or long time intervals (Gar-

rappa, 2018). Numerous techniques have been developed to overcome these problems.

The use of Laplace and Fourier transforms for linear FDEs and special functions such

as the Mittag-Leffler function (Podlubny, 1997; Yang ., 2010) are examples of analytical

methods that have been employed. Numerical techniques that have been developed in-

clude: the spectral collocation scheme (Doha ., 2011), finite difference methods (Ferras

., 2018), finite element methods (Troparevsky ., 2019), fractional differential transform

scheme (Kumar, Kumar ., 2020), fractional Adams scheme (Diethelm ., 2004), variational

iteration method (He, 2007), homotopy analysis scheme (Kumar, Ghosh ., 2020) and ado-

main decomposition scheme (Momani Al-Khaled, 2005).

Recent developments have enhanced standard numerical techniques by introducing two

effective methods for solving initial value problems (IVPs) in both linear and nonlinear

fractional differential equations (FDEs) of order β ∈ (0, 1). Examples of these methods

are the midpoint and Heun methods (Kumar ., 2024). These techniques aim to enhance

convergence and accuracy of the numerical techniques for solving FDEs, for example when
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simulating the dynamics of population expansion.

Efficiency is further increased by methods that combine analytical and numerical tech-

niques. Despite these developments, research into solving FDEs is ongoing, with attempts

being made to develop techniques that improve accuracy and efficiency and resolve out-

standing issues.

1.5 Generalised Fractional Constitutive Models and

their Numerical Solution

The original contributions to the modelling and computational aspects of fractional mod-

els that form the substance of this thesis are highlighted in this section. Modelling has

led to the development of various formulations of fractional viscoelastic models, including

extensions to the traditional fractional Maxwell model by incorporating extra fractional

derivatives. These enhancements provide a more comprehensive framework for describing

the complex viscoelastic behaviour of materials, such as those displaying fading memory

with non-exponential relaxation. In order to provide an analytical understanding of the

behaviour of these extended models, Green’s function solutions are derived and presented.

In terms of computation, sophisticated numerical methods were used to successfully solve

fractional differential equations. This involves developing and validating enhanced tech-

niques for computing important viscoelastic characteristics, including complex moduli,

loss, and storage, as well as relaxation times. In order to study the asymptotic behaviour

of fractional models and provide accurate predictions of material responses under differ-

ent circumstances, new algorithms were also developed. Additionally, a new numerical

technique is employed to solve a specific set of fractional differential equations, enabling

the investigation of the stationary and unstable unidirectional flow of fractional viscoelas-

tic fluids within a real concentric cylinder rheometer. In this study, we utilize spectral

methods, which offer enhanced accuracy in both time and space, further improving the

precision of our numerical approach. These contributions significantly improve our un-

derstanding of and ability to use fractional models in viscoelasticity.
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1.6 Objectives and Outline of Thesis

The outline of this thesis is as follows.

In Chapter 2, an introduction to the spectral method is presented highlighting the advan-

tages of the method. An example showing how the spectral method is used to approximate

the solution of the weak formulation of the partial differential equations in one and two

dimensions is described. Also, we present software that has been developed using Matlab

and provide examples to demonstrate the behaviour and convergence of the spectral ap-

proximation.

The principal concepts of fractional calculus are introduced in Chapter 3. This chapter

includes an introduction to the Laplace transform for fractional derivatives. Addition-

ally, it introduces Mittag-Leffler (ML) functions and their related Laplace transforms for

different sets of parameters. Furthermore, the features and uses of the Green’s function

approach for solving fractional differential equations are highlighted.

In Chapter 4, an overview of mechanical models for representing viscoelastic behaviour

is given. The derivation of the Green’s function solution for the single-mode Fractional

Maxwell Model, utilizing the Laplace transform of the two-parameter Mittag-Leffler func-

tion is presented. This is an original contribution. Furthermore, we consider an extension

of the general fractional Maxwell model by including additional fractional time derivatives.

A Green’s function solution for this model is also obtained using the Laplace transform

method. We derive formulas for the complex modulus, storage modulus, and loss modulus

in order to analyse these models in terms of their rheological behaviour. Additionally,

we show how to determine a material’s relaxation time. We present numerical results for

the Fractional Maxwell Model (FMM), Fractional Maxwell Liquid (FML), and Fractional

Maxwell Gel (FMG) that analyse the asymptotic behaviour of the storage modulus G′

and loss modulus G′′.

The chapter concludes by performing numerical simulations using the new models and

comparing their predictive properties for different model and material parameters. Com-

parisons are also made with relevant experimental data.
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In Chapter 5, we outline some fundamental notions that are essential to studying the

behaviour of numerical techniques for dealing with fractional derivatives. For two ranges

of fractional order 0 < α < 1 and 1 < α < 2, a first-order difference scheme is derived

using the Caputo fractional derivative. These concepts are then extended to a second-

order difference schemes for the two ranges of fractional order α. Additionally, we use

difference approach to derive the first-order and the second-order temporal discretisation

for the Fractional Viscoelastic Fluid model for the special case of fractional order α = 1.

In Chapter 6, we present a novel solution to the steady and unsteady unidirectional

flow of fractional viscoelastic fluids inside a real concentric cylinder rheometer (the Tay-

lor–Couette geometry) by extending the computational model in the paper of Ferras .

(2018) using spectral methods. A Matlab code was developed. We present a numerical

discretisation of the problem based on spectral approximations in space and finite differ-

ences in time. The linear system for the unknowns at each time step is formed by applying

these techniques to the governing equations for shear stress and velocity. Moreover, we

investigate the convergence behaviour of the spectral approximation. We describe the

advantages and disadvantages of both approaches while comparing some numerical find-

ings with the finite difference approach of Ferras . (2018) to demonstrate the validity of

this contribution. By the end of this chapter, we formulate and study the fully coupled

problem in Section 4 of Ferras . (2018). We then examine how fractional orders affect

the velocity and shear stress estimates and briefly explain the stress relaxation that was

obtained for the FMM.

In Chapter 7, we present enhanced fractional viscoelastic models and higher-order tem-

poral numerical scheme in the context of the Single-Mode and Multi-Mode Fractional

Maxwell Models for the Taylor-Couette problem. The derivation begins with the weak

form of the system of equations, followed by the temporal discretization using first-order

and second-order difference schemes for the time-fractional derivative to improve numer-

ical accuracy. Additionally, spectral approximations are employed for the spatial dis-

cretization. These techniques are applied to the governing equations for velocity and

shear stress, resulting in a linear system for the unknowns at each time step. Numeri-
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cal results are provided to validate the proposed approach and examine the evolution of

velocity and shear stress within the Taylor-Couette geometry.

Chapter 8 summarises original contributions of this thesis and discusses possible di-

rections for future study.

All of the simulations performed in this thesis were carried out using MATLAB.
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Chapter 2

Spectral Methods

2.1 Introduction

Spectral methods are one of the most powerful techniques used in scientific computing

and applied mathematics to solve differential equations using global approximations, and

were first presented by Gottlieb Orszag (1977). The main idea of the spectral method

is as follows. First, write the approximate solution as a linear combination of partic-

ular basis functions with unknown coefficients, where, the basis functions are infinitely

differentiable global functions defined over the whole domain, for example, Legendre poly-

nomials, trigonometric functions, Jacobi polynomials, Chebyshev polynomials. This is a

distinctive feature of spectral methods which distinguishes them from finite-element and

finite-difference methods. Second, construct a system of linear equations for the unknown

coefficients in this expansion. Lastly, solve the linear system to find these coefficients.

Spectral methods converge exponentially when the solution of the differential equation

is smooth, which makes them more accurate than local methods. Spectral methods are

superior in terms of spatial accuracy for well-behaved problems (Canuto ., 2012; Childs

Liu, 2020; Kang Suh, 2008).

This chapter is structured as follows: in Sections 2.2 and 2.3 the numerical discretiza-

tion of Boundary Value Problems (BVP) in 1D and 2D, is derived, and the accuracy of

the spatial method is verified by considering some benchmark problems that have been

studied by many researchers (see Owens Phillips (2002), for example). Some concluding

remarks are made in Section 2.4.
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2.2 Boundary Value Problems in 1D

Consider the model convection-diffusion problem :

-ϵu′′ + bu′ = f, x ∈ (−1, 1) (2.1)

with boundary conditions

u(−1) = uL, u(1) = uR (2.2)

Equations (2.1)-(2.2), represent the strong form of the problem. One goal of the spectral

method is to solve these equations in their equivalent weak form. The weak formulation is

obtained by multiplying the strong form of the equation by an appropriate test function

chosen from a suitable function space, and then integrating the equation over the entire

domain. The benefit of this method is that it reduces the order of the differential equation

by using integration by parts to find a solution in a larger space.

Before we write out the weak formulation, we must define a suitable function space for the

solution V = H1(I) where I = (−1, 1). The weak formulation of the continuous equation

is then: Find u ∈ V such that

∫ 1

−1

ϵu′v′dx+

∫ 1

−1

bu′vdx =

∫ 1

−1

fvdx (2.3)

The weak formulation is then: find u ∈ V such that

a(u, v) = (f, v), ∀v ∈ W (2.4)

where (., .) denotes the inner product on L2. Here V and W represent the trial and test

spaces, respectively, and the bilinear form a(., .) is defined as:

a(u, v) =

∫ 1

−1

(ϵu′v′ + bu′v)dx (2.5)
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The spectral method is now applied to the solution of the equation (2.4) utilising expan-

sions based on Legendre polynomials Lk(x) ≡ P
(0,0)
k (x) in which the weight function is

ω(x) = 1. Two methods exist for approximating the solution with Legendre polynomials:

expansions based on orthogonal polynomials modal or Lagrange interpolant nodel. The

solution is expanded in terms of Lagrange interpolants using the Gauss-Lobatto-Legendre

(GLL) points:

uN(x) =
N∑
i=0

uihi(x) (2.6)

where

hi(x) = − (1− x2)L′
N(x)

N(N + 1)LN(xi)(x− xi)
(2.7)

are Lagrange basis functions. The zeros of (1− x2)L′
N(x) are the points xi, i = 0, . . . , N ,

also referred to as the Gauss-Lobatto-Legendre points. The approximation to u(xi) is

ui. In the case of the weak formulation, the unknown nodal values ui, i = 0, ...., N, is

collocation or Galerkin method.

The basis functions for the test space in the Galerkin method are selected from the trial

space, i.e. WN ⊂ V N .

Next, we select conforming approximation spaces V N , i.e., V N ⊂ V , where the test space

is

V N
0 = {v ∈ PN(−1, 1) : v(−1) = 0 = v(1)} (2.8)

and the trial space is specified as,

V N
E = {v ∈ PN(−1, 1) : v(−1) = uL, v(1) = uR} (2.9)

and PN(−1, 1) is the space of polynomials of degree no greater than N on the interval

I. This allows us to create the Galerkin approximation. Consequently, the discrete

weak problem must be solved in order to obtain the Galerkin approximation (2.4): Find

uN ∈ V N
E

ϵ(u′N , v
′
N)N + b(u′N , vN)N = (f, v′N)N , ∀vN ∈ PN(I) ∩H1

0 (I) (2.10)
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The discrete inner product (., .)N is defined as ,

(ϕ, ψ)N =
N∑
j=0

ωjϕ(xj)ψ(xj) (2.11)

where

ωj =
2

N(N + 1)

1

L2
N(xj)

, j = 0, 1, . . . , N (2.12)

provides the weights in such a way that, whenever ϕ is a polynomial of degree 2N − 1 or

less, the quadrature rule ∫ 1

−1

ϕ(x)dx =
N∑
i=0

ωiϕ(xi) (2.13)

is exact.

We employ the interpolants hk(x), k = 1, . . . , N − 1, as test functions in (2.10) to derive

ϵ(u′N , h
′
k)N + b(u′N , hk)N = (f, hk)N , k = 1, . . . , N − 1, (2.14)

or,

N∑
j=0

ωj[ϵu
′
N(xj)h

′
k(xj) + bu′N(xj)hk(xj)] =

N∑
j=0

ωjf(xj)hk(xj), k = 1, . . . , N − 1 (2.15)

where

u′N(x) =
N∑
i=0

uih
′
i(x) (2.16)

Therefore equation (2.15) becomes,

N∑
j=0

ωjϵ

(
N∑
i=0

uih
′
i(xj)

)
h′k(xj) + b

(
N∑
i=0

uih
′
i(xj)

)
hk(xj) =

N∑
j=0

ωjf(xj)hk(xj),

k = 1, . . . , N − 1 (2.17)

Recall that,

hk(xj) = δk,j =

 1 , k = j

0 , k ̸= j
(2.18)
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and define

Dj,i = h′i(xj) (2.19)

where D is the Legendre pseudospectral differentiation matrix. The entries of D for the

Legendre polynomials have the explicit expression:

Dj,i =



1

(xj − xi)

LN(xj)

LN(xi)
, j ̸= i

0 , 1 ≤ j = i ≤ N − 1

−N(N + 1)

4
, j = i = 0

N(N + 1)

4
, j = i = N

(2.20)

As a result, equation (2.17) becomes,

N∑
i=0

[
ϵ

N∑
j=0

ωjh
′
i(xj)h

′
k(xj) + bωkh

′
i(xk)

]
ui = ωkf(xk) (2.21)

N∑
i=0

[
ϵ

N∑
j=0

ωjDj,iDj,k + bωkDk,i

]
ui = ωkf(xk) (2.22)

This is the system of N − 1 equations for the N − 1 unknowns ui, i = 1, . . . , N − 1, and

u0 = α, uN = β are known values.

Define

Ak,i = ϵ
N∑
j=0

ωjDj,iDj,k + bωkDk,i (2.23)

then
N∑
i=0

Ak,iui = bk

where

bk = ωkf(xk)
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Since u0 = α and uN = β are known values,

N−1∑
i=1

Ak,iui = bk − Ak,0 α− Ak,N β, k = 1, . . . , N − 1 (2.24)

see (Owens Phillips, 2002; Burden Faires, 1997). Thus we have derived the linear system

Au = b where u = (u1, . . . , uN−1)
T .

2.2.1 Numerical Examples and Comparisons

Example 1. Consider the boundary value problem

-ϵu′′ + bu′ = f, x ∈ (−1, 1) (2.25)

with boundary conditions

u(−1) = 0 u(1) = 0 (2.26)

and exact solution is u(x) = sin(πx). The function f is given by:

f = ϵπ2 sin(πx) + bπ cos(πx) (2.27)

In Table 2.1, we calculate the L2 norm error for different values of N at each pair values

of ϵ and b. We note that the L2 norm error decreased when the number of nodes N is

increasing. Fig. 2.1 shows the norm of the error decreases with N .

ϵ b N = 4 N = 8 N = 12 N = 16 N = 20

1 0 0.07508 2.3776× 10−05 3.1193× 10−09 1.6709× 10−13 1.4499× 10−14

1 1 0.11998 0.0001102 3.062× 10−08 2.7967× 10−12 1.6704× 10−14

0.1 1 0.86647 0.00089145 2.6888× 10−07 2.59× 10−11 5.12× 10−15

0.1 10 9.3577 0.011417 2.7545× 10−06 2.0402× 10−10 7.8208× 10−15

Table 2.1: Dependence of the L2 norm of the error on N for different values of ϵ and b.
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Figure 2.1: Dependence of the L2 norm of the error on N .

Example 2. Consider the boundary value problem

-ϵu′′ + bu′ = f, x ∈ (−1, 1) (2.28)

with boundary conditions

u(−1) = −e−1 u(1) = −e1 (2.29)

The exact solution is defined by

u(x) = ex cos(πx) (2.30)

and the source term f(x) is:

f(x) = ϵ ex[2π sin(πx) + (π2 − 1) cos(πx)] + b ex[cos(πx)− π sin(πx)] (2.31)

Table 2.2 gives the L2 norm of the error for various values of N for each pair of ϵ and b

values. We found that if the number of nodes N increased, the values of L2 norm error

decreased, and Fig.2.2 displays that.
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ϵ b N = 4 N = 8 N = 12 N = 16 N = 20

1 0 0.12451 0.00011221 1.4702× 10−08 1.6243× 10−12 1.1689× 10−14

1 1 0.13855 4.0484× 10−05 5.3125× 10−08 4.2505× 10−12 2.1483× 10−14

0.1 1 1.1107 0.00065999 3.6054× 10−07 5.2954× 10−11 8.6055× 10−15

0.1 10 11.9258 0.0088735 3.63422× 10−06 4.202× 10−10 8.2754× 10−15

Table 2.2: Dependence of the L2 norm of the error on N for different values of ϵ and b.

Figure 2.2: Dependence of the L2 norm of the error on N .

2.3 Boundary Value Problems in 2D

Consider the Poisson’s equation.

-∇2u = f, (x, y) ∈ [−1, 1]× [−1, 1] (2.32)

with boundary conditions

u = 0, on ∂Ω (2.33)

Equations (2.32)-(2.33) are the strong formulation of the problem. The spectral approach

aims to solve these equations in their weak form equivalent.

The weak formulation is generated by multiplying the strong form of the equations by a

suitable test function selected from a suitable function space. Therefore we define a test

space: (Owens Phillips, 2002; Burden Faires, 1997)

W = {v ∈ H1(Ω) : v = 0 on ∂Ω} (2.34)

32



Then

-∇2u.v = f.v (2.35)

Integrating the equation over the entire domain

∫∫
Ω

-∇2u.v dx dy =

∫∫
Ω

f.v dx dy (2.36)

and applying integration by parts on the left-hand side we obtain,

∫∫
Ω

∇u · ∇v dx dy −
∫
∂Ω

(∇u · −→n )v ds =

∫∫
Ω

fv dx dy (2.37)

where ∇u · −→n =
∂u

∂x
nx +

∂u

∂y
ny, and ds is the differential arc length along the boundary

∂Ω.

Since v = 0 on ∂Ω, we have

∫∫
Ω

∇u · ∇v dx dy =

∫∫
Ω

fv dx dy (2.38)

This is the weak formulation of equation (2.32), and can be written in the bilinear form:

Find u ∈ W s.t

a(u, v) = L(v) ,∀v ∈ W (2.39)

where the bilinear form a(., .) is defined by

a(u, v) =

∫∫
Ω

∇u · ∇v dx dy (2.40)

and the linear formulation L(.) is define by

L(v) =

∫∫
Ω

fv dx dy (2.41)

The Galerkin approximation for (2.39) is: Find uN ∈ WN such that

a(uN , vN) = L(vN) ,∀vN ∈ WN (2.42)
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Thus, ∫∫
Ω

∇uN · ∇vN dx dy =

∫∫
Ω

fvN dx dy (2.43)

Since the approximation is conforming, i.e. WN ⊂ W we can substitute vN in (2.39),

a(u, vN) = L(vN) (2.44)

Then, ∫∫
Ω

∇u · ∇vN dx dy =

∫∫
Ω

f · vN dx dy (2.45)

subtracting (2.45)-(2.43), we have

∫∫
Ω

(∇u−∇uN) · ∇vN dx dy = 0 (2.46)

Hence,

a(∇u−∇uN , vN) = 0, ∀vN ∈ WN (2.47)

To determine the Galerkin approximation we need to generate a linear system of equations

of the form Au = b. To formulate the discrete weak problem(2.42), we consider

uN(x, y) =
N∑
i=0

N∑
j=0

ui,jhi(x)hj(y) (2.48)

vN(x, y) = hk(x)hl(y), 1 ≤ k, l ≤ N − 1 (2.49)
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The L.H.S of (2.42) becomes

a(uN , vN)N =

∫∫
Ω

∇uN · ∇vN dx dy

=

∫∫
Ω

[
∂uN
∂x

∂vN
∂x

+
∂uN
∂y

∂vN
∂y

]
dx dy

=

∫∫
Ω

[(
N∑
i=0

N∑
j=0

ui,jh
′
i(x)hj(y)

)
h′k(x)hl(y)

+

(
N∑
i=0

N∑
j=0

ui,jhi(x)h
′
j(y)

)
hk(x)h

′
l(y)

]
dxdy

≃
N∑

m=0

N∑
n=0

wmwn

[
∂uN
∂x

(xm, yn)
∂vN
∂x

(xm, yn) +
∂uN
∂y

(xm, yn)
∂vN
∂y

(xm, yn)

]

=
N∑

m=0

N∑
n=0

wmwn

[(
N∑
i=0

N∑
j=0

ui,jh
′
i(xm)hj(yn)

)
h′k(xm)hl(yn)

+

(
N∑
i=0

N∑
j=0

ui,j hi(xm)h
′
j(yn)

)
hk(xm)h

′
l(yn)

]
(2.50)

The right hand side of (2.42) is

∫∫
Ω
fvN dx dy ≃

∑N
m=0

∑N
n=0wmwnf(xm, yn)hk(xm)hl(yn) (2.51)

Using the Kronecker delta property,

hk(xm) = δm,k =

 1 , k = m

0 , k ̸= m
(2.52)

and define

Dm,i = h′i(xm) (2.53)
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Equations (2.50) and (2.51) become

N∑
m=0

N∑
n=0

wmwn

[(
N∑
i=0

ui,nDm,i

)(
Dm,kδl,n

)]
+

N∑
m=0

N∑
n=0

wmwn

[(
N∑
j=0

um,jDn,j

)(
δk,mDn,l

)]

=
N∑

m=0

N∑
n=0

wmwnfm,nδm,kδn,l

wl

N∑
i=0

[
N∑

m=0

wmDm,iDm,k

]
ui,l + wk

N∑
j=0

[
N∑

n=0

wnDn,jDn,l

]
uk,j = wkwlfk,l (2.54)

then

wl

N∑
i=0

Bi,kui,l + wk

N∑
j=0

Cj,luk,j = wkwlfk,l (2.55)

where

Bi,k =
N∑

m=0

wmDm,iDm,k (2.56)

Cj,l =
N∑

n=0

wnDn,jDn,l ≡ Bj,l (2.57)

Equation (2.54) for 1 ≤ k, l ≤ N−1 represents a linear system Au = b of (N−1)2 equations

for the (N − 1)2 unknowns ui,j, i, j = 1, . . . , N − 1, with u = 0 on the boundary.

Let I = (l − 2)(N − 1) + (k − 1) and J = (j − 2)(N − 1) + (i− 1).

Then, the system reduces to

(N−1)2∑
J=1

AIJuJ = FI , I = 1, . . . , (N − 1)2 (2.58)

where

AIJ = wl

N∑
m=0

wmDm,iDm,k + wk

N∑
n=0

wnDn,jDn,l (2.59)

and

FL = wkwlf(xk, yl) (2.60)
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2.3.1 Numerical Examples and Comparisons

Example 1. Consider the boundary value problem

-∇2u = 2π2 sin(πx) sin(πy), (x, y) ∈ [−1, 1]× [−1, 1] (2.61)

with boundary conditions

u(±1, y) = u(x,±1) = 0 (2.62)

and exact solution u(x, y) = sin(πx) sin(πy).

Table 2.3 illustrates the exponential convergence behaviour of the L2 norm of the error

for various values of N , and Fig. 2.3 displays that. The exact and approximate solutions

are plotted in Fig. 2.4 when N = 24.

N L2error

4 0.093892
8 5.2969× 10−05

12 9.2122× 10−09

16 5.8203× 10−13

20 3.3692× 10−14

24 1.5232× 10−14

32 8.4388× 10−14

Table 2.3: Dependence of the L2 norm of the error fon N .

Figure 2.3: Plot showing the dependence of the L2 norm of the error on N .
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(a) (b)

Figure 2.4: (a) Exact and (b) approximate solutions of Poisson equation for N = 24. The
exact solution is plotted using the GLL nodes.

Example 2. Consider the boundary value problem

-∇2u = 2π2 cos(πx) cos(πy), (x, y) ∈ [−1, 1]× [−1, 1] (2.63)

with non-zero Dirichlet boundary conditions

u(±1, y) = − cos(πy) (2.64)

u(x,±1) = − cos(πx) (2.65)

and exact solution u(x, y) = cos(πx) cos(πy).

Table 2.4 illustrates the exponential convergence behaviour of the L2 norm of the error

on N , and Fig. 2.5 plots this error which demonstrates exponential convergence to the

true solution of the problem. The exact and approximate solutions are plotted in Fig. 2.6

when N = 24.
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N L2 error

4 0.11923
8 1.2967× 10−04

12 3.7173× 10−08

16 3.2728× 10−12

20 1.8261× 10−14

24 4.1907× 10−14

32 8.911× 10−14

Table 2.4: Dependence of the L2 norm of the error on N .

Figure 2.5: Plot showing the dependence of the L2 norm of the error on N .

(a) (b)

Figure 2.6: (a) Exact and (b) approximate solutions of Poisson equation for N = 24. The
exact solution is plotted using the GLL nodes.
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2.4 Conclusions

We can come to the following conclusion based on the findings of this chapter: The weak

versions of the convection-diffusion problem and Poisson’s equation are discretized using

the spectral technique. The so-called ”exponential convergence” has been demonstrated

in the results and figures showing the behaviour of the L2 norm of the error on N , further

demonstrating the outstanding error features of spectral approaches.
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Chapter 3

Fundamentals of Fractional Calculus

3.1 Introduction

Mathematical models are often governed by integral and/or differential equations of inte-

ger order. With applications in a wide range of fields, such as computer science, biology,

engineering, geophysics, physics, economics, and finance, the so-called fractional calculus

has attracted a lot of attention recently (Consiglio Mainardi, 2021; Machado ., 2011).

A fractional derivative is an operator that generalizes the notion and definition of the

standard ordinary derivative. In other words, if the fractional derivative of order α is

denoted by the operator Dα, then it reduces to the ordinary differential operator D when

α = 1. It was not until the late 1900s that fractional differential equations—especially

those with real or complex order derivatives—started to be used more frequently to model

the irregular dynamics of many processes connected to complex systems (Samko ., 1993;

Gorenflo Mainardi, 1997; Baleanu ., 2012).

Differentiation is made relatively easy by ordinary derivatives, which make it possible to

apply rules like the chain rule in a straightforward way. The differentiation of composite

functions is made more difficult by fractional derivatives, which rely on memory-based

integral formulations. Because of this additional complexity, fractional derivatives are

especially useful when modelling memory-dependent systems where past states affect cur-

rent behaviour, including viscoelastic materials and anomalous diffusion (Baleanu ., 2012).

To solve fractional differential equations, a practical and simple-to-use approach is nec-

essary. Many established techniques have distinct limitations. The techniques discussed

by Oldham Spanier (1974) and Miller Ross (1993) for fractional differential equations of

rational order are inapplicable when dealing with differential equations of more arbitrary
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real orders. Conversely, the series method (Oldham Spanier, 1974; Friedrich, 1991) and

the iteration method (Samko ., 1987) enable the solution of fractional differential equa-

tions of arbitrary real order, but are only effective for relatively simple equations. The

one-parameter Mittag-Leffler function Eα(z) =
∑∞

j=0
zj

Γ(αj+1)
, z ∈ C, was employed by

several researchers in their studies (see Bagley Calico (1991); Caputo Mainardi (1971),

for example). The Fox H-function (Fox, 1961), which appears to be too generic to be

employed regularly in applications, is preferred by some other authors (Schneider Wyss,

1989; Baumann, 1991).

A method that is free of the issues mentioned above and appropriate for a wide variety

of initial value problems for fractional differential equations was developed by Podlubny

(1997) in place of the diversity of approaches described above. The formula for the Laplace

transform of the Mittag-Leffler function in two parameters, Eα,γ(x), serves as the foun-

dation for this method, which applies Laplace transform methodology.

This chapter, which is divided into the following five sections, covers some of the funda-

mental concepts associated with fractional calculus. Section 3.2 introduces the Laplace

transform for fractional derivatives. In Section 3.3, Mittag-Leffler (ML) functions and

their Laplace transforms for different numbers of parameters are presented. Conclusions

are presented in Section 3.4.

3.1.1 Fractional operators

1. Riemann–Liouville fractional derivatives

The Riemann-Liouville fractional derivative of order α > 0 is defined by:

aR
α
t g(t) =

1

Γ(n− α)

dn

dtn

∫ t

a

(t−t′)n−α−1g(t′)dt′, n−1 < α < n, n = 1, 2, . . . , 0 ≤ t ≤ T

(3.1)

where g is a function for which the integral (3.1) exists, for example, g ∈ Cn[0, T ].

When a→ −∞ this is known as Weyl’s fractional derivative.
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Weyl’s composition rule

∂α

∂tα

(
∂β

∂tβ

)
g(t) =

∂α+β

∂tα+β
g(t), 0 ≤ t ≤ T, 0 < α, β < 1, 0 < α+ β < 1, (3.2)

where
∂α

∂tα
=a R

α
t , and aR

α
t is the Riemann-Liouville fractional derivative of order

α.

For g ∈ C1[0, T ], Eq. (3.2) is satisfying g(0) =
∂α

∂tα
g(0) = 0

Properties of the Riemann-Liouville fractional derivative:

• the Riemann–Liouville fractional integral is

I αt g(t) =a R
−α
t g(t) =

1

Γ(α)

∫ t

a

(t− t′)α−1g(t′)dt′, α > 0, (3.3)

for function g for which this integral exists.

• aR
−α2
t (aR

−α1
t g(t)) =a R

−(α1+α2)
t g(t), 0 < α1, α2 < 1, 0 < α1 + α2 < 1

• the Riemann–Liouville fractional derivative satisfies

aR
α
t g(t) =

dp

dtp
(aR

−(p−α)
t g(t)), p− 1 < α ≤ p, p = 1, 2, . . .

• In particular if p = 1, then for 0 < α ≤ 1 :

aR
α
t g(t) =

d

dt
(aR

−(1−α)
t g(t))

• aR
α1
t (aR

−α2
t g(t)) =a R

α1−α2
t g(t), α1 > α2 ≥ 0.

2. Caputo fractional derivative

The Caputo fractional derivative of order α > 0 with a = 0, denoted by 0D
α
t , is

obtained by interchanging the order of differentiation and integration in equation

(3.1). It is defined as follows:

Dα
t g(t) =

1

Γ(1− α)

∫ t

0

(t− t′)−αg(1)(t′)dt′, 0 ≤ t ≤ T, 0 < α ≤ 1 (3.4)
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where g(1)(t) =
dg(t)

dt
, g ∈ C1[0, T ].

More generally,

Dα
t g(t) =



1

Γ(m− α)

∫ t

0

(t− t′)m−α−1g(m)(t′)dt′ , m− 1 < α < m

dm

dtm
g(t) , α = m,

(3.5)

where m is a positive integer, m ∈ N .

The Caputo fractional derivative is equivalent to the regularised Riemann-Liouville frac-

tional derivative since

Dα
t g(t) = R

−(1−α)
t

d

dt
g(t)

=
1

Γ(1− α)

[
d

dt

∫ t

0

(t− t′)−αg(t′)dt′ − g(0)

tα

]

= Rα
t g(t)−

g(0)

tαΓ(1− α)
, 0 < α ≤ 1,

(3.6)

since Rα
t 1 = 1

tαΓ(1−α)
.

The material described in Sections 3.2 and 3.3 is based on the contribution of Podlubny

(1997).

3.2 Laplace Transforms

In physical and mathematical applications where initial conditions are typically repre-

sented in terms of integer-order derivatives, we highlight the substantial importance of

the Caputo fractional derivative in solving initial-value problems. The Laplace transform

makes it simple to see this. The Laplace transform of a function f(t) is defined by

f̃(s) = L{f(t); s} =

∫ ∞

0

e−stf(t) dt, s > 0 (3.7)
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The Laplace transform of the Caputo derivative of order α of a function f(t) with m−1 <

α ≤ m is

L{Dα
t f(t); s} = sαf̃(s)−

m−1∑
k=0

sα−1−kf (k)(0+) (3.8)

where f (k)(0+) := lim
t→0+

Dk
t f(t).

The Laplace transform of the Riemann-Liouville derivative of order α has the following

equivalent rule:

L{Rα
t f(t); s} = sαf̃(s)−

m−1∑
k=0

sm−1−kg(k)(0+) (3.9)

where g(k)(0+) := lim
t→0+

Dk
t g(t), g(t) := Im−α

t f(t) where Im−α
t is defined in Eq. (3.3)

(Consiglio Mainardi, 2021; Kexue Jigen, 2011; Mainardi, 2010; Bagley Torvik, 1983).

3.3 Mittag-Leffler functions (MLF)

Magnus Gustaf Mittag-Leffler, a Swedish mathematician, developed methods for the sum-

mation of divergent series at the beginning of the 19th century, which led to the develop-

ment of the Mittag-Leffer (ML) function. Studying ML functions is primarily motivated

by their significance in fractional calculus, where they play the same essential role as the

exponential function in integer order calculus (Podlubny, 1997; Garra Garrappa, 2018;

Nigmatullin, 1984).

3.3.1 Mittag-Leffler function in one parameter

Definition

A one-parameter Mittag-Leffler type function is defined by the series expansion

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
, z ∈ C, 0 < α < 1 (3.10)

Fact 1:

If −t = z, t ≥ 0 and real, then

• Generalization of the Exponential Function:
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When α = 1, the Mittag-Leffler function reduces to the exponential function E1(−t) =

e−t.

• Asymptotic Behaviour:

Fig. 3.1 exhibits some plots of Eα(−tα) for some values of the parameter α where

0 < α < 1 where Eα(−tα) ≃ cα
tα
, as t → ∞, where cα = 1

Γ(1−α)
. The constant cα is

known as the Poincaré asymptotic (Mainardi, 2013; Apelblat, 2020). Also

1

1 + xΓ(1− α)
≤ Eα(−x) ≤

1

1 + x
Γ(1+α)

, x ≥ 0 (3.11)

(see Simon (2014))

Figure 3.1: The Mittag-Leffler function Eα(−tα) for α = 0.8, 1 and 0 ≤ t ≤ 20.

Fact 2:

The function f(t) = Eα(λt), t, λ ∈, is the eigenfunction of the fractional equation:

∂αt f(t) = λf(t) (3.12)

where ∂αt is the Caputo fractional derivative (Meerschaert Sikorskii, 2019).

3.3.2 Mittag-Leffler function in two parameters

Definition

The following series expansion defines a two-parameter function of Mittag-Leffler type
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(Szegö, 1955) as

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, z ∈ C, α > 0, β > 0 (3.13)

Fact:

If 0 < α < 1, then the Poincaré asymptotic expansion is

Eα,β(z) ∼= −
N∗∑
k=1

1

Γ(β − αk)

1

zk
, z → −∞ (3.14)

where N∗ ∈ N and N∗ ̸= 1 (Haubold ., 2011).

When z = −x, x ∈, the Poincaré asymptotic expansion is

Eα,β(−x) ∼= −
∞∑
k=1

(−1)k

xk Γ(β − αk)
, x→ +∞ (3.15)

where x ≥ 0, x is real.

