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Abstract
Background  Large carnivores in human-dominated landscapes face significant risks from increased anthropogenic 
pressure, making it crucial to understand their movement behaviour for conservation strategies.

Methods  We used conventional and generalised hidden Markov models (HMMs) to analyse GPS telemetry data 
collected from 2016 to 2022 on 15 subadult tigers to classify behavioural states across three life stages (pre-dispersal, 
dispersal, post-dispersal) in the Eastern Vidarbha Landscape, India. We further examined how intrinsic and extrinsic 
factors influenced transitions between these behavioural states.

Results  Three distinct behavioural states were identified: resting (stationary movement with very short step 
lengths), area-restricted movement (tortuous movement with short to intermediate step lengths), and travelling 
(highly directional movement with long step lengths). During the pre-dispersal phase, tigers displayed exploratory 
movement within their natal range, with significant emphasis on area-restricted movement (42.10%), followed by 
travelling (30.47%), and resting (27.42%). Travelling peaked at dusk and showed the highest probability of occurrence 
throughout the night until dawn and exhibited faster movement in areas with high human density. Area-restricted 
movement was most frequent during the day and peaked between 09:00–11:00 h, while resting showed the highest 
probability between 22:00–23:00 h. Dispersing tigers allocated their activity budget equally among resting (32.09%), 
area-restricted movement (35.77%), and travelling (32.14%), as they navigated fragmented landscapes comprising 
of forests, wildlife corridors, agricultural fields, and human settlements. They exhibited faster, directed movements in 
low-cover areas and increased step lengths in fragmented, non-forest habitats, with a greater likelihood of travelling 
at dusk and night. Tigers in the post-dispersal phase had stable home ranges and maintained well-defined territorial 
boundaries. During area-restricted movement, they exhibited longer step lengths in forest habitats and faster travel 
speeds in a human‒agricultural matrix. Moreover, they tended to rest at high temperatures and travelled more when 
the temperatures were between 20 and 30 °C.

Conclusions  Our study provides crucial insights on tiger movements in human-dominated landscapes across 
different life stages and habitats. Understanding their behavioural patterns and implementing effective conservation 
efforts can ensure the long-term survival of tigers and their coexistence with humans.
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Background
Anthropogenic activities contribute to fragmentation, 
degradation, and loss of habitats worldwide, affecting ani-
mal movements [1–3]. High-quality habitats are typically 
separated into small patches surrounded by unsuitable 
habitats and anthropogenic features [4]. Consequently, 
organisms with relatively extensive spatial requirements, 
such as large carnivores, are forced to inhabit mul-
tiple landscapes and move through heterogeneous and 
human-dominated environments [5, 6]. As a result, large 
carnivores regularly come into conflict with humans and 
face significant challenges, including persecution [6]. For 
example, tigers (Panthera tigris) are sometimes killed 
in retaliation for preying on livestock or in response to 
perceived danger to people. Additionally, anthropogenic 
disturbances like roads also negatively impact wildlife 
populations [7], e.g., increased wildlife mortality from 
roadkill [8, 9], reduced ecological connectivity by inhib-
iting movement [10, 11] or altered species activity and 
individual behaviour [12, 13]. For example, large carni-
vores have been shown to modify their movement pat-
terns in response to high human pressure, like increasing 
movement speed or altering activity patterns to avoid 
human conflict [14, 15]. This is important because the 
efficiency of carnivore movement and behaviour deter-
mines their ability to survive and persist in human-domi-
nated landscapes [16].

Understanding movement behaviour is crucial in 
determining how and when individuals traverse land-
scapes to access resources, mates, avoid competition, 
and evade predators at various spatial and temporal 
scales [2, 17, 18]. For example, dispersal is a key ecologi-
cal process that links movement behaviour to landscape 
structure, facilitating gene flow, and is important for 
maintaining functional connectivity between populations 
[19, 20]. However, increasing landscape fragmentation 
and the expansion of linear infrastructures, like roads, 
settlements and fencing, can influence animal dispersal 
and movement by creating physical barriers and high 
mortality risks, and force animals to navigate through 
unsuitable habitats [3, 21, 22]. In response, many spe-
cies have shown behavioural strategies to avoid spatial 
or temporal interactions with humans while efficiently 
using resources, by adjusting their movement patterns or 
habitat use [14, 23, 24]. For example, large carnivores like 
lions (Panthera leo), cougars (Puma concolor), and leop-
ards (Panthera pardus) have been observed altering their 
activity to more nocturnal patterns or increasing move-
ment speeds in human-modified areas to reduce encoun-
ter risk and energy expenditure [25–27].

Quantifying and interpreting movement adaptations 
is essential for promoting long-term human-wildlife 
coexistence and deriving appropriate conservation man-
agement strategies [2, 28], and advances in telemetry 
and analytical tools have made it increasingly feasible to 
derive fine-scale insights [29]. For example, hidden Mar-
kov models (HMMs) applied to GPS telemetry data can 
be used to classify movement into distinct behavioural 
states like resting, foraging or travelling [30], based on 
movement parameters like step lengths and turn angles 
[31–33] and investigate how intrinsic (e.g., age, sex) 
and extrinsic (e.g., habitat type, human disturbance) 
covariates influence the probability of animals to switch 
between these different movement states [34, 35]. HMMs 
thus provide a powerful framework for understanding 
how large carnivores adapt their movement to navigate 
complex and fragmented landscapes [30].

