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Families of G-constellations over Resolutions of Quotient Singularities

Timothy Logvinenko

Abstract. Let G be a finite subgroup of GLn(C). A study is made of the ways in

which resolutions of the quotient space Cn/G can parametrise G-constellations, that

is, G-regular finite length sheaves. These generalise G-clusters, which are used in the

McKay correspondence to construct resolutions of orbifold singularities.

A complete classification theorem is achieved, in which all the natural families

of G-constellations are shown to correspond to certain finite sets of G-Weil divisors,

which are a special sort of rational Weil divisor, introduced in this paper. Moreover,

it is shown that the number of equivalence classes of such families is always finite.

Explicit examples are computed throughout using toric geometry.

1. Introduction

Let G ⊆ SL3(C) be a finite subgroup and let X be the quotient space C3/G. Nakamura

made a study of G-clusters, the G-invariant subschemes of dimension 0 whose coordinate

ring, with the induced G-action, is the regular representation Vreg of G. He introduced

the scheme G -HilbC3, which parametrises all G-clusters and showed [13] that, in the case

of G being abelian, it is a crepant resolution of C3/G, conjecturing that the same holds

for the non-abelian case.

Craw and Reid [5] introduced an alternative way of explicit calculation of G -HilbC3

and in his thesis [3] Craw introduced the concept of G-constellation as a generalisation of

G-cluster. A G-constellation is a G-equivariant coherent sheaf whose global sections form

the regular representation of G. In particular, the structure sheaf of any G-cluster is a

G-constellation.

G-constellations can be interpreted in terms of representations of the McKay quiver of

G. This allows for the use of an earlier result of King [10] on GIT construction of moduli

spaces of quiver representations to introduce the stability conditions known as θ-stability

on G-constellations and to construct their moduli spacesMθ. In a quiver-theoretic context,

Kronheimer [11] and Sardo Infirri [15,16] have already considered these moduli spaces and

have studied the chamber structure in the space Π of stability parameters θ, where all

values of θ in the same chamber yield the same Mθ. Bridgeland, King and Reid [2] use
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derived category methods to show, in case of arbitrary G ⊆ SL3(C) that G -HilbC3 is a

crepant resolution of X. Their method can be used to show that, for any chamber in Π,

Mθ is a crepant resolution, however it yields little information about either the structure

of the chamber space or the geometry of Mθs.

Craw in his thesis conjectured that every projective crepant resolution of X can be

realised as a moduli space Mθ of θ-stable G-constellations for some chamber in Π. A

recent paper by Craw and Ishii [4] proves this for all abelian G ⊂ SL3(C).
In this paper, we take a different approach to this issue. Rather than constructing a

resolution as a moduli space of G-constellations, we shall take an arbitrary (not necessarily

projective or crepant) resolution of X and study what families of G-constellations it can

parametrise.

To start with let G be any finite abelian subgroup of GLn(C) and Y any scheme

birational to the quotient space X = Cn/G:

Y
π

  

Cn

q

}}
X

Here q is the quotient map and π is the birational morphism.

Let R denote the coordinate ring C[x1, . . . , xn] of Cn. A (G,R)-module is a G-

representation V together with a G-equivariant action of R. The categories of finite-length

G-equivariant coherent sheaves on Cn and of (G,R)-modules are equivalent and in this

paper we work in the latter category.

We would like the families of G-constellations which we study to be related, geomet-

rically, to the space Y which parametrises them. That is, we would like to single out a

set of ‘natural’ families of G-constellations on Y . For instance, for any point y ∈ Y we

have its image π(y) in X and hence an orbit q−1π(y) of G in Cn. On the other hand, a

G-constellation is a G-equivariant finite-length sheaf and hence is supported on a finite

union of G-orbits in Cn. It seems reasonable to ask for the G-constellation parametrised

by y ∈ Y to be supported, set theoretically, precisely on q−1π(y).

Observe now that, due to dimension considerations, there is only one G-constellation

supported at any free orbit of G in Cn, up to an isomorphism. This G-constellation is

precisely the structure sheaf OZ of G-cluster Z given by that orbit. Thus q∗OCn , over

any subset U of X such that G acts freely on q−1(U), is a unique (up to a twist by a line

bundle) family of G-constellations satisfying the wanted property on supports. Observe

that its fiber at the generic point of X is the G-constellation K(Cn) ≃ Vreg⊗K(X), which

we can think of as corresponding to the generic orbit of G. As any scheme birational to

X shares its generic point pX , the very least any natural family should do is to have pX

parametrise a G-constellation isomorphic to K(Cn). We call such families deformations of
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the generic orbit of G across Y . We then show (see Proposition 2.5) that this requirement

on the fiber of the family at the generic point implies much stronger naturality properties:

for any point y ∈ Y , the support of the G-constellation it parametrises is indeed q−1π(y),

set-theoretically. Moreover, any such family can be G and R equivariantly embedded into

the constant sheaf K(Cn) on Y .