Relationship to other functions

Some special cases of the ML function are as follows:

1.

E1,1(z) = ez, E1,2(z) =
ez − 1

z

E2,1(z) = cosh
(√

z
)
, E2,2(z) =

sinh (
√
z)√

z

(3.16)

2. The Mittag-Leffler function in one parameter is obtained for β = 1 as Eα,1(z) =∑∞
k=0

zk

Γ(αk+1)
≡ Eα(z) (Podlubny, 1997).

The Laplace transform of the Mittag-Leffler function in two parameters

The Laplace transform of the following function

E
(k)
α,β(t) =

dk

dtk
Eα,β(t), t ∈, k = 1, 2, . . . (3.17)
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follows from relationship (3.16). The Mittag-Leffler function Eα,β is a generalization

of the exponential function ez, and the exponential function is a particular case of the

Mittag-Leffler function α = β = 1. Therefore, the Laplace transform of the Mittag-Leffler

function is

L{E(k)
α,β(t); p} =

∫ ∞

0

e−pt tαk+β−1 E
(k)
α,β(

+
−at

α) dt =
k! pα−β

(pα −
+a)k+1

, p > 0 (3.18)

where Re(p) > |a| 1α .

3.3.3 Mittag-Leffler function in three parameters

Definition

A three-parameter Mittag-Leffler function called the Prabhakar function is examined. In

models of Havriliak-Negami type, this function is essential in explaining the anomalous

dielectric characteristics in disordered materials and heterogeneous systems that exhibit

simultaneous nonlocality and nonlinearity (Garra Garrappa, 2018).

E
(γ)
α,β(z) =

1

Γ(γ)

∞∑
k=0

Γ(γ + k) zk

k! Γ(αk + β)
, z ∈ C, α, β, γ > 0 (3.19)

Note that,

E
(n)
α,β(x) = n! E

(n+1)
α, n α+β(x). (3.20)

The Laplace transform of the Mittag-Leffler function in three parameters

L{E(γ)
α,β(t); p} =

∫ ∞

0

e−pt tβ−1 E
(γ)
α,β(at

α) dt =
1

pβ

∞∑
k=0

Γ(γ + k)

Γ(γ)

(
a

p

)k

(3.21)

and

L
(
tβ−1E

(γ)
α,β(xt

α); p

)
=

pαγ−β

(pα − x)γ
, p > |x|

1
α (3.22)
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The Riemann-Liouville fractional derivative of the Mittag-Leffler function in three param-

eters is

Rγ
t

[
tαk+β−1E

(k)
α,β(λt

α)

]
= tαk+β−γ−1E

(k)
α,β−γ(λt

α), α, β > 0, 0 < γ < 1, λ > 0 (3.23)

3.3.4 Tools for testing candidate solutions

A rule for fractional differentiation of an integral depending on a parameter

When the upper limit also depends on the parameter we have:

aDt
α

∫ t

a

F (t, t′) dt′ =

∫ t

a
t′Dt

αF (t, t′) dt′ + lim
t′→t−0

t′Dt
α−1F (t, t′), 0 < α < 1. (3.24)

3.4 Conclusions

In this chapter we have introduced the basic ideas and notations associated with fractional

calculus. In particular, we have defined various fractional derivatives and stated their key

properties. These concepts underpin the theoretical work in this thesis. More specifically,

we have introduced the fractional operators. In the upcoming chapters, these will be used

to define the time fractional derivative of Fractional Maxwell Models (FMM). As well

as, we have presented the Mittag-Leffler function (MLF) and Laplace transform, which

are used to define the Green’s function approach. The next chapter will employ this

technique to derive exact solutions to the fractional differential equations. This technique

is one of the most effective methods for dealing with the Caputo fractional derivative due

to several key advantages. First, it simplifies complex problems by transforming complex

fractional differential equations into simpler algebraic equations through the application

of the Laplace transform. Additionally, it effectively represents fractional behaviour,

much like the exponential function in classical equations, with the Mittag-Leffler function

naturally capturing the dynamics of systems with fractional characteristics. Moreover,

this approach is highly applicable to real-world problems, as the Caputo derivative allows

for the straightforward incorporation of initial conditions, making it particularly useful in
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practical applications. Therefore, this approach which is the combination of the Laplace

transform and Mittag-Leffler function (MLF) is an effective tool for solving fractional

differential equations since it can be applied to a wide range of equations and boundary

value problems.
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Chapter 4

Fractional Maxwell Models

4.1 Introduction

This chapter demonstrates how the behaviour of viscoelastic fluids can be characterized

using mechanical models and how general fractional models can be derived by arranging

spring-pot elements in series and/or parallel. Subsequently, these models are used to

fit experimental data and the quality of the fractional modes is assessed by considering

oscillatory shear data across the frequency range using curve fitting techniques.

This chapter begins with a brief summary of the viscoelastic behaviour that can be

described using mechanical models, as detailed in Section 4.2.

In Section 4.3, the Green’s function solution of the Single-Mode fractional Maxwell model

is derived using the formula for the Laplace transform of the Mittag-Leffler function in

two parameters. This is an original contribution. We also derive expressions of the com-

plex, storage, and loss modulus, and show how the relaxation time of a material may be

determined. At the end of this section, the asymptotic behaviour of the storage, G′, and

loss, G′′, moduli for the Fractional Maxwell Model (FMM), the Fractional Maxwell Liquid

(FML), and the Fractional Maxwell Gel (FMG) is investigated. Also, we employ curve

fitting techniques to evaluate the model’s validation and accuracy across its frequency

range.

In Section 4.4, an extension of the general fractional Maxwell model is proposed by in-

troducing an additional fractional time derivative, effectively adding a spring-pot element

in series. The corresponding fractional Green’s function solution is obtained using the

Laplace transform of the Mittag-Leffler function in two parameters. Additionally, we

derive expressions for the loss, storage, and complex moduli before determining the relax-
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ation time. The asymptotic behaviour of the storage and loss moduli for the Fractional

Maxwell Model (FMM), Fractional Maxwell Liquid (FML), and Fractional Maxwell Gel

(FMG) is studied. Finally, we employ curve fitting techniques to evaluate the model’s

validation and accuracy across its frequency range. In Section 4.5, an extension of the

general fractional Maxwell model is proposed by introducing two additional fractional

time derivatives, effectively adding fractional elements in parallel. The corresponding

fractional Green’s function solution is obtained using the Laplace transform of the two-

parameter Mittag-Leffler function. Additionally, expressions for the dynamic modulus are

derived. Conclusions are presented in Section 4.6.

4.2 Description of Viscoelastic Behaviour using Me-

chanical Models

A variety of complex fluids and soft solids, from everyday products to fracking fluids,

possess viscoelastic characteristics that are described by various kinds of relaxation time

scales. This can provide significant challenges to the quantitative constitutive modelling of

the material’s behaviour. In its most basic form, a linear elastic spring (Hooke’s law) and

a constant viscosity dashpot (Newton’s law) can be mechanically combined to model both

solid-like and liquid-like behaviour for a viscoelastic material. The stress-strain relations

for elastic solids and viscous fluids are given by

τe(t) = G γe(t), (4.1)

τv(t) = η γ̇v(t), (4.2)

respectively, where the strain is denoted by γe(t), the stress is τ(t), the strain rate is γ̇v,

the elastic shear modules is G, the viscosity coefficient is η, and the subscripts e and v

denote the elastic and viscous behaviour, respectively (Schiessel Blumen, 1993; Bird .,

1987). These two models can be represented in terms of mechanical models as shown in

Fig. 4.1 where the spring describes elastic behaviour and the dash-pot represents viscous
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behaviour.

G

(a)

η

(b)

Figure 4.1: Basic elements of a mechanical model: (a) spring; (b) dashpot.

4.2.1 The Maxwell model

In the framework of mechanical models, the Maxwell model, which was developed by

Maxwell (1867), can be represented by coupling a dashpot and a linear spring in series.

This configuration is shown in Fig. 4.2. The total stress of the system can be calculated

as follows:

Let γ̇e and γ̇v be the rate of strain due to the spring and dashpot, respectively, then

τ(t) = τe(t) = τv(t) (4.3)

γ̇ = γ̇e + γ̇v (4.4)

Substituting Eq.(4.1) and Eq.(4.2) into Eq.(4.4) gives the following equation relating the

total stress and strain for the Maxwell model

τ(t) + λ τ̇(t) = η γ̇ (4.5)

where τ̇ , γ̇ denote the rates of stress and strain, respectively, and the relaxation time is

defined as the ratio of the dashpot’s viscosity coefficient to the linear spring’s stiffness,

i.e. λ = η
G (Bird ., 1987; Larson, 1999; Hajikarimi Nejad, 2021).
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G

η

Figure 4.2: Maxwell model

4.2.2 The generalized Maxwell model

Combining Maxwell models in parallel allows us to model viscoelstic materials that possess

a spectrum of relaxation times rather than a single relaxation time. The mechanical model

for a two-mode Maxwell model is shown in Fig. 4.3.

Expressions for the stress and strain of the system can be derived as follows. Since

the generalised Maxwell model is connected in parallel:

τ(t) = τm1(t) + τm2(t) (4.6)

γ(t) = γ1(t) = γ2(t) (4.7)

where subscript m1 refers to Maxwell element 1 that can be simply described as Eq.(4.8),

and m2 refers to Maxwell element 2 described as Eq.(4.9), respectively. For each of the

elements we have

τ1(t) + λ1 τ̇1(t) = η1 γ̇(t) (4.8)

τ2(t) + λ2 τ̇2(t) = η2 γ̇(t) (4.9)

Since the total stress of the system is

τ(t) = τ1(t) + τ2(t)
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then,

τ2(t) = τ(t)− τ1(t)

Substituting for τ2(t) in Eq.(4.9) yields

(τ(t)− τ1(t)) + λ2 (τ̇(t)− τ̇1(t)) = η2 γ̇(t) (4.10)

then,

τ̇1(t) =
1

λ2
[−η2 γ̇(t) + τ(t)− τ1(t) + λ2τ̇(t)] (4.11)

substituting for τ̇1(t) in Eq.(4.8) gives

τ1(t) +
λ1
λ2

[−η2 γ̇(t) + τ(t)− τ1(t) + λ2τ̇(t)] = η1 γ̇(t) (4.12)

which, on rearrangement gives

(
1− λ1

λ2

)
τ1(t) =

(
η1 +

λ1
λ2

η2

)
γ̇(t)− λ1

λ2
τ(t)− λ1 τ̇(t) (4.13)

or

τ1(t) =
1

(λ2 − λ1)
[(λ2 η1 + λ1 η2)γ̇(t)− λ1 τ(t)− λ1 λ2 τ̇(t)] (4.14)

Taking the 1st derivative of Eq.(4.14) gives

τ̇1(t) =
1

(λ2 − λ1)
[(λ2 η1 + λ1 η2) γ̈(t)− λ1 τ̇(t)− λ1 λ2 τ̈(t)] (4.15)

In order to derive the equation for the total stress τ(t), which is the constitutive equa-

tion for the generalised Maxwell model, substitute for τ1(t) and τ̇1(t) in Eq. (4.8) using

Eq.(4.14) and Eq.(4.15) which gives

τ(t) + (λ1 + λ2) τ̇(t) + (λ1 λ2) τ̈(t) = (η1 + η2)γ̇(t) + (λ2 η1 + λ1 η2) γ̈(t) (4.16)
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G1

η1

G2

η2

Figure 4.3: Generalized Maxwell model

4.2.3 Fractional Models

The integer-order viscoelastic models have the advantage of using spring-dashpot compo-

nents to describe linear behaviour viscoelastic materials. The accurate description of the

viscoelastic response with such models normally needs a series of model components. For

example, the generalized Maxwell model requires 8–25 elements to describe the mechani-

cal behaviour of a bituminous material accurately. Therefore using integer-order models

means that many parameters may be needed to describe the desired model. Having a large

number of parameters increases calculation time, and so models with a large number of

parameters are not practical to use in real-world applications. Therefore, alternative

models that have a fewer parameters are performed. Several fractional-order models have

been developed to solve the aforementioned problem and decrease the required number

of parameters without reducing the precision of the model (Hajikarimi Nejad, 2021).

Simple Fractional Element

Since most viscous materials consist of solid and liquid components, there is a mechanical

element that interpolates between a spring (α = 0) and dashpot (α = 1) (see Fig 4.4),

and this mechanical element can be used to describe the behaviour of viscous materials.

Schiessel . (1995) derive an expression in terms of three parameters; an elastic modulus

E, a time scale λ, and a fractional exponent 0 ≤ α ≤ 1. The stress is, thus, written as

τ(t) = Eλα
∂αγ

∂tα
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However, only the quantities of Eλα and α can actually be measured experimentally.

This response can be written in terms of a fractional derivative as follows:

τ(t) = V
∂αγ

∂tα
, (4.17)

where V = Eλα is a quasi-property with units of Pa.sα (Koeller, 1984; Torvik Bagley,

1984).

(V, α)

Figure 4.4: Spring-Pot Element

4.3 Single-Mode Fractional Maxwell Model

In order to create fractional constitutive models that can represent more complex rheo-

logical responses, researchers have constructed spring-pot elements in series and parallel

(Koeller, 1984; Palade ., 1996). The Fractional Maxwell Model (FMM) is a commonly

used combination in the literature. It is depicted in Figure 4.5 and includes the elements

of a linear combination of two spring-pots in series (Friedrich, 1991). Since most com-

plex materials display different power-law behaviour at short and long time scales, which

may be well characterised by the FMM, this fractional framework is extensively applicable

(Friedrich, 1991; Mainardi, 2010; Yang ., 2010; Jaishankar McKinley, 2014; Faber ., 2017;

Schiessel ., 1995).
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(V, β)

(G, α)

Figure 4.5: Single-Mode Fractional Maxwell Model

4.3.1 Derivation of the Single-Mode Fractional Maxwell Model

The series combination indicates that the total stress and strain of the system satisfy the

following relationships in terms of the stress and strain of the individual components:

τ(t) = τ1(t) = τ2(t) (4.18)

γ̇(t) = γ̇1(t) + γ̇2(t) (4.19)

where τ(t) is the stress and γ̇(t) is the strain rate for the FMM.

For each spring-pot we have

τ1(t) = V
dβγ1(t)

dtβ
(4.20)

τ2(t) = G
dβ−αγ2(t)

dtβ−α
(4.21)

where 0 < α ≤ β ≤ 1.

For a fixed β and β − α, the constants V and G have physical dimensions Pa.sβ and

Pa.sβ−α, respectively. The constants V and G represent a quasi-property and a generalised

modulus, respectively. These quasi-properties are more clearly recognized as the numerical

measurements of a dynamical process, as they are not actual material properties like a

modulus or viscosity.
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Now

γ(t) = γ1(t) + γ2(t) (4.22)

so that

dβγ(t)

dtβ
=
dβγ1(t)

dtβ
+
dβγ2(t)

dtβ
(4.23)

Now, from Eq.(4.18) and Eq.(4.20) we obtain

dβγ1(t)

dtβ
=

1

V
τ1(t) =

1

V
τ(t) (4.24)

and from Eq.(4.18) and Eq.(4.21) we obtain

dατ2(t)

dtα
=
dατ(t)

dtα
= G

dα

dtα

(
dβ−αγ2(t)

dtβ−α

)
= G

dβγ2(t)

dtβ
(4.25)

Therefore, the constitutive equation for a single fractional Maxwell element is

τ(t) +
V
G
dατ(t)

dtα
= V

dβγ(t)

dtβ
, 0 < α ≤ β ≤ 1 (4.26)

where V
G is the relaxation time of the fluid and V is the viscosity (rate-independent).

Eq.(4.26) is a constitutive equation with the ability to describe three different states: a

linear elastic solid when (0 < α = β < 1), a viscous Newtonian fluid when (0 < α <

1, β = 1), and a combination of both states when (0 < α < β < 1) (Rathinaraj ., 2021;

Yang ., 2010; Ferras ., 2018).

The relationship between (E1, λ1,E2, λ2), (E, λα) and V,G is the following:

For each spring-pot we have

τ1(t) = E1λ
β
1

dβγ1
dtβ

(4.27)

τ2(t) = E2λ
β−α
2

dβ−αγ2
dtβ

(4.28)
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where 0 < α ≤ β ≤ 1.

Then, we have

γ1(t) =
1

E1λ
β
1

d−βτ1(t)

dt−β
=

1

E1λ
β
1

d−βτ(t)

dt−β
(4.29)

γ2(t) =
1

E2λ
β−α
2

d−(β−α)τ2(t)

dt−(β−α)
=

1

E2λ
β−α
2

d−(β−α)τ(t)

dt−(β−α)
(4.30)

Substituting Eq.(4.29) and Eq.(4.30) into the following equation

γ = γ1 + γ2 (4.31)

yields

1

E1 λ
β
1

d−βτ(t)

d t−β
+

1

E2 λ
β−α
2

d−(β−α)τ(t)

dt−(β−α)
= γ(t) (4.32)

Rearranging Eq.(4.32) and applying the operator dβ

dtβ
we obtain the following equation

τ(t) +
E1 λ

β
1

E2 λ
β−α
2

dατ(t)

d tα
= E1 λ

β
1

dβγ(t)

dtβ
(4.33)

We assume β ≥ α without loss of generality. When β = α, we recover the single fractional

element.

Now, consider β > α, then Eq.(4.33) can be simplified by setting

λ =

(
E1 λ

β
1

E2λ
β−α
2

) 1
α

, E = E1

(
λ1
λ

)β

(4.34)

This leads to the equation

τ(t) + λα
dατ(t)

d tα
= Eλβ

dβγ(t)

dtβ
(4.35)

where

λα =

( E1λ
β
1

E2λ
β−α
2

) 1
α

α

=
E1λ

β
1

E2λ
β−α
2

≡ V
G

(4.36)

and

Eλβ = E1

(
λ1
λ

)β

λβ = E1λ
β
1 ≡ V (4.37)
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then, Eq.(4.35) becomes

τ(t) +
V
G
dατ(t)

d tα
= V

dβγ(t)

dtβ
(4.38)

(see Yang . (2010); Stankiewicz (2018))

4.3.2 Derivation of the Exact Solution

In a novel approach, we will solve Eq. (4.26) exactly by defining the relaxation modulus

to be the Laplace transform of the Green’s function which will be expressed in terms

of the Mittag–Leffler function (MLF). This is different to the standard approach which

utilizes the Fourier transform.

Theorem 1

Consider the generalized fractional Maxwell model

τ(t) + λα
∂ατ(t)

∂tα
= E λβ

∂βγ(t)

∂tβ
(4.39)

where 0 < α ≤ β ≤ 1.

The formal solution of Eq.(4.39) is given by Schiessel . (1995) as

τ(t) =

∫ t

−∞
G(t− t′)γ̇(t′)dt′ (4.40)

where G(t) is the relaxation modulus that is defined by the fractional Green’s function as

follows:

G(t) = E

(
t

λ

)α−β

Eα,α−β+1

[
−

(
t

λ

)α]
(4.41)

where Eα,β is the Mittag–Leffler function (Podlubny, 1999):

Eα,β(x) =
∞∑
k=0

xk

Γ(αk + β)
, α > 0, β > 0 (4.42)
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Then Eq. (4.40) written in terms of the Green’s function solution is

τ(t) =
E λβ

λα

∫ t

−∞
(t− t′)α−βEα,α−β+1

[
− 1

λα
(t− t′)α

]
γ̇(t′)dt′ (4.43)

Proof

We interpret Eq. (4.39) as

τ(t) + λα ∂ατ(t) = E λβ ∂β−1 (∂γ(t)), α < β (4.44)

Applying the operator ∂1−β to Eq. (4.44), and using Weyl’s rule (see Eq. (3.2)), gives

B ∂1−βτ(t) + A ∂1+α−βτ(t) = C γ̇(t) (4.45)

where

A =
λα

E λβ
, B =

1

E λβ
, C = 1

For simplicity let

β̄ = 1 + α− β > ᾱ = 1− β, (0 < ᾱ ≤ β̄ ≤ 1) (4.46)

then Eq.(4.45) becomes

A ∂β̄τ(t) +B ∂ᾱτ(t) = γ̇(t) (4.47)

If G(t) is the fractional Green’s function of the following equation

L{τ(t)} = f(t), (4.48)

with special initial conditions with f(t) = γ̇(t) and L is the operator

L = A∂β̄ +B∂ᾱ, β̄ > ᾱ (4.49)
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then the Green’s function solution of equation (4.47) is

τ(t) =

∫ t

−∞
G(t, t′)f(t′)dt′ (4.50)

where G(t, t′) ≡ G(t− t′).

To derive Eq. (4.43) we apply Eq.(3.2) from (Podlubny, 1997) in the limit as a → −∞

and evaluate the operators −∞Dσ1
t , −∞Dσ2

t ,. . . , −∞Dσn
t using the rule in Eq. (3.21) and

condition (2) from the definition of Green’s function in Podlubny (1997), page. (19). This

gives

−∞Ltτ(t) ≡ −∞Dσn
t τ(t) +

n−1∑
k=1

pk(t)−∞Dσn−k
t τ(t) + pn(t)τ(t), (4.51)

where

−∞Dt
σ1τ(t) = −∞Dt

α1

∫ t

−∞
G(t, t′)f(t′)dt′

=

∫ t

−∞
t′Dt

α1G(t, t′)f(t′)dt′ + lim
t′→t−0

t′Dt
α1−1G(t, t′)f(t′)

=

∫ t

−∞
t′Dt

σ1G(t, t′)f(t′)dt′

(4.52)

. . . . . . . . .

−∞Dt
σn−1τ(t) = −∞Dt

αn−1(−∞Dt
σn−2)

= −∞Dt
αn−1

∫ t

−∞
t′Dt

σn−2G(t, t′)f(t′)dt′

=

∫ t

−∞
t′Dt

αn−1(t′Dt
σn−2G(t, t′))f(t′)dt′ + lim

t′→t−0
t′Dt

αn−1 −1(t′Dt
σn−2G(t, t′))f(t′)

=

∫ t

−∞
t′Dt

σn−1G(t, t′)f(t′)dt′

(4.53)
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−∞Dt
σnτ(t) = −∞Dt

αn(−∞Dt
σn−1)

= −∞Dt
αn

∫ t

−∞
t′Dt

σn−1G(t, t′)f(t′)dt′

=

∫ t

−∞
t′Dt

αn(t′Dt
σn−1G(t, t′))f(t′)dt′ + lim

t′→t−0
t′Dt

αn−1(t′Dt
σn−1G(t, t′))f(t′)

=

∫ t

−∞
t′Dt

σnG(t, t′)f(t′)dt′ + f(t)

(4.54)

Multiplying these equations by the corresponding coefficients, summing and using condi-

tion (1) from the definition of Green’s function when (−∞ < t′ < t), and substituting

into Eq. (4.51) we obtain

−∞Ltτ(t) =

∫ t

−∞
t′LtG(t, t

′)f(t′)dt′ + f(t) = f(t) (4.55)

So we have proved that Eq.(4.50) is the Green’s function solution of Eq.(4.48). Now,

we need to find G(t, t′). Since Eq. (4.47) is a three-term differential equation, then the

fractional Green’s function G(t) can be obtained by the inverse Laplace transform of the

following function

g(p) =
1

Apβ̄ +Bpᾱ + C
(4.56)

Since C = 0, then the Laplace inverse can be performed in the same way as in the case

of the two-term equation in (Podlubny, 1997), Eq. (4.2)

g(p) =
1

Apβ̄ +Bpᾱ
=

1

A

p−ᾱ

pβ̄−ᾱ + B
A

(4.57)

using the formula for the Laplace transform of the Mittag-Leffler function in two param-

eters

L{Eα̃,β̃ (t); p} =

∫ ∞

0

e−pt tβ̃−1 Eα̃,β̃ (+−a t
α̃) dt =

pα̃−β̃

(pα̃ −
+a)

(4.58)

To obtain the Laplace inverse of equation (4.57), let α̃− β̃ = −ᾱ; α̃ = β̄ − ᾱ; a = −B
A

then, β̃ = α̃ + ᾱ = 1 + α− β; α̃ = β̄ − ᾱ = α.
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Thus, the Green’s function is of the form

G(t) =
1

A
tβ̃−1Eα̃,β̃(−at

α̃)

=
1

A
tα−βEα,1+α−β

(
− B

A
tα
) (4.59)

and we are consistent with Eq. (4.43) i.e.

τ(t) =
1

A

∫ t

−∞
(t− t′)α−βEα,α−β+1

[
− B

A
(t− t′)α

]
γ̇(t′)dt′ (4.60)

4.3.3 Determination of the Dynamic Moduli

Now, we will introduce the three fundamental equations of the GFMM (Eq. (4.39)) that

describe viscoelastic characteristics: the complex, storage, and loss moduli.

The relaxation modulus, G(t), for the FMM is obtained by determining the stress response

of Eq. (4.39) to an applied step strain function γ = γ0H(t) (Friedrich, 1991).

The FMM’s characteristic relaxation time is described by Jaishankar McKinley (2014)

as follows

λc =

(
V
G

) 1
α

(4.61)

The intersection of the relaxation modulus’s two asymptotic responses for long and

short times, as shown in Eq. (4.41), corresponds to this characteristic time. To non-

dimensionalize the relaxation modulus in Eq. (4.41), define a characteristic modulus Gc

in terms of the characteristic relaxation time λc and the quasi-property V. This can be

expressed as

Gc = Vλ−β
c ≡

(
Gβ

Vβ−α

) 1
α

(4.62)

As a result, the relaxation modulus has the following dimensionless representation:

G(t)

Gc

=

(
t

λc

)α−β

Eα,α−β+1

(
−
(
t

λc

)α)
(4.63)

where 0 < α ≤ β ≤ 1.

Equation (4.26) can be transformed from the time domain into the frequency domain
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(ω is the frequency of strain oscillation (rad/s)) using the Fourier integral transform to

obtain the complex modulus

G*(ω) = G′(ω) + i G′′(ω) (4.64)

where G′ and G′′ are known, respectively, as the storage and loss moduli. Collectively,

they are referred to the dynamic moduli.

The Fourier transform of a function f is given by

F
[
f(t);ω

]
= f̃(ω) =

∫ ∞

−∞
dt f(t) e−iωt (4.65)

where ω is the angular velocity.

The Fourier transform of the fractional derivative of a function f is obtained by simple

multiplication with f̃ (Hristov, 2018; Adolfsson Enelund, 2003)

F
[
dαf(t)

dtα
;ω

]
= (iω)αf̃(ω), 0 < α < 1 (4.66)

Hence, the Fourier transform of Eq.(4.26) is

τ̃(ω) +
V
G
(iω)α τ̃(ω) = V (iω)β γ̃(ω) (4.67)

where τ̃(ω) and γ̃(ω) are the Fourier transforms of τ and γ, respectively.

Subsequently, the complex modulus of the fractional Maxwell model which describes its

response to a small amplitude oscillatory shear (SAOS) deformation, is as follows:

G*(ω) ≡ τ̃(ω)

γ̃(ω)
=

V(iω)β

1 + V
G(iω)

α
(4.68)
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The complex modulus can be non-dimensionalized using λc =
(V
G

) 1
α and Gc = Vλ−β

c ≡(
Gβ

Vβ−α

) 1
α

, to obtain:

G*(ω)

Gc

=
(iωλc)

β

1 + (iωλc)α

=
(ωλc)

β (eiπ/2)β

1 + (ωλc)α (eiπ/2)α

=
(ωλc)

β [cos(πβ/2) + i sin(πβ/2)]

1 + (ωλc)α [cos(πα/2) + i sin(πα/2)]

(4.69)

Multiplying Eq. (4.69) by the complex conjugate of the denominator which is

D̄ = [1 + (ω λc)
α cos(πα/2)]− i (ω λc)

α sin(πα/2),

we obtain

G*(ω)

Gc

=

[
(ω λc)

β cos(πβ/2) + (ω λc)
α+β cos(π(β − α)/2)

1 + 2(ω λc)α cos(πα/2) + (ω λc)2α

]
+ i

[
(ω λc)

β sin(πβ/2) + (ω λc)
α+β sin(π(β − α)/2)

1 + 2(ω λc)α cos(πα/2) + (ω λc)2α

]
(4.70)

The real and imaginary parts of the complex modulus provide us with the storage and loss

moduli of the complex fluid, respectively. The viscous component of energy is represented

by the loss modulus G′′, which measures the energy dissipated as heat, while the elastic

component that characterises the capacity to store energy is measured by the storage

modulus G′.

Therefore, from Eq. (4.70) the storage modulus of the complex fluid is

G′(ω)

Gc

=
(ω λc)

β cos(πβ/2) + (ω λc)
α+β cos(π(β − α)/2)

1 + 2(ω λc)α cos(πα/2) + (ω λc)2α
(4.71)
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and the loss modulus is

G′′(ω)

Gc

=
(ω λc)

β sin(πβ/2) + (ω λc)
α+β sin(π(β − α)/2)

1 + 2(ω λc)α cos(πα/2) + (ω λc)2α
(4.72)

The phase angle, tan δ, that characterizes the ratio between energy dissipation and energy

storage, is defined by

tan δ(ω) = G′′(ω)/G′(ω) (4.73)

4.3.4 Numerical Results

Figure 4.6 provides insight into how different models for a material might respond to

different stresses or deformations, highlighting different aspects of viscoelastic behaviour.

The Fractional Maxwell Gel (FMG) and the Fractional Maxwell Liquid (FML) are two

significant limiting instances of the Fractional Maxwell model (FMM).

The Fractional Maxwell Liquid (FML) model corresponds to β = 1, resulting in a constant

and bounded shear viscosity. This makes it well-suited for describing fluid-like materials

in a pre-gel state, such as biopolymer solutions or polymer melts. These materials exhibit

continuous flow under constant stress, with a viscous response that dominates over time.

This behaviour is characterized by a significantly larger loss modulus G′′ compared to the

storage modulus G′ at low frequencies, indicating substantial energy dissipation during

deformation. Consequently, complex fluids in the pre-gel state have been effectively de-

scribed using the three-parameter FML model (G, α,V). Mechanically, the FML model

can be represented by a dashpot and a spring-pot in series.

Furthermore, the Fractional Maxwell Gel (FMG) is used to describe gel-like materials

that show both solid-like (elastic) and liquid-like (viscous) properties. These materials

can support some level of deformation without flowing completely, and they exhibit a

balance between elasticity and viscosity, where 0 ≤ α = β ≤ 1. This model is suitable for

materials like gels, which can stretch or deform but will still flow if subjected to sustained

stress. The plateau modulus of the gel (G′(ω → ∞) = G(Pa)) is characterised by the

quasi-property G, and thus the FMG model effectively represents the mostly elastic be-
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haviour of viscoelastic materials beyond the gel point. The mechanical interpretation of

the three-parameter FMG model (G, α, and V) is represented as a series combination of

a spring and a spring-pot. In terms of viscoelastic properties, the storage modulus G′ and

the loss modulus G′′ are comparable in magnitude, especially at intermediate frequencies.

This indicates a balance between energy storage and dissipation.

The Fractional Maxwell Model (FMM) is a more general model that can describe a wide

range of viscoelastic behaviours, depending on the parameters chosen. It can interpo-

late between solid-like, gel-like, and liquid-like behaviour by adjusting the order of the

fractional derivatives in the model, i.e. 0 ≤ α ≤ β ≤ 1. It is used for a wide range of

materials, from purely elastic solids to highly viscous liquids, depending on the specific

parametrization. For viscoelastic properties, the model allows for a broad spectrum of re-

sponses by varying the fractional order α, β, so G′ and G′′ can exhibit either a dominance

of elasticity, viscosity, or a mix of both. When one of the quasi-properties diverges to

infinity (V → ∞ or G → ∞), the FMM also reduces to a simple single spring-pot element

or Scott Blair element, as shown graphically in Fig. 4.4. As a last note, just to be thor-

ough, we see that the simple Maxwell model given in Eq.(4.5) arises from the particular

situation α = β = 1, and the quasi-properties V and G reduce to the viscosity η0 and

shear modules G0, respectively (see, Rathinaraj . (2021); Keshavarz . (2021); Schmidt .

(2024); Sadman . (2017).

Table 4.1 tabulates the asymptotic behaviour of the complex moduli in the limits ω λc ≪ 1

and ω λc ≫ 1 for these three standard models, which may be obtained from Eqs. (4.71)

and (4.72).

The magnitude of the complex viscosity is defined as follows using the formulas given

in Equations (4.71) and (4.72)

|η∗(ω)| =
√
G′(ω)2 +G′′(ω)2

ω
(4.74)
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ω λc ≪ 1 ω λc ≫ 1

FMM
G′/Gc (ωλc)

β cos (πβ/2) (ω λc)
β−α cos (π(β − α)/2)

G′′/Gc (ω λc)
β sin (πβ/2) (ω λc)

β−α sin (π(β − α)/2)

FML
G′/Gc (ω λc)

1+α cos (π(1− α)/2) (ω λc)
1−α cos (π(1− α)/2)

G′′/Gc ω λc (ω λc)
1−α sin (π(1− α)/2)

FMG
G′/Gc (ω λc)

β cos (πβ/2) 1
G′′/Gc (ω λc)

β sin (πβ/2) (ω λc)
−β sin (πβ/2)

Table 4.1: The asymptotic behaviour of the storage G′ ( lim
ω λc→ 0

G′(t), lim
ω λc→ ∞

G′(t) ) and loss modulus

G′′ ( lim
ω λc→ 0

G′′(t), lim
ω λc→ ∞

G′′(t) ) for the Fractional Maxwell Model (FMM) 0 < α < β < 1, the

Fractional Maxwell Liquid (FML) β = 1, and the Fractional Maxwell Gel (FMG) α = β

which may be expressed as follows using the four FMM parameters:

|η∗(ω)|
Vλ1−β

c

=
1√

(ω λc)2−2β + 2(ω λc)2−2β+α cos(πα/2) + (ω λc)2(1+α−β)
(4.75)

These concepts are illustrated in Fig. 4.6 for the FMM, FML, and FMG models. While

the results are similar to those reported by (Rathinaraj ., 2021) (see Fig.2 in their paper),

they were obtained here using a different method. The plots were generated using data

from the same source. Fig. 4.6 (a) shows the dependence of the relaxation modulus on

dimensionless time for these models. At short times (t → 0), the relaxation modulus

G(t) typically reflects the immediate elastic response of the material. For the Fractional

Maxwell Model (FMM) and Fractional Maxwell Gel (FMG), G(t) is expected to follow a

power-law decay. In this regime, the material exhibits more solid-like behaviour, with the

relaxation modulus decreasing gradually as time progresses. At long times (t → ∞), the

relaxation modulus reflects the transition from elastic to more viscous behaviour. For the

Fractional Maxwell Liquid (FML), G(t) decays more rapidly, indicating that the material

behaves more like a liquid over longer time scales. The FMM and FMG models show

a continued power-law decay but with different exponents, indicating different balances

between elastic and viscous responses. Fig. 4.6 (b) shows the variation of the complex

viscosity across different Deborah numbers (ω λc) for the FMM, FML, and FMG models.