Large carnivores, such as tigers in India, are primar-
ily found in protected areas (PAs), although approxi-
mately 35% of the tiger population is estimated to occur 
outside these PAs [14]. Areas outside PAs are typically 
fragmented landscape, comprising forest patches inter-
spersed with agricultural fields, human settlements and 
other developed lands. In such environments, tigers 
may have to move further or faster to mitigate conflicts 
with humans [14, 36]. Consequently, the long-term per-
sistence of tiger populations depends on the successful 
dispersal of individuals through human-dominated land-
scapes, enabling access to suitable habitats and facili-
tating gene flow and population connectivity. Recent 
research has shown that tigers adjust their movement 
patterns in response to both environmental variation and 
anthropogenic pressures [37, 38]. However, no previous 
study has systematically investigated how tigers modu-
late their movement behaviour across distinct life stages 
(pre-dispersal, dispersal, and post-dispersal) in response 
to environmental and anthropogenic conditions. In par-
ticular, our understanding remains limited regarding how 
tigers modify their behaviour while residing within their 
natal range (pre-dispersal), navigating through complex, 
multi-use landscapes during dispersal, and converging to 
stable home ranges during the post-dispersal phase. We 
hypothesised that tiger movement behaviour would dif-
fer across these life stages, reflecting environmental and 
anthropogenic conditions. For example, dispersing indi-
viduals are expected to encounter novel and often high-
risk areas, requiring greater behavioural flexibility [19]. 
In contrast, tigers in the post-dispersal phase are likely to 
exhibit more consistent and structured movement pat-
terns, reflecting habituation to familiar environmental 
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features and risk exposure. We further predicted that 
movement metrics (step length and turn angle) would 
vary across habitat types (e.g., forest vs. non-forest), 
given that increasing human modification of landscapes 
has been shown to constrain movement behaviour in ter-
restrial mammals [3].

Here, we studied the movement behaviour of tigers 
during three life stages in the Eastern Vidarbha Land-
scape of India. Specifically, we used HMMs to examine 
how tiger behavioural states are associated with ecologi-
cal, environmental, and anthropogenic factors, including 
temperature, diel period (time of day), habitat type (for-
est and non-forest), proximity to roads, and human pop-
ulation density. Our study had two main objectives: (i) to 
identify and characterise the behavioural states exhibited 
by tigers across life stages and (ii) to assess how environ-
mental variables (ambient temperature, time of day, and 
habitat type) and anthropogenic variables (proximity to 
roads and human population density) influence behav-
ioural states.

Methods
Study area
This study was conducted in the Eastern Vidarbha 
Landscape (EVL) of Maharashtra, a part of the Central 
Indian Tiger Landscape (Fig. 1), covering approximately 
97,320 km² with 27.5% forest cover (Habib et al., 2021). 
The tiger-bearing PAs in the study include Tadoba-And-
hari Tiger Reserve (TATR), Umred-Karhandla Wildlife 
Sanctuary (UKWLS), and Tipeshwar Wildlife Sanctuary 
(TWLS). The area outside the PAs comprises the Brah-
mapuri Forest Division, which is interspersed with urban, 
semi-urban and rural settlements, and encompasses 8540 
villages [39].

Across the EVL, human settlements vary in density, 
with urban areas reaching over 3870 person/km², while 
rural areas maintain lower densities, averaging around 
305 person/km². The region is traversed by an exten-
sive road network, comprising highways, primary, and 
minor roads, with a density of 0.20 km/km². The vegeta-
tion is primarily dry deciduous, dominated by teak (Tec-
tona grandis) and bamboo (Dendrocalamus strictus). 
Faunal species include the tiger, cooccurring with other 

Fig. 1  Study area of the Eastern Vidarbha Landscape showing protected and non-protected areas, land use types (forest, grassland, water bodies), major 
roads, and human settlements (urban, semi-urban, rural), where 15 tigers were captured and fitted with GPS collars during 2016–2022.
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predators like leopard, dhole (Cuon alpinus), and sloth 
bear (Melursus ursinus). The ungulate prey base includes 
species like chital (Axis axis), sambar (Rusa unicolor), nil-
gai (Boselaphus tragocamelus), and wild pig (Sus scrofa), 
which are distributed within and outside PAs [40]. The 
study area experiences a tropical monsoon climate with 
dry and hot summers, rainy monsoon seasons, and mild 
winters [41]. Annual precipitation in the EVL varies 
widely, ranging from 400 to 2000 mm.

Telemetry data collection
We fitted 15 subadult tigers from the EVL of Maharash-
tra, India, with GPS collars between 2016 and 2022. Of 
those tigers, we captured ten tigers from PAs (eight males 
and two females) and five from outside PAs (one male 
and four females) of different ages (Additional file 1: Sup-
plementary Table S1). Within PAs, which included wild-
life sanctuaries and tiger reserves, tigers were captured 
from various locations. In tiger reserves such as TATR, 
tigers were captured from the core and buffer areas. 
Core areas are critical habitats for tigers without human 
activity, whereas buffer areas lie on the periphery of core 
zones and include a combination of wild- and human-
dominated areas.

Tigers were captured and immobilised using a combi-
nation of medetomidine hydrochloride, ketamine hydro-
chloride, and xylazine (dosages based on body weight, 
age, and sex). The collars fitted were equipped with GPS 
and VHF telemetry (GPS Plus; Vectronic Aerospace, 
Berlin, Germany), allowing for remote data acquisition 
through satellite and real-time ground-based tracking in 
the field using VHF. All captured tigers were older than 
one year at the time of collaring, and collars were padded 
with foam to accommodate neck growth into adulthood. 
GPS locations were received at 1–5 h intervals, depend-
ing on the life stage of the individual (see next section) 
and were downloaded remotely via satellite using the 
GPS Plus X software (Vectronic Aerospace). We used 
VHF telemetry to track individual tiger movements and 
observe their behaviour until they established territories. 
Once individuals established a stable and defined home 
range, collars were removed using a remote drop-off 
mechanism upon completion of monitoring.