Now for G abelian, any family of G-constellations is a direct sum of invertible G-

eigensheaves. On any scheme S, to consider invertible OS-submodules of K(S) is to

consider Cartier divisors on S. Therefore in Section 3 we extend the construction of Cartier

divisors on Y , as global sections of K∗(Y )/O∗
Y , by defining a G-Cartier divisor to be a

global section of K∗
G(Cn)/O∗

Y , where K
∗
G(Cn) is the group of all non-zero G-homogeneous

rational functions on Cn.

To make a link with Weil divisors, we make the natural extension of the concept of

the valuation at a prime divisor from K(Y ) to K∗
G(Cn). We then define G-Weil divisors

(see Definition 3.5) as a subset of Q-Weil divisors on Y , in such a way as to have the

correspondence between G-Weil and G-Cartier divisors in place when Y is smooth.

Now as any deformation F of the generic orbit embeds into K(Cn) as a (G,R)-

submodule, each of its eigensheaves Fχ, together with its embedding into K(Cn) defines a

G-Cartier divisor and consequently a G-Weil divisor Dχ. Conversely, any set {Dχ}, where
for each χ ∈ G∨ we have one χ-Weil divisor Dχ, defines an OY -submodule

⊕
L(−Dχ)

of K(Cn). For it to be a (G,R)-submodule, and hence a deformation of the generic or-

bit, we need the R-action on K(Cn) to restrict down to it. We show that this is precisely

equivalent to the condition that for (f) the principal divisor of any G-homogeneous f ∈ R,

Dχ + (f)−Dχρ(f) ≥ 0

where ρ(f) is the weight of f . Now it is clearly sufficient for this to be true just for

f = x1, . . . , xn, the basic monomials. Thus we establish a one-to-one correspondence

between deformations of the generic orbit and sets {Dχ}χ∈G∨ of G-Weil divisors satisfying

a finite number of inequalities.

It is usual in moduli problems to consider the families up to equivalence, that is twisting

by a line bundle. We show that any equivalence class of deformations of the generic orbits

contains a unique family with Dχ0 = 0 in the corresponding divisor set. We call such

deformations of the generic orbit normalized. On the other hand, the requirement for the

subsheaf
⊕

L(−Dχ) of K(Cn) to be closed under R-action can be seen to imply that all

the eigensheaves L(−Dχ) must be, in a certain sense, close to each other inside K(Cn).

When Dχ0 = 0, this allows us to put a precise bound on how far from 0, numerically, all

the other divisors Dχ can be. Explicitly, we define the set {Mχ} by

Mχ =
∑
P

(
min
f∈Rχ

vP (f)

)
P,
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where P ranges over all prime Weil divisors on Y . We show that
⊕

L(−Mχ) is a defor-

mation of the generic orbit, and in case of Y being G -HilbCn it is the tautological family

of G-clusters parametrised by Y . Then we prove that for any normalized deformation of

the generic orbit, the corresponding divisor set {Dχ} satisfies

Mχ ≥ Dχ ≥ −Mχ−1 .

In particular, this implies that the number of equivalence classes is finite as we show

that the only non-zero summands of Mχ are the exceptional divisors and the proper

transforms in Y of images in X of coordinate hyperplanes of Cn.

Thus our main result (see Theorem 5.25) is

Theorem 1.1 (Classification). Let G be a finite abelian subgroup of GLn(C), X be the

quotient of Cn by the action of G and Y be a resolution of X. Then all deformations of

the generic orbit across Y , up to isomorphism, are of form
⊕

χ∈G∨ L(−Dχ), where each

Dχ is a χ-Weil divisor and the set {Dχ} satisfies the inequalities

Dχ + (f)−Dχρ(f) ≥ 0

for all χ ∈ G∨ and all G-homogeneous f ∈ R. Here ρ(f) is the homogeneous weight of f .

Conversely for any such set {Dχ},
⊕

L(−Dχ) is a deformation of the generic orbit.

Moreover, each equivalence class of families has precisely one family with Dχ0 = 0.