At low frequencies, the complex viscosity η∗(ω) is dominated by the material’s viscous

behaviour. The FML model, which behaves more like a liquid, shows a high viscosity at
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low frequencies. The viscosity decreases as frequency increases, indicating shear-thinning

behaviour typical of complex fluids. The FMM and FMG also exhibit a similar trend but

may start at lower viscosity levels depending on the parameters. At high frequencies, the

material exhibits more elastic behaviour, and the viscosity stabilizes or decreases more

slowly. The complex viscosity η∗(ω) continues to decrease slowly, reflecting the material’s

transition to a more elastic response. The rate of this change depends on the specific

model (FMM, FML, or FMG), with each showing a distinct response curve.

Moreover, Fig. 4.6 (c,d) shows the variation of dynamic moduli across different Debo-

rah numbers (ω λc) for the FMM, FML, and FMG models. Fig. 4.6 (c) illustrates the

storage modulus G′, which indicates the material’s elasticity or solidity. As the material

stores more elastic energy, G′ gradually increases with increasing frequency. At high fre-

quencies, the material transitions from a more elastic to a stiffer state. As the frequency

continues to rise, G′ typically increases until it reaches a plateau or steady state, where

the material mostly exhibits elastic behaviour. Fig.4.6 (d) shows the loss modulus G′′

represents the material’s viscous or liquid-like characteristics, which showing how much

energy is dissipated as heat. Initially, G′′ increases as the frequency increases, indicating

that the material behaves more viscous with increased frequency of oscillations. As the

frequency continues to increase, G′′ may decrease after reaching a peak, as the material

shifts towards more elastic behaviour, leading to less energy loss. Finally, Fig.4.6 (e)

shows that the difference between the phase angle for the FMM and the FML is larger

at low frequencies, indicating that these materials exhibit more viscous behaviour over

longer times. On the other hand, the phase angle of the FMG , which describes gel-like

behaviour, is smaller, indicating that it is mostly elastic at low frequencies. The phase an-

gle for FML and FMG decreases with increasing frequency, indicating a shift toward more

elastic behaviour. The FMG is consistent with its essentially elastic response throughout

a wide variety of timescales by approaching a very low or constant phase angle at high

frequencies.
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(a) (b)

(c) (d)

(e)

Figure 4.6: The linear viscoelastic characteristics of the FMM (α = 0.4, β = 0.7), FML (α = 0.7, β = 1),
and FMG (α = 0.7, β = 0.7). (a) G(t), (b) η∗(ω), (c) G′, (d) G′′, and (e) tan δ.
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4.3.5 Determination of the Relaxation Spectrum

The relaxation spectrum is an essential tool in the description of viscoelastic polymeric

fluids. It is an essential component in the analysis of materials processing like extrusion

and can be utilized in predicting the behaviour of a linear viscoelastic fluid. The challenge

lies in the fact that the relaxation spectrum is not a quantity that can be measured

directly, and trying to extract it from experimental data often results in an ill-posed

problem (Owens Phillips, 2002).

Consequently, data from other transient experiments can be simulated once the discrete

relaxation spectrum of a material is known. The success of this method is demonstrated

by the findings published in H. Winter . (1990). It is important to take into account that

the discrete relaxation spectrum is only applicable for the frequency or time frame that

corresponds to the input data (HH. Winter Jackson, 1995).

Assume a discrete set of frequencies {ωj : 1 ≤ j ≤M} is used to measure the storage

and loss modulus of a sample of polymeric material.

Evaluating the expression in Eq. (4.71) and Eq. (4.72) at ω = ωj gives

G′(ωj) = Gc

[
(ωj λc)

β cos(πβ/2) + (ωj λc)
α+β cos(π(β − α)/2)

1 + 2(ωj λc)α cos(πα/2) + (ωj λc)2α

]
(4.76)

G′′(ωj) = Gc

[
(ωj λc)

β sin(πβ/2) + (ωj λc)
α+β sin(π(β − α)/2)

1 + 2(ωj λc)α cos(πα/2) + (ωj λc)2α

]
(4.77)

where λc =
(V
G

) 1
α , Gc = Vλ−β

c ≡
(

Gβ
Vβ−α

) 1
α

, α and β are unknown model parameters with

0 < α ≤ β ≤ 1.

The following objective function is minimised in order to obtain the discrete relaxation

times and elastic modulus (Baumgaertel Winter, 1989; Mustapha Phillips, 2000).

X 2 =
M∑
j=1

([
G′(ωj)

G′
j

− 1

]2
+

[
G′′(ωj)

G′′
j

− 1

]2)

=
M∑
j=1

([
k̂j Gc − 1

]2
+
[
k̄j Gc − 1

]2) (4.78)
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where

k̂j =

[
(ωj λc)

β cos(πβ/2) + (ωj λc)
α+β cos(π(β − α)/2)

(1 + 2(ωj λc)α cos(πα/2) + (ωj λc)2α)G′
j

]
(4.79)

and

k̄j =

[
(ωj λc)

β sin(πβ/2) + (ωj λc)
α+β sin(π(β − α)/2)

(1 + 2(ωj λc)α cos(πα/2) + (ωj λc)2α)G′′
j

]
(4.80)

where G′(ωj) and G
′′(ωj) are determined by Eq.(4.76) and Eq.(4.77), and the values G′

j

and G′′
j are the measured data.

4.3.6 Fitting of Single-Mode FMM to data

Curve fitting techniques are employed to determine the optimal values of Gc, λc, α and β

that best fit the fractional Maxwell model to experimental data. Once these parameters

are estimated, the model is validated by comparing its predictions with experimental data

to assess its accuracy across the frequency range. Non-linear regression and optimization

algorithms are commonly used to minimize the error between experimental observations

and model-predicted values.

To fit both the real and imaginary components simultaneously, model functions were

designed to return a one-dimensional array containing G′ and G′′. This was achieved

by minimizing the objective function χ2 that was defined in Eq. (4.78). The fractional

Maxwell model (FMM) was fitted using the ”minpack.lm” package in R, which provides

non-linear least-squares fitting via the Levenberg-Marquardt (LM) algorithm. This ap-

proach is particularly effective for curve fitting and parameter estimation in non-linear

models.

The fitting procedure was applied to two experimental datasets, the corresponding to

1. Sample B which is Neste HDPE (Grade 3416) at 190 ◦C from Mustapha Phillips

(2000) as shown in Fig. 4.7. Where the initial parameter values were assumed to

be Gc = 10000, λc = 4.7, α = 0.4, and β = 0.7 and the frequency was M = 40

data points. After 100 iterations, the fitted parameters were obtained as follows:

Gc = 146237, λc = 0.0465, α = 0.4773, β = 0.6893. At these final parameters,

the value of X 2 = 0.119752. 0.099020
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2. Polyethylene Oxide (PEO) solution, this sample contains a low concentration of

polystyrene particles with a diameter of 109 nm. Oscillatory shear experiments

were conducted using an MCR 502 WESP temperature-controlled rheometer from

Anton Paar (Graz, Austria) in strain-imposed mode. A cone-and-plate measuring

system was utilized, featuring a 50 mm diameter and a 1◦ cone angle, with a fixed

gap width of 101 µm. All measurements were performed at a constant temperature

of 25 ◦C. The angular oscillation frequency ranged from 0.1 to 100 rad/s, with a

constant strain amplitude of 5%. A total of M = 25 frequency data points were

recorded (Schmidt ., 2024).

Figure 4.8 was generated using the same initial parameter values as in Case 1. After

100 iterations, the optimized parameters were obtained as follows:

Gc = 215, λc = 1.2175, α = 0.5444, β = 0.6996. At these final parameters,

the value of X 2 = 0.099020.

The original rheology data used in Fig. 4.8 is publicly available at https://doi.

org/10.14279/depositonce-20768.

The relevant file is named (RS22 230 FS 4000KDa 4wt% PS109).
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Figure 4.7: Comparison of the data and model predictions for Neste HDPE using the
FMM

Figure 4.8: Comparison of the data and model predictions for a PEO solution using the
FMM
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4.4 Multi-mode Fractional Maxwell Model Spectrum

of Relaxation Times in Series

In this section we will extend the model given by Eq (2.5) in Yang . (2010) by introducing

additional fractional derivatives which generalises the single-mode fractional model. The

aim of generalizing the Maxwell model is to allow us to predict different sorts of complex

viscoelastic behaviours.

There are 6-parameter linear viscoelastic models that are able to describe a much wider

range of complex fluid behaviour when compare to the single-mode fractional Maxwell

model with its 4-parameters.

The Multi-mode Fractional Maxwell Model consists of three spring-pots, each character-

ized by a pair of material parameters (here, denoted by (G1, α1), (G2, α2) and (V, β),

respectively), arranged in series as illustrated in Fig. 4.9.

(V, β)

(G1, α1)

(G2, α2)

Figure 4.9: Multi-Mode Fractional Maxwell Model

The series combination indicates that the total stress and strain of the system satisfy

the following relationships in terms of the stress and strain of the individual components:

τ(t) = τ1(t) = τ2(t) = τ3(t) (4.81)
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γ̇(t) = γ̇1(t) + γ̇2(t) + γ̇3(t) (4.82)

where τ(t) is the stress and γ̇(t) is the strain rate for the FMM. Also τi(t) and γ̇i(t) are

the stress and strain rate in the i-th springpot.

For each springpot we have

τ1(t) = V
dβγ1(t)

dtβ
(4.83)

τ2(t) = G1
dβ−α1γ2(t)

dtβ−α1
(4.84)

τ3(t) = G2
dβ−α2γ3(t)

dtβ−α2
(4.85)

where 0 < α2 < α1 ≤ β ≤ 1.

For a fixed α1, α2 and β, each of the constants V, G1 and G2 have physical dimensions

Pa.sβ, Pa.sβ−α1 and Pa.sβ−α2 , respectively. The parameters V, G1 and G2 represent

a quasi-property and a generalised modulus. These quasi-properties are more clearly

recognised as the numerical measurements of a dynamical process, as they are not actual

material properties like a modulus or viscosity.

Now

γ(t) = γ1(t) + γ2(t) + γ3(t) (4.86)

so that

dβγ(t)

dtβ
=
dβγ1(t)

dtβ
+
dβγ2(t)

dtβ
+
dβγ3(t)

dtβ
(4.87)

Now, from Eq.(4.81) and Eq.(4.83) we obtain

dβγ1(t)

dtβ
=

1

V
τ1(t) =

1

V
τ(t) (4.88)

and from Eq.(4.81) and Eq.(4.84) we obtain

dα1τ2(t)

dtα1
=
dα1τ(t)

dtα1
= G1

dα1

dtα1

(
dβ−α1γ2(t)

dtβ−α1

)
= G1

dβγ2(t)

dtβ
(4.89)
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and from Eq.(4.81) and Eq.(4.85) we obtain

dα2τ3(t)

dtα2
=
dα2τ(t)

dtα2
= G2

dα2

dtα2

(
dβ−α2γ3(t)

dtβ−α2

)
= G2

dβγ3(t)

dtβ
(4.90)

Therefore, the constitutive equation for a multi-mode fractional Maxwell element is

τ(t) +
V
G1

dα1τ(t)

dtα1
+

V
G2

dα2τ(t)

dtα2
= V

dβγ(t)

dtβ
, 0 < α2 < α1 ≤ β ≤ 1 (4.91)

where V
G1

and V
G2

are the relaxation times of the fluid and V is the viscosity (rate-

independent). Eq.(4.91) is a constitutive equation with the ability to describe three

different states: a linear elastic solid when 0 < α2 = α1 = β < 1, a viscous Newto-

nian fluid when 0 < α2 < α1 < 1 and β = 1, and a combination of both states when

0 < α2 < α1 < β < 1 (Rathinaraj ., 2021; Yang ., 2010; Ferras ., 2018).

The relationship between (E1, λ1,E2, λ2,E3, λ3), (E, λα1 , λα2) and V,G1,G2 is the

following:

For each spring-pot we have

τ1(t) = E1λ
β
1

dβγ1
dtβ

(4.92)

τ2(t) = E2λ
β−α1

2

dβ−α1γ2
dtβ

(4.93)

τ3(t) = E3λ
β−α2

3

dβ−α2γ3
dtβ

(4.94)

where 0 < α2 < α1 ≤ β ≤ 1.

Then, we have

γ1(t) =
1

E1λ
β
1

d−βτ1(t)

dt−β
=

1

E1λ
β
1

d−βτ(t)

dt−β
(4.95)

γ2(t) =
1

E2λ
β−α1

2

d−(β−α1)τ2(t)

dt−(β−α1)
=

1

E2λ
β−α1

2

d−(β−α1)τ(t)

dt−(β−α1)
(4.96)
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γ3(t) =
1

E3λ
β−α2

3

d−(β−α2)τ3(t)

dt−(β−α2)
=

1

E3λ
β−α2

3

d−(β−α2)τ(t)

dt−(β−α2)
(4.97)

Substituting Eq.(4.95), Eq.(4.96) and Eq.(4.97) into the following equation

γ = γ1 + γ2 + γ3 (4.98)

yields

1

E1 λ
β
1

d−βτ(t)

d t−β
+

1

E2 λ
β−α1

2

d−(β−α1)τ(t)

dt−(β−α1)
+

1

E3 λ
β−α2

3

d−(β−α2)τ(t)

dt−(β−α3)
= γ(t) (4.99)

Eq.(4.99) can be rearranged to obtain the following equation

τ(t) +
E1 λ

β
1

E2 λ
β−α1

2

dα1τ(t)

d tα1
+

E1 λ
β
1

E3 λ
β−α2

3

dα2τ(t)

d tα2
= E1 λ

β
1

dβγ(t)

dtβ
(4.100)

where we assume 0 < α2 ≤ α1 ≤ β ≤ 1 without loss of generality.

Let 0 < α2 < α1 < β < 1, then Eq.(4.100) can be simplified by setting

λ1 =
E1 λ

β
1

E2λ
β−α1

2

, λ2 =
E1 λ

β
1

E3λ
β−α2

3

, E = E1λ1
β (4.101)

This leads to

τ(t) + λ1
dα1τ(t)

d tα1
+ λ2

dα2τ(t)

d tα2
= E

dβγ(t)

dtβ
(4.102)

where

λ1 =
E1λ

β
1

E2λ
β−α1

2

≡ V
G1

(4.103)

and

λα2 =
E1λ

β
1

E3λ
β−α2

3

≡ V
G2

(4.104)

finally,

Eλβ1 ≡ V (4.105)
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then, Eq.(4.102) becomes

τ(t) +
V
G1

dα1τ(t)

d tα1
+

V
G2

dα2τ(t)

d tα2
= V

dβγ(t)

dtβ
(4.106)

see Yang . (2010)

4.4.1 Derivation of the Exact Solution

Theorem 2

Consider the generalized fractional Maxwell model

τ(t) + λ1
∂α1τ(t)

∂tα1
+ λ2

∂α2τ(t)

∂tα2
= E

∂βγ(t)

∂tβ
, 0 ≤ α2 ≤ α1 ≤ β ≤ 1 (4.107)

then the Green’s function solution is

τ(t) =

∫ t

−∞
G(t− t′)γ̇(t′)dt′ (4.108)

where

G(t) =
∞∑
k=0

(−1)k

k!

Ck

Ak+1
tα1(k+1)−β E

(k)
α1−α2, α1+1−β+α2(k)

(
− B

A
tα1−α2

)
(4.109)

Proof

Let

∂βt γ(t) = ∂β−1
t ∂tγ(t) (4.110)

Applying the operator ∂1−β to equation (4.107), and using Weyl’s rule (see Eq. (3.2)) for

each component of τ and γ yields

∂1−β
t τ(t)+λ1 ∂

α1+1−β
t τ(t)+λ2 ∂

α2+1−β
t τ(t) = E ∂tγ(t), 1 > β > α1 > α2 > 0 (4.111)
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We rewrite Eq.(4.111) in the form

A∂α1+1−β
t τ(t) +B ∂α2+1−β

t τ(t) + C ∂1−β
t τ(t) = D ∂tγ(t) = f(t) (4.112)

where

A =
λ1
E
; B =

λ2
E
; C =

1

E
; D = 1 (4.113)

For simplicity, we define

γ̄ = α1 + 1− β; β̄ = α2 + 1− β; ᾱ = 1− β; 0 < ᾱ < β̄ < γ̄ < 1 (4.114)

then we can rewrite Eq.(4.112) in the form

A∂γ̄t τ(t) +B ∂β̄t τ(t) + C ∂ᾱt τ(t) = D ∂tγ(t) (4.115)

If G(t) is the fractional Green’s function of the equation

L{τ(t)} = f(t) (4.116)

with special initial conditions, where

L = A∂γ̄t +B ∂β̄t + C ∂ᾱt (4.117)

then the Green’s function solution is

τ(t) =

∫ t

−∞
G(t− t′)f(t′)dt′ (4.118)

Since Eq. (4.115) is the four-term fractional differential equation, then we can find the

Green’s function by obtaining the inverse Laplace transform of the following expression

g(p) =
1

Apγ̄ +Bpβ̄ + Cpᾱ +H
(4.119)
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Here H = 0, then the Laplace inversion can be performed in the same way as for the case

of the three-term equation and Eq. (4.119) becomes

g(p) =
p−ᾱ

Apγ̄−ᾱ +Bpβ̄−ᾱ + C
, C ̸= 0 (4.120)

g(p) =
1

Apγ̄−ᾱ +Bpβ̄−ᾱ + C

=
1

C

Cp−(β̄−ᾱ)

Apγ̄−β̄ +B

1

1 + Cp−(β̄−ᾱ)

Apγ̄−β̄+B

=
1

C

∞∑
k=0

(−1)k
(
C

A

)k+1
p−β̄(k+1)+ᾱ(k)

(pγ̄−β̄ + B
A
)k+1

(4.121)

To determine the inverse Laplace transform we use Eq. (3.18) for the Laplace transform

of the Mittag-Leffler function in two-term

L{E(k)

α̃,β̃
(t); p} =

∫ ∞

0

e−pt tα̃k+β̃−1 E
(k)

α̃,β̃
(+−a t

α̃)dt =
k! pα̃−β̃

(pα̃ −
+a)k+1

, k ≥ 0 (4.122)

we define

α̃ = γ̄ − β̄ α̃− β̃ = −β̄(k + 1) + ᾱ(k) −
+a = −B

A

= α1 − α2 = −α2(k + 1) + β − 1

and

β̃ = α̃ + β̄(k + 1)− ᾱ(k) α̃(k) + β̃ − 1 = γ̄(k + 1)− ᾱ(k)− 1

= (γ̄ − β̄) + β̄(k + 1)− ᾱ(k) = α1(k + 1)− β

= γ̄ + (β̄ − ᾱ)(k)

= α1 + 1− β + α2(k)
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Thus Eq. (4.122) can be written as

L{E(k)

γ̄−β̄, γ̄+(β̄−ᾱ)(k)
(t); p} =

∫ ∞

0

e−pt tγ̄(k+1)−ᾱ(k)−1E
(k)

γ̄−β̄, γ̄+(β̄−ᾱ)(k)

(
− B

A
tγ̄−β̄

)
dt

=
k! p−β̄(k+1)+ᾱ(k)

(pγ̄−β̄ − B
A
)k+1

, k ≥ 0

(4.123)

and then

L{E(k)
α1−α2, α1+1−β+α2(k)

(t); p} =

∫ ∞

0

e−pt tα1(k+1)−β E
(k)
α1−α2, α1+1−β+α2(k)

(
− B

A
tα1−α2

)
dt

=
k! p−α2(k+1)+β−1

(pα1−α2 − B
A
)k+1

, k ≥ 0

(4.124)

Also, Eq. (4.121) becomes

g(p) =
1

C

∞∑
k=0

(−1)k
(
C

A

)k+1
p−α2(k+1)+β−1

(pα1−α2 + B
A
)k+1

(4.125)

Since Eq. (4.124) is equivalent to (4.125), then we obtain the form of Green’s function as

follows

G(t) =
∞∑
k=0

(−1)k

k!

Ck

Ak+1
tα1(k+1)−β E

(k)
α1−α2, α1+1−β+α2(k)

(
− B

A
tα1−α2

)
(4.126)

where

E
(k)
α,β(y(t)) =

dk

dtk
Eα,β(y) =

∞∑
j=0

(j + k) yj

j! Γ(αj + αk + β)
(4.127)

Finally, we obtain Green’s function solution Eq. (4.118) where G(t) is defined by Eq.

(4.126).

If C = 0, then we have only the case k = 0, and the Green’s function solution is

τ(t) =

∫ t

−∞
G(t− t′)γ̇(t′)dt′ (4.128)

84



where

G(t) =
1

A
tα1−β Eα1−α2, α1+1−β

(
− B

A
tα1−α2

)
(4.129)

Therefore, the Green’s function solution Eq. (4.128) is consistent with Eq. (4.60) when

α1 = α, α2 = 0, with

G(t) =
1

A
tα−β Eα, α+1−β

(
− B

A
tα
)

(4.130)

4.4.2 Determination of the Dynamic Moduli

The three basic equations of GFMM (Eq. (4.107)) that characterise the viscoelastic

properties—the complex, storage, and loss modulus—will now be constructed.

Suppose λ1 =
V
G1

and λ2 =
V
G2
, where λ2 < λ1.

Therefore, Eq. (4.126) can be non-dimensionalized with respect to the largest relaxation

time λ1, and then λ1 ≡ λc.

So, we have

λc =
V
G1

, Gc = Vλ−β
c =

Gβ
1

Vβ−1
(4.131)

then,

V
G2

= λ2 = λc

(
λ2
λc

)
= ξλc (4.132)

where ξ = λ2

λc
.

Consequently, the dimensionless form for the relaxation modulus is given by

G(t)

Gc

=
m∑
k=0

(−1)k

k!

(
t

λc

)α1(k+1)−β

E
(k)
α1−α2, 1+α1−β+α2(k)

(
−
(
t

λc

)α1−α2
)

(4.133)

where m ∈ Z, m > 0.

The Fourier integral transform can be used to convert Eq. (4.107) from the time domain

into the frequency domain (ω is the frequency of strain oscillation (rad/s)) and obtain the

complex modulus.

G*(ω) = G′(ω) + i G′′(ω) (4.134)
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The Fourier transform of Eq. (4.107) is given by

τ̃(ω) + λ1(iω)
α1 τ̃(ω) + λ2(iω)

α2 τ̃(ω) = E(iω)βγ̃(ω) (4.135)

Consequently, the complex modulus of the Maxwell model, which expresses how it re-

sponses to a small-amplitude oscillatory shear (SAOS) deformation, is as follows:

G*(ω) ≡ τ̃(ω)

γ̃(ω)
=

E (iω)β

1 + λ1 (iω)α1 + λ2 (iω)α2
(4.136)

Thus, we can use Eq. (4.131) and Eq. (4.132) to rewrite Eq. (4.136) as follows:

G*(ω)

Gc

=
E (iω)β

1 + λc(iω)α1 + ξλc(iω)α2

=
E(ω)β (eiπ/2)β

1 + λc(ω)α1 (eiπ/2)α1 + ξλc(ω)α2 (eiπ/2)α2

=
E(ω)β [cos(πβ/2) + i sin(πβ/2)]

1 + λc(ω)α1 [cos(πα1/2) + i sin(πα1/2)] + ξλc(ω)α2 [cos(πα2/2) + i sin(πα2/2)]
=
N

D

(4.137)

Multiply Eq. (4.137) by the complex conjugate of the denominator which is

D* = [1 + λc(ω)
α1 cos(πα1/2) + ξλc(ω)

α2 cos(πα2/2)]−i [λc(ω)α1 sin(πα1/2) + ξλc(ω)
α2 sin(πα2/2)]

then

N ×D* =
[
E(ω)β cos(πβ/2) + (ωλc)

β+α1 cos(π(β − α1)/2) + ξα2(ωλc)
β+α2 cos(π(β − α2)/2)

]
+ i
[
(ωλc)

β sin(πβ/2) + (ωλc)
β+α1 sin(π(β − α1)/2) + ξα2(ωλc)

β+α2 sin(π(β − α2)/2)
]

(4.138)
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and

D̃ = D ×D* = 1 + (ωλc)
2α1 + ξ2α2(ωλc)

2α2 + 2ξα2(ωλc)
α1+α2 cos(π(α1 − α2)/2)

+ 2(ωλc)
α1 cos(πα1/2) + 2ξα2(ωλc)

α2 cos(π(α2)/2) (4.139)

Therefore, the complex modulus becomes

G*(ω)

Gc

=
N ×D*

D̃
(4.140)

The real and imaginary parts of the complex modulus provide us with the storage and

loss modulus of the complex fluid, respectively.

Therefore, from Eq. (4.140) the storage modulus of the complex fluid is

G′(ω)

Gc

=

[
(ωλc)

β cos(πβ/2) + (ωλc)
β+α1 cos(π(β − α1)/2) + ξα2(ωλc)

β+α2 cos(π(β − α2)/2)
]

D̃
(4.141)

and the loss modulus of the complex fluid is

G′′(ω)

Gc

=

[
(ωλc)

β sin(πβ/2) + (ωλc)
β+α1 sin(π(β − α1)/2) + ξα2(ωλc)

β+α2 sin(π(β − α2)/2)
]

D̃
(4.142)

4.4.3 Numerical Results

Figure 4.10 provides insight into how a material might respond to different stresses or

deformations, for the following models:

• The Multi-Mode Fractional Maxwell Gel (MM-FMG) where 0 < α2 < α1 = β < 1.

The mechanical interpretation of the four-parameter MM-FMG model (G1, G2, α2,

V, β) is represented in a series as a combination of two spring and spring-pot.

• The Multi-Mode Fractional Maxwell Liquid (MM-FML) corresponds to β = 1, and

it can be described mechanically by a dashpot and two spring-pots in series with
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five-parameters (G1, G2, α1, α2 and V).

• The Multi-Mode Fractional Maxwell Model (MM-FMM) where 0 < α2 < α1 < β <

1. The mechanical interpretation of the six-parameter MM-FMM (G1, α1, G2, α2,

V, β) is represented in Fig. 4.9. The first two are specific cases of the MM-FMM.

Table 4.2 tabulates the asymptotic behaviour of the complex moduli in the limits

ω λc ≪ 1 and ω λc ≫ 1 for these three standard models, which may be obtained from

Eqs. (4.141) and (4.142).

ωλc ≪ 1 ωλc ≫ 1

MM-
FMM

G′/Gc (ωλc)
β cos (πβ/2) (ω λc)

β−α1 cos (π(β − α1)/2)
G′′/Gc (ωλc)

β sin (πβ/2) (ω λc)
β−α1 sin (π(β − α1)/2)

MM-FML

G′/Gc (ω λc)
1+α1 cos (π(1− α1)/2) (ω λc)

1−α1 cos (π(1− α1)/2)
G′′/Gc ωλc (ω λc)

1−α1 sin (π(1− α1)/2)

MM-
FMG

G′/Gc (ωλc)
β cos (πβ/2) 1

G′′/Gc (ωλc)
β sin (πβ/2) (ωλc)

β−2α1+α2 sin (π(β − α2)/2)

Table 4.2: The asymptotes of G′ and G′′ for the MM-FMM (0 < α2 < α1 < β < 1), the MM-FML
(β = 1), and the MM-FMG (0 < α2 = α1 = β < 1)

Using the expressions given above in Equations (4.141) and (4.142), the magnitude of

the complex viscosity

|η∗(ω)| =
√
G′(ω)2 +G′′(ω)2

ω
(4.143)

can be written in terms of the six MM-FMM parameters as follows:

|η∗(ω)|
Vλ1−β

c

=
1√

(ω λc)2−2β + 2(ω λc)2−2β+α1+α2 cos(π(α1 + α2)/2) + (ω λc)2(1−β+α1+α2)

(4.144)

Fig. 4.10 illustrates the linear viscoelastic properties of three different models: MM-

FMM, MM-FML, and MM-FMG. The plots are generated using data from (Rathinaraj .,

2021). Fig. 4.10 (a) represents the time-dependent relaxation modulus, G(t)/Gc , for the

three models, illustrating how they respond to stress over time. Initially, the modulus is

high, indicating that the material behaves more like a solid, resisting deformation. How-

ever, as time progresses, the modulus gradually decreases, signifying that the material is

losing its ability to maintain stress and transitioning to a more fluid-like state. The rate
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at which the modulus declines varies among the models, with some showing a steeper de-

cline than others. These differences in slope highlight the unique relaxation behaviour of

each model, reflecting variations in their viscoelastic properties. Fig. 4.10 (b) illustrates

the frequency-dependent dynamic viscosity, η∗(ω), for the three models. The plot shows

a decreasing trend as frequency increases, indicating shear-thinning behaviour, where the

material’s resistance to flow decreases at higher deformation rates. Each model exhibits a

distinct rate of decline, reflecting differences in their underlying viscoelastic mechanisms.

At lower frequencies, the viscosity remains relatively high, suggesting dominant fluid-like

behaviour, while at higher frequencies, it drops significantly, indicating a transition to-

ward more elastic or solid-like characteristics. The slopes of the curves reveal variations in

the frequency response of each model, emphasizing differences in their ability to dissipate

energy under oscillatory stress. Fig. 4.10 (c) presents the storage modulus, G′(ω)/Gc

, which characterizes the elastic energy storage capability of the material as a function

of frequency. The curves indicate that as the frequency increases, the storage modulus

increases, signifying a shift from a more viscous-dominant behaviour at low frequencies to

an elastic-dominant response at higher frequencies. The rate of increase differs among the

models, suggesting variations in their structural rigidity and ability to store mechanical

energy under oscillatory loading. Fig. 4.10 (d) depicts the loss modulus, G′′(ω)/Gc ,

which represents the viscous dissipation of energy. The trends show that at low frequen-

cies, energy dissipation is relatively high, but as the frequency increases, the loss modulus

exhibits a crossover behaviour, marking the transition between viscous and elastic domi-

nance. The distinct slopes and crossover points for each model indicate differences in their

internal friction and energy dissipation characteristics. Fig. 4.10 (e) illustrates the loss

tangent, tan δ , which represents the ratio of energy dissipated to energy stored during

deformation. This parameter provides insight into the dominance of viscous versus elastic

behaviour across different frequencies. A higher tan δ value indicates greater energy dissi-

pation, meaning the material behaves more like a liquid, while a lower value suggests that

elastic properties are more dominant. The curves for the three models exhibit distinct

trends, showing variations in damping behaviour. At lower frequencies, tan δ is relatively
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high, implying a stronger viscous response, whereas at higher frequencies, it decreases,

indicating a transition toward more elastic-like behaviour. The differences among the

models suggest variations in their ability to balance energy storage and dissipation under

oscillatory stress.

(a) (b)

(c) (d)

(e)

Figure 4.10: Plots illustrating the linear viscoelastic properties of the MM-FMM (β = 0.7, α1 =
0.4, α2 = 0.2), MM-FML (β = 1, α1 = 0.4, α2 = 0.2), and MM-FMG (β = α1 = α2 = 0.7). (a) G(t), (b)
η∗(ω), (c) G′, (d) G′′, and (e) tan δ.
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4.4.4 Determination of the Relaxation Spectrum

Assume a discrete set of frequencies {ωj : 1 ≤ j ≤M} is used to measure the storage and

loss modulus of sample of polymeric material.

We rewrite Eq. (4.141) and Eq. (4.142) as follows

G′(ωj) =
Gc

[
(ωjλc)

β cos(πβ/2) + (ωjλc)
β+α1 cos(π(β − α1)/2) + ξα2(ωjλc)

β+α2 cos(π(β − α2)/2)
]

D̃
(4.145)

G′′(ωj) =
Gc

[
(ωjλc)

β sin(πβ/2) + (ωjλc)
β+α1 sin(π(β − α1)/2) + ξα2(ωjλc)

β+α2 sin(π(β − α2)/2)
]

D̃
(4.146)

where α1, α2, and β are the unknown parameters, with 0 < α2 < α1 ≤ β ≤ 1.

The discrete relaxation times λc and elastic modulus Gc are determined by minimizing

the following objective function (Baumgaertel Winter, 1989; Mustapha Phillips, 2000)

X 2 =
M∑
j=1

([
G′(ωj)

G′
j

− 1

]2
+

[
G′′(ωj)

G′′
j

− 1

]2)

=
M∑
j=1

([
k̂j Gc − 1

]2
+
[
k̄j Gc − 1

]2) (4.147)

where

k̂j =

[
(ωjλc)

β cos(πβ/2) + (ωjλc)
β+α1 cos(π(β − α1)/2) + ξα2(ωjλc)

β+α2 cos(π(β − α2)/2)

D̃

]
G′

j

(4.148)

and

k̄j =

[
(ωjλc)

β sin(πβ/2) + (ωjλc)
β+α1 sin(π(β − α1)/2) + ξα2(ωjλc)

β+α2 sin(π(β − α2)/2)

D̃

]
G′′

j

(4.149)

where G′(ωj) and G
′′(ωj) are determined by Eq.(4.145) and Eq.(4.146), and the values G′

j

and G′′
j are the dynamic data.
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4.4.5 Fitting of Multi-Mode FMM to data

To assess the validation and accuracy of the multi-mode fractional Maxwell model (FMM)

across the frequency range, we applied the fitting procedure described in Sec. 4.3.6 to

two experimental datasets.

The model was fitted to both datasets using the optimal values of the parameters:

Gc, λc, α1, α2, β, ζ. Here, we define λc = λ1, and ζ =
λ2
λ1

, with the constraints λ2 < λ1,

and 0 < α2 < α1 < β < 1 being satisfied.

For experimental dataset 1 (see Fig. 4.11), the initial parameter estimates were:

(Gc, λc, α2, α1, β, ζ) = [10000, 6, 0.2, 0.4, 0.7, 0.6666] corresponding to λ2 = 4. After 5000

iterations, the optimized parameters were: Gc = 104554.5701, λc = 0.2936, α2 = 0.0442,

α1 = 0.5083, β = 0.7140, ζ = 30377.8480. At these final parameters, the value of

X 2 = 0.148910.