Dispersal movements
Dispersal is a three-stage ecological process encom-
passing emigration (departure from the natal range), 
transience (exploratory movement through unfamiliar 
areas), and settlement (establishment of a new, stable 
home range) [19, 42]. In this study, we focused on natal 
dispersal, which refers to the movement of individuals 
from their birth site to the location where they eventually 
establish a breeding territory [19]. To initially distinguish 
between dispersing and non-dispersing individuals, we 

visually assessed semivariogram plots, which represent 
the spatial autocorrelation of movement paths over time 
and are commonly used to evaluate range residency [43, 
44].

Following the identification of dispersing individu-
als, we aligned the conceptual dispersal framework with 
movement-based phases derived from net squared dis-
placement (NSD) to classify them into distinct life stages 
i.e., pre-dispersal, dispersal, and post-dispersal [45]. We 
distinguished between the ecological stages of dispersal 
(emigration, transience, settlement) and the movement 
phases used in our analysis (pre-dispersal, dispersal, post-
dispersal), which, though conceptually aligned, reflect 
behavioural and empirical perspectives, respectively. 
While ecological stages represent conceptual definitions 
from dispersal theory, our movement phases are empiri-
cally defined based on observed movement patterns 
extracted from NSD analyses. The pre-dispersal phase 
is characterised by the movement of individuals within 
their natal range prior to permanent departure. The dis-
persal phase involves a permanent, one-way movement 
from a natal range to another habitat in search of new 
territory and potential mates [46, 47]. The post-dispersal 
phase involves movement in an area with a relatively sta-
ble and well-defined home range that persists over time. 
Furthermore, the individual’s post-dispersal range does 
not overlap with the pre-dispersal or dispersal range.

Processing of movement data
HMMs typically require animal locations that are tem-
porally regular and recorded with high positional accu-
racy [48]. In our dataset, GPS locations for tigers were 
recorded at irregular intervals ranging from 1 to 5  h, 
depending on the life stages. As HMMs are sensitive to 
temporal resolution (i.e., scale-dependent), inconsistent 
time steps can bias behavioural inference. Therefore, we 
filtered the data to include only 2-h and 3-h intervals (the 
most frequent in our dataset) and regularised the move-
ment paths to consistent 2-h time steps using continu-
ous-time correlated random walk (CTCRW) models [43, 
49]. This approach allowed us to predict temporally regu-
lar tracks at 2-h intervals suitable for HMM analysis [50, 
51].

Environmental and anthropogenic covariates
The time of day (hours), temperature (°C), habitat (forest 
or non-forest), human population density (people/km²), 
and distance to the nearest road (km) were determined 
for each GPS fix and included as predictor variables 
in the HMM (see below) to test their influence on state 
transition probabilities (i.e., the probability of switch-
ing between behavioural states) and state-dependent 
probability distribution parameters (distribution of step 
lengths and turn angles). The time of day was included as 
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a cosine function to account for cyclical behaviour (24 h). 
The Euclidean distance to the nearest road was calculated 
using OpenStreetMap geospatial data (OpenStreetMap 
2020) in Google Earth Engine [52]. The temperature data 
were retrieved from the GPS collar sensor. Human popu-
lation density data were obtained from SEDAC, NASA, 
at a spatial resolution of 1 × 1  km (​h​t​t​p​​s​:​/​​/​s​e​d​​a​c​​.​c​i​​e​s​i​​n​.​c​
o​​l​u​​m​b​i​a​.​e​d​u​/). We obtained land use data from Bhuvan 
(NRSA, 2016; http://bhuvan.nrsc.gov.in/), with a spatial 
resolution of 60 m. We classified the landscape into two 
broad habitat types: forest habitat (forest, grassland, and 
water bodies) and non-forest habitat (comprising built-
up areas and agriculture).

Hidden Markov models
We used conventional and generalised HMMs to exam-
ine how tiger behavioural states are influenced by envi-
ronmental and anthropogenic covariates [48]. The 
conventional HMM allows covariates to affect the state 
transition probabilities (i.e., the probabilities of switch-
ing between behavioural states such as resting, forag-
ing, or travelling, including remaining in the same state 
i.e., state-persistence). Generalised HMMs extend this 
framework by allowing covariates to also influence the 
state-dependent probability distribution parameters of 
the movement characteristics [53]. This added flexibil-
ity is valuable for investigating how covariates influence 
both the likelihood of switching between behavioural 
states and the characteristics of movement within states. 
For example, generalised HMMs allow us to assess if the 
speed and directionality of tiger movement when trav-
elling varies according to the habitat they are moving 
through (e.g., roads or human-dominated landscapes), 
offering greater ecological inference about avoidance or 
risk-sensitive behaviours.