The divisor set {Dχ} corresponding to such a family satisfies inequalities

Mχ ≥ Dχ ≥ −Mχ−1 ,

where {Mχ} is a fixed divisor set depending only on G and Y . In particular, the number

of equivalence classes of families is finite.

Throughout the paper we illustrate the proceedings with examples from toric geometry,

which allows for explicit calculations on Y whenever G is abelian. A brief summary of

the toric setup as applied to our problem is given in Section 4. Then we introduce Y on

which all of the examples will be calculated: a single toric flop of G -HilbC3 with G being

the cyclic subgroup of GL3(C) of order 8 traditionally denoted 1
8(1, 2, 5).

2. Deformations of the generic orbit

2.1. G-constellations and families

Let G be a finite abelian group and let Vgiv be an n-dimensional faithful representation

of G. We identify the symmetric algebra S(V ∨
giv) with the coordinate ring R of Cn via a
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choice of such an isomorphism that the induced action of G on Cn is diagonal. By the

dual action of G on R we shall mean the left action given by

(2.1) g · f(v) = f(g−1 · v), ∀v ∈ Cn.

Corresponding to the inclusion RG ⊂ R of the subring of G-invariant functions we

have the quotient map q : Cn → X, where X = SpecRG is the quotient space. This space

is generally singular. So we are typically interested in taking resolutions π : Y → X of it:

Y
π

  

Cn

q

}}
X

The purpose of this paper is to study the way in which Y can parametrise families of

G-constellations.

Definition 2.1. [4] A G-constellation is a G-equivariant coherent sheaf F on Cn such

that H0(F) is isomorphic, as a C[G]-module, to the regular representation Vreg.

Of course as F is coherent, it is uniquely determined byH0(F) via the ·̃ construction [8,

p. 110]. The actions of G and R on F are entirely determined by their restrictions to

H0(F). In this paper we shall adopt this more algebraic point of view, and consider a

following class of objects.

Definition 2.2. A (G,R)-module is a C[G]-module V together with an equivariant R-

action, that is,

(2.2) g · (f · v) = (g · f) · (g · v)

must hold for all v ∈ V , g ∈ G and all f ∈ R.

A morphism of (G,R)-modules is a G and R equivariant linear map of the underlying

vector spaces.

The functors ·̃ and H0(·) provide an equivalence between the categories of finite-length

coherent G-equivariant sheaves on Cn and of (G,R)-modules, thus we can use both con-

cepts interchangeably.

Any R-action on V is defined by an element of HomC(R ⊗C V, V ). As R = S(V ∨
giv) it

is sufficient to consider restrictions to HomC(V
∨
giv ⊗ V, V ). The condition (2.2) is precisely

equivalent to asking for this homomorphism to be G-equivariant.

Conversely, α ∈ HomG(V
∨
giv ⊗ V, V ) defines an R-action on V if and only if it satisfies

(2.3) α(v1 ⊗ α(v2 ⊗ v)) = α(v2 ⊗ α(v1 ⊗ v)).
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Thus we see that there exists a one-to-one correspondence between all the (G,R)-

modules with an underlying C[G]-module V and the elements of ZR,G ⊆ HomG(V
∨
giv⊗V, V )

satisfying the commutator conditions (2.3).

Further, it can be seen that the R-structures of two isomorphic (G,R)-modules on

V differ by conjugation by an element of AutG(V ). Therefore we have a one-to-one

correspondence between isomorphism classes of (G,R)-modules with underlying C[G]-

module V and the orbits of AutG(V ) in ZR,G.

Definition 2.3. A family of (G,R)-modules parametrised by a scheme S is a locally free

sheaf F of OS-modules with G and R acting by OS-linear endomorphisms, so that

g · (f · s) = (g · f) · (g · s)

for all g ∈ G, f ∈ R and any local section s of F .

We shall say that two families F and F ′ are equivalent if there exists an invertible

sheaf L on S such that F is (G,R)-equivariantly isomorphic to F ′ ⊗ L.
We shall call F a family of G-constellations if its fiber F|p at any point p ∈ Y is a

G-constellation.

Any sheaf F with a G-action must split into G-eigensheaves, which are locally free if

F is. In particular, we see that for an abelian G any family of G-constellations must split

as ⊕
χ∈G∨

Lχ

where G acts on each invertible sheaf Lχ by the character χ.

Any free G-orbit Z ⊂ Cn is a G-cluster, its structure sheaf OZ a G-constellation.