Similarly, for experimental dataset 2 (see Fig. 4.12), the initial estimates were:

(Gc, λc, α2, α1, β, ζ) = [100, 22, 0.4, 0.8, 0.999, 0.1818] with λ2 = 4. After 5000 iterations,

the optimized parameters were: Gc = 63.7892, λc = 1.7109, α2 = 0.7015, α1 = 0.4832,

β = 0.8633, ζ = 0.6676. At these final parameters, the value of X 2 = 0.020844. This

value of χ2 is an improvement over the value obtained for the single mode approximation

given in Section 4.3.6.
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Figure 4.11: Comparison of the data and model predictions for a PEO solution using
the MM-FMM. The converged values of the parameters were: [Gc, λc, α2, α1, β, ζ] =
[104554.5701, 0.2936, 0.0442, 0.5083, 0.7140, 30377.8480]

Figure 4.12: Comparison of the data and model predictions for a PEO solution using
the MM-FMM. The converged values of the parameters were: [Gc, λc, α2, α1, β, ζ] =
[63.7892, 1.7109, 0.7015, 0.4832, 0.8633, 0.6676]
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4.5 Multi-mode Maxwell model spectrum of relax-

ation times in parallel

(V1, α1)

(G1, β1)

(V2, α2)

(G2, β2)

M1 M2

Figure 4.13: Multi-mode fractional Maxwell model

4.5.1 Derivation of the Differential Equation for the Multi-mode

Fractional Maxwell Model

Consider the two-mode fractional Maxwell model shown in Fig. 4.13 comprising two

fractional Maxwell elements M1 and M2 in parallel.

Let τi denote the stress in element Mi, i = 1, 2. Then in element M1 we have

τ1 = V1D
α1
t γ1,1 = G1D

β1
t γ1,2 (4.150)

where γ1,j, j = 1, 2 is the strain in each of the component of M1. The total strain in M1

is given by

γ1 = γ1,1 + γ1,2 (4.151)
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Similarly, in element M2 we have

τ2 = V2D
α2
t γ2,1 = G2D

β2
t γ2,2 (4.152)

and

γ2 = γ2,1 + γ2,2 (4.153)

The overall, stress and strain are given by

τ = τ1 + τ2, γ = γ1 = γ2, (4.154)

respectively.

Expressing γ1,j, j = 1, 2, in terms of τ1:

γ1,1 =
1

V1

D−α1
t τ1, γ1,2 =

1

G1

D−β1
t τ1 (4.155)

allows us to derive the following expression for γ1,

γ1(t) =
1

V1

D−α1
t τ1(t) +

1

G1

D−β1
t τ1(t) (4.156)

Similarly, we obtain the following expression for γ2

γ2(t) =
1

V2

D−α2
t τ2(t) +

1

G2

D−β2
t τ2(t) (4.157)

Take the Laplace transform of Eq. (4.156)

L{γ1(t); s} = L
{

1

V1

D−α1
t τ1(t); s

}
+ L

{
1

G1

D−β1
t τ1(t); s

}
(4.158)

Using the Laplace transform of the fractional derivative (Mainardi, 2010)

L{D−α
t f(t); s} = s−αL{f(t); s}

= s−αF (s)

(4.159)
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we obtain

L{γ1(t); s} =
1

V1

s−α1L{τ1(t); s}+
1

G1

s−β1L{τ1(t); s} (4.160)

This expression simplifies to:

Q(s) =

(
1

V1

s−α1 +
1

G1

s−β1

)
Σ1(s) (4.161)

where Q(s) is the Laplace transform of γ(t), and Σ1(s) is the Laplace transform of τ1(t).

We rearrange Eq.(4.161) to obtain an expression for Σ1(s)

Σ1(s) =
Q(s)

1
V1sα1

+ 1
G1sβ1

=

{
V1G1s

α1+β1

V1sα1 +G1sβ1

}
Q(s)

(4.162)

The convolution theorem states that the multiplication of two Laplace transforms in the

s-domain corresponds to the convolution of their inverse transforms in the time domain.

Consider the inverse Laplace transform of

{
V1G1s

α1+β1

V1sα1 +G1sβ1

}

This can be rewritten in the form

G1s
β1

1 + G1

V1
sβ1−α1

(4.163)

To find the inverse Laplace transform, recall that

L−1

{
sγ

1 + asδ

}
(4.164)

where γ = β1, a = G1

V1
and δ = β1 − α1, is known to yields a function involving the

Mittag-Leffler function Eδ,γ+1(t).

Setting γ = β1, a = G1

V1
and δ = β1−α1 in (4.164) we obtain inverse Laplace transform
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of the expression (4.163)

L−1

{
V1G1s

α1+β1

V1sα1 +G1sβ1

}
= G1t

α1Eβ1−α1,β1+1

(
−G1

V1

tβ1−α1

)
(4.165)

Therefore, the inverse Laplace transform of the entire expression is the convolution of

G(t) with the inverse transform of
{

V1G1sα1+β1

V1sα1+G1sβ1

}
.

We can then write τ1(t) using the convolution theorem as follows

τ1(t) =

∫ t

0

G1(t− t′)α1Eβ1−α1,β1+1

(
−G1

V1

(t− t′)β1−α1

)
γ̇(t′) dt′ (4.166)

Similarly, we can derive the following expression for τ2(t):

τ2(t) =

∫ t

0

G2(t− t′)α2Eβ2−α2,β2+1

(
−G2

V2

(t− t′)β2−α2

)
γ̇(t′) dt′ (4.167)

Substituting Eq.(4.166) and Eq.(4.167) into Eq.(4.154) we obtain the total stress of the

two-mode Maxwell model as a function for time

τ(t) =

∫ t

0

[
G1(t− t′)α1Eβ1−α1,β1+1

(
−G1

V1

(t− t′)β1−α1

)
+G2(t− t′)α2Eβ2−α2,β2+1

(
−G2

V2

(t− t′)β2−α2

)]
γ̇(t′) dt′ (4.168)

This expression represents the combined stress as a function of time, accounting for the

contributions from both.

To derive a differential equation corresponding to the integral equation in Eq.(4.168), we

first recognize the structure of the fractional integral. The integral expressions involve

fractional-order integrals, and the presence of the Mittag-Leffler functions Eβ1−α1,β1+1(·)

and Eβ2−α2,β2+1(·) suggests that the convolution terms are equivalent to a fractional deriva-

tive in the time domain. Given that the integrals include terms of the form (t− t′)α1 and

(t − t′)α2 , we can convert the integral equation into a differential equation by employing

fractional derivatives Dα1
t and Dα2

t . Therefore, the differential equation corresponding to
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the given integral equation is given by:

V1D
α1
t τ(t) +G1D

β1
t τ(t) + V2D

α2
t τ(t) +G2D

β2
t τ(t) = γ(t) (4.169)

This differential equation models the stress-strain relationship in a material described by

a two-mode fractional Maxwell model, with orders of differentiation (α1, β1, α2, β2) and

coefficients (V1,G1,V2,G2) governing the material’s behaviour.

Then, the equation can be rearranged for simplicity to two grouped terms that represent

different modes (M1,M2):

(V1D
α1
t +G1D

β1
t )τ(t) + (V2D

α2
t +G2D

β2
t )τ(t) = γ(t) (4.170)

where 0 < β1 < α1 < 1 and 0 < β2 < α2 < 1, and α2 < α1, β2 < β1.

4.5.2 Derivation of the Dynamic Moduli

To derive the loss and storage moduli from the integral equation (4.168), we need to

relate the integral form to the frequency domain, where the moduli can be expressed as

functions of frequency.

To find the loss and storage moduli, we take the Fourier transform of both sides of the

integral equation (4.168). The Fourier transform of τ(t) is denoted as τ̃(ω) and the Fourier

transform of Q(t) is Q̃(ω).

The Fourier transform of a convolution integral is given by:

F
{∫ t

0

K(t− t′)Q(t′) dt′
}

= K̃(ω)Q̃(ω) (4.171)

where K̃(ω) is the Fourier transform of the kernel K(t).

In Eq.(4.168), the kernel K(t− t′) is

K(t−t′) = G1(t−t′)α1Eβ1−α1,β1+1

(
−G1

V1

(t− t′)β1−α1

)
+G2(t−t′)α2Eβ2−α2,β2+1

(
−G2

V2

(t− t′)β2−α2

)
(4.172)
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To find its Fourier transform, we use the property of the fractional calculus in the fre-

quency domain:

The Fourier transform of the term (t− t′)α is:

F {(t− t′)α} =
Γ(1 + α)

(iω)1+α
(4.173)

Then, the Fourier transform of the kernel K(t) is

K̃(ω) = G1
Γ(1 + α1)

(iω)1+α1
Ẽβ1−α1,β1+1(ω) +G2

Γ(1 + α2)

(iω)1+α2
Ẽβ2−α2,β2+1(ω) (4.174)

where Ẽ denotes the frequency-domain representation of the Mittag-Leffler function. The

storage modulus G′(ω) and loss modulus G′′(ω) are derived from the complex modulus

K̃(ω)

K̃(ω) = G′(ω) + i G′′(ω) (4.175)

In this section, we use the notation K̃(ω) to represent the complex modulus of the material

in the frequency domain. It is important to note that K̃(ω) is mathematically equivalent to

the commonly used rheological notationG∗(ω), as defined in Eq. (4.134). This equivalence

allows for consistency between the mathematical formulation and standard rheological

terminology.

From the differential equation in the frequency domain, we have

τ̃(ω) = K̃(ω)Q̃(ω) (4.176)

Thus

K̃(ω) =
τ̃(ω)

Q̃(ω)
(4.177)

We express this in terms of real and imaginary parts to find G′(ω) and G′′(ω)

K̃(ω) =

[
G1

Γ(1 + α1) cos(θ1)

ω1+α1
+G2

Γ(1 + α2) cos(θ2)

ω1+α2

]
+ i

[
G1

Γ(1 + α1) sin(θ1)

ω1+α1
+G2

Γ(1 + α2) sin(θ2)

ω1+α2

]
(4.178)
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where

G′(ω) = G1
Γ(1 + α1) cos(θ1)

ω1+α1
+G2

Γ(1 + α2) cos(θ2)

ω1+α2
(4.179)

and

G′′(ω) = G1
Γ(1 + α1) sin(θ1)

ω1+α1
+G2

Γ(1 + α2) sin(θ2)

ω1+α2
(4.180)

where θ1 = (1 + α1)
π
2
and θ2 = (1 + α2)

π
2
depend on the phase characteristics of the

Mittag-Leffler function.

4.6 Conclusions

To conclude, we derived fractional models using spring-pot elements arranged in series

and/or parallel. Also, we derived expression for the relaxation time and the dynamic

moduli of Fractional Maxwell models in single-mode and multi-mode settings. In addi-

tion to this, we studied the validation and the accuracy of these models. The following

summarises our analysis:

1. The exact solution of the Fractional Maxwell Model (FMM) in single-mode and

multi-mode settings using the Laplace transform of the Green’s function was de-

rived and expanded in terms of the MLF. This is an alternative to the approach of

Friedrich (1991) who used Fourier transforms.

2. The Fractional Maxwell Model (FMM) is a general model that was examined for

0 < α < β < 1 (Yang ., 2010). We also looked at two significant limits that were

investigated in the literature on fractional viscoelasticity: the Fractional Maxwell

Liquid (0 < α < 1, β = 1), and the Fractional Maxwell Gel (0 < α = β < 1)

(Rathinaraj ., 2021). Table 4.1 provides an overview of the limiting frequency

responses of the linear viscoelastic moduli for these models.

3. The single-mode fractional Maxwell model was generalized to a new fractional vis-

coelastic model, the multi-mode Fractional Maxwell Model (MM-FMM) for 0 <

α2 < α1 < β < 1. The aim of generalizing the Maxwell model is to allow us to

predict different sorts of complex viscoelastic behaviours. We also looked at two
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significant limits on fractional viscoelasticity: the multi-mode Fractional Maxwell

Liquid 0 < α2 < α1 < 1, β = 1, and the multi-mode Fractional Maxwell Gel

0 < α2 = α1 = β ≤ 1. The details of the limiting frequency responses of the linear

viscoelastic moduli for these models can be found in Table 4.2.

4. Following the derivation of new fractional viscoelastic models, an analysis of these

models in terms of their rheological behaviour is presented in Fig. 4.6 and Fig.

4.10. The analysis of these plots gives a comprehensive overview of the viscoelas-

tic behaviour of the FMM, FML, and FMG models. The FML exhibits liquid-like

behaviour with dominant viscous properties, the FMG behaves more like a solid or

gel with high elasticity, and the FMM is intermediate, exhibiting both liquid-like

and solid-like properties depending on the time or frequency scale. Finally, the

performance of the proposed models was evaluated by fitting them to experimental

dynamic data spanning a broad frequency range. Curve fitting techniques were em-

ployed to determine the optimal parameter values for each variant of the fractional

Maxwell model. The comparison between the experimental data and model predic-

tions is presented in Fig.4.7, Fig.4.8, and Fig. 4.12. The results indicate that the

multi-mode model yields a more accurate representation of the data than the single-

mode model, highlighting its enhanced capacity to capture the complex viscoelastic

behaviour observed in the experiments.

5. The single-mode fractional Maxwell model was also extended to a new fractional

viscoelastic model by introducing fractional elements in parallel, resulting in the

multi-mode Fractional Maxwell Model (MM-FMM), where 0 < β1 < α1 < 1 and

0 < β2 < α2 < 1, and α2 < α1, β2 < β1. This configuration is particularly well-

suited for modeling materials with heterogeneous structures.
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Chapter 5

Numerical Discretization of Fractional

Derivatives

5.1 Introduction

Effective algorithms for the numerical approximation of fractional differential operators

are highly desired, given the potential applications of these operators. Fractional deriva-

tives can be discretized to produce a set of quadrature formulas. Various node and

coefficient selections result in different orders of accuracy. Three basic paths are used to

obtain numerical approximations of fractional derivatives. In general, according to the

order of differentiation, numerical schemes can be derived using polynomial interpolation

with a derived order of accuracy giving rise to the L1, L2, and L2C approaches (Cai Li,

2020; Zhang ., 2014).

According to the definition of the Caputo fractional derivative Eq.(5.30), the inte-

gral term indicates history dependence and weakly singular behaviour. Therefore, ap-

proximating fractional derivatives is much more challenging than approximating classical

derivatives. Lubich (1986) describes some basic discretized fractional calculus techniques.

For instance, finite differences can be used to discretize the classical derivatives that occur

in the definition of a fractional derivative (Pooseh ., 2013).

The main goal of this chapter is to derive highly accurate methods to approximate

the Caputo fractional derivative. These will be used in later chapters to solve the Taylor-

Couette problem and perform a convergence analysis. Accordingly, this chapter is or-

ganised as follows: Some fundamental concepts relevant to the development of numerical

methods for treating fractional derivatives are presented in Section 5.2. The first-order
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difference scheme for the Caputo fractional derivative for two ranges of fractional order is

derived in Section 5.3. Section 5.4 extends these ideas to a second-order difference scheme

for the Caputo fractional derivative and also for the two ranges of fractional order. The

derivation of the first-order and the second-order time discretization for the Fractional

Viscoelastic Fluid model using finite difference method is given in Section 5.5. Finally,

some conclusions are made in Section 5.6.

5.2 Numerical Fundamentals

For the discretization of time t ∈ [0, T ], we assume a uniform mesh, with NT time steps

∆t = T/NT , and then approximate the fractional derivative at the discrete times tn =

n∆t, n = 0, 1, . . . , NT .

At the spatial mesh point ri, we define uni = u(ri, tn). Let Un
i denote the approximation

to u(ri, tn) (i.e. U
n
i ≃ uni ), i = 0, . . . , N , then we can introduce the following notation for

the average of u between points (ri, tn) and (ri, tn−1)

u
n−1/2
i =

uni + un−1
i

2
(5.1)

and the O(∆t2) central difference approximation to ∂u
∂t

at t = tn−1/2 is given by

δtU
n−1/2
i =

Un
i − Un−1

i

∆t
(5.2)

(see Sun Wu (2006), for example).

Now we show how to differentiate an interpolant in order to produce differentiation for-

mulas. The idea behind this technique is simple: the first step is to use the data to

create an interpolating polynomial. The interpolant can then be directly differentiated to

approximate the derivative at any point (Levy, 2010).

This process is described as follows. If the linear interpolation polynomial of u on [tn−1, tn],
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n = 1, . . . , NT , is given by the Lagrange formula

Π1,nu(s) = u(tn−1)

(
tn − s

∆t

)
+ u(tn)

(
s− tn−1

∆t

)
(5.3)

then the first derivative of Π1,nu(s) is

∂s (Π1,nu(s)) =
un − un−1

∆t
(5.4)

Extension to the quadratic interpolation of u(t) on [tn−1, tn+1], n = 1, . . . , NT − 1, yields

Π2,nu(s) = u(tn−1)

[
(s− tn)(s− tn+1)

2(∆t)2

]
− u(tn)

[
(s− tn−1)(s− tn+1)

(∆t)2

]
+ u(tn+1)

[
(s− tn−1)(s− tn)

2(∆t)2

]
(5.5)

The first derivative of Π2,nu(s) is

∂s (Π2,n u(s)) = un−1

[
2s− tn − tn+1

2(∆t)2

]
− un

[
2s− tn−1 − tn+1

(∆t)2

]
+ un+1

[
2s− tn − tn−1

2(∆t)2

]
(5.6)

and the second derivative of Eq.(5.5) is given by

∂2t (Π2,nu(s)) =
un−1 − 2un + un+1

(∆t)2
(5.7)

5.3 First-order difference scheme for the Caputo frac-

tional derivative

The derivations in this section are based on the methodology of Sun Wu (2006).
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5.3.1 Case 1: when 1 < α < 2

We define the time fractional derivative Dα
t u(tn) in Caputo sense as

Dα
t u(tn) =

1

Γ(2− α)

∫ tn

0

∂2su

(tn − s)α−1
ds, 1 < α < 2 (5.8)

Let

y(r, s) =
∂u(r, s)

∂s
(5.9)

then

∂y(r, s)

∂s
=
∂2u(r, s)

∂s2
(5.10)

Define

Dα
t u(tn) = x(ri, tn) (5.11)

then equation (5.8) becomes

x(r, tn) =
1

Γ(2− α)

∫ tn

0

(tn − s)1−α ∂y

∂s
ds (5.12)

Define the grid functions

Un
i ≃ uni , Y

n
i ≃ y(ri, tn), X

n
i ≃ x(ri, tn), 0 ≤ i ≤ N, n ≥ 0. (5.13)

Using Taylor expansions, it follows from Eq. (5.9) that a second-order approximation to

y(ri, tn−1/2) is

Y
n−1/2
i = δtU

n−1/2
i =

Un
i − Un−1

i

∆t
(5.14)

The local truncation error e1 of this approximation is defined by

(e1)
n−1/2
i = y

n−1/2
i − δtu

n−1/2
i (5.15)
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from which we can show, using Taylor series expansions, that

|(e1)n−1/2
i | ≤ c1(∆t)

2 (5.16)

where c1 is a constant.

Based on Lemma 2.2 of Sun Wu (2006), and using a Taylor expansion with integral

remainder for any function F (t) ∈ C2[0, tn], we have

∫ tn

0

F ′(t)
1

(tn − t)α−1
dt ≃

n∑
k=1

F (tk)− F (tk−1)

∆t

∫ tk

tk−1

1

(tn − t)α−1
dt, ∆t > 0 (5.17)

which is called the L1 method.

Therefore, an approximation to Eq. (5.12) at the point (ri, tn) is

Xn
i =

1

Γ(2− α)

[
n∑

j=1

Y j
i − Y j−1

i

∆t

∫ tj

tj−1

(tn − s)1−αds

]
(5.18)

Since

∫ tj

tj−1

(tn − s)1−αds =
(∆t)2−α

2− α

[
(n− j + 1)2−α − (n− j)2−α

]
, n− j ≥ 0. (5.19)

and based on Lemma 2.3 of Sun Wu (2006), we can express Eq. (5.18) in the form

Xn
i =

∆t1−α

Γ(3− α)

n∑
j=1

ãn−j(α)
(
Y j
i − Y j−1

i

)
(5.20)

where

ãn−j(α) =
[
(n− j + 1)2−α − (n− j)2−α

]
, n− j ≥ 0. (5.21)

Let l = n− j, then

ãl(α) =
[
(l + 1)2−α − l2−α

]
, l ≥ 0. (5.22)
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then Eq. (5.20) becomes,

Xn
i =

∆t1−α

Γ(3− α)

[
ãn−1(α)

(
Y 1
i − Y 0

i

)
+ ãn−2(α)

(
Y 2
i − Y 1

i

)
+ ãn−3(α)

(
Y 3
i − Y 2

i

)
+ · · ·+ ã1(α)

(
Y n−1
i − Y n−2

i

)
+ ã0(α)

(
Y n
i − Y n−1

i

) ]

=
∆t1−α

Γ(3− α)

[
ã0(α) Y

n
i + (ã1(α)− ã0(α))Y

n−1
i + · · ·+ (ãn−2(α)− ãn−3(α))Y

2
i

+ (ãn−1(α)− ãn−2(α))Y
1
i − ãn−1(α)Y

0
i

]

=
∆t1−α

Γ(3− α)

[
ã0(α)Y

n
i −

n−2∑
j=1

(ãn−j−2(α)− ãn−j−1(α)) Y
j+1
i − (ãn−2(α)− ãn−1(α))Y

1
i

− ãn−1(α)Y
0
i

]
(5.23)

and

Xn−1
i =

∆t1−α

Γ(3− α)

[
ã0(α)Y

n−1
i −

n−2∑
j=1

(ãn−j−2(α)− ãn−j−1(α)) Y
j
i − ãn−2(α)Y

0
i

]
(5.24)

Consequently, the temporal discretization of X
n−1/2
i is

Xn
i +Xn−1

i

2
≃ X

n−1/2
i

=
∆t1−α

Γ(3− α)

[
ã0(α)Y

n−1/2
i −

n−2∑
j=1

(ãn−j−2(α)− ãn−j−1(α)) Y
j+1/2
i

− 1

2

[
(ãn−2(α)− ãn−1(α))Y

1
i + ãn−1(α)Y

0
i + ãn−2(α)Y

0
i

] ]

=
∆t1−α

Γ(3− α)

[
ã0(α)Y

n−1/2
i −

n−2∑
j=1

(ãn−j−2(α)− ãn−j−1(α)) Y
j+1/2
i

− 1

2
(ãn−2(α)− ãn−1(α)) (Y

1
i + Y 0

i )− ãn−1(α)Y
0
i

]

=
∆t1−α

Γ(3− α)

[
ã0(α)Y

n−1/2
i −

n−2∑
j=0

(ãn−j−2(α)− ãn−j−1(α)) Y
j+1/2
i − ãn−1(α)Y

0
i

]
(5.25)
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where e2 is the local truncation error of this approximation X
n−1/2
i with

|(e2)n−1/2
i | ≤ c2(∆t)

3−α (5.26)

where c2 is a constant.

Substituting Eq. (5.14) into Eq. (5.25), we have

X
n−1/2
i =

∆t1−α

Γ(3− α)

[
ã0(α) δtU

n−1/2
i −

n−2∑
j=0

(
ãn−j−2(α)− ãn−j−1(α)

)
δtU

j+1/2
i − ãn−1(α)Y

0
i

]

+
∆t1−α

Γ(3− α)

[
ã0(α) (e1)

n−1/2
i −

n−1∑
j=1

(
ãn−j−1 − ãn−j(α)

)
(e1)

j−1/2
i

]
+ (e2)

n−1/2
i

(5.27)

Replacing δtU
n−1/2
i by Eq. (5.2), and substituting the above results into Eq. (5.8) we

obtain the following finite difference approximation to Dα
tnu:

Dα
t u(tn) ≃

∆t1−α

Γ(3− α)

[
ã0(α)

(
Un
i − Un−1

i

∆t

)
−

n−1∑
j=1

(
ãn−j−1(α)− ãn−j(α)

)(
U j
i − U j−1

i

∆t

)

− ãn−1(α)Φ(ri)

]

=
∆t−α

Γ(3− α)

[
n∑

j=0

Ãj U
j
i − ãn−1(α)Φ(ri)

]
(5.28)

where Φ(ri) = Y 0
i = y(ri, 0), and

Ãj =



ãn−2(α)− ãn−1(α) if j = 0

−ãn−j−1(α) + 2ãn−j(α)− ãn−j+1(α), if 1 ≤ j ≤ n− 2

−2ã0(α) + ã1(α), if j = n− 1

ã0(α), if j = n

(5.29)
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5.3.2 Case 2: when 0 < α < 1

The time-fractional derivative Dα
t u(tn) will be approximated numerically, as described in

Sun Wu (2006).

Dα
t u(tn) =

1

Γ(1− α)

∫ tn

0

∂us
(tn − s)α

ds, 0 < α < 1 (5.30)

Replacing α by α + 1 in Eq. (5.17) gives

∫ tn

0

F ′(t)
dt

(tn − t)α
≃

n∑
k=1

F (tk)− F (tk−1)

∆t

∫ tk

tk−1

dt

(tn − t)α
(5.31)

Using Lemma 4.1 of Sun Wu (2006) and following the derivation of the difference scheme

Eq. (5.25), the approximation to Eq. (5.30) is,

Dα
t u(tn) ≃

1

Γ(1− α)

[
n∑

j=1

U j
i − U j−1

i

∆t

∫ tj

tj−1

(tn − s)−αds

]
(5.32)

Since

∫ tj

tj−1

(tn − s)−αds =
(∆t)1−α

1− α

[
(n− j + 1)1−α − (n− j)1−α

]
, n− j ≥ 0. (5.33)

and based on Lemma 2.3 of Sun Wu (2006), we can express Eq. (5.32) in the form

Dα
t u(tn) ≃

∆t−α

Γ(2− α)

n∑
j=1

b̃n−j(α)

(
U j
i − U j−1

i

)
(5.34)

where

b̃n−j(α) = (n− j + 1)1−α − (n− j)1−α, n− j ≥ 0. (5.35)

Let l = n− j, then define

b̃l(α) = ãl(α + 1), l ≥ 0 (5.36)
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then Eq. (5.34) becomes

Dα
t u(tn) ≃

∆t−α

Γ(2− α)

[
n∑

j=1

b̃n−j(α)
(
U j
i − U j−1

i

) ]

=
∆t−α

Γ(2− α)

[
b̃n−1(α)

(
U1
i − U0

i

)
+ b̃n−2(α)

(
U2
i − U1

i

)
+ b̃n−3(α)

(
U3
i − U2

i

)
+ · · ·+ b̃1(α)

(
Un−1
i − Un−2

i

)
+ b̃0(α)

(
Un
i − Un−1

i

) ]

=
∆t−α

Γ(2− α)

[
b̃0(α) U

n
i +

(
b̃1(α)− b̃0(α)

)
Un−1
i + · · ·+

(
b̃n−2(α)− b̃n−3(α)

)
U2
i

+
(
b̃n−1(α)− b̃n−2(α)

)
U1
i − b̃n−1U

0
i

]

=
∆t−α

Γ(2− α)

[
b̃0(α)U

n
i −

n−1∑
j=1

(
b̃n−j−1(α)− b̃n−j(α)

)
U j
i − b̃n−1(α)U

0
i

]

=
∆t−α

Γ(2− α)

[
n∑

j=0

B̃jU
j
i

]
(5.37)

where

B̃j =


−b̃n−1(α) if j = 0

b̃n−j−1(α)− b̃n−j(α) if 1 ≤ j ≤ n− 1

b̃0(α) if j = n

(5.38)

5.4 A second-order difference scheme for the Caputo

fractional derivative

From the truncation error estimate of the L1 method on a uniform temporal grid, it is

clear that the accuracy is dependent on the fractional order α. It is not so surprising due

to the weakly singular kernel (tn − s)α in Eq. (5.30). To improve the numerical accuracy

of the difference approximation of the time-fractional derivative, it is very natural to

consider a second-order scheme for discretizing the Caputo fractional derivative.
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5.4.1 Case 1: when 1 < α < 2

The approximation of the Caputo fractional derivative of order α, where 1 < α < 2, will

now be derived. We first use integration-by-parts on the right-hand side of Eq. (5.30) to

obtain.

Dα
t u(tn) =

1

Γ(1− α)

[
−∂u

∂s
(tn − s)1−α

(1− α)

∣∣∣∣∣
tn

0

+
1

(1− α)

∫ tn

0

∂2su

(tn − s)α−1
ds

]

=
1

(1− α)Γ(1− α)

[
∂u(r, 0)

∂s
(tn)

1−α +

∫ tn

0

∂2su

(tn − s)α−1
ds

]
=

1

Γ(2− α)

∫ tn

0

∂2su

(tn − s)α−1
ds+

1

Γ(2− α)

[
ψ(r) (tn)

1−α
]

=
1

Γ(2− α)

∫ tn

0

∂2su

(tn − s)α−1
ds

(5.39)

using ∂u(r,0)
∂t

= ψ(r) = 0.

Substituting the second derivative of the quadratic interpolation Eq. (5.7) into Eq. (5.39),

we obtain

Dα
t u(tn) ≃

1

Γ(2− α)

[∫ tn

tn−1

∂2s (Π2,n−1u(s))

(tn − s)α−1
ds+

n−1∑
j=1

∫ tj

tj−1

∂2s (Π2,ju(s))

(tn − s)α−1
ds

]

=
1

Γ(2− α)

[
Un − 2Un−1 + Un−2

(∆t)2

∫ tn

tn−1

ds

(tn − s)α−1

+
n−1∑
j=1

U j+1 − 2U j + U j−1

(∆t)2

∫ tj

tj−1

ds

(tn − s)α−1

] (5.40)
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Substitute Eq. (5.19) and Eq.(5.21) into Eq. (5.40) to obtain

Dα
t u(tn) ≃

1

(∆t)αΓ(3− α)

[ (
Un − 2Un−1 + Un−2

)
+

n−1∑
j=1

ãn−j(α)
(
U j+1 − 2U j + U j−1

) ]

=
1

(∆t)αΓ(3− α)

[ (
Un − 2Un−1 + Un−2

)
+ ãn−1(α)

(
U2 − 2U1 + U0

)
+ ãn−2(α)

(
U3 − 2U2 + U1

)
+ · · ·+ ã1(α)

(
Un − 2Un−1 + Un−2

) ]

=
1

(∆t)αΓ(3− α)

[
(ãn−1(α))U

0 + (ãn−2(α)− 2ãn−1(α))U
1 + (ãn−1(α)− 2ãn−2(α))U

2

+ · · ·+ (1 + ã1(α))U
n−2 + (−2− 2ã1(α))U

n−1 + (1 + ã1(α))U
n

]

=
1

(∆t)αΓ(3− α)

[
(ãn−1(α))U

0 + (ãn−2(α)− 2ãn−1(α))U
1

+
n−3∑
j=2

(ãn−j−1(α)− 2ãn−j(α) + ãn−j+1(α))U
j + (1 + ã1(α)− 2ã2(α) + ã3(α))U

n−2

+ (−2− 2ã1(α) + ã2(α))U
n−1 + (1 + ã1(α))U

n

]

=
1

(∆t)αΓ(3− α)

n∑
j=0

CjU
j

(5.41)

using Eq. (5.21) and Eq. (5.22) to define the following coefficients as,

Cj(α) =



ãn−1(α) if j = 0

ãn−2(α)− 2ãn−1(α) if j = 1

ãn−j−1(α)− 2ãn−j(α) + ãn−j+1(α) if 2 ≤ j ≤ n− 3

1 + ã1(α)− 2ã2(α) + ã3(α) if j = n− 2

−2ã1(α) + ã2(α)− 2 if j = n− 1

1 + ã1(α) if j = n

(5.42)
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5.4.2 Case 2: when 0 < α < 1

We consider the Caputo time derivative of order α, where 0 < α < 1,

Dα
t u(tn) =

1

Γ(1− α)

∫ tn

0

∂su

(tn − s)α
ds, t > 0 (5.43)

Define the finite difference approximation of Dα
t u(t) at t = t1 as follows:

Dα
t u(t1) ≃

1

Γ(1− α)

∫ t1

t0

{
u(t1)− u(t0)

∆t

}
1

(t1 − s)α
ds

=
1

Γ(1− α)

u(t1)− u(t0)

∆t

∫ t1

t0

1

(t1 − s)α
ds

=
1

Γ(1− α)

u(t1)− u(t0)

∆t

[
−(t1 − s)−α+1

(1− α)

]t1
0

=
1

Γ(2− α)

u(t1)− u(t0)

(∆t)α

(5.44)

Substituting the first derivative of the quadratic interpolant in Eq.(5.6) into Eq.(5.43),

we obtain, for n ≥ 2,

Dα
t u(tn) =

1

Γ(1− α)

[∫ tn

tn−1

∂s (Π2,n−1u(s))

(tn − s)α
ds+

n−1∑
j=1

∫ tj

tj−1

∂s (Π2,ju(s))

(tn − s)α
ds

]

=
1

Γ(1− α)

[
An +

n−1∑
j=1

Bn,j

] (5.45)

where

An =

∫ tn

tn−1

∂s (Π2,n−1u(s))

(tn − s)α
ds, Bn,j =

∫ tj

tj−1

∂s (Π2,ju(s))

(tn − s)α
ds (5.46)
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The integrals defining An, and Bn,j can be evaluated analytically as follows:

An =
Un−2

2(∆t)2

∫ tn

tn−1

2s− tn − tn−1

(tn − s)α
ds− Un−1

(∆t)2

∫ tn

tn−1

2s− tn−2 − tn
(tn − s)α

ds

+
Un

2(∆t)2

∫ tn

tn−1

2s− tn−2 − tn−1

(tn − s)α
ds

=
1

(1− α)(2− α)

[(
α

2(∆t)α

)
Un−2 −

(
2

(∆t)α

)
Un−1 +

(
4− α

2(∆t)α

)
Un

]

=
1

(1− α)(2− α)(∆t)α

[
a(α)Un−2 + b Un−1 + c(α)Un

]
(5.47)

where

a(α) =
[α
2

]
(5.48)

b = −2 (5.49)

c(α) =

[
4− α

2

]
(5.50)

Similarly,

Bn,j =
U j−1

2(∆t)2

∫ tj

tj−1

2s− tj − tj+1

(tn − s)α
ds− U j

(∆t)2

∫ tj

tj−1

2s− tj+1 − tj−1

(tn − s)α
ds

+
U j+1

2(∆t)2

∫ tj

tj−1

2s− tj − tj−1

(tn − s)α
ds

=
U j−1

2(∆t)α

(
[(n− j)1−α − 3(n− j + 1)1−α]

(1− α)
− 2 [(n− j)2−α − (n− j + 1)2−α]

(1− α)(2− α)

)

− U j

(∆t)α

(
2(n− j + 1)1−α

(1− α)
+

2[(n− j)2−α − (n− j + 1)2−α]

(1− α)(2− α)

)
+

U j+1

2(∆t)α

(
[(n− j)1−α + (n− j + 1)1−α]

(1− α)
+

2[(n− j)2−α − (n− j + 1)2−α]

(1− α)(2− α)

)
=

U j−1

2(∆t)α

(
(2− α)[(n− j)1−α − 3(n− j + 1)1−α]− 2 [(n− j)2−α − (n− j + 1)2−α]

(1− α)(2− α)

)
− U j

(∆t)α

(
2(2− α)(n− j + 1)1−α + 2[(n− j)2−α − (n− j + 1)2−α]

(1− α)(2− α)

)
+

U j+1

2(∆t)α

(
−(2− α) [(n− j)1−α − (n− j + 1)1−α]− 2[(n− j)2−α − (n− j + 1)2−α]

(1− α)(2− α)

)
=

1

(∆t)α (1− α)(2− α)

(
an−j(α)U

j−1 + bn−j(α)U
j + cn−j(α)U

j+1
)

(5.51)
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where

an−j(α) =

[
1

2
(2− α) (n− j)1−α − 3

2
(2− α)(n− j + 1)1−α − (n− j)2−α + (n− j + 1)2−α

]
(5.52)

bn−j(α) =
[
(2− α) (n− j + 1)1−α + (n− j)2−α − (n− j + 1)2−α

]
(5.53)

cn−j(α) =

[
−(2− α)

2
(n− j)1−α +

(2− α)

2
(n− j + 1)1−α − (n− j)2−α + (n− j + 1)2−α

]
(5.54)

Let l = n− j, then we define

al(α) =

[
1

2
(2− α) l1−α − 3

2
(2− α)(l + 1)1−α − l2−α + (l + 1)2−α

]
(5.55)

bl(α) =
[
2(2− α) (l + 1)1−α + 2l2−α − 2(l + 1)2−α

]
(5.56)

cl(α) =

[
−(2− α)

2
l1−α +

(2− α)

2
(l + 1)1−α − l2−α + (l + 1)2−α

]
(5.57)
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Combining the above results, Eq. (5.45) becomes

Dα
t u(tn) =

1

Γ(1− α)

[
An +

n−1∑
j=1

Bn,j

]

=
1

Γ(1− α)

[
1

(∆t)α(1− α)(2− α)

(
a(α)Un−2 + b Un−1 + c(α)Un

)
+

1

(∆t)α (1− α)(2− α)

n−1∑
j=1

(
an−j(α)U

j−1 + bn−j(α)U
j + cn−j(α)U

j+1
) ]

=
1

(∆t)α(2− α)(1− α)Γ(1− α)

[ (
a(α)Un−2 + b Un−1 + c(α)Un

)
+

n−1∑
j=1

(
an−j(α)U

j−1 + bn−j(α)U
j + cn−j(α)U

j+1
) ]

=
1

(∆t)αΓ(3− α)

[ (
a(α)Un−2 + b Un−1 + c(α)Un

)
+

n−1∑
j=1

(
an−j(α)U

j−1 + bn−j(α)U
j + cn−j(α)U

j+1
) ]

=
1

(∆t)αΓ(3− α)

[
(c(α) + c1(α))U

n + (b+ c2(α) + b1(α))U
n−1 + (a(α) + b2(α) + a1(α))U

n−2

+
n−3∑
j=2

(an−j−1(α) + bn−j(α) + cn−j+1(α))U
j + (an−2(α) + bn−1(α))U

1 + an−1(α)U
0

]
(5.58)

We rearrange the formula as follows for convenience:

Dα
t u(tn) =

1

(∆t)αΓ(3− α)

n∑
j=0

Ej U
j

(5.59)
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using Eq. (5.48)-Eq. (5.50) and Eq. (5.52)-Eq. (5.57), we can define

Ej(α) =



an−1(α) if j = 0

an−2(α) + bn−1(α) if j = 1

an−j−1(α) + bn−j(α) + cn−j+1(α) if 2 ≤ j ≤ n− 3

a1(α) + b2(α) + c3(α) + a(α) if j = n− 2

c2(α) + b1(α) + b if j = n− 1

c(α) + c1(α) if j = n

(5.60)

5.5 Time Discretization of FVF Model

In this section, we refer to the Fractional Viscoelastic Fluid (FVF) model as a special case

of the Fractional Maxwell Model (FMM), specifically when the order of the fractional

derivative is set to α = 1. This formulation corresponds to a configuration where a

spring-pot (defined by fractional order β) is placed in series with a dashpot, capturing

the intermediate behaviour between purely viscous and elastic responses.