Statistical analysis using HMMs
The HMMs were fitted by modelling the step lengths 
with a gamma distribution and turning angles using 
a von Mises distribution, which is a circular analogue 
of the normal distribution [54]. We fitted the models 

using three distinct behavioural states because 3-state 
HMMs are statistically well supported and biologically 
meaningful for terrestrial mammalian movement [e.g., 
29, 55]. These behavioural states were defined as rest-
ing (stationary movement with very short step lengths), 
area-restricted movement (tortuous movement with 
short to intermediate step lengths), and travelling (highly 
directional movement with longer step lengths). We fit-
ted 25 HMMs using different sets of randomly selected 
starting values for step length and turning angle param-
eters to ensure optimal maximum likelihood estimates. 
These starting values were chosen within plausible ranges 
determined by inspecting histograms of step lengths and 
turning angles. The model outputs were robust to dif-
ferent starting values, reflecting the convergence value 
of the maximum likelihood. The model with the lowest 
AIC value was considered the best model for starting val-
ues and used to fit a priori models (N = 19), consisting of 
ecological and anthropogenic covariates across the life 
stages, which were fitted using conventional and gener-
alised HMM frameworks (Additional file 1: Supplemen-
tary Table S2). The most likely sequence of behavioural 
states for these models was decoded using the Viterbi 
algorithm [55]. Model assumptions were verified by visu-
ally inspecting the pseudo-residual plots [54, 55]. We 
used the package crawl to fit CTCRW models [49] and 
momentuHMM to implement HMMs [48] in R version 
4.3.2 [56].

Results
We identified three distinct behavioural states exhib-
ited by tigers during the pre-dispersal, dispersal, and 
post-dispersal phases. The ‘resting state’ refers to sta-
tionary behaviour, whereas tigers in the ‘area-restricted 
movement’ state indicate foraging or movement within 
a small area. The ‘travelling state’ corresponds to fast 
and directed movement over a long distance. The best-
supported models of tiger behaviour influenced by envi-
ronmental and anthropogenic variables across life stages 
are listed in Table  1. Furthermore, the HMMs revealed 
different predictor variables that affected the stationary 

Table 1  The top two hidden Markov models (HMMs), ranked by ΔAIC, for each tiger life stage (pre-dispersal, dispersal, post-dispersal), 
describing 3-state movement behaviours (resting, area-restricted movement, and travelling) at 2-hour intervals. All other candidate 
models and parameters are in table S4 (Additional file 1). Habitat type (forest, non-forest) influenced state-dependent distribution 
parameters (step length, turning angle) across all life stages. Regression coefficients and state transition probabilities for the top three 
models are presented in tables S5 and S6 (Additional file 1)
Life stage Covariate effects on stationary and transition probabilities AIC ΔAIC
Pre-dispersal Ecological (time of day) + Anthropogenic (human population density) 19740.91 0

Ecological (time of day and habitat) + Environmental (temperature) 19760.79 19.87
Dispersal Ecological (time of day and habitat) + Environmental (temperature) 15468.86 0

Ecological (time of day) + Environmental (temperature) 15476.48 7.62
Post-dispersal Ecological (time of day + habitat) + Environmental (temperature) 38201.44 0

Ecological (time of day + habitat) 38211.65 10.2

https://sedac.ciesin.columbia.edu/
https://sedac.ciesin.columbia.edu/
http://bhuvan.nrsc.gov.in/
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and transition probabilities, and state-dependent move-
ment characteristics. Model validation confirmed that 
the assumptions of the HMMs were met, based on the 
visual inspection of pseudo-residual plots for each life-
stage-specific model, with no substantial deviations from 
normality or homoscedasticity, supporting the reliability 
of model inferences (Additional file 1: Supplementary 
Figure S3).

Pre-dispersal
We analysed data from 10 individuals (6 males and 4 
females) ranging from 15 to 154 days per individual, with 
9420 GPS locations of tigers from the Eastern Vidarbha 
Landscape. State 1 (resting) corresponded to very 
short step lengths (mean = 14.21  m) and variable turn-
ing angles (mean = 3.14 radians; concentration = 0.08), 
indicating stationary and localized movement. State 
2 (area-restricted movement) had short step lengths 
(mean = 99.81  m) and a wide distribution of turning 
angles (mean = 0.10 radians; concentration = 0.34), indi-
cating tortuous movement within a small area. State 3 
(travelling) had longer step lengths (mean = 751.04  m) 
and a high turning angle concentration parameter (mean 
= -0.02 radians; concentration = 1.07), indicating faster 
movement with high directionality (Additional file 2: 
Figure S1). On average, the tigers spent 30.47% of their 
time travelling, 42.10% in area-restricted movement, and 
27.42% resting. The best model describing the pre-disper-
sal phase in tigers included the effects of time of day and 
human population density on the transition probabili-
ties. The movement characteristics (step length and turn 
angle) within the behavioural states (i.e., state-dependent 
parameter distributions) were associated with the habitat 
type (forest or non-forest).

State-dependent distribution parameters (step length and 
turn angle)
In the resting and area-restricted movement states, the 
mean step lengths between forest and non-forest habi-
tats were relatively similar (~ 13 m in the resting state and 
~ 30  m in area-restricted movement; Additional file 2: 
Figure S2). However, during the travelling state, the mean 
step length was greater in non-forest habitats (~ 900 m) 
compared to forest habitats (~ 750 m). There was no con-
sistent directionality of individuals in the resting state in 
either habitat (Additional file 2: Figure S3). During area-
restricted movements, tigers had higher directionality 
in forest habitats (concentration = ~ 0.35) compared to 
non-forest habitats (concentration = ~ 0.1). During the 
travelling state, tigers exhibited similarly high directional 
persistence in non-forest (angle concentration = 1.08) and 
forest habitats (1.04).