Considering H0(OZ) as the fibre of q∗OCn at x = q(Z) ∈ X, we see that over any U ⊂ X

such that G acts freely on q−1(U), we have a natural family of G-constellations F = q∗OCn .

Now consider the generic point pX of X. Its pre-image in Cn is the generic point pCn ,

which can be viewed as the generic orbit of G. The fibre of OCn at pCn is the function

field K(Cn) and that of OX at pX is K(X) = K(Cn)G. The extension K(Cn) : K(Cn)G is

Galois, so the Normal Basis Theorem from Galois theory [7, Theorem 19.6] implies that

K(Cn) = Vreg ⊗C K(X). Thus K(Cn) is a family of G-constellations parametrised by a

single point-scheme pX . Moreover it is natural, in the sense that it is precisely the fiber of

the natural family q∗(OCn) at pX . We now proceed to single out a class of families whose

fiber at the generic point is isomorphic to the natural one.

Definition 2.4. Let Y be a scheme birational to X and let pY denote the generic point

of Y . A deformation of the generic orbit of G across Y is a family of G-constellations

parametrised by Y equipped with a (G,R)-equivariant isomorphism

ι : F|pY
∼−→ K(Cn) = (π∗q∗OCn)|pY .
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We now show that, in fact, any family which agrees with the natural one at the generic

point must agree with it wherever G acts freely.

Proposition 2.5. Let π : Y → X be a birational morphism and let F be a family of

G-constellations on Y . Then the following are equivalent:

(1) There exists an isomorphism

(2.4) F|pY ≃ K(Cn)

which makes F into a deformation of the generic orbit of G across Y .

(2) There exists a (G,R)-equivariant embedding ι′ : F ↪→ K(Cn), where K(Cn) is con-

sidered as a constant sheaf of (G,R)-modules on Y .

(3) For any open U ⊆ Y , s ∈ F(U) and f ∈ RG, we have

(2.5) f · s = fs,

where on the left-hand side f acts as an element of R and on the right-hand side as

a section of OY , via the inclusion OX ↪→ π∗OY .

(4) For any open U ⊂ X such that G acts freely on q−1U ,

(2.6) F|π−1U ≃ π∗q∗OCn |π−1U ⊗ L

for some invertible sheaf L on π−1U .

Before tackling this proposition, we prove a useful lemma, which provides a nice geo-

metrical interpretation of the condition (2.5).

Lemma 2.6. Let F be a family of G-constellations on Y satisfying (2.5). Then for any

p ∈ Y we have a scheme-theoretic inclusion

(2.7) SuppF|p ⊆ q−1π(p).

Moreover, set-theoretically we have equality. Further, if G acts freely on q−1(p), we have

F|p ≃ (π∗q∗OCn)|p

as G-constellations.

Proof. Given an arbitrary G-constellation V , the support of V is the vanishing set of the

ideal AnnR V ⊂ R. On the other hand, q−1π(p) is the vanishing of the ideal in R generated

by mπp ∈ RG. So scheme-theoretically (2.7) is equivalent to

AnnRG k(πp) ⊂ AnnR F ⊗OY
k(p),
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which follows immediately from (2.5).

To show the set-theoretic equality, we observe from (2.2) that the ideal AnnR Fp is

G-invariant, and so, set-theoretically SuppF|p is a union of G-orbits in Cn. But (2.7) now

implies that it is contained in a single orbit: the closed points of q−1π(p). Therefore we

have equality.

For the last bit, we observe that F|p is a finite length sheaf on Cn and so splits as a

direct sum ⊕
x∈SuppF|p

(F|p)|x

of its fibers at each closed point in its support. But as G acts freely on q−1π(p), the size of

the orbit is |G|. Since this is also the dimension of F|p, each (F|p)|x must be 1-dimensional

and hence

F|p =
⊕

x∈q−1π(p)

(OCn)|x ≃ (π∗q∗OCn)|p.

Proof of Proposition 2.5. (4) ⇒ (1) is obtained by considering the restriction of the iso-

morphism (2.6) to stalks at pY .

(1) ⇔ (2). Consider the sheaf F ⊗OY
K(Y ). On any open U where F is a free OY -

module, F ⊗OY
K(Y ) is the constant sheaf FpY for which we have the (G,R)-equivariant

isomorphism (2.4) to the constant sheaf K(Cn). A sheaf constant on an open cover must

be constant as Y is irreducible. Now the natural map F ↪→ F ⊗ K(Y ) becomes the

requisite embedding.