It is important to note that in Chapter 4, the same configuration was previously

referred to as the Fractional Maxwell–Like (FML) model. For consistency, we now use

the term Fractional Viscoelastic Fluid (FVF) throughout this section and in Chapter

6, recognizing that both terms describe the same constitutive model—specifically, the

Fractional Maxwell Model (FMM) with α = 1. Additionally, to align the notation with

Chapters 4 and 7, the parameter α used here and in Chapter 6 corresponds to β in those

Chapters, while the parameter β used here and in Chapter 6 corresponds to ζ = β−α in

Chapters 4 and 7.

The expression:

τ(t) +
V
G
D1−β

t τ(t) = V
(
∂u

∂r
− u

r

)
, 0 < β < 1 (5.61)

is a fractional viscoelastic constitutive law for shear stress in a cylindrical polar coordinate

system.
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The strain rate term ∂u
∂r

− u
r
is the curvilinear form of the shear strain rate (Ferras .,

2018). The approximation of τ(ri, tn) is denoted by τni .

5.5.1 A first-order difference scheme for the Caputo fractional

derivative

Define the fractional derivative in a Caputo sense

D1−β
t τ(tn) =

1

Γ(β)

∫ tn

0

∂sτ

(tn − s)1−β
ds, 0 < β < 1 (5.62)

Substituting Eq.(5.4) in Eq.(5.62), we obtain

D1−β
t τ(tn) ≃

1

Γ(β)

[
n∑

j=1

τ j − τ j−1

∆t

∫ tj

tj−1

ds

(tn − s)1−β

]
(5.63)

Since

∫ tj

tj−1

ds

(tn − s)1−β
=

1

β

[
(tn − tj)

β − (tn − tj−1)
β
]

=
(∆t)β

β

[
(n− j + 1)β − (n− j)β

]
, n− j ≥ 0

(5.64)

we can express Eq. (5.63) in the form

D1−β
t τ(tn) =

1

∆t1−β Γ(1− β)

n∑
j=1

b̈n−j(1− β) [τ(tj)− τ(tj−1)] (5.65)

where

b̈n−j(1− β) =
[
(n− j + 1)β − (n− j)β

]
(5.66)

Let l = n− j, then

b̈l(1− β) =
[
(l + 1)β − lβ

]
(5.67)
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Based on Lemma 2.3 of Sun Wu (2006), Eq. (5.65) becomes

D1−β
t τ(tn) =

1

∆t1−β Γ(1− β)

[
b̈n−1(1− β)

[
τ 1 − τ 0

]
+ b̈n−2(1− β)

[
τ 2 − τ 1

]
+ b̈n−3(1− β)

[
τ 3 − τ 2

]
+ · · ·+ b̈1(β)

[
τn−1 − τn−2

]
+ b̈0(β)

[
τn − τn−1

] ]

=
1

∆t1−β Γ(1− β)

[
b̈0(β) τ

n −
n−1∑
j=1

[b̈n−j−1(β)− b̈n−j(β)] τ
j − b̈n−1(β) τ

0

]
(5.68)

5.5.2 A second-order difference scheme for the Caputo frac-

tional derivative

Define the finite difference approximation of D1−β
t τ(t) at t = t1 in [t0, t1] as follows:

D1−β
t τ(t1) ≃

1

Γ(β)

∫ t1

t0

(
τ 1 − τ 0

∆t

)
1

(t1 − s)1−β
ds

=
1

Γ(β)

τ 1 − τ 0

∆t

∫ t1

t0

1

(t1 − s)1−β
ds

=
1

Γ(β)

τ 1 − τ 0

∆t

[
−(t1 − s)β

(β)

]t1
0

=
1

Γ(1 + β)

τ 1 − τ 0

(∆t)1−β

(5.69)

Substituting Eq.(5.6) into Eq.(5.62) for n ≥ 2, we obtain

D1−β
t τ(tn) ≃

1

Γ(β)

[∫ tn

tn−1

∂s (Π2,n−1τ(s))

(tn − s)1−β
ds+

n−1∑
j=1

∫ tj

tj−1

∂s (Π2,jτ(s))

(tn − s)1−β
ds

]

=
1

Γ(β)

[
∗
An +

n−1∑
j=1

∗
Bn,j

] (5.70)

where
∗
An =

∫ tn

tn−1

∂s (Π2,n−1τ(s))

(tn − s)1−β
ds,

∗
Bn,j =

∫ tj

tj−1

∂s (Π2,jτ(s))

(tn − s)1−β
ds (5.71)
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The integrals defining
∗
An, and

∗
Bn,j can be evaluated analytically as follows:

∗
An =

τn−2

2(∆t)2

∫ tn

tn−1

2s− tn − tn−1

(tn − s)1−β
ds− τn−1

(∆t)2

∫ tn

tn−1

2s− tn−2 − tn
(tn − s)1−β

ds

+
τn

2(∆t)2

∫ tn

tn−1

2s− tn−2 − tn−1

(tn − s)1−β
ds

= τn−2

[
−3− β

2(∆t)1−ββ(β + 1)

]
− τn−1

[
2

(∆t)1−ββ(β + 1)

]
+ τn

[
β − 1

2(∆t)1−ββ(β + 1)

]
=

1

β(β + 1)(∆t)1−β

[
â(β) τn−2 − b̂(β) τn−1 + ĉ(β) τn

]
(5.72)

where

â(β) =

[
−3− β

2

]
, b̂ = 2, ĉ(β) =

[
β − 1

2

]
(5.73)

and

∗
Bn,j =

τ j−1

2(∆t)2

∫ tj

tj−1

2s− tj+1 − tj
(tj − s)1−β

ds− τ j

(∆t)2

∫ tj

tj−1

2s− tj−1 − tj+1

(tj − s)1−β
ds

+
τ j+1

2(∆t)2

∫ tj

tj−1

2s− tj − tj−1

(tj − s)1−β
ds

=

(
[(n− j)β − 3(n− j + 1)β]

2(∆t)1−ββ
− [(n− j)1+β − (n− j + 1)1+β]

(∆t)β−1β(β + 1)

)
τ j−1

− 2

(
[(n− j + 1)β]

(∆t)1−ββ
+

[(n− j)1+β − (n− j + 1)1+β]

(∆t)1−ββ(β + 1)

)
τ j

+

(
[−(n− j)β − (n− j + 1)β]

2 (∆t)1−ββ
− [(n− j)1+β − (n− j + 1)1+β]

(∆t)β−1β (β + 1)

)
τ j+1

=
1

(∆t)1−ββ(β + 1)

[
án−j(β) τ

j−1 − 2b́n−j(β) τ
j + ćn−j(β) τ

j+1
]

(5.74)

where

án−j(β) =

[
(β + 1)

2
(n− j)β − 3(β + 1)

2
(n− j + 1)β − (n− j)1+β + (n− j + 1)1+β

]
(5.75)

b́n−j(β) =
[
(β + 1) (n− j + 1)β + (n− j)1+β − (n− j + 1)1+β

]
(5.76)

ćn−j(β) =

[
−(β + 1)

2
(n− j)β − (β + 1)

2
(n− j + 1)β − (n− j)1+β + (n− j + 1)1+β

]
(5.77)
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Let l = n− j, then

ál(β) =

[
(β + 1)

2
(l)β − 3(β + 1)

2
(l + 1)β − (l)1+β + (l + 1)1+β

]
(5.78)

b́l(β) =
[
(β + 1) (l + 1)β + (l)1+β − (l + 1)1+β

]
(5.79)

ćl(β) =

[
−(β + 1)

2
(l)β − (β + 1)

2
(l + 1)β − (l)1+β + (l + 1)1+β

]
(5.80)

Inserting the above approximations into Eq. (5.72) gives

D1−β
t τ(tn) =

1

Γ(β)

[
∗
An +

n−1∑
j=1

∗
Bn,j

]

=
1

Γ(β)

[
1

(∆t)1−ββ(β + 1)

(
â τn−2 + b̂ τn−1 + ĉ τn

)
+

1

(∆t)1−ββ(β + 1)

n−1∑
j=1

(
án−j τ

j−1 − 2b́n−j τ
j + ćn−j τ

j+1
)]

=
1

(∆t)1−βΓ(β + 2)

[(
â τn−2 + b̂ τn−1 + ĉ τn

)
+

n−1∑
j=1

(
án−j τ

j−1 − 2b́n−j τ
j + ćn−j τ

j+1
)]

=
1

(∆t)1−βΓ(β + 2)

[
(ĉ+ ć1)τ

n + (b̂− 2b́1 + ć2)τ
n−1 + (â− 2b́2 + á1)τ

n−2

+
n−3∑
j=2

(án−j − 2b́n−j + ćn−j) τ
j + (án−2 − 2b́n−1) τ

1 + (án−1) τ
0

]
(5.81)

For convenience, we rearrange the formula as follows

D1−β
t τ(tn) =

1

(∆t)1−βΓ(β + 2)

n∑
j=0

Éjτ
j, 0 ≤ j ≤ n (5.82)
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where Éj are defined by

Éj(β) =



án−1(β) if j = 0

án−2(β)− 2b́n−1(β) if j = 1

án−j−1(β)− b́n−j(β) + ćn−j+1(β) if 2 ≤ j ≤ n− 3

á1(β)− 2b́2(β) + ć3(β) + â(β) if j = n− 2

ć2(β)− 2b́1(β)− b̂ if j = n− 1

ĉ(β) + ć1(β) if j = n

(5.83)

5.6 Conclusions

The goal of this thesis is to solve the coupled set of PDEs for Taylor-Couette flow numer-

ically. This requires the development of an accurate and stable numerical discretization

in time and space. In this chapter, following the discretization method of Sun Wu (2006)

we have derived a numerical discretization of O(∆t), for the time-fractional derivative

defined in the Caputo sense with the fractional order α, in two cases: 0 < α < 1 and

1 < α < 2. Furthermore, to obtain a more precise approximation, we have extended the

work of Sun Wu (2006) by constructing a second order approximation of the Caputo

fractional derivative using the first and second derivatives of the quadratic interpolation

polynomial of u in the two distinct intervals of α: 0 < α < 1 and 1 < α < 2. In the final

section, we derived a first-order difference scheme for the Caputo fractional derivative

for the Fractional Viscoelastic Fluid (FVF) model with special case of fractional order

α = 1, which we will utilize it in Chapter 6. In addition, the corresponding second-order

difference scheme for the same model was also derived; however, this higher-order scheme

is not utilized further in this thesis.
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Chapter 6

Unsteady Flows in Simple Geometry

6.1 Introduction

Many phenomena in applied mathematics can be modelled using ordinary or partial dif-

ferential equations. Finding numerical approximations to their solution is often required

since some of these problems are complex and do not have closed-form analytical solu-

tions.

In this chapter, we employ spectral methods and develop MATLAB code to solve the

steady and unsteady unidirectional flow of fractional viscoelastic fluids inside a real con-

centric cylinder rheometer (annular flow). Both space and time are discretized in the

equations. This procedure will be described in detail in this chapter. Section 6.2 provides

a description of the Taylor-Couette flow geometry. The numerical discretization of the

problem is described in Section 6.3 which is based on finite differences in time and spec-

tral approximations in space. These methods are applied to the governing equation for

velocity and shear stress to form the linear system for the unknowns at each time step.

The convergence behaviour of the spectral approximation is studied in Section 6.4. In

Section 6.5 some numerical results are presented and compared with the finite difference

approach of Ferras . (2018). The advantages and disadvantages of both approaches are de-

scribed. In Section 6.6 the fully coupled scheme is presented. In Section 6.7, the influence

of fractional orders on the velocity and shear stress approximations is investigated and a

brief description of the stress relaxation achieved for FMM is provided. The conclusions

of this chapter are given in Section 6.8.
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6.2 Taylor–Couette flow

Taylor–Couette flow is named after two scientists who made significant contributions to

the study of fluid motion between rotating cylinders. The British mathematician and

physicist Sir Geoffrey Ingram Taylor is well known for his important contributions to

fluid dynamics, especially his examination of the stability of flow between two rotating

cylinders. The French physicist Maurice Marie Alfred Couette initially studied viscosity

measurement techniques and the viscous flow between concentric cylinders. Their com-

bined contributions laid the groundwork for what is now known as Taylor–Couette flow

(see e.g (Taylor, 1923; Donnelly, 1991; Drazin Reid, 2004).

The eccentricity, denoted by e, refers to the distance between the centres of the two cylin-

ders. When the cylinders are concentric, this distance is zero ( e = 0; see Fig. 6.1).

In the Taylor-Couette problem, a fluid occupies the space between two concentric cylin-

ders and flows within the annular gap (see Fig. 6.2). This type of flow plays a crucial

role in the rheological analysis of materials. It involves introducing the material into the

annular space and rotating one or both cylinders (either at a constant or varying rate)

while measuring the torque exerted on the second cylindrical surface (Dontula ., 2005;

Owens Phillips, 2002). The characteristics of the flow are affected by factors such as

the rotational velocities of the cylinders, the viscosity of the fluid, and the width of the

annular gap.

In the case of a purely tangential flow within an annular region, where the velocity field

is defined as (ur, uθ, uz) = (0, uθ(r, t), 0), the θ-component of the momentum equation for

the Maxwell model—expressed in terms of the tangential velocity uθ and the shear stress

τrθ — can be written as follows:

ρ

(
1 + λ

∂

∂t

)
∂uθ
∂t

= η

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
uθ (6.1)

(
1 + λ

∂

∂t

)
τrθ = η

(
∂uθ
∂r

− uθ
r

)
(6.2)
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To extend the model to a fractional viscoelastic fluid (FVF) in the regime where Wi≪ 1,

the operator

(
1 + λ

∂

∂t

)
in Eqs. (6.1) and (6.2) is replaced with the fractional derivative(

1 +
V
G
D1−β

t

)
. Additionally, Eq. (6.1) is divided by the viscosity η = V, considering that

λ ≡ V
G . This fractional model introduces three key parameters to be identified through

fitting to experimental data: two quasi-material properties, V and G, and a fractional

order exponent β, constrained by 0 < β < α = 1.

ρ

V
∂uθ
∂t

+
ρ

G
D

(2−β)
t uθ =

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
uθ + f(r, t) (6.3)

τrθ +
V
G
D

(1−β)
t τrθ = V

(
∂

∂r
− 1

r

)
uθ (6.4)

In the next section, we discuss the discretization and the solution of these equations

numerically using the spectral method and finite difference method.

Figure 6.1: The eccentric cylinder geometry with eccentricity e

Figure 6.2: An annular geometry and flow
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6.3 Numerical Discretization

This section concentrates on discretizing Eqs. (6.3) and (6.4), including both temporal and

spatial derivative terms, to develop a numerical scheme for solving the system of fractional

partial differential equations, subject to the given boundary and initial conditions.

uθ(Rin, t) = ϕi(t), uθ(Rout, t) = ϕ0(t), 0 < t < T, (6.5)

uθ(r, 0) =
∂uθ(r, 0)

∂t
= 0, τr,θ(r, 0) = 0, Rin < r < Rout (6.6)

To formulate the discrete version of the problem, the equations (6.3) and (6.4) are dis-

crtized at the Gauss-Legendre-Lobatto (GLL) nodes ri, i = 0, . . . , N , within the domain

[Rin, Rout]. At each spatial point ri, we define the function value as uni = u(ri, tn). The

numerical approximation of this value is denoted by Un
i where Un

i ≃ uni for i = 0, . . . , N .

To proceed, we introduce notation to represent the average value of u between the time

levels tn and tn−1 at the spatial location ri.

u
n−1/2
i =

uni + un−1
i

2
(6.7)

and the O(∆t2) central difference approximation to ∂u
∂t
(t) at t = tn−1/2 is given by

δtU
n−1/2
i =

Un
i − Un−1

i

∆t
(6.8)

To discretize the fractional time derivative, a uniform grid in time is employed with a

step size of ∆t = T
S
, where T denotes the final time. The corresponding time levels are

defined as tn = n∆t for n = 0, 1, . . . , S. (see Sun Wu (2006), for example).

Discretization in Time

To derive the numerical approximation of the time-fractional derivative D2−β
t u, we utilize

the numerical approximation for the fractional diffusion-wave equation described by Sun

Wu (2006).
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Let u = uθ, then the fractional derivative in Eq. (6.3) is defined in the Caputo sense.

Dϵ
tu(tn) =

1

Γ(2− ϵ)

∫ tn

0

(tn − t′)1−ϵ ∂
2u

∂t′2
dt′, 1 < ϵ < 2 (6.9)

with ϵ = 2− β.

Let

y(r, t′) =
∂u(r, t′)

∂t′
(6.10)

then

∂y(r, t′)

∂t′
=
∂2u(r, t′)

∂t′2
(6.11)

Define

Dϵ
tu(tn) = x(r, tn) (6.12)

then Eq. (6.9) becomes

x(r, tn) =
1

Γ(2− ϵ)

∫ tn

0

(tn − t′)1−ϵ ∂y

∂t′
dt′ (6.13)

Define the grid functions

Un
i ≃ uni , Y

n
i ≃ y(ri, tn), X

n
i ≃ x(ri, tn), 0 ≤ i ≤ N, n ≥ 0. (6.14)

Using Taylor expansions, it follows from Eq. (6.10) that a second-order approximation to

y(ri, tn−1/2) is

Y
n−1/2
i = δtU

n−1/2
i (6.15)

The local truncation error e1 of this approximation is defined by

(e1)
n−1/2
i = Y

n−1/2
i − δtU

n−1/2
i (6.16)

from which we can show, using Taylor series expansions, that

|(e1)n−1/2
i | ≤ c1(∆t)

2 (6.17)
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where c1 is a constant.

Based on Lemma 2.2 of Sun Wu (2006), and using a Taylor expansion with integral

remainder for any function F (t) ∈ C2[0, tn], we have

∫ tn

0

F ′(t)
1

(tn − t)α−1
dt ≃

n∑
k=1

F (tk)− F (tk−1)

∆t

∫ tk

tk−1

1

(tn − t)α−1
dt, ∆t > 0 (6.18)

which is called the L1 method.

Therefore, the approximation of Eq. (6.13) at the point (ri, tn) is

Xn
i ≃ 1

Γ(2− ϵ)

[
n∑

j=1

Y j
i − Y j−1

i

∆t

∫ tj

tj−1

(tn − t′)1−ϵdt′

]
(6.19)

Since

∫ tj

tj−1

(tn − t′)1−ϵdt =
(∆t)2−ϵ

2− ϵ

[
(n− j + 1)2−ϵ − (n− j)2−ϵ

]
, n− j ≥ 0. (6.20)

and based on Lemma 2.3 of Sun Wu (2006), we can express Eq. (6.19) in the form

Xn
i =

(∆t)1−ϵ

Γ(2− ϵ)

[
n∑

j=1

an−j(β)
(
Y j
i − Y j−1

i

)]
(6.21)

where

an−j(β) =
[
(n− j + 1)2−ϵ − (n− j)2−ϵ

]
, n− j ≥ 0. (6.22)

Let l = s− j, then

al(β) =
[
(l + 1)2−ϵ − (l)2−ϵ

]
, l ≥ 0. (6.23)
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then Eq. (6.21) becomes,

Xn
i ≃ (∆t)1−ϵ

Γ(2− ϵ)

[
n∑

j=1

an−j

(
Y j
i − Y j−1

i

)]

=
(∆t)1−ϵ

Γ(2− ϵ)

[
an−1

(
Y 1
i − Y 0

i

)
+ an−2

(
Y 2
i − Y 1

i

)
+ an−3

(
Y 3
i − Y 2

i

)
+

· · ·+ a1
(
Y n−1
i − Y n−2

i

)
+ a0

(
Y n
i − Y n−1

i

) ]

=
(∆t)1−ϵ

Γ(2− ϵ)

[
a0Y

n
i − (an−1 − an−2)Y

1
i − (an−3 − an−2)Y

2
i −

· · · − (a0 − a−1)Y
n−1
i − an−1Y

0
i

]

=
(∆t)1−ϵ

Γ(2− ϵ)

[
a0Y

n
i −

n−1∑
j=1

(an−j−1 − an−j)Y
j
i − an−1Y

0
i

]

(6.24)

and

Xn−1
i =

∆t1−ϵ

Γ(2− ϵ)

[
a0(β)Y

n−1
i −

n−2∑
j=1

(an−j−2(β)− an−j−1(β)) Y
j
i − an−2(β)Y

0
i

]
(6.25)

Consequently,

Xn
i +Xn−1

i

2
≃ X

n−1/2
i

=
(∆t)1−ϵ

Γ(2− ϵ)

[
a0Y

n−1/2
i −

n−1∑
j=1

(an−j−1 − an−j) Y
j−1/2
i − an−1Y

0
i

] (6.26)

where e2 is the local truncation error of this approximation X
n−1/2
i with

|(e2)n−1/2
i | ≤ c2(∆t)

2−ϵ (6.27)
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where c2 is a constant.

Substituting Eq. (6.15) into Eq. (6.26), we have

X
n−1/2
i =

(∆t)1−ϵ

Γ(2− ϵ)

[
a0δtU

n−1/2
i −

n−1∑
j=1

(an−j−1 − an−j)δtU
j−1/2
i − an−1Y

0
i

]

+
(∆t)1−ϵ

Γ(2− ϵ)

[
a0(e1)

n−1/2
i −

n−1∑
j=1

(an−j−1 − an−j)(e1)
j−1/2
i

]
+ (e2)

n−1/2
i (6.28)

Replacing δtU
n−1/2
i by Eq. (6.15), and substituting the above results into Eq. (6.9) we

obtain the following finite difference approximation to Dϵ
tnu:

Dϵ
tu(tn) ≃

(∆t)1−ϵ

Γ(2− ϵ)

[
a0

(
Un
i − Un−1

i

∆t

)
−

n−1∑
j=1

(
an−j−1−an−j

)(
U j
i − U j−1

i

∆t

)
−an−1Φ(ri)

]
(6.29)

where Φ(ri) = Y 0
i = y(ri, 0).

Discretization in Space

We employ the spectral method (SM), which requires the problem to be written in its weak

formulation. In this section we shall describe the procedures needed both before and after

applying the SM to the momentum equations in detail. Before we write down the weak

formulation, we must define a suitable function space for the solution u. Define H1([a, b])

to be the Sobolev space comprising square-integrable functions with square-integrable

generalized first derivatives. The space H1
0 ([a, b]) is a subspace of H1([a, b]) containing

functions that vanish at a and b i.e H1
0 ([a, b]) = {v ∈ H1([a, b]) : v(a) = v(b) = 0}. The

test space W = H1
0 ([a, b]). The solution space is V ={v ∈ H1([a, b]) : v(a), v(b) satisfy

prescribed Dirichlet boundary condition}.
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6.3.1 Weak Formulation of Velocity Equation

Multiply Eq. (6.3) by a test function v ∈ W and integrate over the entire radial domain

[Rin, Rout], then the weak form is: Find u ∈ V such that

ρ

V

∫ Rout

Rin

∂u

∂t
vdr+

ρ

G

∫ Rout

Rin

(D2−β
t u)vdr =

∫ Rout

Rin

∂2u

∂r2
vdr+

∫ Rout

Rin

1

r

∂u

∂r
vdr−

∫ Rout

Rin

u

r2
vdr

+

∫ Rout

Rin

f(r, t)vdr, ∀ v ∈ W (6.30)

Integrating the first term on the right−hand side by parts we obtain

∫ Rout

Rin

∂2u

∂r2
vdr = −

∫ Rout

Rin

∂u

∂r

∂v

∂r
dr (6.31)

(Boundary terms vanish since v ∈ W , i.e. v(Rin) = v(Rout) = 0)

6.3.2 Discrete problem

In Time

The equation (6.30) is discretized at t = tn−1/2 and an approximation that is averaged

over tn−1 and tn is used. In particular, at each point r = ri we have

∂u

∂t
(ri, tn−1/2) ≃ δtU

n−1/2
i =

Un
i − Un−1

i

∆t
(6.32)

The numerical approximation to the fractional derivative, D
(2−β)
t u, is given by Sun Wu

(2006), and was derived in the previous subsection (see Eq. (6.29)).

In space

We first transform the physical domain [Rin, Rout] to the computational domain [−1, 1]

as follows:

Define points in the physical domain that correspond to the GLL points,

ri = Rin + (r̃i + 1)
(Rout −Rin)

2
, ri ∈ [Rin, Rout] (6.33)

131



Then

r̃i =
2ri − (Rin +Rout)

(Rin −Rout)
, r̃i ∈ [−1, 1] (6.34)

Let ∆ = Rin−Rout
2

, then

dr̃

dr
= ∆−1

∂u

∂r
=
∂u

∂r̃

∂r̃

∂r
= ∆−1∂u

∂r̃
, etc.

and u
n−1/2
i =

uni +un−1
i

2
is the average of u at the points (ri, tn) and (ri, tn−1). The spectral

approximation of u is given by

uN(r) =
N∑
j=0

ujhj(r̃) (6.35)

and the test functions are chosen to be v = hk(r̃) for k = 1, . . . , N − 1.

Inserting these spectral approximations in the weak formulation (6.30) we obtain,

∫ Rout

Rin

∂2u

∂r2
vdr = − 1

∆

∫ 1

−1

∂u

∂r̃

∂v

∂r̃
dr̃

≃ − 1

∆

N∑
l=0

wl

(
N∑
j=0

Ujh
′
j(r̃l)

)
h′k(r̃l)

= − 1

∆

N∑
l=0

wl

(
N∑
j=0

UjDl,j

)
Dl,k

= − 1

∆

N∑
j=0

(
N∑
l=0

wlDl,jDl,k

)
Uj

≃ − 1

∆

N∑
j=0

Bk,jU
n−1/2
j

= − 1

∆

N∑
j=0

Bk,j

(
Un
j + Un−1

j

2

)

(6.36)
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where Bk,j =
∑N

l=0wlDl,jDl,k.

∫ Rout

Rin

1

r

∂u

∂r
vdr = ∆

∫ 1

−1

∆−11

r

∂u

∂r̃
v(r̃)dr̃

≃
N∑
l=0

wl

rl

(
N∑
j=0

Ujh
′
j(r̃l)

)
hk(r̃l)

=
N∑
l=0

wl

rl

( N∑
j=0

UjDl,j

)
hk(r̃l)

≃ wk

rk

N∑
j=0

Dk,jU
n−1/2
j

=
wk

rk

N∑
j=0

Dk,j

(
Un
j + Un−1

j

2

)

(6.37)

∫ Rout

Rin

u

r2
vdr = ∆

∫ 1

−1

u

r2
v(r̃)dr̃

≃ ∆
N∑
l=0

wl

r2l

(
N∑
j=0

Ujhj(r̃l)

)
hk(r̃l)

= ∆
N∑
l=0

wl

r2l
(Ul)hk(r̃l)

≃ ∆wk

r2k

(
U

n−1/2
k

)
=

∆wk

r2k

(
Un
k + Un−1

k

2

)
≃ ∆wk

(∆r̃k +
Rin+Rout

2
)2

(
Un
k + Un−1

k

2

)

(6.38)

The source term is given by,

∫ Rout

Rin

f(t, r)v(r)dr = ∆

∫ 1

−1

f(t, r̃)v(r̃)dr̃

≃ ∆
N∑
l=0

wlf(tn−1/2, r̃l)hk(r̃l)

= ∆wk

(
f(tn, rk) + f(tn−1, rk)

2

) (6.39)

where rk ∈ [Rin, Rout].
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The full discretization of Eq.(6.30) is

[ ρ
V
wk

∆t

]
(Un

k − Un−1
k ) +

ρ

G
wk

∆t

1

Γ(β)

[
a0
Un
k − Un−1

k

∆t
−

n−1∑
j=1

(an−j−1 − an−j)
U j
k − U j−1

k

∆t

]

= − 1

2∆t

[
n−1∑
j=0

Bk,j(U
n
j + Un−1

j )

]
− wk∆

2r2k
(Un

k + Un−1
k ) +

wk

2rk

[
n−1∑
j=0

Dk,j(U
n
j + Un−1

j )

]

+
∆wk

2
[f(tn, rk) + f(tn−1, rk)] , k = 1, . . . , N − 1, n = 1, . . . , S

(6.40)

**Note as mentioned by Ferras . (2018) this is a time-averaged approximation over the

interval [tn−1, tn]. It can be viewed as the approximation at t = tn−1/2.

A linear system of the form AU = b is solved at each new time level.

The initial conditions are

U0
k = 0, 1 ≤ k ≤ N − 1 (6.41)

Rearrange Eq. (6.40) we obtain

[
ρ

V
wk

∆t
+
ρ

G
a0

Γ(β)

wk

(∆t)2
+

∆wk

2r2k

]
Un
k +

N∑
j=0

[
1

2∆
Bk,j −

wk

rk
Dk,j

]
Un
j

=

[
ρ

V
wk

∆t
+
ρ

G
a0

Γ(β)

wk

(∆t)2
− ∆wk

2r2k

]
Un−1
k −

N∑
j=0

[
1

2∆
Bk,j −

wk

rk
Dk,j

]
Un−1
j

+
ρ

G
wk

Γ(β)

1

(∆t)2

n−1∑
j=1

(an−j−1 − an−j)(U
j
k − U j−1

k ) +
∆wk

2
[f(tn, rk) + f(tn−1, rk)] (6.42)

The values of u on each of the cylinder boundaries are given by the prescribed boundary

conditions

Un
0 = ϕ0(n∆t) (6.43)

Un
N = ϕN(n∆t) (6.44)

Then U is the vector of unknown components unk where 1 ≤ k ≤ N −1, at each time level

n = 0, 1, . . . , S, and b is the vector of the right-hand side of Eq. (6.42) together with the

terms from the left-hand side involving un0 and unN . The entries of the (N − 1)× (N − 1)
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matrix A are given by

Ak,j =

[
ρ

V
wk

∆t
+
ρ

G
a0

Γ(β)

wk

(∆t)2
+

∆wk

2r2k

]
δk,j +

[
1

2∆
Bk,j −

wk

2rk
Dk,j

]
(6.45)

The system of equations is solved using a direct method for n = 1, . . . , S. This gives an

approximation to the velocity at the mesh points in time and space.

We solve separately the evolution equation for the shear stress Eq. (6.4) with initial

condition τrθ(r, 0) = 0, since the right-hand side of Eq. (6.4) is known.

6.3.3 Weak Formulation of the Shear Stress Equation

Let τ = τrθ. Multiply the evolution equation for the shear stress (6.4) by a test function

η ∈ V where V is the solution space i.e V ={v ∈ H1([a, b]) : v(a), v(b) satisfy prescribed

Dirichlet boundary condition}, and integrate over the domain [Rin, Rout] to obtain the

weak formulation.