Stationary-state probabilities
Tigers modulated their behaviour in response to time of 
day (Fig. 2a). The travelling state was most likely to occur 
during dawn and dusk, whereas area-restricted move-
ment was prominent between 06:00–13:00 h, peaking at 
10:00 h. In contrast, tigers primarily rested at night, with 
the highest probability of resting at midnight. Further-
more, the stationary probability exhibited distinct behav-
ioural fluctuations corresponding to human population 
density. Tigers moving through areas with relatively high 
population density showed the highest probability of 
travelling. In contrast, the probability of tigers exhibit-
ing area-restricted movement was highest in areas with 
low human population density and declined with increas-
ing human presence. The likelihood of the resting state 
remained relatively consistent across human population 
densities, with a slight decrease observed in areas of 
highest human presence (Fig. 2b).

Transition probabilities
During the pre-dispersal phase, ecological parameters, 
such as time of day, influenced the transition probability 
of the tigers switching between movement states (Addi-
tional file 2: Figure S4). When resting, the probability 
of switching from resting to area-restricted movement 
peaked at noon, and the probability of switching to trav-
elling peaked during the early morning. The probability 
of transitioning from area-restricted movement to rest 
was typically low, and travel increased in the early morn-
ing and in the evening between 15:00–20:00  h. Once 
in a travelling state, the probability of transitioning to 
area-restricted movement peaked at noon, with a low 
probability of switching to resting. Moreover, human 
population density also affected transition probabili-
ties (Additional file 2: Figure S5). As human population 
density increased, the probability of transitioning from 
a resting state to a travelling state increased. However, 
tigers remained in the same state when in areas with low 
human population density (e.g., remained resting when 
already in a resting state, or remained travelling when 
already in a travelling state).

Dispersal
We analysed data from six dispersing tigers (five males 
and one female), tagged for 19–162 days for a total of 
5400 GPS locations. State 1 (resting) corresponded to 
short step lengths (mean = 17.71  m) and variable turn-
ing angles (mean = 3.14 radians; concentration = 0.12), 
indicating very slow and localized movement. State 2 
(area-restricted movement) had a moderate step length 
(mean = 220.88  m) and wide turning angle distribution 
(mean = -0.10 radians; concentration = 0.28). State 3 
(travelling) had longer step lengths (mean = 1387.19  m) 
and a more concentrated turning angle distribution 
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Fig. 2  Effects of (a) time of day (hour), grey shaded area represents night, while the white areas denote day and (b) human population density (person/
km²) on stationary-state probabilities during the pre-dispersal phase of tigers in the Eastern Vidarbha Landscape of Maharashtra, India. Bold dashed lines 
represent mean estimates for each behavioural state, and shaded areas indicate 95% confidence intervals
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(mean = 0.03 radians; concentration = 1.79), indicating 
faster movement with high directional persistence (Addi-
tional file 3: Figure S6). Of the total activity budget during 
dispersal, approximately 32.09% of the tigers’ time was 
classified as resting, 35.77% as area-restricted movement, 
and 32.14% as travelling. The best-fitting HMM included 
the effects of time of day, habitat, and temperature on the 
state transition probabilities. Furthermore, the move-
ment characteristics (step length and turn angle) within 
behavioural states were associated with habitat type.

State-dependent distribution parameters (step length and 
turn angle)
In the resting state, the mean step lengths were similar 
between the forest and non-forest habitats (Additional 
file 3: Figure S7). The mean step length in area-restricted 
movement in non-forest habitats (~ 500  m) was more 
than twice that in forest habitats (~ 200  m). Similarly, 
the mean step length in the travelling state for dispers-
ing tigers was longer in non-forest habitats (~ 2500  m) 
than in forests (~ 1400 m). The difference in directionality 
between the two habitats was negligible for resting and 
area-restricted movements. However, in the travelling 
state, tigers had greater directional persistence in non-
forest habitats (angle concentration = 3.5) than in forest 
habitats (angle concentration = 1.8) (Additional file 3: Fig-
ure S8).

Stationary-state probabilities
The stationary probability of dispersing tigers varied with 
the time of day (Fig.  3a). Dispersing tigers were more 
likely to travel at dusk and night while resting at mid-
night until dawn. These behavioural states were followed 
by area-restricted movements in the morning and after-
noon, which peaked at 10:00 h. The results also indicated 
that ambient temperature influenced the stationary prob-
ability of the tigers during the dispersal phase (Fig.  3b). 
Specifically, individuals were more likely to travel when 
the temperature was between 20 and 30  °C. However, 
with a further increase in temperature, individuals were 
more likely to rest. The probability of being in an area-
restricted movement state remained steady in response 
to increased temperature. Tigers had the highest prob-
ability of travelling in forest habitats and the lowest prob-
ability of travelling in non-forest habitats, coupled with a 
high probability of resting in non-forest habitats (Fig. 3c). 
The probability of being in an area-restricted movement 
state was lowest in forest habitats. Whereas, in non-
forest habitats, this state occurred more frequently than 
travelling but less than resting.