(2) ⇒ (3) is immediate because K(Cn), as a (G,R)-module clearly satisfies (2.5).

So we are left with proving (3) ⇒ (4). We begin with a local version: if p ∈ π−1(U) ⊂
Y , then Fp ≃ (π∗q∗OCn)p, that is, the stalks at p are (G,R)-equivariantly isomorphic.

Now (π∗q∗OCn)p (which we can write as R ⊗RG OY,p) is a free OY,p-module of rank

|G|. This is because G acting freely on q−1π(p) implies that the quotient map q is flat and

|G|-to-one at π(p). Fp is also a free OY,p-module of rank |G|, because F is a family of G-

constellations. Therefore we can consider the determinant of any (G,R)-equivariant OY,p-

morphism between the two, and it would suffice to find a morphism whose determinant is

invertible.

Consider the map θ : (π∗q∗OCn)p → Fp defined by

m⊗ f → m · (fs0), m ∈ R, f ∈ OY,p,

where s0 is a fixed choice of any OY,p-generator of the χ0-eigenspace of Fp.

This map is a well-defined OY,p-module map, that is, it descends from the set-theoretic

product R ×OY,p to the tensor product, precisely because both Fp and R ⊗OY,p satisfy

(2.5). It is G-equivariant because 1 7→ s0 ensures that χ0-eigenspace maps to χ0-eigenspace
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and (2.2) forces the rest. Finally not only θ is defined to be R-action equivariant, but the

reader can verify that it is the unique element of Hom(G,R)(R ⊗ OY,p,Fp) which maps 1

to s0. Note that in particular, this shows that

(2.8) Hom(G,R)(R⊗OY,p,Fp) ≃ (Fp)χ0 ≃ OY,p,

where θ is a (G,R)-equivariant morphism. It descends to the (G,R)-equivariant morphism

θ : (π∗q∗OCn)|p → F|p

on fibers. Similar to (2.8),

Hom(G,R)

(
(π∗q∗OCn)|p,Fp

)
≃ C,

i.e., all (G,R)-equivariant morphisms between the two are scalar multiples of each other.

Since by Lemma 2.6, the two fibers are (G,R)-equivariantly isomorphic, we have that

unless θ is a zero map, it is an isomorphism. But it maps [1] to [s0], and the latter can

not be 0 by the choice of s0. So det θ ̸= 0 implying that det θ ∈ O∗
Y,p, as required.

The isomorphisms on stalks give isomorphisms θi : R⊗RGOUi → F|Ui on an open cover

{Ui} of U , as both sheaves are locally free and of finite rank. Then on each intersection Ui∩
Uj , θi◦θ−1

j is a (G,R)-automorphism of R⊗RGOUi∩Uj . Any such, by an argument identical

to (2.8), is a multiplication by an element of O∗
Ui∩Uj

,which concludes the proof.

For the rest of this paper, we shall concern ourselves only with those families of G-

constellations which are deformations of the generic orbit.

Observe that the map ι : F|pY
∼−→ K(Cn) = (π∗q∗OCn)|pY uniquely determines the

embedding ι′ : F ↪→ K(Cn). The notion of the isomorphism of deformations demands for

the (G,R)-equivariant sheaf isomorphism θ : F → F ′ to have its restriction to stalks at

pY form a commutative triangle with maps ιF and ιF ′ for F and F ′ to be isomorphic

as deformations of the generic orbit. Consequently θ itself must form a commutative

triangle with ι′F and ι′F ′ , in particular images of F and F ′ in K(Cn) must coincide.

Thus isomorphism classes of deformations of the generic orbit are precisely in one-to-one

correspondence with deformations of the generic orbit which are subsheaves of K(Cn).

3. Line bundles and G-Cartier divisors

As we deal with families of G-constellations which are subsheaves of K(Cn), it would be

useful to have a language similar to that of the Cartier divisors to describe the invertible

sub-OY -modules of K(Cn) with non-trivial G-action. In this section we shall extend the

familiar construction of Cartier divisors using the larger group of non-zero G-homogeneous

rational functions, which we shall denote by K∗
G(Cn), instead of the group of non-zero

invariant rational functions K∗(Y ).
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Definition 3.1. We shall say that a rational function f ∈ K(Cn) is G-homogeneous of

weight χ ∈ G∨ if

(3.1) g · f = χ(g−1)f, ∀ g ∈ G.