∫ Rout

Rin

τ(t) v dr +
V
G

∫ Rout

Rin

(
D1−β

t τ(t)
)
v dr =

∫ Rout

Rin

V
(
∂u

∂r
− u

r

)
v dr (6.46)

6.3.4 Discrete problem

To derive the discrete form of the weak formulation of Eq. (6.46) we consider each term

separately.

∫ Rout

Rin

τ(t) v dr = ∆

∫ 1

−1

τ(t) v dr̃

≃ ∆
N∑
l=0

wl

(
N∑
j=0

τjhj(r̃l)

)
hk(r̃l)

= ∆
N∑
l=0

wl (τl)hk(r̃l)

= ∆wkτ
n
k

(6.47)
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Here, we will use Eq. (5.68) to substitute the discrtization of D1−β
t τ(t)

∫ Rout

Rin

(
D1−β

t τ(t)
)
v dr = ∆

∫ 1

−1

(
D1−β

t τ(t)
)
v dr̃

≃ ∆
N∑
l=0

wl

(
D1−β

t τl

)
hk(r̃l)

= ∆wk

(
D1−β

t τk

)
=

∆wk

Γ(β)

1

∆t

[
b0τ

n
k −

n−1∑
j=1

(bn−j−1 − bn−j)τ
j
k − bn−1τ

0
k

]
(6.48)

where the coefficient defined in Ch.5 by Eq. (5.64)

∫ Rout

Rin

∂u

∂r
v dr = ∆

∫ 1

−1

(
∆−1∂u

∂r̃

)
v dr̃

≃
N∑
l=0

wl

(
N∑
j=0

Ujh
′
j(r̃l)

)
hk(r̃l)

=
N∑
l=0

wl

(
N∑
j=0

Dl,jUj

)
hk(r̃l)

≃ wk

N∑
j=0

Dk,jU
n
j

(6.49)

∫ Rout

Rin

u

r
v dr = ∆

∫ 1

−1

u

r
v dr̃

≃ ∆
N∑
l=0

wl

rl

(
N∑
j=0

Ujhj(r̃l)

)
hk(r̃l)

= ∆
N∑
l=0

wl

rl
(Ul)hk(r̃l)

=
∆wk

∆r̃k + 1/2(Rin +Rout)
Un
k

=
∆wk

r2k
Un
k

(6.50)

for k = 1, . . . , N − 1 and n = 1, . . . , S.

Inserting these approximations into Eq. (6.46) forms the linear system Mτ = b at each

time step. Here M is a diagonal matrix so the solution can be obtained simply.
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The full discretization of the stress equation is

∆wkτ
n
k +∆wk

V
GΓ(β)

1

∆t

[
b0τ

n
k −

n−1∑
j=1

(bn−j−1 − bn−j)τ
j
k − bn−1τ

0
k

]
= Vwk

N∑
j=0

Dk,jU
n
j −V

wk∆

r2k
Un
k

(6.51)

Dividing by ∆wk yields

[
1 +

V
G

1

Γ(β)

b0
∆t

]
τnk =

V
G

n−1∑
j=1

(bn−j−1 − bn−j)τ
j
k + bn−1τ

0
k +

V
∆

N∑
j=0

Dk,jU
n
j − V

r2k
Un
k (6.52)

for k = 1, . . . , N − 1 and n = 1, . . . , S.

Here τ is the vector of unknowns components τnk where 1 ≤ k ≤ N−1, for n = 0, 1, . . . , S,

and b is the vector of the right-hand side of equation (6.52), and finally M = cI is the

(N − 1)× (N − 1) diagonal matrix where

c =

[
1 +

V
G

1

Γ(β)

b0
∆t

]
(6.53)

and I is the identity matrix.

6.4 Convergence behaviour of Spectral Approxima-

tion

Suppose the error in a spectral approximation decays algebraically i.e

E = CN−α (6.54)

where C and α are constants. The value of α measures the order of convergence.

Take the log of both sides of equation (6.54):

ln(E) = ln(CN−α)

= ln(C)− α ln(N)

(6.55)
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If we plot (lnE vs. lnN) then the (negative) slope of the straight line will give us the

value of α.

The idea is to plot (lnE vs. lnN) for N = 4, 8, 16, . . . etc and find the slope. If the

solution to the PDE is smooth (i.e infinitely differentiable) then the convergence should

be exponential rather than algebraic and the (lnE vs. lnN) plot will look like the plot

in Fig. 6.3.

Figure 6.3: Typical lnE vs. lnN plot for an exponentially convergent spectral approxi-
mation.
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6.5 Numerical Results

In this section we will use numerical analysis to examine the convergence of the numerical

approach, plot the solutions, and then show the comparison with the results of the Finite

Difference Method (FDM).

6.5.1 Study solvability and convergence order

To prove the validation of the proposed numerical method (SM) and the numerical code

that was developed using Matlab, we will present some examples that compare the numer-

ical results obtained with the existing analytical solution for the Newtonian case. We also

investigate the dependence of the L2 norm of the error on N and ∆t. The convergence of

the proposed method and the order of convergence is then determined, and the outcomes

are compared with the Finite Difference Method (FDM) of Ferras . (2018).

We analyze the following examples to show numerically the expected spectral precision.

Firstly we only verify the discretised velocity equation, that is independent of the stress,

secondly we verify the discretised stress equation, which depends on the computed veloc-

ity profile and its spatial derivative, and then we establish the steady velocity problem

that is independent of time. Finally we solve the system of differential equations (coupled

problem) governing the steady or unsteady flow of a fractional viscoelastic fluid in an

annular geometry.

Example 1: (Momentum equation for the tangential velocity)

We investigate the same problem that was considered by Ferras . (2018), which is the

evolution of the discretized tangential velocity equation independent of the stress, by

choosing the following parameters: ρ = 1 kg/m3, V = 1 Pa.sα, G = 1 Pa.sα, so β = 0.5,

Rin = 1 m, Rout = 2 m. We also choose a range of discretization parameters:

∆t = 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512, and N = 4, 8, 16, 32, 64, 128.

The tangential component of the momentum equation is

∂u

∂t
+D2−β

t u =
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2
+ f(t, r) (6.56)
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where the source term f(t, r) is given by

f(r, t) = 3t2r3
(
r − 3

10

)
+

3r3(10r − 3)

5Γ(β + 2)
tβ+1 − 7r2t3 − 8rt3

(
r − 3

10

)
(6.57)

with boundary and initial conditions:

u(Rin, t) = t3R3
in

(
Rin −

3

10

)
, u(Rout, t) = t3R3

out

(
Rout −

3

10

)
, 0 < t < T (6.58)

u(r, 0) = 0,
∂u(r, 0)

∂t
= 0, Rin < r < Rout (6.59)

The analytical solution is given by

u(r, t) = t3r3
(
r − 3

10

)
. (6.60)

Table 6.1 displays the L2 error norm obtained as a function of N for different time steps

∆t. For fixed value of ∆t the L2-norm of the error is independent of N .

∆t N = 4 N = 8

0.125 0.0475 0.0475
0.0625 0.0162 0.0162
0.03125 0.0056 0.0056
0.015625 0.0019 0.0019
0.0078125 6.7406× 10−4 6.7401× 10−4

0.0039062 2.3615× 10−4 2.3613× 10−4

0.0019531 8.2952× 10−5 8.2945× 10−5

Table 6.1: Dependence of the L2 norm of the error on ∆t for N = 4 and N = 8.
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Figure 6.4 illustrates the comparison between the approximate and exact solutions at

various times (T = 0, 0.5, 1)s. The exact and approximate velocity at different spatial

points (r = 1, 1.1, 0.5, 1.8, 2) for varying values of N is shown in Figure 6.5. While the

surface plots Fig. 6.6 (a) and (b) represent the exact and numerical solution of the velocity

profile, respectively, for N = 32.

(a) (b)

(c)

Figure 6.4: Comparison of the exact and approximate velocity profiles at t = 0, 0.5, 1 s
for (a) N = 8, (b) N = 16, (c) N = 32.
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(a) (b)

(c)

Figure 6.5: Comparison of the exact and approximate velocity profiles at r =
1, 1.1, 0.5, 1.8, 2 for (a) N = 8, (b) N = 16, (c) N = 32.

To determine the order of convergence (qu) of the numerical approximation we define

qu =
log
(

ϵ̄N,∆t
ϵ̄N,∆t/2

)
log 2

(6.61)

where

ϵN,∆t = max
1≤i≤N−1

1≤j≤S

|uexact(ri, tj)− unum(ri, tj)|, j = 1, 2, .., S (6.62)

In Table 6.2 we use equation (6.61) and (6.62) to calculate the maximum error with

respect to ∆t for fixed N = 128 and then determine the convergence order for velocity
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(a) (b)

Figure 6.6: (a) Exact and (b) numerical velocity profiles for N = 32.

in time (qu). Note that the maximum error here is over all discretization points in space

and time (rk, ti). The final time was T = 1, and the number of time steps was S = 512

for ∆t = 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512. The convergence order can be seen to

be approximately 1.5 in time. In comparison the convergence order is approximately 1 in

time using the finite difference method in Ferras . (2018).

We may estimate the convergence order in space (pu) by fixing ∆t = 1/512 and determine

the spatial error with respect to N at the final time T = 1. The total number of time

steps S = 512, and then using the following formula:

pu =
log
(

ϵN,∆t
ϵ2N,∆t

)
log 2

(6.63)

where ϵN,∆t is given by Eq. (6.62).

However, the spatial error can not be measured since it is at the level of machine precision

for all values of N . Instead we consider a steady state problem - see example 3 - and

perform a convergence study for this.

Example 2: (Constitutive equation for the tangential stress)

As in Ferras . (2018) we verify the discretized stress equation, which depends on the

computed velocity profile and its spatial derivative.

We assume the following parameters for the discretised stress equation β = 0.5, Rin = 1
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∆t ϵN qu
1
8

0.0461 –
1
16

0.0157 1.5549
1
32

0.0054 1.5382
1
64

0.0019 1.5266
1

128
6.5470× 10−4 1.5187

1
256

2.2936× 10−4 1.5132
1

512
8.0569× 10−5 1.5093

Table 6.2: Error norms and rates of convergence with N = 128.

m, Rout = 2 m. We have also assumed ρ = 1 kg/m3, V = 1 Pa.sα, G = 1 Pa.sα, and

∆t ∈ [1/8, 1/512] s and the stress profile given by,

τ(r, t) = r2t3 (6.64)

The differential equation below can be solved analytically by substituting this stress profile

into equation (6.4),

∂u(r, t)

∂r
− u(r, t)

r
= r2t3

(
6tβ−1

Γ(4− (1− β))
+ 1

)
(6.65)

For the solution of this differential equation, we choose the boundary condition u(1, t) = 0

(the boundary condition is not important here), resulting in the following velocity profile,

u(r, t) =
r(r2 − 1)t3−(1−β)(Γ(4− (1− β))t1−β + 6)

2Γ(4− (1− β))
(6.66)

The L2-norm of the error with respect to N , is computed in Table 6.3. We note that the

L2-norm of the error is independent of the N for fixed values of ∆t.

A representative consistency between the calculated solution produced by the numer-

ical scheme at different times T = 0, 0.5, 1 s and the exact solution is shown in Figure 6.7.

Again, Figure 6.8 displays how the exact and approximate stress match at various spatial

positions r = 1, 1.1, 0.5, 1.8, 2 for several values of N . The surface plots Fig. 6.9 (a) and

(b) show the exact and numerical solutions to the stress profile, respectively, for N = 32.
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∆t N = 4 N = 8

0.125 0.0747 0.0789
0.0625 0.0281 0.0297
0.03125 0.0104 0.0109
0.015625 0.0038 0.0040
0.0078125 0.0014 0.0014
0.0039062 4.8492× 10−4 5.1199× 10−4

0.0019531 1.7293× 10−4 1.8259× 10−4

Table 6.3: Dependence of the L2 norm of the error on ∆t for N = 4 and N = 8.

(a) (b)

(c)

Figure 6.7: Comparison of the exact and approximate stress profiles at t = 0, 0.5, 1 s for
(a) N = 8, (b) N = 16, (c) N = 32.

The convergence order for time is given by:

qu =
log
(

ϵ̄N,∆t
ϵ̄N,∆t/2

)
log 2

(6.67)
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(a) (b)

(c)

Figure 6.8: Comparison of the exact and approximate stress profiles at r = 1, 1.15, 1.5, 2
mm for (a) N = 8, (b) N = 16, (c) N = 32.

where ϵ̄N,∆t = max error with N , ∆t i.e

ϵτN,∆t = max
1≤i≤N−1

1≤j≤S

|τexact(ri, tj)− τnum(ri, tj)|, j = 1, 2, .., S (6.68)

To establish the convergence order for the stress in time (qu), we first evaluate the max-

imum error with N and ∆t in Table 6.4 using equation (6.67) and then equation (6.68).

With the final time being T = 1 and the number of time steps being S = 512, we fix

the finest mesh N = 128 and examine the temporal error. It resulted in an order of

convergence ≈ 1.5 in time, which is similar to the convergence order in time calculated
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(a) (b)

Figure 6.9: (a) Exact and (b) numerical solutions of stress profiles for N = 32.

by the finite difference method in Ferras . (2018).

∆t ϵN qu
1
8

0.0914 –
1
16

0.0344 1.4101
1
32

0.0127 1.4413
1
64

0.0046 1.4609
1

128
0.0017 1.4736

1
256

5.9285× 10−4 1.4819
1

512
2.1142× 10−4 1.4875

Table 6.4: Error norms and rates of convergence at N = 128
.

Example 3: Steady State Problem

Consider the steady velocity equation

∂2uθ
∂r2

+
1

r

∂uθ
∂r

− uθ
r2

+ f(r) = 0 Rin ≤ r ≤ Rout (6.69)

with source term given by

f(r) =
( π

2∆

)2
sin

((
r −Rin

Rout −Rin

)
π

)
−
( π

2∆

) 1

r
cos

((
r −Rin

Rout −Rin

)
π

)

+
1

r2
sin

((
r −Rin

Rout −Rin

)
π

)
(6.70)
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and boundary conditions:

uθ(Rin) = 0, uθ(Rout) = 0 (6.71)

The exact solution to this problem is

uθ(r) = sin

((
r −Rin

Rout −Rin

)
π

)
= sin

((
r −Rin

2∆

)
π

)
(6.72)

The dependence of the L2 norm of the error on N is shown in Table 6.5. We then display

those results using a log-log plot in Fig. 6.10. Additionally, Fig. 6.11 demonstrates

the excellent agreement between the exact and approximate steady velocity at each grid

point R = [1, 2]. Since the end time was T = 1 and the total number of time steps was

S = 512, the maximum error decreased as the spatial error N increased. This caused

the convergence order for the velocity to be pu ≈ 24 in space, which is calculated using

equation (6.63), and the result is shown in Table 6.6.

N L2-norm

4 0.0016
6 9.1567× 10−6

8 4.2851× 10−8

12 4.1878× 10−13

16 2.4425× 10−15

Table 6.5: The L2 norm of the error with respect to N .

Figure 6.10: log-log plot of the L2-norm of the error vs. N
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Figure 6.11: The exact and approximate solution of the steady-state problem for different
values of N .

N ϵN pu

4 0.0016 -
6 9.1567× 10−6 -
8 4.2851× 10−8 15.224
12 4.1878× 10−13 24.382
16 2.4425× 10−15 24.064

Table 6.6: Error norms and rates of convergence
.

6.6 Fully Coupled Problem

In order to perform additional experiments, we have developed a spectral code in Matlab

to solve the following system of differential equations governing the unsteady unidirec-

tional flow of the FMM in an annular geometry. In this section, we investigate the solution

of the annular flow of the FMM model using the proposed numerical method:

ρ

(
1 +

V
G
D2−β

t

)
∂uθ
∂t

= V

(
∂2uθ
∂r2

+
1

r

∂uθ
∂r

− uθ
r2

)
(6.73)

τrθ +
V
G
D1−β

t τrθ = V

(
∂uθ
∂r

− uθ
r

)
(6.74)
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The boundary conditions are

uθ(Rin, t) = ϕi(t), uθ(Rout, t) = ϕ0(t). (6.75)

and initial conditions are

uθ(r, 0) = 0,
∂uθ
∂t

(r, 0) = 0, τrθ(r, 0) = 0. (6.76)

For each n = 1, 2, . . . , S, we solve the following (N − 1) × (N − 1) discretised system of

equations:

[ ρ
V
wk

∆t
+
ρ

G
a0

Γ(β)

wk

(∆t)2
+

∆wk

2r2k

]
Un
k +

N∑
j=0

[ 1

2∆
Bk,j −

wk

2rk
Dk,j

]
Un
j

=

[
ρ

V
wk

∆t
+
ρ

G
a0

Γ(β)

wk

(∆t)2
− ∆wk

2r2k

]
Un−1
k −

n−1∑
j=0

[ 1

2∆
Bk,j −

wk

2rk
Dk,j

]
Un−1
j

+
ρ

G
wk

Γ(β)

1

(∆t)2

n−1∑
j=0

(an−j−1 − an−j)(U
j
k − U j−1

k ), 1 ≤ k ≤ N − 1 (6.77)

with boundary conditions:

Un
0 = ϕi(tn) = Ωi(t)Rin = ci(n∆t)Rin (6.78)

Un
N = ϕ0(tn) = Ω0(t)Rout = ci(n∆t)Rout (6.79)

where tn = n∆t, and ci = c0 = 1.

Then we solve the stress using

[
1 +

V
G

1

Γ(β)

b0
∆t

]
τnk =

V
G

n−1∑
j=0

(bn−j−1 − bn−j)τ
j
k +

V
∆

N∑
j=0

Dk,jU
n
j − V

r2k
Un
k , 0 ≤ k ≤ N − 1

(6.80)
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6.6.1 Newtonian fluid

We compare the numerical results for Newtonian annular Couette flow presented by Ferras

. (2018) in Fig. 7 with those obtained using the proposed method (SM) in Fig. 6.12, for

β → 0, V
G → 0. We have chosen the discretisation parameters ∆t/tc = 3.50× 10−3 (with

tc =
h2

ν
) and ∆r/h = 5 × 10−3 with the following fluid parameters β = 1 × 10−3, V = 5,

λ ≡ V
G = 1×10−5[s1−β ≈ s], G = V

λ
, ν = µ

ρ
= V

ρ
= 2×10−3 m2 s−1 (ν is the kinematic, η is

the dynamic viscosity), and the elasticity number was El = 0. The gap is h = Rout−Rin,

where Rout = 0.5 m, and Rin = 0.3 m, and the finest mesh N = 128.

The evolution of the velocity and stress profiles at different radial locations are shown

in Fig. 6.12. Here t
tc

= 3.50 × 10−1 and the normalized radius given by r̄ = r−Rin
(Rout−Rin)

.

We plot the velocity at the wall and at r̄ = [0.25, 0.5, 0.75], while the stress is plotted at

r̄ = [0.005, 0.25, 0.5, 0.75, 0.995]. The numerical method proved successful in precisely

capturing the evolution of the various variables in this transient flow.

Due to the outer cylinder rotating at a faster linear speed than the inner cylinder, we

predictably obtain higher velocities for the fluid there. The same holds true for stresses.

Because of the variation in sign of the velocity gradient ∂uθ
∂r

seen in Fig. 6.12 (c), note that

the shear stress is negative near the inner cylinder and positive near the outer cylinder as

shown in Fig. 6.12 (d) when the stress profiles plotted at t
tc
= 3.50× 10−1.
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(a) (b)

(c) (d)

Figure 6.12: (a), (b) Variation of velocity and shear stress with time, at different radial
locations; (c), (d) velocity and shear stress profiles for t/tc = 3.50× 10−1.

6.6.2 Viscoelastic fluid

As in the Newtonian fluid simulations, the same set of parameters and mesh resolution was

utilized to model the Fractional Viscoelastic Fluid (FVF). However, for the viscoelastic

case, the elasticity number is set to El = λ
tv

= 6.25 × 10−2, where tv = h2

v
and the

fractional order is chosen as β = 1× 10−6.

Figure 6.13 presents the time evolution of shear stress and angular velocity at selected

radial locations within the cylinder gap. These results are similar to those generated

by (Ferras ., 2018) (see Fig. 8 in that paper). A comparison between Figs. 6.12 (a)

and 6.13 (a) highlights the influence of the viscoelastic relaxation time. In contrast to

the Newtonian fluid, the viscoelastic model exhibits a noticeable delay in momentum
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transmission from the boundaries to the fluid interior.

At the midpoint r̄ = 0.5, which is the furthest location from both rotating cylinders,

the fluid exhibits the slowest dynamic response. Moreover, the temporal variation in shear

stress appears more gradual compared to the Newtonian case, especially during the initial

motion of the outer cylinder. In the Newtonian example, this behaviour is attributed to

the quick, purely diffusive transmission of momentum from the boundary into the fluid

domain.

(a) (b)

Figure 6.13: (a) Evolution of velocity at radial locations r̄ = 0.25, 0.5, 0.75;
(b) shear stress at radial locations r̄ = 0.005, 0.25, 0.5, 0.57, 0.995.

6.7 Influence of fractional order

We explore how using different fractional orders affects the velocity and shear stress in

this section, as well as a brief explanation of the stress relaxation achieved for the FMM

model.

6.7.1 Stress relaxation

To investigate how the order of the fractional derivative influences the evolution of the

stress field, we simulated a classic stress relaxation test within an annular flow configura-

tion. A step strain is applied by initiating a rapid rotation of the outer cylinder, which is
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then stop after approximately 50 milliseconds. Following this, we analyze the subsequent

relaxation behaviour of the fluid’s tangential stress.

The setup involves a viscoelastic fluid confined in the annular space between two

coaxial cylinders, where the inner and outer radii are Rin = 22.65 mm and Rout = 25 mm,

respectively, resulting in a narrow gap of 2.35 mm (Keshavarz ., 2017). It is important to

highlight that when this gap is small relative to the inner radius—i.e., (Rout−Rin) ≪ Rin,

as shown in Fig. 6.14—the flow closely resembles idealized Couette flow. This geometric

condition should be kept in mind when interpreting the velocity and stress development

within the system. In this case, the ratio h
Rin

= Rout−Rin
Rin

≈ 0.1 confirms the small-

gap approximation. The viscoelastic parameters used for the simulation correspond to

a 0.25wt% Xanthan gum solution, with values taken from (Ferras ., 2018): β = 0.31,

λc = 55.6 s, V = 24.96 Pa.s, and G = 1.56 Pa.s.

Immediately after t = 0, the outer cylinder starts rotating with a tangential velocity

described by uθ(Rout, t) = θ̇(t)Rout, where the angular velocity function is defined as:

θ̇(t) =
∆θ

ψ
√
π
exp

− (t−td)
2

ψ2 (6.81)

Here, td is taken as zero. As ψ → 0, the velocity profile uθ(Rout, t) approaches a Dirac

delta function scaled by the rotation angle ∆θσ(t) (Dirac, 1981). Since the initial rate

of change in tangential velocity, duθ
dt
(Rout, 0) = 0, and the derivative tends toward zero as

t→ ∞, introducing a delay time td becomes essential.

In the numerical simulations, the following parameters were used: ∆t/λc = 1.79856×

10−5, ∆r/h = 1 × 10−2, and three different strain levels corresponding to γ0 = ∆θRout
h

,

specifically 1%, 5% and 100%

The outer cylinder rotates clockwise from point A to point B and comes to a stop

after 50 milliseconds (t/λc ∼ 0.0009) as shown in Fig. 6.15(a). It’s important to note

that the final position B varies depending on the magnitude of the applied strain. Figure

6.15 (b) illustrates the normalized tangential velocity of the outer cylinder—evaluated

at its peak value uθmax = uθ(Rout, td)—for the case with γ0 = 100%. The results are

presented for three different levels of refinement: ψ/λc = 1.0 × 10−4, 1.8 × 10−4, 2.7 ×
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10−4, corresponding to normalized delay times td/λc = 4.5× 10−4, 7.4× 10−4, 1.1× 10−3,

respectively. In addition, the evolution of shear stress is monitored at the radial location

r̄ = (r −Rin)/(Rout −Rin) = 0.25 throughout the rapid straining event.

In the case of a step-strain experiment with an applied deformation of γ0 = 100%, a

fractional parameter β = 0.31, and three different temporal resolutions—namely ψ/λc =

1.0× 10−4, 1.8× 10−4, 2.7× 10−4 — corresponding to normalized delay times of td/λc =

4.5× 10−4, 7.4× 10−4, 1.1× 10−3, the normalized shear stress relaxation results are pre-

sented in Fig. 6.16 (a). It is important to highlight that as ψ → 0, the outer cylinder must

accelerate more sharply to achieve the same angular displacement within a shorter time

span, which increases the computational complexity due to the need for high-resolution

gradients. Figure 6.16 (b) displays the temporal evolution of the applied strain γ0 =
∆θRout

h

for the three different tangential velocity profiles imposed at the outer cylinder. As ex-

pected, progressively faster rotation leads to a closer approximation of an ideal step-strain

input. In Fig. 6.16 (c), the normalized stress relaxation curves are shown for three differ-

ent strain magnitudes: 1%, 5% and 100%, using the parameters ψ/λc = 1.0 × 10−4 and

td/λc = 4.5 × 10−4. A magnified view of the stress relaxation behaviour for the smaller

deformations is provided in Fig. 6.16 (d).

The versatility of the fractional model becomes particularly evident when various frac-

tional exponents are introduced, as demonstrated in Fig. 6.17 for a strain level of

γ0 = 100%, with parameters ψ/λc = 7.4 × 10−5, td/λc = 6.2 × 10−4, and fractional

orders β = 0.1, 0.25 and 0.5. To manage the long simulation durations associated with

these cases, the numerical algorithm was enhanced to incorporate time-graded meshes.

According to earlier computational findings, an effective non-uniform temporal grid can

be defined as follows (Ferras ., 2018):

ts =


2td − 2td(1− s

N1
)r1 , s < N1

2td + (T − 2td)(
s−N1

N2
)r2 , s ≥ N1

(6.82)

Here, the parameters used are r1 = 1, r2 = 1.693, N1 = 50, N2 = 1000, and the total

simulation time is T = 3. This approach yielded a 55- fold increase in computational
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efficiency, allowing simulations with ∆texp
λc

≈ 2.2 to be completed within practical time

limits.

Figure 6.17 presents the normalized stress relaxation profiles on a logarithmic scale. It

is widely recognized that, for the Fractional Maxwell Model, the stress relaxation exhibits

a power-law decay given by G(t) ≈ Vtβ
Γ(1−β)

in the early-time regime (t ≪ λc) (Podlubny,

1999).

From the figure, we observe that for lower values of β, the spring-pot element behaves

more like a pure spring, approximating the classical Maxwell model. This transition is

achieved as α → 1 and β → 0, leading to a reduced stress peak but slower relaxation,

as described by the governing relation τ(t) + V
G

dτ(t)
dt

= Vγ̇(t). Conversely, as β → 1, the

spring-pot behaves increasingly like a dashpot. In this limit, with α → 1 and β → 1, the

fractional viscoelastic fluid model tends toward Newtonian behaviour, increasing the rate

of relaxation and following the relation τ(t) = VG
V+G γ̇(t).

Figure 6.17 exhibits a slight irregularity in the otherwise smooth stress relaxation

curve specifically, a noticeable ”blip” around t ≈ 10−3 which deviates from the expected

monotonic behaviour. This anomaly arises due to the use of a non-uniform time-stepping

scheme, as defined in Eq. (6.82). While the time grid is constructed to be continuous at

s = N1, a closer inspection reveals a discontinuity in the derivative of ts with respect to

s. In other words, although both expressions for ts match at the transition point, their

slopes do not, resulting in a jump in the time-step gradient. This discontinuity in the

time discretization can lead to small perturbations in the numerical solution, such as the

observed artifact in the stress profile.
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(a) (b)

Figure 6.14: Influence of the gap on the type of flow (a) h
Rin

∼ O(1); (b) h
Rin

≪ 1 (Ferras ., 2018).

(a) (b)

Figure 6.15: Stress relaxation test in a narrow gap cylindrical Couette cell following a sudden straining
deformation (a) annular geometry and dimensions; (b) normalised tangential velocity [umax = u(Rout, td)]
of the outer cylinder (Ferras ., 2018).
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(a) (b)

(c) (d)

Figure 6.16: (a) Normalised shear stress relaxation obtained for a step-strain test with deformation of
γ0 = 100%, β = 0.31 and three different levels of refinement; (b) evolution of the deformation in time
for the three different tangential velocities imposed; (c) stress relaxation for three different deformations;
(d) zoomed view of the stress relation obtained for the two smaller deformations (Ferras ., 2018).

Figure 6.17: Normalised shear stress relaxation obtained for the step-strain test (γ̇ = 100%) (Ferras .,
2018).
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6.8 Conclusions

The coupled system of equations describing the pure tangential annular flow of fractional

viscoelastic fluids was solved numerically and analysed. In this chapter, we employed the

spectral method instead of the finite difference method that was used in (Ferras ., 2018).

We observed that the Spectral Method (SM) demonstrates significantly higher accuracy

and computational efficiency compared to the Finite Difference (FD) approach used by

(Ferras ., 2018), particularly in the context of unsteady and fractional viscoelastic flows.

One of the most compelling advantages of the Spectral Method lies in its exponential

convergence for smooth problems, as opposed to the algebraic (typically first- or second-

order) convergence achieved by FD methods. This is evidenced in the study’s steady-state

velocity example, where the spatial convergence rate reaches approximately 24 (as shown

in Table 6.6 ), far exceeding the capabilities of finite difference techniques. Furthermore,

for unsteady problems, the spectral approach achieves a temporal convergence order of

about 1.5 for both velocity and stress (see Tables 6.2 and 6.4 ), while the Finite Difference

method demonstrates a lower order of approximately 1 in time. This higher accuracy is

achieved using significantly fewer spatial grid points, resulting in reduced computational

cost. The efficiency of the Spectral Method is further validated by its ability to reach

machine-precision error levels for relatively small values of N , a feat not attainable with

Finite Difference methods without substantially increasing grid resolution. In addition

to its superior convergence characteristics, the spectral method proves robust in handling

complex systems involving fractional derivatives and coupled stress-velocity equations,

making it particularly suitable for viscoelastic fluid modelling. Numerical experiments

show excellent agreement with analytical solutions, and the method successfully repli-

cates benchmark results obtained via finite differences for Newtonian flow. Moreover,

the Spectral Method effectively captures fast transients and stress relaxation phenomena

with high temporal and spatial resolution, which collectively underscore its advantages

over finite difference schemes and reinforce its suitability as a more accurate and effi-

cient alternative for simulating fractional viscoelastic flows. This is further demonstrated
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through the implementation of the three-parameter Fractional Viscoelastic Fluid (FVF)

model, which closely fits experimental data and captures bounded stress growth following

the onset of steady shear. The model’s complexity highlights the suitability of Spectral

Method for advanced rheological applications, and the use of graded temporal meshes

enabled efficient resolution of long-time behaviour without excessive computational cost.
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Chapter 7

Taylor-Couette Flow: Enhanced Mod-

els and Numerical Schemes

7.1 Introduction

In this chapter we developed enhanced models and numerical schemes to introduce ad-

ditional flexibility in modelling and increased accuracy in numerical predictions. In par-

ticular, we study fractional Maxwell models in the Taylor-Couette geometry for following

cases: β = 1, as studied in Chapter 6, corresponding to α in the same chapter; and

0 < β < 1, which will be explored in this chapter. The aim is to analyse and understand

the effects of fractional viscoelasticity on the flow behaviour and stress relaxation prop-

erties. The fractional Maxwell model introduces memory effects through the fractional

derivatives, allowing for a more accurate description of complex fluids that exhibit both

elastic and viscous behaviour over a wide range of timescales.

Furthermore, after validating our numerical scheme for the three-parameter Fractional

Viscoelastic Fluid (FVF) model in Chapter 6 for the Taylor-Couette problem, we now

focus on the four-parameter Fractional Maxwell Model (FMM) in the context of the

Taylor-Couette problem introduced in Section 4.3.1, and develop a numerical scheme to

solve it. To enhance numerical accuracy, we employ first-order and second-order finite

difference approximations for the time-fractional derivative, as derived in Chapter 5. Ad-

ditionally, to characterize the behaviour of more complex viscoelastic fluids, we solve the

Taylor-Couette problem using the six-parameter Multi-Mode Fractional Maxwell Model

(MM-FMM), as introduced in Section 4.4, and solve it numerically by extending the

existing numerical scheme for the FMM.
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This chapter is structured as follows: Section 7.3 outlines the derivation of the Taylor-

Couette problem for the Single-Mode Fractional Maxwell Model. We begin by deriving

the weak formulation of the system and discretizing it in time using a first-order differ-

ence scheme for the time-fractional derivative, alongside spectral approximations for the

spatial discretization. These methods are applied to the governing equation for velocity

and shear stress to form the linear system for the unknowns at each time step. Numerical

results are provided to validate the proposed method. To enhance the accuracy of the

numerical scheme, we switch to a second-order difference scheme for the time-fractional

derivative, while maintaining the spectral approximation for spatial discretization. Addi-

tional numerical results are presented to further validate the improved method.

Section 7.3 presents the derivation of the Taylor-Couette problem for the Multi-Mode

Fractional Maxwell Model. We first derive the weak formulation of the system and dis-

cretize it in time using a first-order difference scheme for the time-fractional derivative,

while applying spectral approximations for spatial discretization. To validate the proposed

method, we provide numerical results. To characterize more complex viscoelastic fluids,

we improve the accuracy of the numerical scheme by adopting a second-order difference

scheme for the time-fractional derivative, while keeping the spectral approximation for

spatial discretization. Further numerical results are presented to validate the enhanced

method. The conclusions of this chapter are given in Section 7.4.

7.2 Single-Mode Fractional Maxwell Model

7.2.1 Taylor-Couette Flow

To generate simulations with the FMM, we must make slight modifications to the nu-

merical method presented in Chapter 6 for the FVF model. Following the derivation in

Appendix B (Ferras ., 2018), we consider the momentum equation.