Transition probabilities
During dispersal, the top model predicted that time 
of day influenced the probability of tigers switching 

behavioural states (Additional file 3: Figure S9). When 
resting, tigers were most likely to remain in the same 
state (i.e., continue resting), with a low probability of 
switching to area-restricted movement or travelling. 
Similarly, individuals in the area-restricted movement 
state were more likely to remain in that state, with the 
peak probability occurring at 09:00  h, and transition to 
travelling in the evening (18:00  h). When travelling, the 
most likely transition for dispersing tigers was to remain 
in the same state, with the maximum probability occur-
ring at night. The transition from travelling to area-
restricted movement peaked at 10:00 h. The response of 
the transition probabilities to temperature also varied 
across the states (Additional file 3: Figure S10). With an 
increase in temperature, the probability of transitioning 
from resting to area-restricted movement or travelling 
remained low. However, individuals in the area-restricted 
movement state showed an increased probability of tran-
sitioning either to a resting state or remaining in the 
same state with increasing temperature. Furthermore, 
increased temperatures decreased the likelihood of tran-
sitioning to the travelling state and increased the likeli-
hood of individuals shifting from travelling to resting or 
area-restricted movement. Habitat also influenced state 
transitions, with individuals in non-forest habitats hav-
ing a slightly higher probability of switching from resting 
to area-restricted movement compared to those in forest 
habitats (Additional file 3: Figure S11). Similarly, in area-
restricted movement, the likelihood of transitioning to 
resting was high, whereas the probability of remaining 
in the same state was lower in non-forest habitat. In the 
travelling state, tigers showed a slight increase in transi-
tions from travelling to resting in non-forest habitats, 
whereas they were more likely to remain in the travelling 
state when in forest habitats.

Post-dispersal
The results for the post-dispersal movements were 
derived from seven individuals (five males and two 
females), tagged for 84–305 days, totalling 8980 GPS 
locations across all individuals. State 1 (resting) had 
short step lengths (mean = 25.26  m) and variable turn-
ing angles (mean = 3.14 radians, concentration = 0.08). 
State 2 (area-restricted movement) had long step lengths 
(mean = 724.80  m) and high turning angles (mean = 3.12 
radians; concentration = 0), suggesting long distances 
were travelled with directional persistence. State 3 (trav-
elling) had a higher mean step length (867.48 m) and high 
directional persistence (mean = -0.01 radians; concentra-
tion = 34.07; Additional file 4: Figure S12). Approximately 
36.28% of the total activity budget was classified as rest-
ing, 38.81% as area-restricted movement, and 24.91% 
as travelling. Time of day, temperature, and habitat 
type affected the stationary and transition probabilities. 
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Fig. 3  Effects of (a) time of day (hour), grey shaded area represents night, while the white areas denote day, (b) temperature (°C), and (c) habitat: forest 
and non-forest on stationary-state probabilities during the dispersal phase of tigers in the Eastern Vidarbha Landscape of Maharashtra, India. For figure (a) 
and (b), bold dashed lines represent mean estimates for each behavioural state, with shaded areas indicating 95% confidence intervals. In figure (c), bold 
horizontal bars indicate mean estimates, and vertical error bars represent 95% confidence intervals
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Moreover, habitat type influenced state-dependent 
parameters (step length and angle).

State-dependent distribution parameters (step length and 
turn angle)
In the resting state, there was minimal variation in the 
mean step length between forest and non-forest habi-
tats (Additional file 4: Figure S13). In contrast, during 
area-restricted movement, the mean step length in for-
est habitats (~ 720 m) was greater than that in non-forest 
habitats (~ 440 m). In the travelling state, the mean step 
length (~ 2000  m) in the non-forest habitat was twice 
that in the forest habitat (~ 900 m). No consistent direc-
tional pattern was observed across habitats for resting or 
area-restricted movement. However, tiger movement was 
more directional while travelling in forest habitats (Addi-
tional file 4: Figure S14).

Stationary-state probabilities
The probability of different behavioural states in tigers 
during post-dispersal varied according to the time of day 
(Fig.  4a). Area-restricted movement was the most likely 
state overall, although the probability of a resting state 
peaked in the early morning hours (05:00 and 07:00 h). In 
the evening, there was an increased probability of tigers 
remaining in a travelling state, reaching a peak between 
17:00–18:00 h, although this remained a lower probabil-
ity than the other two states. The ambient temperature 
also influenced stationary behaviour; tigers were more 
likely to rest and travel less with increasing temperature 
(Fig. 4b). Moreover, it showed the highest probability of 
area-restricted movement with a decrease in tempera-
ture. Tigers in forested habitats showed the highest prob-
ability of remaining in the area-restricted movement state 
and the lowest probability of travelling. In contrast, tigers 
in non-forest habitats had high probabilities of travelling 
and area-restricted movement, with resting being the 
least likely state (Fig. 4c).

Transition probabilities
The transition probabilities showed less variation with 
time of day during post-dispersal than in the other two 
life stages (Additional file 4: Figure S15). During the rest-
ing state, the highest probability was to remain in the 
same state, which peaked at midnight. The probability 
of switching from resting to area-restricted movements 
peaked at noon. However, no clear trend was observed 
for switching from area-restricted movement or travel-
ling to other states. The model also predicted variation in 
the state-switching behaviour in response to temperature 
(Additional file 4: Figure S16). With increasing tempera-
ture, the probability of transitioning from resting to area-
restricted movement increased. However, individuals in 
the area-restricted movement state showed a decreased 

probability of remaining in the same state with increas-
ing temperature. Furthermore, higher temperatures 
increased the likelihood of individuals shifting from the 
travelling to the resting state. Habitat also played a role 
in state transitions and tigers in the area-restricted move-
ment had a slightly higher probability of remaining in 
the same state in non-forest habitats, whereas they were 
more likely to transition to travelling in forest habitats. In 
contrast, tigers in the travelling state had a greater chance 
of switching to area-restricted movement in forest habi-
tats, whereas in non-forest habitats, they were more 
likely to continue travelling (Additional file 4: Figure S17).