We shall denote by Kχ(Cn) the subset of K(Cn) of G-homogeneous elements of a specific

weight χ and by the KG(Cn) the subset of K(Cn)) of all the G-homogeneous elements.

We shall use Rχ and RG to mean R ∩Kχ(Cn) and R ∩KG(Cn) respectively.

The choice of a sign in this definition is motivated as follows: we want a function p ∈ R

to be G-homogeneous of weight χ ∈ G∨ if p(g · v) = χ(g)p(v) for any g ∈ G and v ∈ Cn.

E.g., usual concept of a homogeneous polynomial, whose degree, an integer number, is

precisely its weight as a character of C∗ acting diagonally on Cn. In view of (2.1), this

means we must have χ(g−1) instead of χ(g) in (3.1).

Now consider K∗
G(Cn), the invertible elements of KG(Cn). Using the fact that K(Y ) =

K(X) = K(Cn)G, we have a short exact sequence of multiplicative groups:

1 → K∗(Y ) → K∗
G(Cn) → G∨ → 1.

What makes this enlargement of K∗(Y ) useful is that we can still define a valuation of a

G-homogeneous rational function at a prime Weil divisor.

Definition 3.2. Let D ⊂ Y be a prime Weil divisor on Y . Given any f ∈ K∗
G(Cn), we

choose any n ∈ Z such that fn is invariant, i.e., fn ∈ K(Y ). For instance, n = |G|. Then
we define

vD(f) =
1

n
vD(f

n) ∈ Q,

where vD(f
n) is the ordinary valuation of fn in the local ring OD,Y of the generic point

of D. This is well-defined since for any g ∈ K(Y ), we have vD(g
k) = kvD(g).

In what follows, we shall write

{n} = n− ⌊n⌋

for the fractional part of n ∈ Q. Generally, the valuations defined above are Q-valued.

However, if f and g in K∗
G(Cn) are both χ-homogeneous, then f/g is G-invariant and

hence for any Weil divisor D on Y , vD(f) − vD(g) ∈ Z. Therefore the fractional part of

vD(f) is independent of the choice of f in K∗
χ(Cn).

Definition 3.3. We define v(D,χ) to be the number {vD(f)} ∈ Q, where f is any element

of K∗
χ(Cn).

We can now replicate, almost word-for-word, the definitions in [8, pp. 140–141].
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Definition 3.4. A G-Cartier divisor on Y is a global section of the sheaf of multiplicative

groups K∗
G(Cn)/O∗

Y , i.e., the quotient of the constant sheaf K∗
G(Cn) on Y by the sheaf

O∗
Y of invertible regular functions.

As usual, such a section can be described by a choice of an open cover {Ui} of Y and

functions {fi} ⊆ K∗
G(Cn) such that fi/fj ∈ Γ(Ui ∩ Uj ,O∗

Y ). Observe that, as their ratios

are invariant, the fi must all be homogenous of the same weight χ ∈ G∨. In such a case,

we further say that the divisor is χ-Cartier.

As with ordinary Cartier divisors, a G-Cartier divisor is said to be principal if it lies

in the image of the natural map K∗
G(Cn) → K∗

G(Cn)/O∗
Y and two divisors are said to be

linearly equivalent if their difference is principal.

However when defining a corresponding enlargement of the group of Weil divisors, we

have to be a little bit careful.

Definition 3.5. A χ-Weil divisor on Y is a finite sum
∑

qiDi (where qi ∈ Q) of prime

Weil divisors on Y , such that

(3.2) qi − v(Di, χ) ∈ Z

for all i.

We shall further use the term G-Weil divisor to refer to all χ-divisors for any χ ∈ G∨.

Definition 3.6. For any f ∈ K∗
G(Cn), we define the principal G-Weil divisor of f to be

(f) =
∑

vP (f)P

with the sum taken over all prime Weil divisors P on Y . This sum is finite as f |G| is

a regular function on Y and hence has non-zero valuations only on finitely many prime

divisors.

Given any χ, χ′ ∈ G∨, we can see that, for any prime divisor D,

v(D,χ) + v(D,χ′)− v(D,χχ′) ∈ Z

as it is equal to the valuation at D of an invariant function. Hence G-Weil divisors form an

additive group. We define two G-Weil divisors to be linearly equivalent if their difference

is principal and a divisor
∑

qiDi to be effective if all qi ≥ 0.

Recall that from [8, Proposition 6.11] there is an injective homomorphism from the

group of Cartier divisors to the group of Weil divisors which is an isomorphism when Y is

smooth. The definition extends naturally to an injective homomorphism from the group

of G-Cartier divisors to the group of G-Weil divisors, but some care needs to be taken to

show that it is surjective when Y is smooth.