ρ

(
∂uθ
∂t

)
=

(
2

r
+

∂

∂r

)
τrθ(t) (7.1)
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and the fractional Maxwell model (FMM) is given by

(
1 +

V
G
dα

dtα

)
τrθ(t) = V

dβ

dtβ
γ(t), 0 < α ≤ β ≤ 1 (7.2)

Using the Caputo definition, the derivatives
dατ

dtα
and

dβγ

dtβ
can be expressed in their

corresponding integral forms as follows:

∂ατrθ
∂tα

=
1

Γ(1− α)

∫ t

0

1

(t− s)α
∂τ

∂s
ds (7.3)

and

∂βγ

∂tβ
=

1

Γ(1− β)

∫ t

0

1

(t− s)β
∂γ

∂s
ds (7.4)

For this flow, when β = 1 , the time derivative of γ is given by

∂γ

∂t
=
∂uθ
∂r

− uθ
r

However, when β ̸= 1, the entire history of deformations is taken into account by calcu-

lating the following integral

∂βγ

∂tβ
=

1

Γ(1− β)

∫ t

0

1

(t− s)β

{
∂uθ(r, s)

∂r
− uθ(r, s)

r

}
ds (7.5)

Applying the operator

(
2

r
+

∂

∂r

)
to both sides of Eq. (7.2), gives

(
2

r
+

∂

∂r

)(
1 +

V
G
dα

dtα

)
τrθ(t) = V

(
2

r
+

∂

∂r

)
dβ

dtβ
γ(t) (7.6)
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Then applying the operator

(
1 +

V
G

dα

dtα

)
to both sides of Eq. (7.1) yields

ρ

(
1 +

V
G
dα

dtα

)
∂u

∂t
=

(
2

r
+

∂

∂r

)(
1 +

V
G
dα

dtα

)
τrθ(t)

= V
(
2

r
+

∂

∂r

)
dβ

dtβ
γ(t)

= V
(
2

r
+

∂

∂r

)
1

Γ(1− β)

∫ t

0

1

(t− s)β

{
∂u

∂r
− u

r

}
ds

=
V

Γ(1− β)

∫ t

0

1

(t− s)β

{
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2

}
ds

(7.7)

Thus, we obtain the following system of equations for uθ and τr,θ in integral form

ρ

(
1 +

V
G
dα

dtα

)
∂uθ
∂t

=
V

Γ(1− β)

∫ t

0

(t− s)−β

(
∂2uθ
∂r2

+
1

r

∂uθ
∂r

− uθ
r2

)
ds (7.8)

ρ

(
1 +

V
G
dα

dtα

)
τrθ(t) =

V
Γ(1− β)

∫ t

0

(t− s)−β

(
∂uθ
∂r

− uθ
r

)
ds (7.9)

Replacing the ordinary differential operators by fractional differential operators gives

ρ

V
∂u

∂t
+
ρ

G
Dt

α

(
∂u

∂t

)
=

1

Γ(1− β)

∫ t

0

(t− s)−β

(
∂2uθ
∂r2

+
1

r

∂uθ
∂r

− uθ
r2

)
ds (7.10)

τrθ +
V
G
Dα

t τrθ =
V

Γ(1− β)

∫ t

0

(t− s)−β

(
∂uθ
∂r

− uθ
r

)
ds (7.11)

These equations are solved subjected to the Dirichlet boundary conditions

uθ(Rin, t) = Θi(t), uθ(Rout, t) = Θ0(t), 0 < t < T (7.12)

and initial conditions

uθ(r, 0) =
∂uθ(r, 0)

∂t
= 0, τr,θ(r, 0) = 0, Rin < r < Rout (7.13)

We turn our attention to the numerical discretization of these equations (7.10) and (7.11).
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Weak Formulation of The Coupled Problem

To fully discretize the Taylor-Couette problem described by Eqs. (7.10) and (7.11), we

first derive their weak formulation. This is done by multiplying both equations by a

test function v ∈ V and integrating over the domain [Rin, Rout]. As a result, the weak

formulation is obtained as follows:

ρ

V

∫ Rout

Rin

(
∂uθ
∂t

)
v dr +

ρ

VG

∫ Rout

Rin

(
Dt

α

(
∂u

∂t

))
v dr

=
1

Γ(1− β)

∫ Rout

Rin

{∫ t

0

(tn − s)−β

(
∂2uθ
∂r2

+
1

r

∂uθ
∂r

− uθ
r2

)
ds

}
v dr (7.14)

∫ Rout

Rin

τ(t) ν dr + λα
∫ Rout

Rin

(Dα
t τ(t)) ν dr = Eλβ

∫ Rout

Rin

(
Dβ

t γ(t)
)
ν dr (7.15)

where u = uθ and τ = τr,θ.

Then we transform the physical domain [Rin, Rout] onto the computational domain [−1, 1]

before discretizing the weak formulation using the change of variable

r̃ =
2r − (Rin +Rout)

(Rin −Rout)
, r̃ ∈ [−1, 1] (7.16)

so that ∫ Rout

Rin

w(r)dr = ∆

∫ 1

−1

w(r̃)dr̃ (7.17)

where w is some function and ∆ is defined by

∆ =
(Rin −Rout)

2
(7.18)
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7.2.2 A first-order difference scheme for a time fractional deriva-

tive

Numerical Discretization of the Velocity Equation

In Time

We will use the first-order difference scheme for the time-fractional derivative from Section

5.3.1, replacing α with α+1, to discretize D1+α
t u, which is defined in the Caputo sense as

D1+α
t u =

1

Γ(1− α)

∫ t

0

(t− s)−α ∂2u

∂s2
ds, 1 < 1 + α < 2 (7.19)

Then the discretization of Eq. (7.10) becomes

ρ

V
Y

n−1/2
i +

ρ

G
X

n−1/2
i =

1

Γ(1− β)

∫ tn−1/2

0

(tn−1/2 − s)−β

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
u ds (7.20)

where

Y
n−1/2
i =

Un
i − Un−1

i

∆t
(7.21)

and

X
n−1/2
i = D1+α

t u(tn) ≃
1

(∆t)α+1Γ(2− α)

[
ã0(α)

(
Un
i − Un−1

i

)
−

n−1∑
j=1

(ãj − ãj−1)
(
Un−j
i − Un−j−1

i

) ]

− ãn−1(α)Φ(ri)

]

=
1

(∆t)α+1Γ(2− α)

[
n∑

j=0

Ãj U
j
i − ãn−1(α)Φ(ri)

]
(7.22)
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where Φ(ri) = Y 0
i = y(ri, 0), and

Ãj =



ãn−2(α)− ãn−1(α) if j = 0

−ãn−j−1(α) + 2ãn−j(α)− ãn−j+1(α), if 1 ≤ j ≤ n− 2

−2ã0(α) + ã1(α), if j = n− 1

ã0(α), if j = n

(7.23)

where the coefficients ãn−j are given by

ãn−j =
[
(n− j + 1)1−α − (n− j)1−α

]
(7.24)

In space

We will derive the numerical approximation of right-hand side of Eq. (7.20) using the

first-order discretization of the integral in time derived using linear interpolation on each

sub-interval [tj−1, tj].

Let

Φ(r, t) =

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
uθ(r, t) (7.25)

and

Π1,jΦ(r, s) = Φ(r, tj−1)
(tj − s)

∆t
+ Φ(r, tj)

(s− tj−1)

∆t
, s ∈ [tj−1, tj] (7.26)

Therefore, the right-hand side of Eq. (7.20) is approximated by

R.H.S ≃ 1

Γ(1− β)

{
n−1∑
j=1

∫ tj

tj−1

(tn−1/2 − s)−βΠ1,jΦ(r, s)ds+

∫ tn−1/2

tn−1

(tn−1/2 − s)−βΠ1,nΦ(r, s)ds

}
(7.27)

To evaluate Eq.(7.27) we need to calculate integrals of the form

I1 =

∫ tj

tj−1

(tn−1/2 − s)−β(tj − s)ds

=
(∆t)2−β

(1− β)(2− β)

[
(2− β)(n− j + 1/2)1−β + (n− j − 1/2)2−β − (n− j + 1/2)2−β

]
(7.28)
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where

fn−j =
[
(2− β)(n− j + 1/2)1−β + (n− j − 1/2)2−β − (n− j + 1/2)2−β

]
(7.29)

and

I2 =

∫ tj

tj−1

(tn−1/2 − s)−β(s− tj−1)ds

=
(∆t)2−β

(1− β)(2− β)

[
−(2− β)(n− j − 1/2)1−β − (n− j − 1/2)2−β + (n− j + 1/2)2−β

]
(7.30)

where

gn−j =
[
−(2− β)(n− j − 1/2)1−β − (n− j − 1/2)2−β + (n− j + 1/2)2−β

]
(7.31)

I3 =

∫ tn−1/2

tn−1

(tn−1/2 − s)−β(tn − s)ds

=

[
−
(tn − s)(tn−1/2 − s)1−β

(1− β)
+

(tn−1/2 − s)(2−β)

(1− β)(2− β)

]tn−1/2

tn−1

=
(3/2− β)(1/2)1−β(∆t)2−β

(1− β)(2− β)

(7.32)

I4 =

∫ tn−1/2

tn−1

(tn−1/2 − s)−β(s− tn−1)ds

=

[
−
(s− tn−1)(tn−1/2 − s)1−β

(1− β)
−

(tn−1/2 − s)(2−β)

(1− β)(2− β)

]tn−1/2

tn−1

=
(1/2)2−β (∆t)2−β

(1− β)(2− β)

(7.33)
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then Eq.(7.27) becomes

R.S.H =
(∆t)2−β

Γ(3− β)

{
n−1∑
j=1

[fn−jΦ(r, tj−1) + gn−jΦ(r, tj)] + f0Φ(r, tn−1) + g0Φ(r, tn)

}

=
(∆t)2−β

Γ(3− β)

{
fn−1Φ(r, t0) + gn−1Φ(r, t1) + fn−2Φ(r, t1) + gn−2Φ(r, t2) + . . .

+ f1Φ(r, tn−2) + g1Φ(r, tn−1) + f0Φ(r, tn−1) + g0Φ(r, tn)

}

=
(∆t)2−β

Γ(3− β)

{
fn−1Φ(r, t0) +

n−1∑
j=1

(fn−j−1 + gn−j)Φ(r, tj) + g0Φ(r, tn)

}
(7.34)

let l = n− j, then the coefficients defined as

fl = (2− β)(l + 1/2)1−β + (l − 1/2)2−β − (l + 1/2)2−β, l > 0 (7.35)

gl = −(2− β)(l − 1/2)1−β − (l − 1/2)2−β + (l + 1/2)2−β, l > 0 (7.36)

f0 = (3/2− β)(1/2)1−β (7.37)

g0 = (1/2)2−β (7.38)

Using the above results and the spectral approximation of the dependent variables, we

obtain the following contribution to each of the terms in the weak formulation Eq.(7.10)

ρ

V

∫ Rout

Rin

(
∂u

∂t

)
v dr = ∆

ρ

V

∫ 1

−1

(
∂u

∂t

)
v dr̃

≃ ∆
ρ

V

N∑
l=0

wl

(
∂u(r̃l, tn)

∂t

)
hk(r̃l)

≃ ∆
ρ

V
wk

(
δtU

n−1/2
k

)
=
ρ

V
∆wk

(
Un
k − Un−1

k

∆t

)
(7.39)
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ρ

G

∫ Rout

Rin

(
Dϵ

tu(t)

)
nu dr = ∆

ρ

G

∫ 1

−1

(
Dϵ

tu

)
ν dr̃

≃ ∆
ρ

G

N∑
l=0

wl

(
Dϵ

tUl

)
hk(r̃l)

≃ ∆
ρ

G
wk

(
Dϵ

t U
n−1/2
k

)
=

ρ

G
∆wk

(∆t)αΓ(2− α)

[
ã0

(
Un
k − Un−1

k

∆t

)

−
n−1∑
j=1

(
ãn−j−1 − ãn−j

)(
U j
k − U j−1

k

∆t

)]

=
ρ

G
∆wk

(∆t)α+1Γ(2− α)

[
ã0
(
Un
k − Un−1

k

)
+

n−1∑
j=1

(
ãj − ãj−1

)(
U j
k − U j−1

k

) ]

(7.40)

To find the weak form of the right-hand side of Eq.(7.27) we multiply Φ(rk, tl) by by a

test function ν ∈ W and integrate over [Rin, Rout], then substitute into Eq.(7.34),

(∆t)2−β

Γ(3− β)

∫ Rout

Rin

{
fn−1Φ(r, t0) +

n−1∑
j=1

(fn−j−1 + gn−j)Φ(r, tj) + g0Φ(r, tn)

}
ν dr

=
(∆t)2−β

Γ(3− β)

{
fn−1

∫ Rout

Rin

Φ(r, t0)ν dr +
n−1∑
j=1

(fn−j−1 + gn−j)

∫ Rout

Rin

Φ(r, tj)ν dr

+ g0

∫ Rout

Rin

Φ(r, tn)ν dr

}
(7.41)

then,

∫ Rout

Rin

Φ(r, t)ν dr =

∫ Rout

Rin

(
∂2uθ
∂r2

+
1

r

∂uθ
∂r

− uθ
r2

)
ν dr

=

∫ Rout

Rin

(
−∂u
∂r

∂ν

∂r
+

1

r

∂u

∂r
ν − uν

r2

)
dr

=

∫ 1

−1

(
−∆−2∂u

∂r̃

∂v

∂r̃
+∆−11

r

∂u

∂r̃
ν(r̃)− u

r2
ν(r̃)

)
∆dr̃

=

∫ 1

−1

(
− 1

∆

∂u

∂r̃

∂v

∂r̃
+

1

r

∂u

∂r̃
ν(r̃)−∆

u

r2
ν(r̃)

)
dr̃

(7.42)
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Use the spectral approximation u =
∑N

j=0 ujhj(r̃) and ν = hk(r̃), then the right hand side

of Eq. (7.42) becomes

R.H.S ≃
N∑

m=0

wm

[
−1

∆

(
N∑
j=0

Ujh
′
j(r̃m)

)
h′k(r̃m) +

1

rm

(
N∑
j=0

Ujh
′
j(r̃m)

)
hk(r̃m)

− ∆

r2m

(
N∑
j=0

Ujhj(r̃m)

)
hk(r̃m)

]

=
N∑

m=0

wm

[
−1

∆

(
N∑
j=0

Dm,jUj

)
Dm,k +

1

rm

(
N∑
j=0

Dm,j Uj

)
δm,k −

∆

r2m
Umδm,k

]

=
−1

∆

N∑
j=0

(
N∑

m=0

wmDm,jDm,k

)
Uj +

wk

rk

N∑
j=0

Dk,jUj −
∆wk

r2k
Uk

= − 1

∆

N∑
j=0

Bk,jUj +
wk

rk

N∑
j=0

Dk,jUj −
∆wk

r2k
Uk (7.43)

where Bj,k =
∑N

m=0wmDm,jDm,k.

Substitute Eq.(7.43) into Eq.(7.41), then the full discretisation is

ρ

V
∆wk

(
Un
k − Un−1

k

∆t

)
+
ρ

G
∆wk

(∆t)α+1Γ(2− α)

[
ã0
(
Un
k − Un−1

k

)
−

n−1∑
j=1

(ãj − ãj−1)
(
Un−j
k − Un−j−1

k

) ]

=
(∆t)2−β

Γ(3− β)

{
fn−1Φ(ri, t0) +

n−1∑
j=1

(fn−j−1 + gn−j)

[
−1

∆

N∑
l=0

Bk,lU
j
l +

wk

rk

N∑
l=0

Dk,lU
j
l

− ∆wk

r2k
U j
k

]
+ g0

[
−1

∆

N∑
l=0

Bk,jU
n
l +

wk

rk

N∑
l=0

Dk,lU
n
l − ∆wk

r2k
Un
k

]}
(7.44)
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Rearranging and multiplying by ∆t gives

[
ρ

V
∆wk +

ρ

G
ã0

(∆t)α
∆wk

Γ(2− α)
+
g0(∆t)

3−β

Γ(3− β)

∆wk

r2k

]
Un
k

+
g0 (∆t)

3−β

Γ(3− β)

[
1

∆

N∑
l=0

Bk,lU
n
l − wk

rk

N∑
l=0

Dk,lU
n
l

]
=

[
ρ

V
∆wk +

ρ

G
ã0∆wk

(∆t)αΓ(2− α)

]
Un−1
k

− ρ

G
∆wk

(∆t)αΓ(2− α)

[
n−1∑
j=1

(
ãj − ãj−1

)(
Un−j
k − Un−j−1

k

)]

+
(∆t)3−β

Γ(3− β)

{
n−1∑
j=1

(fn−j−1 + gn−j)

[
−1

∆

N∑
l=0

Bk,lU
j
l +

wk

rk

N∑
l=0

Dk,lU
j
l −

∆wk

r2k
U j
k

]}
(7.45)

where 1 ≤ k ≤ N − 1, and the initial condition is

U0
i = Φi(ri, t0) = 0, 0 ≤ i ≤ N, (7.46)

and the boundary conditions are

Un
0 = 0, Un

N = 0, n ≥ 1 (7.47)

Numerical Discretization of Stress Equation

In Time

To discretize Eq. (7.11), we first derive the numerical approximation for the time-

fractional derivative Dβ
t γ(t). Additionally, the numerical approximation for the time-

fractional derivative Dα
t τ(t) will be obtained by following the approach outlined in Chap-

ter 5, specifically in Section 5.3.2, using Eq. (5.37), which is given by:

Dα
t τ(tn) =

∆t−α

Γ(2− α)

[
n∑

j=0

B̃jτ
j
i

]
(7.48)

where the coefficients B̃j are defined by Eq. (5.38).

The grid functions τni are defined as follows τni ≃ τ(ri, tn) = ϕi(tn), when 0 ≤ i ≤ N ,

n ≥ 0, and the initial condition is τ 0i = ϕi(t0), 0 ≤ i ≤ N .
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Now, we will derive the numerical approximation of the time-fractional derivative Dβ
t γ(t)

Dβ
t γ(tn) =

1

Γ(1− β)

∫ t

0

1

(tn − s)β
∂γ

∂s
ds

=
1

Γ(1− β)

∫ t

0

1

(tn − s)β

{
∂u

∂r
− u

r

}
ds

(7.49)

using the first-order discretization of the integral in time derived using linear interpolant

for u on each sub-interval [tj−1, tj] i.e.

Π1,ju(s) = u(tj−1)
(tj − s)

∆t
+ u(tj)

(s− tj−1)

∆t
, s ∈ [tj−1, tj] (7.50)

and

Π1,j

(
∂u

∂r

)
=
∂u

∂r
(tj−1)

(tj − s)

∆t
+
∂u

∂r
(tj)

(s− tj−1)

∆t
, s ∈ [tj−1, tj] (7.51)

Therefore, Eq. (7.49) is approximated by

Dβ
t γ(tn) ≃

1

Γ(1− β)

n∑
j=1

∫ tj

tj−1

1

(tn − s)β

{
Π1,j

(
∂u

∂r

)
− Π1,j

(u
r

)}
ds (7.52)

To evaluate Dβ
t γ(tn) we need to calculate integrals of the form

I1 =

∫ tj

tj−1

(tn − s)−β(tj − s)ds

=
(∆t)2−β

(1− β)(2− β)

[
(2− β)(n− j + 1)1−β + (n− j)2−β − (n− j + 1)2−β

]
=

(∆t)2−β

(1− β)(2− β)

[
f̄n−j

]
(7.53)

where

f̄n−j =
[
(2− β)(n− j + 1)1−β + (n− j)2−β − (n− j + 1)2−β

]
(7.54)

let l = n− j, then

f̄l = (2− β)(l + 1)1−β + l2−β − (l + 1)2−β (7.55)
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and

I2 =

∫ tj

tj−1

(tn − s)−β(s− tj)ds

=
(∆t)2−β

(1− β)(2− β)

[
−(2− β)(n− j)1−β − (n− j)2−β + (n− j + 1)2−β

]
=

(∆t)2−β

(1− β)(2− β)
[ḡn−j]

(7.56)

where

ḡn−j =
[
−(2− β)(n− j)1−β − (n− j)2−β + (n− j + 1)2−β

]
(7.57)

let l = n− j, then

ḡl = −(2− β)l1−β − l2−β + (l + 1)2−β (7.58)

then

1

Γ(1− β)

n∑
j=1

∫ tj

tj−1

1

(tn − s)β
{Π1,ju(s)} ds ≃

(∆t)2−β

Γ(3− β)

n∑
j=1

{
f̄n−jU

j−1 + ḡn−jU
j

∆t

}

=
(∆t)1−β

Γ(3− β)

{
f̄n−1U

0 +
n−1∑
j=1

(f̄n−j−1 + ḡn−j)U
j + ḡ0U

n

}

=
(∆t)1−β

Γ(3− β)

n∑
j=0

ĀjU
j

(7.59)

Similarly, we have

1

Γ(1− β)

n∑
j=1

∫ tj

tj−1

1

(tn − s)β

{
Π1,j

(
∂u

∂r

)}
ds ≃ (∆t)1−β

Γ(3− β)

n∑
j=0

Āj

(
∂uj

∂r

)
(7.60)

where,

Āj =


f̄n−1 if j = 0

f̄n−j−1 + ḡn−j if 1 ≤ j ≤ n− 1

ḡ0 if j = n

(7.61)
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Inserting the above difference scheme and the spectral approximations to the different

terms in the weak formulation Eq. (7.15) gives

∫ Rout

Rin

τ(t) ν dr = ∆

∫ 1

−1

τ(t) ν dr̃

≃ ∆
N∑
l=0

wl

(
N∑
j=0

τjhj(r̃l)

)
hk(r̃l)

= ∆
N∑
l=0

wl (τl)hk(r̃l)

= ∆wkτ
n
k

(7.62)

where we have used test function ν = hk(r), k = 0, 1, . . . , N

λα
∫ Rout

Rin

(Dα
t τ(t)) ν dr = ∆λα

∫ 1

−1

(Dα
t τ(t)) ν dr̃

≃ ∆λα
N∑
l=0

wl (D
α
t τl)hk(r̃l)

= ∆wkλ
α (Dα

t τk)

= ∆wkλ
α ∆t−α

Γ(2− α)

[
b̃0(α) τ

n
i −

n−1∑
j=1

(
b̃n−j−1(α)− b̃n−j(α)

)
τ ji − b̃n−1(α)τ

0
i

]

=
∆wk

Γ(2− α)

λα

(∆t)α

n∑
j=0

B̃jτ
j
k

(7.63)
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Eλβ
∫ Rout

Rin

(
Dβ

t γ(t)
)
ν dr = ∆ E λβ

∫ 1

−1

(
Dβ

t γ(t)
)
ν dr̃

= ∆ E λβ
∫ 1

−1

(
Dβ

t

{
∆−1∂u

∂r
− u

r

})
ν dr̃

≃ E λβ
N∑
l=0

wl

(
Dβ

t

{(
N∑
i=0

Ui h
′
i(r̃l)

)
−∆

(
Ul

rl

)})
hk(r̃l)

= E λβ
N∑
l=0

wl

(
Dβ

t

{(
N∑
i=0

Dl,i Ui

)
−∆

(
Ul

rl

)})
hk(r̃l)

= E λβ wk

{
N∑
i=0

Dβ
t (Dk,iUi)−

∆

rk

(
Dβ

t Uk

)}

=
Eλβwk

(∆t)β−1Γ(3− β)

{
n∑

l=0

Āl

(
N∑

m=0

Dk,mU
l
m

)}

− Eλβ∆wk

rk(∆t)β−1Γ(3− β)

{
n∑

l=0

ĀlU
l
k

}
(7.64)

The full discretization is

∆wk

{
τnk +

1

Γ(2− α)

λα

(∆t)α

n∑
j=0

B̃jτ
j
k

}

=
Eλβwk

(∆t)β−1Γ(3− β)

{
n∑

l=0

Āl

(
N∑

m=0

Dk,mU
l
m

)}
− Eλβ∆wk

rk(∆t)β−1Γ(3− β)

{
n∑

l=0

ĀlU
l
k

}
(7.65)

for k = 1, . . . , N − 1, n = 1, . . . , NT and U0
i = τ 0i = 0, for 0 ≤ i ≤ N .

Rearranging Eq.(7.65) we obtain

∆wk

{
1 +

B̃n

Γ(2− α)

λα

(∆t)α

}
τnk = − ∆wk

Γ(2− α)

λα

(∆t)α

n−1∑
j=0

B̃jτ
j
k

+
Eλβwk

(∆t)β−1Γ(3− β)

{
n∑

l=0

Āl

(
N∑

m=0

Dk,mU
l
m

)}
− Eλβ∆wk

rk(∆t)β−1Γ(3− β)

{
n∑

l=0

ĀlU
l
k

}
(7.66)

where λα =
V
G
, Eλβ = V. The coefficients B̃j and Āl are defined by Eq.(5.38), and

Eq.(7.61), respectively.
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7.2.3 Numerical Results

In this section, we perform additional simulations using the same parameter set introduced

in Chapter 6, Section 6.6, informed by the experimental and modeling work of Ferras .

(2018). The simulations are extended to explore different values of the fractional order

parameter, constrained within the interval 0 < α < β < 1, as required by the fractional

viscoelastic model. These parameters were originally established to effectively capture

the rheological response of Xanthan gum solutions. To solve the system of differential

equations governing the unsteady unidirectional flow of the FMM when 0 < α < β < 1

in an annular geometry, we have developed a MATLAB code for the proposed numerical

method with the following fluid parameters (N = 64, β = 0.999, α = 0.8, the final time

is T = 80 s, and S = 1000) for Newtonian fluid, and (N = 24, β = 0.7, α = 0.4, the

final time is T = 90 s, and S = 5000) for Viscoelastic fluid. We study the evolution of

the velocity and stress profiles at different radial locations are shown in Figs. 7.1 and 7.2.

We plot the velocity at the wall and at r̄ = [0.25, 0.5, 0.75], while the stress is plotted at

r̄ = [0.005, 0.25, 0.5, 0.75, 0.995]. The numerical method proved successful in precisely

capturing the evolution of the various variables in this transient flow.

Newtonian fluid

Figure. 7.1 illustrates the variation of velocity and shear stress over time in a Newtonian

fluid confined between two concentric cylinders, where the outer cylinder rotates at a

higher linear speed than the inner one. The velocity profile in Fig. 7.1 (a) shows a rapid

and smooth transfer of momentum from the moving walls to the bulk fluid due to the

purely viscous nature of Newtonian fluids. Similarly, in Fig. 7.1 (b) the shear stress

distribution evolves quickly, reflecting an immediate response to the applied shear. Since

Newtonian fluids do not exhibit elasticity, the stress change over time is sudden, governed

by simple diffusion without any delay in momentum transfer. Because of the variation in

sign of the velocity gradient ∂uθ
∂r

seen in Fig. 7.1 (c), note that the shear stress is negative

near the inner cylinder and positive near the outer cylinder as shown in Fig. 7.1 (d).

177



(a) (b)

(c) (d)

Figure 7.1: (a), (b) Variation of velocity and shear stress with time, in different regions;
(c), (d) Velocity and shear stress profiles for t/tc = 3.50×10−1. The fractional parameters:
α = 0.8, and β = 0.999.
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Viscoelastic fluid

Figure 7.2 presents the velocity and shear stress evolution in a viscoelastic (non-Newtonian)

fluid under the same rotational conditions. Unlike Newtonian fluids, the viscoelastic ma-

terial exhibits a delayed response in velocity propagation due to elastic effects, leading to

a gradual momentum transfer. The shear stress evolution at different radial locations in-

dicates stress relaxation, where the material retains memory of past deformations, causing

a smoother and time-dependent transition. This behaviour, described by the Fractional

Maxwell Model, highlights the combined influence of viscosity and elasticity, making the

response distinct from the instantaneously evolving Newtonian case.

(a) (b)

Figure 7.2: (a) Evolution of velocity at radial location r̄ = 0.25, 0.5, 0.75;
(b) Shear stress at radial location r̄ = 0.005, 0.25, 0.5, 0.57, 0.995. The fractional pa-
rameters: α = 0.4, and β = 0.7.

Influence of fractional order

This section examines the influence of fractional order on velocity, shear stress, and stress

relaxation in the Fractional Maxwell Model (FMM). The results are consistent with pre-

vious findings in Chapter 6, demonstrating similar relaxation behaviour.

For the simulation of Xanthan gum at a concentration of (0.25wt%), we adopted the

viscoelastic material parameters reported by Ferras . (2018), specifically the characteristic

relaxation time λc = 55.6 s, viscosity-like parameter V = 24.96 Pa.s, and modulus-like

179



parameter G = 1.56 Pa.s. The fractional orders β = 0.999, α = 0.8, as well as the derived

parameter ζ = β − α (corresponding to the fractional parameter (β) defined in Chapter

6), are introduced in this study to generalize the model beyond the original formulation in

Ferras . (2018), allowing for enhanced flexibility in capturing the complex rheology of the

fluid. Fig. 7.3 (a) measures the normalised tangential velocity (uθmax = uθ(Rout, td)) of the

outer cylinder (case of γ0 = 100%). For a step-strain test with a deformation of γ0 = 100%,

ζ = 0.199 and three different levels of refinement, ψ/λc = 1.0×10−4, 1.8×10−4, 2.7×10−4

and a normalized delay time of td/λc = 4.5× 10−4, 7.4× 10−4, 1.1× 10−3, we display the

normalised shear stress relaxation data in Fig. 7.3 (b). Be aware that the outer cylinder

must rotate more quickly as ψ → 0 to turn the same constant distance in a decreasingly

longer period of time. Since we must precisely capture high gradients, this makes the

numerical calculation more difficult.

Figure 7.3 (c) illustrates the progression of the deformation over time (γ0 =
∆θRout

h
)

for the three distinct tangential velocities applied to the outer cylinder. As anticipated,

a higher approximation of a true step-strain displacement is obtained as the rotational

velocity is gradually increased.

Figure 7.3 (d) illustrates the normalized stress relaxation for the three distinct levels of

imposed deformations 1%, 5% and 100% (ψ/λc = 1.0 × 10−4 and td/λc = 4.5 × 10−4).

The stress relation derived for the two smaller deformations is shown in Fig. 7.3 (e) in a

zoomed-in view.
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Figure 7.3: (a) Normalized tangential velocity of the outer cylinder; (b) Normalized shear stress re-
laxation for step-strain test (γ0 = 100%) with parameters β = 0.999, α = 0.8; (c) Evolution of the
deformation in time for the three different tangential velocities imposed; (d) Stress relaxation for three
different deformations; (e) Zoomed view of the stress relation obtained for the two smaller deformations.
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7.2.4 A second-order difference scheme for a time-fractional deriva-

tive

In this section, we aim for higher accuracy in the proposed numerical method. Therefore,

we will develop difference schemes with a time accuracy order of O(∆t2).

Numerical Discretization of the Velocity Equation

In Time

The second-order approximation for the time derivative
∂u

∂t
can be derived using a back-

ward differentiation formula scheme which provides better accuracy and stability com-

pared to a first-order forward or backward scheme.

∂u

∂t
≃ 3un − 4un−1 + un−2

2∆t
(7.67)

inserting this approximation in the first term of the weak formulation (7.10), we obtain

ρ

V

∫ Rout

Rin

(
∂u

∂t

)
v dr = ∆

ρ

V

∫ 1

−1

(
∂u

∂t

)
v dr̃

≃ ∆
ρ

V

N∑
l=0

wl

(
∂u(r̃l, tn)

∂t

)
hk(r̃l)

=
ρ

V
∆wk

(
3Un

k − 4Un−1
k + Un−2

k

2∆t

) (7.68)

where v = hk(r).

The numerical approximation to the fractional derivative, D1+α
t u(t), is derived in Chap-

ter.5 (Section. 5.4.1, Eq. (5.40)), with α replaced by 1 + α where 0 < α < 1.

D1+α
t u(tn) ≃

1

Γ(1− α)

[∫ tn

tn−1

∂2s (Π2,n−1u(s))

(tn − s)α
ds+

n−1∑
j=1

∫ tj

tj−1

∂2s (Π2,ju(s))

(tn − s)α
ds

]

=
1

Γ(1− α)

[
(Un − 2Un−1 + Un−2)

(∆t)2

∫ tn

tn−1

ds

(tn − s)α

+
n−1∑
j=1

(U j+1 − 2U j + U j−1)

(∆t)2

∫ tj

tj−1

ds

(tn − s)α

] (7.69)
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where

∫ tj

tj−1

(tn − s)−αds =
(∆t)1−α

1− α

[
(n− j + 1)1−α − (n− j)1−α

]
=

(∆t)1−α

1− α
ãn−j, n− j ≥ 0

(7.70)

where

ãl(α) =
[
(l + 1)1−α − (l)1−α

]
, l ≥ 0 (7.71)

Therefore, Eq. (7.69) becomes

D1+α
t u(tn) =

1

(∆t)1+αΓ(2− α)

[
(ãn−1(α))U

0 + (ãn−2(α)− 2ãn−1(α))U
1

+
n−3∑
j=2

(ãn−j−1(α)− 2ãn−j(α) + ãn−j+1(α))U
j

+ (1 + ã3(α)− 2ã2(α) + ã1(α))U
n−2 + (−2 + ã2(α)− 2ã1(α))U

n−1

+ (1 + ã1(α))U
n

]

=
1

(∆t)1+αΓ(2− α)

n∑
j=0

CjU
j

(7.72)

Cj can be defined by substituting Eq. (7.71) into Eq. (5.42).

Inserting this approximation in the second term of the weak formulation (7.10), we obtain.

ρ

G

∫ Rout

Rin

(
D1+α

t u(t)

)
v dr = ∆

ρ

G

∫ 1

−1

(
D1+α

tn u

)
v dr̃

≃ ∆
ρ

G

N∑
l=0

wl

(
D1+α

tn Ul

)
hk(r̃l)

≃ ∆
ρ

G
wk

(
D1+α

tn U
n−1/2
k

)
=

ρ

G
∆wk

(∆t)1+αΓ(2− α)

n∑
j=0

CjU
j
k

(7.73)

In space

We will derive the numerical approximation of the right-hand side of Eq. (7.10) using a
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second-order discretization of the time integral, obtained through quadratic interpolation

on each sub-interval [tj−1, tj], where 1 ≤ j ≤ n.