Discussion
This study advances our understanding of tiger move-
ment ecology by characterising three distinct behavioural 
states into resting, area-restricted movement, and travel-
ling using HMMs applied across life stages (pre-disper-
sal, dispersal, and post-dispersal) in a human-dominated 
landscape. While tigers responded consistently to key 
environmental and anthropogenic drivers, including diel 
period, temperature, habitat structure, and human dis-
turbance, these behavioural responses were expressed 
differently according to the life stage. Such behavioural 
plasticity underscores the adaptive strategies necessary 
for large carnivores persisting in a fragmented, human-
dominated landscape [3, 57]. Similar segmentation of 
movement behaviours across wide-ranging carnivores 
suggests a general behavioural framework supporting 
adaptive decision-making in response to spatial complex-
ity and anthropogenic risks [15, 38, 58].

Across all life stages, tiger movement exhibited strong 
diel patterns. Travelling was predominantly crepuscular 
and nocturnal, aligning with their peak prey activity [59] 
while minimising human encounters [60]. Resting gen-
erally dominated during daylight, especially in dispers-
ing individuals. Nocturnal movement during dispersal, 
combined with increased travelling bouts, likely served 
to reduce conflict risk and facilitate navigation through 
unfamiliar, human-modified landscapes in search of 
suitable habitats. This adaptation has been previously 
observed, where tigers shift to faster movement at night 
to navigate fragmented landscapes and maximise their 
chances of reaching suitable habitats during dispersal 
[61]. Similar nocturnal activity has been observed across 
a range of carnivore species, which tend to increase 
mobility under the cover of darkness to avoid detection 
and disturbance in human-modified landscapes [62, 63]. 
In contrast, post-dispersal individuals exhibited peak 
area-restricted movement during evening and remained 
high through the night, suggesting a shift towards local-
ised territorial activity once settled. Similar behavioural 
adaptations have been observed in Florida panthers, 
which rest during the day and shift from intermediate to 
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Fig. 4  Effects of (a) time of day (hour), grey shaded area represents night, while the white areas denote day (b) temperature (°C), and (c) habitat: forest 
and non-forest on stationary-state probabilities during the post-dispersal phase of tigers in the Eastern Vidarbha Landscape of Maharashtra, India. For fig-
ures (a) and (b), bold dashed lines represent mean estimates for each behavioural state, with shaded areas indicating 95% confidence intervals. In figure 
(c), bold horizontal bars indicate mean estimates, and vertical error bars represent 95% confidence intervals
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exploratory states when traversing open or fragmented 
landscapes [64].

Similarly, ambient temperature consistently influenced 
tiger behaviour, where active movements were most fre-
quent at moderate temperatures (~ 20–30 °C), while rest-
ing predominated at higher temperatures. These patterns 
reflect thermoregulatory adaptations aimed at minimis-
ing energy expenditure and heat stress; a behavioural 
strategy common among large carnivores [65]. Specifi-
cally, in the post-dispersal phase, higher temperatures 
reduced the probability of area-restricted movement and 
increased the likelihood of resting. Elevated temperatures 
also prompted a shift from travelling to resting, reflect-
ing temperature-sensitive energy optimisation, consistent 
with thermoregulatory strategies in large carnivores [66].

Tigers also consistently adjusted their movement 
behaviour in response to habitat type and human pres-
ence. Non-forest areas, particularly those with high 
human density, prompted faster, more directional 
movements, likely reflecting a risk-avoidance strategy 
in response to perceived threats [14, 61]. In contrast, 
forested habitats facilitated localised area-restricted 
movements associated with foraging and territory main-
tenance. This capacity for flexible risk navigation is con-
sistent with findings in other wide-ranging carnivores 
like cougars [67] and leopards [68], where non-forested 
or human-influenced areas act as semi-permeable barri-
ers, triggering increased movement speed and reduced 
site fidelity. Furthermore, dispersing tigers in non-forest 
habitats frequently switch between resting and area-
restricted movement in response to frequent human 
disturbances, like agricultural activities and human 
movement, which may force individuals to shift resting 
sites or engage in localised movement within agricultural 
fields. Such frequent switching may represent a behav-
ioural strategy to minimise exposure to human activity 
in landscapes outside PAs. However, post-dispersal tigers 
limited their behavioural switching and were more likely 
to persist in either area-restricted movement or travelling 
states. This behavioural consistency or plasticity likely 
reflects adaptive responses to navigating fragmented, 
high-risk landscapes characterised by frequent human 
disturbance [38, 60]. Within forest habitats, tigers were 
more likely to remain travelling, suggesting higher land-
scape permeability, high resource access, and reduced 
perceived risk.

The relative importance of the different movement 
phases varied across life stages. During the pre-dispersal 
phase, tigers primarily exhibited area-restricted move-
ment interspersed with resting and short-distance travel, 
indicating limited-range activity centred on a familiar 
landscape and close to maternal resources. The predomi-
nance of localised movements with low directional per-
sistence suggests foraging or spatial learning behaviour 

within known areas. Risk avoidance was evident even at 
this early stage, as individuals displayed increased direc-
tional travelling through human-impacted areas, sug-
gesting early development of behavioural strategies to 
mitigate anthropogenic risk [69]. Nocturnal activity and 
short-distance movements near dawn and dusk further 
support adaptive temporal adjustments aimed at mini-
mising exposure during vulnerable periods.