12 Timothy Logvinenko

Definition 3.7. Define the map ϕ from the group of G-Cartier divisors to the group of

G-Weil divisors on Y by

{(fi, Ui)} 7→
∑

kDD,

where the sum is taken over all prime Weil divisors D on Y and kD = vD(fi) for any

fi such that Ui ∩ D is not empty. Once again the sum is finite, as each fi has non-zero

valuation only on finitely many prime Weil divisors.

Proposition 3.8. Let ϕ be the injective homomorphism defined above. If Y is smooth,

then ϕ is an isomorphism.

Proof. We need surjectivity. So suppose we have a χ-Weil divisor D on Y . Take any

f ∈ K∗
χ(Cn). Then D − (f) is an ordinary Weil divisor and as Y is smooth, it has a

Cartier divisor {(Ui, gi)} corresponding to it as before. Then {(Ui, gif)} is the χ-Cartier

divisor which ϕ maps to D.

The point of introducing G-Cartier divisors is that they correspond to invertible

sheaves which carry a G-action in the same way that ordinary Cartier divisors correspond

to the ordinary invertible sheaves.

Indeed consider D, the χ-Cartier divisor on Y specified by a collection {(Ui, fi)} where

Ui form an open cover of Y and fi ∈ K∗
χ(Cn). We define an invertible sheaf L(D) on Y

as the sub-OY -module of K(Cn) generated by f−1
i on Ui. Observe that we have an action

of G on L(D), restricted from the one on K(Cn), and it acts on every section by the

character χ.

Proposition 3.9. The map D → L(D) gives an isomorphism between the group G -Cl(Y )

of G-Cartier divisors up to linear equivalence and the group G -Pic(Y ) of invertible G-

sheaves on Y .

Proof. A standard argument from [8, Corollary 6.15] shows that it is an injective homo-

morphism. To show that it is an isomorphism, we need to be able to embed any invertible

G-sheaf L, with G acting by some χ ∈ G∨, as a sub-OY -module into K(Cn).

Given such L, we consider the sheaf L ⊗OY
K(Y ). On every open set Ui where L is

trivial, it is G-equivariantly isomorphic to the constant sheaf Kχ(Cn). On an irreducible

scheme a sheaf constant on an open cover is constant itself, so as Y is irreducible we have

L ⊗OY
K(Y ) ≃ Kχ(Cn) and a particular choice of this isomorphism gives the necessary

embedding as

L → L⊗OY
K(Y ) ≃ Kχ(Cn) ⊂ K(Cn).

A curious thing about G-divisors and valuations of G-homogeneous functions is the

fact that on the quotient space X every prime Weil divisor is a principal divisor of some

G-homogeneous function. In particular, every G-Weil divisor is G-Cartier.
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Proposition 3.10. Let P be a prime Weil divisor on X. Then there exists an f ∈ R∗
G

such that P = (f), that is,

vD(f) =

1 when D = P ,

0 when D ̸= P

for any prime divisor D on Y .

Proof. Let IP ⊂ RG be the prime ideal of height 1 corresponding to P . Consider the

ring extension RG ⊆ R. By a classical result of Emmy Noether [1, Theorem 1.3.1], this

extension is integral. This then implies from [12, Theorem 9.3] that there exists a prime

ideal I ′ of height 1 in R lying over IP , that is IP = I ′ ∩ RG and that every other prime

ideal lying over IP is conjugate to I ′ by an element of G. As R is a UFD, every prime

ideal of height one is principal and so there exists some y′ ∈ R such that IP = (y′) ∩RG.

So take g0 = 1, g1, . . . , gk ∈ G to be such that the principal ideals (y′), (g1 ·y′), . . . , (gk ·
y′) are all the distinct prime ideals lying over IP . Then we claim that y =

∏
gi · y′ is a

G-homogeneous function and that IP = (y) ∩ RG. Indeed, (h · y) =
⋂
((hgi) · y′). The

ideals ((hgi) · y′) are all distinct prime ideals lying over IP and therefore

(h · y) =
⋂

((hgi) · y′) =
⋂

(gi · y′) = (y),

which implies h · y ∈ C∗y. For the second claim, observe that IP = gi · IP = (gi · y′) ∩RG

for all i. Consequently IP =
(⋂

(gi · y′)
)
∩RG = (y) ∩RG.