Let

Φ(r, t) =

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
uθ(r, t) (7.74)

Therefore, the quadratic interpolation of Φ(r, t) is given by

Π2,jΦ(r, s) = Φ(r, tj−1)

[
(s− tj)(s− tj+1)

2(∆t)2

]
− Φ(r, tj)

[
(s− tj−1)(s− tj+1)

(∆t)2

]
+ Φ(r, tj+1)

[
(s− tj−1)(s− tj)

2(∆t)2

]
(7.75)

and

Π2,n−1Φ(r, s) = Φ(r, tn−2)

[
(s− tn)(s− tn−1)

2(∆t)2

]
− Φ(r, tn−1)

[
(s− tn−2)(s− tn)

(∆t)2

]
+ Φ(r, tn)

[
(s− tn−2)(s− tn−1)

2(∆t)2

]
(7.76)

Therefore, the right-hand side of Eq. (7.20) is approximated by

R.H.S ≃ 1

Γ(1− β)

{
n−1∑
j=1

∫ tj

tj−1

(tn − s)−βΠ2,jΦ(r, s)ds+

∫ tn

tn−1

(tn − s)−βΠ2,n−1Φ(r, s)ds

}
(7.77)

To evaluate Eq.(7.77) we need to calculate integrals of the following form using integration

by parts

I =

∫
(tn − s)−β(s− c)(s− d)ds

=

[
− (s− c)(s− d)

(1− β)(tn − s)β−1
+

∫
(2s− c− d)

(1− β)
(tn − s)1−βds

]
=

[
−(s− c)(s− d)(tn − s)1−β

(1− β)
− (2s− c− d)(tn − s)2−β

(1− β)(2− β)
− 2(tn − s)3−β

(1− β)(2− β)(3− β)

]
(7.78)
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Applying in Eq.(7.77), we obtain

R.H.S ≃=
1

Γ(1− β)

{
n−1∑
j=1

(
Φ(tj−1)

2(∆t)2

[∫ tj

tj−1

(tn − s)−β(s− tj)(s− tj+1)ds

]

− Φ(tj)

(∆t)2

[∫ tj

tj−1

(tn − s)−β(s− tj−1)(s− tj+1)ds

]

+
Φ(tj+1)

2(∆t)2

[∫ tj

tj−1

(tn − s)−β(s− tj−1)(s− tj)ds

])}

+
1

Γ(1− β)

{(
Φ(tn−2)

2(∆t)2

[∫ tn

tn−1

(tn − s)−β(s− tn−1)(s− tn)ds

]
− Φ(tn−1)

(∆t)2

[∫ tn

tn−1

(tn − s)−β(s− tn−2)(s− tn)ds

]
+

Φ(tn)

2(∆t)2

[∫ tn

tn−1

(tn − s)−β(s− tn−1)(s− tn−2)ds

])
ds

}
(7.79)

Therefore, Eq. (7.80) yields

R.H.S =
(∆t)1−β

Γ(4− β)

{
n−1∑
j=1

(an−jΦ(tj−1) + bn−jΦ(tj) + cn−jΦ(tj+1))

+
(
āΦ(tn−2) + b̄Φ(tn−1) + c̄Φ(tn)

)}

=
(∆t)1−β

Γ(4− β)

{
(an−1Φ(t0) + bn−1Φ(t1) + cn−1Φ(t2)) + (an−2Φ(t1) + bn−2Φ(t2) + cn−2Φ(t3))

+ · · ·+ (a2Φ(tn−3) + b2Φ(tn−2) + c2Φ(tn−1)) + (a1Φ(tn−2) + b1Φ(tn−1) + c1Φ(tn))

+
(
āΦ(tn−2) + b̄Φ(tn−1) + c̄Φ(tn)

)}

=
(∆t)1−β

Γ(4− β)

{
an−1Φ(t0) + (an−2 + bn−1)Φ(t1) +

n−3∑
j=2

(an−j−1 + bn−j + cn−j+1)Φ(tj)

+ (a1 + ā+ b2 + c3)Φ(tn−2) + (c2 + b1 + b̄)Φ(tn−1) + (c1 + c̄)Φ(tn)

}
(7.80)

where

ā(β) =

[
(β − 1)

2

]
, b̄(β) = [(4− β)(1− β)] , c̄(β) =

[
(5− β)

2

]
(7.81)
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and

an−j(β) =
1

2

[
(3− β)(n− j)2−β − 2(n− j)3−β + 2(2− β)(3− β)(n− j + 1)1−β

− 3(3− β)(n− j + 1)2−β + 2(n− j + 1)3−β

]
(7.82)

bn−j(β) =

[
−(2−β)(3−β)(n−j)1−β+2(n−j)3−β+2(3−β)(n−j+1)2−β−2(n−j+1)3−β

]
(7.83)

cn−j(β) =
1

2

[
−(3−β)(n−j)2−β−2(n−j)3−β−(3−β)(n−j+1)2−β+2(n−j+1)3−β

]
(7.84)

Find the weak form of the right-hand side of Eq. (7.77) by multiplying Φ(rk, tl) by by a

test function v ∈ W , integrating over [Rin, Rout], and substituting into Eq. (7.80),

(∆t)1−β

Γ(4− β)

∫ Rout

Rin

{
an−1Φ(t0) + (an−2 + bn−1)Φ(t1) +

n−3∑
j=2

(an−j−1 + bn−j + cn−j+1)Φ(tj)

+ (a1 + ā+ b2 + c3)Φ(tn−2) + (c2 + b1 + b̄)Φ(tn−1) + (c1 + c̄)Φ(tn)

}
ν dr

=
(∆t)1−β

Γ(4− β)

n∑
j=0

Aj

∫ Rout

Rin

Φ(r, tj)ν dr (7.85)
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where

Aj(β) =



an−1(β) if j = 0

an−2(β) + bn−1(β) if j = 1

an−j−1(β) + bn−j(β) + cn−j+1(β) if 2 ≤ j ≤ n− 3

ā(β) + a1(β) + b2(β) + c3(β) if j = n− 2

b̄(β) + b1(β) + c2(β) if j = n− 1

c̄(β) + c1(β) if j = n

(7.86)

Then, Eq. (7.85) becomes

(∆t)1−β

Γ(4− β)

n∑
j=0

Aj

∫ Rout

Rin

Φ(r, t)ν dr =
(∆t)1−β

Γ(4− β)

n∑
j=0

Aj

∫ Rout

Rin

(
∂2uθ
∂r2

+
1

r

∂uθ
∂r

− uθ
r2

)
ν dr

=
(∆t)1−β

Γ(4− β)

n∑
j=0

Aj

∫ Rout

Rin

(
−∂u
∂r

∂ν

∂r
+

1

r

∂u

∂r
ν − uν

r2

)
dr

=
(∆t)1−β

Γ(4− β)

n∑
j=0

Aj

∫ 1

−1

(
−∆−2∂u

∂r̃

∂v

∂r̃
+∆−11

r

∂u

∂r̃
ν(r̃)

− u

r2
ν(r̃)

)
∆dr̃

=
(∆t)1−β

Γ(4− β)

n∑
j=0

Aj

∫ 1

−1

(
− 1

∆

∂u

∂r̃

∂v

∂r̃
+

1

r

∂u

∂r̃
ν(r̃)

−∆
u

r2
ν(r̃)

)
dr̃

(7.87)
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Then, the numerical approximation of the right-hand side gives

R.H.S ≃ (∆t)1−β

Γ(4− β)

n∑
j=0

Aj

N∑
m=0

wm

[
−1

∆

(
N∑
j=0

Ujh
′
j(r̃m)

)
h′k(r̃m)

+
1

rm

(
N∑
j=0

Ujh
′
j(r̃m)

)
hk(r̃m)−

∆

r2m

(
N∑
j=0

Ujhj(r̃m)

)
hk(r̃m)

]

=
(∆t)1−β

Γ(4− β)

n∑
j=0

Aj

N∑
m=0

wm

[
−1

∆

(
N∑
j=0

Dm,jUj

)
Dm,k

+
1

rm

(
N∑
j=0

Dm,j Uj

)
δm,k −

∆

r2m
Umδm,k

]

=
(∆t)1−β

Γ(4− β)

n∑
j=0

Aj

{
−1

∆

N∑
j=0

(
N∑

m=0

wmDm,jDm,k

)
Uj +

wk

rk

N∑
j=0

Dk,jUj

− ∆wk

r2k
Uk

}

=
(∆t)1−β

Γ(4− β)

n∑
j=0

Aj

{
− 1

∆

N∑
j=0

Bk,jUj +
wk

rk

N∑
j=0

Dk,jUj −
∆wk

r2k
Uk

}

(7.88)

where Bj,k =
∑N

m=0wmDm,jDm,k.

Inserting these approximations with the spectral approximations in the weak formulation

of the velocity equation (7.14), gives the full discretization

ρ

V
∆wk

(
3Un

k − 4Un−1
k + Un−2

k

2∆t

)
+
ρ

G
∆wk

(∆t)1+αΓ(2− α)

n∑
j=0

CjU
j
k

=
(∆t)1−β

Γ(4− β)

{
A0Φ(r, t0) +A1

[
− 1

∆

N∑
l=0

Bk,lU
1
l +

wk

rk

N∑
l=0

Dk,lU
1
l − ∆wk

r2k
U1
k

]

+
n−3∑
j=2

Aj

[
− 1

∆

N∑
l=0

Bk,lU
j
l +

wk

rk

N∑
l=0

Dk,lU
j
l −

∆wk

r2k
U j
k

]

+An−2

[
− 1

∆

N∑
l=0

Bk,lU
n−2
l +

wk

rk

N∑
l=0

Dk,lU
n−2
l − ∆wk

r2k
Un−2
k

]

+An−1

[
− 1

∆

N∑
l=0

Bk,lU
n−1
l +

wk

rk

N∑
l=0

Dk,lU
n−1
l − ∆wk

r2k
Un−1
k

]

+An

[
− 1

∆

N∑
l=0

Bk,lU
n
l +

wk

rk

N∑
l=0

Dk,lU
n
l − ∆wk

r2k
Un
k

]}
(7.89)
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For simplicity, we rewrite Eq.(7.89) as follows

[
ρ

V
3∆wk

2∆t
+
ρ

G
Cn∆wk

(∆t)1+αΓ(2− α)
+

An

(∆t)β−1Γ(4− β)

∆wk

r2k

]
Un
k

+
An

(∆t)β−1Γ(4− β)

N∑
l=0

[
1

∆
Bk,l −

wk

rk
Dk,l

]
Un
l

=
An−1

(∆t)β−1Γ(4− β)

N∑
l=0

[
− 1

∆
Bk,l +

wk

rk
Dk,l

]
Un−1
l

+

[
ρ

V
4∆wk

2∆t
− ρ

G
Cn−1∆wk

(∆t)1+αΓ(2− α)
− An−1

(∆t)β−1Γ(4− β)

∆wk

r2k

]
Un−1
k

+

[
ρ

V
∆wk

2∆t
− ρ

G
Cn−2∆wk

(∆t)1+αΓ(2− α)
− An−2

(∆t)β−1Γ(4− β)

∆wk

r2k

]
Un−2
k

+
An−2

(∆t)β−1Γ(4− β)

N∑
l=0

[
− 1

∆
Bk,l +

wk

rk
Dk,l

]
Un−2
l

+
(∆t)1−β

Γ(4− β)

n−3∑
j=2

[
Aj

N∑
l=0

(
− 1

∆
Bk,l +

wk

rk
Dk,l

)]
U j
l

−
n−3∑
j=2

[
Aj

(∆t)β−1Γ(4− β)

∆wk

r2k
+
ρ

G
Cj∆wk

(∆t)1+αΓ(2− α)

]
U j
k

+
A1

(∆t)β−1Γ(4− β)

[
N∑
l=0

(
− 1

∆
Bk,l +

wk

rk
Dk,l

)]
U1
l

−
[

A1

(∆t)β−1Γ(4− β)

∆wk

r2k
+
ρ

G
C1∆wk

(∆t)1+αΓ(2− α)

]
U1
k (7.90)

where the coefficients Cj and Aj, 0 ≤ j ≤ n, are defined by Eq.(5.42) and Eq. (7.86),

respectively.

Numerical Discretazation of Stress Equation

In Time

Now, we consider a second-order scheme to discrete Eq. (7.11), then we will derive

the numerical approximation of the time-fractional derivative Dβ
t γ(t), and the numerical

approximation of the time-fractional derivative Dα
t τ(t) will be obtained by following Ch.

5 (sec.5.4.2) Eq. (5.59).
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Define the right-hand side of Eq. (7.11), Dβ
t γ(tn) in the Caputo sense as

Dβ
t γ(tn) =

1

Γ(1− β)

∫ t

0

1

(t− s)β
dγ

ds
ds (7.91)

where

dγ

ds
=
∂u

∂r
(r, s)− u(r, s)

r
(7.92)

then Eq.(7.91) becomes

Dβ
t γ(tn) =

1

Γ(1− β)

∫ t

0

1

(t− s)β

{
∂u

∂r
(r, s)− u(r, s)

r

}
ds (7.93)

Let

Υ(r, s) =

(
∂u

∂r
(r, s)− u(r, s)

r

)
uθ (7.94)

Now, we use a second-order discretization of the integral in time by using Eq.(5.5).

Dβ
t γ(tn) ≃

1

Γ(1− β)

[∫ tn

tn−1

(tn − s)−βΠ2,n−1Υ(r, s)ds+
n−1∑
j=1

∫ tj

tj−1

(tn − s)−βΠ2,jΥ(r, s)ds

]
(7.95)

To evaluate Eq.(7.95) we will follow the process in Eq.(7.75)- Eq.(7.84) and replacing

Φ(r, s) by Υ(r, s).

Then, Eq. (7.95) becomes

Dβ
t γ(tn) =

(∆t)1−β

Γ(4− β)

∫ Rout

Rin

{
an−1Υ(t0)+(an−2+bn−1)Υ(t1)+

n−3∑
j=2

(an−j−1+bn−j+cn−j+1)Υ(tj)

+ (ā+ a1 + b2 + c3)Υ(tn−2) + (b̄+ b1 + c2)Υ(tn−1) + (c1 + c̄)Υ(tn)

}
ν dr

=
(∆t)1−β

Γ(4− β)

n∑
j=0

Aj

∫ Rout

Rin

Υ(r, tj)ν dr (7.96)
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where Aj, 0 ≤ j ≤ n, are defined by Eq. (7.86).

Therefore, the approximation of Eq.(7.95) is given by

(∆t)1−β

Γ(4− β)

n∑
j=0

Aj

∫ Rout

Rin

Υ(r, tj)ν dr =
(∆t)1−β

Γ(4− β)

n∑
j=0

Aj

∫ Rout

Rin

(
∂uθ
∂r

− uθ
r

)
ν dr

=
(∆t)1−β

Γ(4− β)

n∑
j=0

Aj

∫ Rout

Rin

(
∂u

∂r
ν − u

r
ν

)
dr

=
(∆t)1−β

Γ(4− β)

n∑
j=0

Aj

∫ 1

−1

(
∆−1∂u

∂r̃
ν(r̃)− u

r
ν(r̃)

)
∆dr̃

=
(∆t)1−β

Γ(4− β)

n∑
j=0

Aj

∫ 1

−1

(
∂u

∂r̃
ν(r̃)−∆

u

r
ν(r̃)

)
dr̃

≃ (∆t)1−β

Γ(4− β)

n∑
j=0

Aj

N∑
m=0

wm

[(
N∑
j=0

Ujh
′
j(r̃m)

)
hk(r̃m)

− ∆

rm

(
N∑
j=0

Ujhj(r̃m)

)
hk(r̃m)

]

=
(∆t)1−β

Γ(4− β)

n∑
j=0

Aj

N∑
m=0

wm

[(
N∑
j=0

Dm,j Uj

)
δm,k −

∆

rm
Umδm,k

]

=
(∆t)1−β

Γ(4− β)

n∑
j=0

Aj

{
wk

N∑
j=0

Dk,jUj −
∆wk

rk
Uk

}

=
(∆t)1−β

Γ(4− β)

n∑
j=0

Aj

{
wk

N∑
j=0

Dk,jUj −
∆wk

rk
Uk

}
(7.97)

where the coefficients are defined by Eqs. (7.81) - (7.84).

To derive the discrete form of the weak formulation Eq. (7.15), we analyse each term

individually.

∫ Rout

Rin

τ(t) v dr = ∆

∫ 1

−1

τ(t) v dr̃

≃ ∆
N∑
l=0

wl

(
N∑
j=0

τjhj(r̃l)

)
hk(r̃l)

= ∆
N∑
l=0

wl (τl)hk(r̃l)

= ∆wkτ
s
k

(7.98)
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Here, we will use Eq. (5.59) to substitute the discretization of Dα
t τ(t)

V
G

∫ Rout

Rin

(Dα
t τ(t)) v dr = ∆

V
G

∫ 1

−1

(Dα
t τ(t)) v dr̃

≃ ∆
V
G

N∑
l=0

wl (D
α
t τl)hk(r̃l)

= ∆wk
V
G

(Dα
t τk)

=
V
G

∆wk

(∆t)αΓ(3− α)

n∑
j=0

Ej U
j

(7.99)

where the coefficients Ej, 0 ≤ j ≤ n, are defined by Eq. (5.60).

V
∫ Rout

Rin

(
Dβ

t γ(t)
)
v dr = ∆V

∫ 1

−1

(
Dβ

t γ(t)
)
v dr̃

≃ ∆V
N∑
l=0

wl

(
Dβ

t γl

)
hk(r̃l)

= ∆wkV
(
Dβ

t γk(tn)
)

=
∆wkV

(∆t)β−1Γ(4− β)

{
N∑
l=0

Dk,l

[
n∑

j=0

Aj U
j
l

]
− 1

rk

[
n∑

j=0

Aj U
j
k

]}
(7.100)

Therefore, the full discretization is

[
1 +

V
G

En

(∆t)αΓ(3− α)

]
τnk = −V

G
1

(∆t)αΓ(3− α)

[
n−1∑
j=0

Ej τ
j
k

]

+
V

(∆t)β−1Γ(4− β)

{
N∑
l=0

Dk,l

[
n∑

j=0

Aj U
j
l

]
− 1

rk

[
n∑

j=0

Aj U
j
k

]}
(7.101)

7.3 Multi-mode Fractional Maxwell model spectrum

of relaxation times

To investigate additional applications of fractional viscoelastic models, we will simulate

Taylor-Couette flow using the Multi-Mode Fractional Maxwell Model (MM-FMM). This

multi-mode approach enables the capture of a wide spectrum of relaxation behaviour,
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enhancing the simulation’s ability to accurately represent the dynamics of complex fluids.

By integrating multiple relaxation modes, the model more effectively reflects the complex

relaxation processes observed in real-world non-Newtonian materials, establishing it as a

powerful tool for analyzing their behaviour in rotating flow systems.

7.3.1 Taylor-Couette problem

Consider the momentum equation

ρ

(
∂u

∂t

)
=

(
2

r
+

∂

∂r

)
τrθ(t) (7.102)

and the multi-mode fractional Maxwell model is given by

(
1 +

V
G1

dα1

dtα1
+

V
G2

dα2

dtα2

)
τrθ(t) = V

dβ

dtβ
γ(t) (7.103)

where η = E λβ = V, λα1 =
V
G1

, λα2 =
V
G2

, and 0 < α2 < α1 ≤ β ≤ 1.

Using the Caputo definition, the derivatives
dα1τ

dtα1
,
dα2τ

dtα2
and

dβγ

dtβ
can be expressed in their

corresponding integral forms as follows:

dα1τ

dtα1
=

1

Γ(1− α1)

∫ t

0

1

(t− s)α1

∂τ

∂s
ds (7.104)

and

dα2τ

dtα2
=

1

Γ(1− α2)

∫ t

0

1

(t− s)α2

∂τ

∂s
ds (7.105)

also, we have

dβγ

dtβ
=

1

Γ(1− β)

∫ t

0

1

(t− s)β
∂γ

∂s
ds

=
1

Γ(1− β)

∫ t

0

1

(t− s)β

{
∂u

∂r
− u

r

}
ds

(7.106)

For this flow, when β = 1 , the time derivative of γ is given by

∂γ

∂t
=
∂uθ
∂r

− uθ
r
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However, when β ̸= 1, the entire history of deformations is taken into account.

Applying the operator

(
2

r
+

∂

∂r

)
into both sides of Eq. (7.103) to obtain

(
2

r
+

∂

∂r

)(
1 +

V
G1

dα1

dtα1
+

V
G2

dα2

dtα2

)
τrθ(t) = V

(
2

r
+

∂

∂r

)
dβ

dtβ
γ(t) (7.107)

Then applying the operator

(
1 +

V
G1

dα1

dtα1
+

V
G2

dα2

dtα2

)
to both sides of Eq. (7.102), and

using Eq. (7.107) we obtain

ρ

(
1 +

V
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+

V
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)
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dtβ
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r
+

∂
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)
1
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∫ t

0

1
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{
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r

}
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=
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∫ t

0

1

(tn − s)β

{
∂2u

∂r2
+

1

r
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∂r
− u
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}
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(7.108)

to obtain the following system of equations in integral form

ρ

(
1 +

V
G1

dα1

dtα1
+

V
G2

dα2

dtα2

)
∂uθ
∂t

=
V

Γ(1− β)

∫ t

0

(tn − s)−β

(
∂2uθ
∂r2

+
1

r

∂uθ
∂r

− uθ
r2

)
ds

(7.109)

ρ

(
1 +

V
G1

dα1

dtα1
+

V
G2

dα2

dtα2

)
τθ =

V
Γ(1− β)

∫ t

0

(tn − s)−β

(
∂uθ
∂r

− uθ
r

)
ds (7.110)

Replacing the ordinary differential operator by the fractional differential operator gives

ρ

V
∂u

∂t
+
ρ

G1

Dt
α1

(
∂u

∂t

)
+
ρ

G2

Dt
α2

(
∂u

∂t

)
=

1

Γ(1− β)

∫ t

0

(tn−s)−β

(
∂2uθ
∂r2

+
1

r

∂uθ
∂r

− uθ
r2

)
ds

(7.111)

τθ +
V
G1

Dα1
t τθ +

V
G2

Dα2
t τθ =

V
Γ(1− β)

∫ t

0

(tn − s)−β

(
∂uθ
∂r

− uθ
r

)
ds (7.112)

with Dirichlet boundary conditions

uθ(Rin, t) = Θi(t), uθ(Rout, t) = Θ0(t), 0 < t < T (7.113)
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and initial conditions

uθ(r, 0) =
∂uθ(r, 0)

∂t
= 0, τr,θ(r, 0) = 0, Rin < r < Rout (7.114)

The Weak Formulation

To obtain the full discretization of the Taylor-Couette problem Eqs. (7.111) and (7.112),

first, we find their weak formulations by multiplying them by a test function v ∈ W and

integrating over the domain [Rin, Rout]. Then the weak formulations become:

ρ

V

∫ Rout

Rin

(
∂u

∂t

)
v dr +

ρ

G1

∫ Rout

Rin

(
D1+α1

t uθ
)
v dr +

ρ

G2

∫ Rout

Rin

(
D1+α2

t uθ
)
v dr

= V
∫ Rout

Rin

(
Dβ

t γ(t)
)
ν dr (7.115)

∫ Rout

Rin

τ(t) ν dr + λα1

∫ Rout

Rin

(Dα1
t τ(t)) ν dr + λα2

∫ Rout

Rin

(Dα2
t τ(t)) ν dr

= V
∫ Rout

Rin

(
Dβ

t γ(t)
)
ν dr (7.116)

7.3.2 A first-order difference scheme for a time-fractional deriva-

tive

We extend the numerical discretization approach for the Fractional Maxwell model, out-

lined in Sec. 7.2.2, by including the first-order numerical approximation of the time

derivative to handle α1 and α2. Furthermore, we apply spectral approximations to the

spatial derivative to complete the discretization of the problem.
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Numerical Discretization of the Velocity Equation

The full discretization of the velocity equation is
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∆wk
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k
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(7.117)

where Bk,j =
∑N

l=0wlDl,jDl,k, 1 ≤ k ≤ N − 1.

Rearranging and multiplying by ∆t:
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, 1 ≤ k ≤ N−1

(7.118)
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where the coefficients ãn−j(α1), ãn−j(α2) are defined by Eq.(7.24) with respect to α1 and

α2, and the coefficients fl, gl, f0, and g0 defined by Eq.(7.35)- Eq.(7.38).

In addition, we have the initial condition

U0
i = Φi(ri, t0) = 0, 0 ≤ i ≤ N, (7.119)

and the boundary conditions are

Un
0 = 0, Un

N = 0, n ≥ 1 (7.120)

Numerical Discretization of the Stress Equation

The full discretization of the stress equation is

∆wk
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j
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0
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}

+
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{
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Āl

(
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l
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{
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ĀlU
l
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}
(7.121)

where the coefficients B̃j(α1), B̃j(α2) are defined by Eq.(5.38) with respect to α1 and α2,

and Āl is defined by Eq.(7.61).

7.3.3 Numerical Results

In this section, we will carry out additional experiments using the same data from Chapter

6 (Section. 6.6). To solve the system of differential equations governing the unsteady

unidirectional flow of the MM-FMM when 0 < α2 < α1 < β < 1 in an annular geometry,

we have developed a MATLAB code for the proposed numerical method with the following
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fluid parameters V = 5, λ1 ≡ V
G1

= 1 × 10−5[s1−β ≈ s], λ2 ≡ V
G2

= 1 × 10−6[s1−β ≈ s]

(where λ2 < λ1), G1 = V
λ1
, G2 = V

λ2
, ν = µ

ρ
= V

ρ
= 2 × 10−3m2.s−1 (ν is the kinematic,

ρ is the dynamic viscosity). We examine the evolution of velocity and stress profiles at

various radial locations, presented for a Newtonian fluid in Fig. 7.4 with the final time

T = 80, the number of time steps S = 1000, and N = 64, and the final time T = 120,

the number of time steps S = 5000, and N = 24 for a non-Newtonian fluid in Fig. 7.5.

Figure 7.6 shows the effect of the use of the fractional order on the temporal evolution

of the velocity and shear stress, and the stress relaxation obtained for the MM-FMM

model. The results are consistent with previous findings of the FMM, demonstrating

similar relaxation behaviour.
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(a) (b)

(c) (d)

Figure 7.4: (a),(b) Variation of velocity and shear stress with time, in different regions;
(c),(d) Velocity and shear stress profiles for t/tc = 3.50×10−1. The fractional parameters:
α2 = 0.4, α1 = 0.8, and β = 0.999.
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(a) (b)

Figure 7.5: (a) Evolution of velocity at radial location r̄ = 0.25, 0.5, 0.75; (b) Shear
stress at radial location r̄ = 0.005, 0.25, 0.5, 0.57, 0.995. The fractional parameters:
α2 = 0.1, α1 = 0.4, and β = 0.8.
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Figure 7.6: (a) Normalized tangential velocity of the outer cylinder; (b) Normalised shear stress re-
laxation obtained for a step-strain test with deformation of γ0 = 100%, β = 0.999, α1 = 0.8, α2 = 0.6,
N = 64 and three different levels of refinement; (b) Evolution of the deformation in time for the three
different tangential velocities imposed; (c) Stress relaxation for three different deformations; (d) Zoomed
view of the stress relation obtained for the two smaller deformations.
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7.3.4 A second-order difference scheme for a time-fractional deriva-

tive

In this section, we focus on improving the precision of our numerical method for the

multi-mode fractional Maxwell model. To achieve this, we will extend the second-order

numerical approximation of the time derivative and spectral approximation of the spatial

derivative that we derived in Sec. 7.2.4.

Numerical Discretization of the Velocity Equation

We extend the numerical discretization in Eq. (7.73) to account for α1 and α2, thereby dis-

cretizing D1+α1
tn uθ and D1+α2

tn uθ. Then, we apply spectral approximations to Eq. (7.115)

to obtain the full discretization as follows:
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(7.122)

where the coefficients Cj and Aj, 0 ≤ j ≤ n are defined by Eq. (5.42) and Eq. (7.86),

respectively.
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Numerical Discretization of the Stress Equation

To discretize Dα1
t τ(t) and Dα2

t τ(t), we extend the numerical discretization method from

Sec. 5.4.2 (Eq. (5.58)) to handle α1 and α2. Additionally, the numerical discretization of

Dβ
t γ(t) from Eq. (7.97) is implemented in Eq. (7.116). Finally, spectral approximations

are applied to obtain the full discretization as follows:

[
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V
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(7.123)

where the coefficients Ej and Aj, 0 ≤ j ≤ n are defined by Eq. (5.60) and Eq. (7.86),

respectively.

7.4 Conclusions

This chapter presents highly accurate numerical methods for approximating the Caputo

fractional derivative, focusing on applications on the Fractional Maxwell models and the

Taylor-Couette problem. First-order and second-order temporal difference schemes were

developed for two fractional order ranges 0 < α < 1 and 1 < α < 2. These schemes

were constructed using polynomial interpolation techniques and finite difference meth-

ods, achieving truncation errors of O(∆t) and O(∆t2), respectively. They were employed

to discretize time-dependent fractional differential equations, which, when combined with

spectral methods for spatial discretization, enabled simulations of Newtonian and vis-

coelastic fluid behaviours. To solve the Taylor-Couette flow problem, the study combined

these time-stepping methods with spectral techniques for the spatial discretization. The

simulations successfully modelled both Newtonian and viscoelastic fluids, showing good

agreement with previous research. The results captured key features of viscoelastic flu-

ids, such as delayed momentum transfer and smoother stress relaxation. Additionally, the
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study introduced the multi-mode Fractional Maxwell Model (MM-FMM), which improves

fluid behaviour predictions by considering multiple relaxation times. Experiments showed

that adjusting fractional order parameters changes the relaxation speed with smaller val-

ues of β slowing it down, while larger values make the fluid behave more like a Newtonian

fluid as presented in the previous Chapter. Furthermore, a second-order temporal scheme

was derived for both the single-mode and multi-mode Fractional Maxwell models. These

higher-order schemes provide improved accuracy but remain to be fully implemented.

This will be undertaken in future research. In summary, the proposed methods provide

a strong and accurate approach for studying fractional models for applications in fluid

dynamics, with applications in engineering and materials science. Future work will refine

these models further and improve computational efficiency through better meshing and

parallel computing techniques.
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Chapter 8

Conclusions and Future Work

This chapter summarizes the key contributions of this thesis and outlines potential

directions for future research.

The spectral approximation of the solution to partial differential equation written in

their equivalent weak form, was introduced in one and two dimensions in Chapter. 2. The

L2-error was shown to converge exponentially with respect to the order of the polynomial

N , for a few numerical examples.

The fundamental concepts and symbols related to fractional calculus were introduced

in Chapter. 3. Specifically, we have listed several definitions of fractional derivatives and

their essential characteristics. The theoretical work in this thesis is supported by these

ideas. We have described important properties of fractional operators in detail. These

are utilised to define the time fractional derivative of Fractional Maxwell Models (FMM)

in subsequent chapters. Additionally, we introduced the Laplace transform and Mittag-

Leffler function (MLF), which are required to develop the Green’s function approach.

This method will be used to provide exact solutions to fractional differential equations.

In Chapter.4, we derived fractional viscoelastic models using spring-pot elements ar-

ranged in series and/or parallel. Furthermore, we derived expressions for the relaxation

time and the dynamic moduli of Fractional Maxwell models in single-mode and multi-

mode settings. A novel technique to derive the exact solutions for the Fractional Maxwell

Model (FMM) in both single-mode and multi-mode settings was developed using the

Laplace transform of the Green’s function and expanded in terms of the MLF. This

methodology provides an alternative to Fourier-based methods. The analysis explored

the FMM for fractional exponents α, β satisfying 0 < α < β < 1 and examined key

limiting cases, including the Fractional Maxwell Liquid (FML) and Fractional Maxwell
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Gel (FMG). To capture more complex viscoelastic behaviours, the single-mode FMM was

extended to a multi-mode version. Rheological analysis of relaxation modulus plots re-

vealed that FML exhibits liquid-like behaviour, FMG behaves as a solid or gel, and FMM

transitions between these states based on time or frequency. Finally, the models were val-

idated by fitting them to experimental data using curve-fitting techniques, demonstrating

their accuracy across different frequency ranges.

One of the objectives of this thesis was to develop numerical methods that can ef-

fectively model the complex behaviour of viscoelastic fluids using fractional viscoelastic

models. Specifically, we aimed to numerically solve the system of coupled partial differ-

ential equations that describe Taylor-Couette flow. To do this, an accurate and stable

discretisation in both time and space is required. In Chapter. 5, we followed the discreti-

sation approach from Sun Wu (2006) to derive a numerical scheme of order O(∆t) for

the Caputo time-fractional derivative—addressing two cases: 0 < α < 1 and 1 < α < 2.

Furthermore, we extended the method in Sun Wu (2006) by developing a second-order

approximation of the Caputo fractional derivative. This is achieved by utilizing the first

and second derivatives from the quadratic interpolation polynomial of the velocity over

the two specified intervals of α. Furthermore, we derived first-order and second-order

finite difference schemes for the Caputo fractional derivative applied to the Fractional

Viscoelastic Fluid (FVF) model for the special case α = 1.

The coupled system of equations governing the pure tangential annular flow of frac-

tional viscoelastic fluids was numerically solved and analysed in Chapter. 6. In this

chapter, we employed the spectral method instead of the finite difference method used in

Ferras . (2018). We found that spectral methods provide excellent efficiency and achieve

exponential convergence for smooth problems. This advantage arises because spectral

methods utilise global basis functions and require fewer grid points compared to finite

difference methods. In contrast, finite difference approaches typically demand more grid

points to achieve comparable accuracy while offering lower-order polynomial precision

(usually first or second order), which can increase computational costs. The spectral

method efficiently resolves fast transients and stress relaxations following step strains.
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Through numerical experiments, we examined the convergence order and demonstrated

the solvability of the system.

In terms of a specific fractional viscoelastic model, we introduced the three-parameter

FVF model, which was shown to accurately fit experimental data and capture bounded

stress growth following the onset of steady shear. This model is particularly suitable for

complex fluids. Due to the extended simulation time required for the FVF model, graded

meshes were employed for time discretization.

In Chapter 7, we developed high-order numerical methods for approximating the Ca-

puto fractional derivative, applied to Fractional Maxwell Models and the Taylor-Couette

problem. First-order and second-order temporal difference schemes were derived for differ-

ent fractional orders, achieving improved accuracy through polynomial interpolation and

finite difference methods. These schemes, combined with spectral methods for spatial

discretization, enable accurate simulations of Newtonian and viscoelastic fluids to be per-

formed, capturing key viscoelastic effects such as delayed momentum transfer and stress

relaxation. The Multi-Mode Fractional Maxwell Model (MM-FMM) is also introduced,

which enhances fluid behaviour predictions by incorporating multiple relaxation times.

Results showed that adjusting fractional order parameters for stress influences relaxation

speed, with lower values slowing it down and higher values making the fluid behave more

like a Newtonian fluid. Additionally, a second-order temporal scheme was derived for

both single-mode and multi-mode models, improving accuracy but this awaits full imple-

mentation. The proposed methods provide a strong framework for studying fractional

viscoelastic fluids, with applications in engineering and materials science. Future work

will focus on refining these models and enhancing computational efficiency.

There are several possibilities to extend these ideas in the future. These will form the

basis of the future research activity. Developing higher-order time discretization methods

for fractional viscoelastic models would enhance accuracy and computational efficiency.

Additionally, comparing numerical results with further experimental data would help val-

idate and refine the models. Expanding the study to multi-mode fractional models in

both series and parallel configurations could provide a more comprehensive understand-
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ing of complex fluid behaviour. Another important direction is extending the approach to

variable-order fractional linear viscoelasticity to capture time-dependent material prop-

erties more effectively. Finally, extending the theoretical and numerical techniques de-

veloped in this thesis to more general fractional viscoelastic models could broaden their

applicability and improve their robustness.
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szego1955erdelyiSzegö, G. 1955. A. Erdélyi, Higher Transcendental Functions, Vol. 1 A.
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