In the dispersal phase, movement patterns shifted 
towards greater mobility. Dispersing tigers exhibited lon-
ger, more frequent travelling bouts, reflecting the need 
to navigate unfamiliar and fragmented landscapes in 
search of suitable territories. Movement through non-
forest habitats became faster and more directed, likely 
reflecting an adaptive strategy to minimise time spent in 
high-risk zones [70]. Increased nocturnal travelling likely 
mitigated conflict potential during dispersal, a behav-
iour consistent with reports of increased nocturnality 
among large carnivores in human-dominated landscapes 
[14]. Behavioural flexibility was particularly evident dur-
ing dispersal, as tigers traversed agricultural fields and 
human settlements, often moving long distances between 
remnant forest patches. Such mobility and responsive-
ness to landscape structure are critical for successful dis-
persal and gene flow in fragmented systems [6].

In contrast, tigers in the post-dispersal phase exhib-
ited increased behavioural stability, reflecting a transition 
from exploration to territory establishment, consistent 
with patterns observed in other territorial carnivores 
[71, 72]. Movements became more localised within for-
est patches, dominated by area-restricted movement and 
resting. Reduced behavioural transition reflects stabi-
lisation of home ranges and familiarity with local risks. 
However, when moving through non-forest areas within 
established territories, tigers maintained fast, directional 
movement, underscoring the persistent influence of 
anthropogenic risk even among established individuals 
[73]. The dominance of area-restricted movement in for-
ested habitats likely reflects activities related to territory 
defence, foraging, and reproductive investment, all cen-
tral to long-term survival and reproductive success [74].

These findings highlight that while tigers rely on a 
consistent suite of behavioural responses to environ-
mental and anthropogenic variables, the ecological con-
text of each life stage modulates the expression of those 
responses. These life-stage-specific strategies reveal the 
importance of maintaining landscape connectivity not 
just for dispersing individuals but also for territorial 
adults navigating human-dominated spaces.

Strengths and limitations
Our ability to interpret these complex behavioural 
responses is strengthened by the methodological frame-
work adopted in this study. A major strength lies in its 
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life-stage-specific approach, providing a rare tempo-
ral perspective on how movement behaviour changes 
as individuals transition from dependence to dispersal 
and finally territory establishment. Additionally, this 
study is one of the few to compare movement within and 
outside PAs, capturing how tigers adapt to variable lev-
els of anthropogenic disturbance across the landscape. 
The application of generalised hidden Markov models 
(HMMs) enabled covariate-informed state modelling, 
offering ecologically meaningful interpretations of how 
external factors shape behavioural states. Conventional 
HMMs may oversimplify behavioural responses by 
assuming movement parameter distributions are con-
stant within states [30, 53]. However, the study is limited 
by a small, male-biased dispersal sample, which may have 
skewed inferences toward male-specific movement strat-
egies. Male bias is a common limitation in large carnivore 
telemetry due to sex differences in movement and cap-
ture likelihood [75]. As dispersal behaviour and habitat 
sensitivity may differ between sexes, caution is warranted 
in generalising these findings to female tigers. Future 
research should prioritise balanced sampling to explore 
sex-specific variation in movement behaviour. Further-
more, while generalised HMMs offer richer modelling 
potential, they carry a higher risk of overfitting when 
applied to small datasets [31, 76], emphasising the need 
for cautious interpretation.

Conclusions
This study offers detailed, life-stage-specific insights into 
tiger movement ecology, demonstrating how behavioural 
flexibility enables tigers to navigate human-modified 
landscapes. Using HMMs, we show that tiger move-
ment patterns are shaped by temporal, environmen-
tal, and human factors, reflecting trade-offs between 
resource acquisition and risk avoidance. In India, where 
rapid land-use change, infrastructure development, 
and human-tiger conflict are escalating, particularly 
in regions like Vidarbha, these findings offer action-
able insights for conservation planning. The observed 
behavioural flexibility underscores the importance of 
maintaining functional connectivity, via forest corridors, 
buffer zones, and areas outside PAs, to facilitate disper-
sal, reduce conflict, support long-term gene flow and 
allow the survival of large carnivores in human-dom-
inated areas [18]. Integrating movement ecology into 
landscape and infrastructure planning is therefore vital 
to mitigate fragmentation impacts, regulate development 
near protected areas, and promote coexistence strategies 
that support tiger persistence in shared landscapes.

Furthermore, behavioural flexibility may become 
even more critical under future climate change, which 
is projected to intensify environmental variability and 
resource unpredictability. Evidence from other large 

carnivores, such as lions, shows that drought conditions 
can drive range expansion as individuals seek increas-
ingly scarce resources [77]. Similarly, climate change may 
shift species and prey distributions, indirectly influenc-
ing the movement patterns and habitat use of individu-
als [78]. Rising temperatures may further affect muscle 
mechanics, altering power and speed, which can influ-
ence animal movement and behaviour [79]. These cli-
matic pressures, compounded by human-driven habitat 
fragmentation, are likely to exacerbate dispersal risks by 
reducing connectivity, increasing energetic demands, and 
heightening exposure to anthropogenic threats [80–82]. 
Consequently, range shifts may be constrained, subpopu-
lations isolated, and gene flow disrupted, with implica-
tions for metapopulation stability and long-term viability 
[83, 84].

In summary, the persistence of wide-ranging species 
like tigers will depend not solely on protected areas but 
on managing multifunctional, human-dominated land-
scapes that preserve connectivity and support behav-
ioural resilience. Conservation strategies that incorporate 
movement ecology principles will be essential for sus-
taining tiger populations in an increasingly fragmented 
and climate-affected future.
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