Thus we have IP = (y)∩RG. Note that (y) is precisely the vanishing ideal of the pre-

image of P in Cn. Now let k be the ramification index of the valuation ring extensionRG
IP

⊂
R(y). Then for any w ∈ K(Cn)G we have vP (w) =

1
kv(y)(w), which immediately extends

to the Q-valued valuation vP (w) of any G-homogeneous w ∈ K∗
G(Cn). In particular, we

see that vP (y) =
1
k . Now take any other prime divisor D on Y . We have ID = (u) ∩ RG

for some prime u ∈ R. If now vD(y) ̸= 0, then as y is regular we have y ∈ (u) and so

gi · y′ ∈ (u) for some i. Then (u) = (gi · y) and D = P .

Now taking f = yk finishes the proof.

In the course of the proof of Proposition 3.10, we see that the valuations of G-

homogeneous functions are actually non-integer only at ramification divisors of q. We

now contemplate along which actual divisors the ramification can occur.

Proposition 3.11. There are only finitely many prime divisors P on X with ramification

index greater than 1. More precisely, if we write the ideal of each such P as (y) ∩RG for

y ∈ R∗
G as per Proposition 3.10, then we will have at most one y of weight χ for each

character χ ∈ G∨.

Explicitly, the ramification can only occur along the images of coordinate hyperplanes

(x1), . . . , (xn) of Cn and in the case of G ⊂ SLn(C) ramification never occurs at all.
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Proof. For each character χ ∈ G∨ fix a G-homogeneous function fχ ∈ R of weight χ. We

further demand that it is minimal such, in a sense that no element of RG other than 1

divides it. We shall now show that ramification could only occur along one of the (fχ)∩RG

and only when fχ is the unique function satisfying these conditions.

To see it, take any prime divisor P on X. Write IP = (y) ∩ RG for y ∈ R∗
G as per

Proposition 3.10. Unless fχ ∈ (y), v(y)(fχ) = 0 and hence v(y)(
y
fχ
) = 1 and so there is no

ramification along P . But if fχ ∈ (y) then minimality condition forces fχ = y.

Explicitly, when G is abelian we know that the character map ρ : Zn → G∨ is surjective

(see (4.2)). Given a character χ ∈ G, there exists m ∈ Zn such that xm =
∏

xmi
i is G-

homogeneous of weight χ. Then above implies that ramification can only occur along

(y) ∩ RG if y is monomial. But recalling proof of Proposition 3.10, y =
∏

gi · y′ where y′

is prime. This implies y′ must be one of the basic monomials xi.

In case when G ⊆ SLn(C), we know that x1 · · ·xn is invariant. As v(xi)(x1 · · ·xn) = 1,

there is no ramification along any of (xi) ∩RG either.

Propositions 3.10 and 3.11 have an immediate corollary in terms of the numbers v(P, χ)

on X.

Corollary 3.12. For any P , a prime Weil divisor on X which is not a ramification divisor

of q, and χ ∈ G∨, there exists a monomial m ∈ Rχ such that vP (m) = 0. Consequently

v(P, χ) = 0.

Proof. Unless P = (xi) ∩ RG, one can take m to be any monomial in R of weight χ.

If P = (xi) ∩ RG, then, unless there is ramification at P , there exists a p ∈ RG whose

valuation at (xi) in Cn is 1. Note that we can take p to be monomial by considering its

monomial summands. Then p
xi

∈ Rχ−1 and vP (
p
xi
) = 0, so we can take m = p

xi

|G|−1.

Let us look at some concrete examples of the ramification occurring and not occurring.

Example 3.13. First consider G = 1
3(1, 2), the group of 3rd complex roots of unity

embedded into SL2(C) by

ξ 7→

ξ1

ξ2

 .

If we write χk for the character of G given by ξ 7→ ξk, then x is of weight χ1 and y of

weight χ2.

Let P be the image in X of the hyperplane x = 0. It is a prime Weil divisor (but not a

Cartier one) given by (x3, xy) = (x) ∩RG. v(x)(xy) = 1, so there is no ramification. And

consequently, vP (x) = v(x)(x) = 1 as x3 = (xy)3y−3.

Now take G = 1
4(1, 2). Then the divisor P is given by (x4, x2y). So we see that index

of ramification is v(x)(x
2y) = 2 and correspondingly vP (x) =

1
2v(x)(x) =

1
2 .
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Corollary 3.14. Let π : Y → X be a resolution and P a prime Weil divisor on Y , which

is neither exceptional nor a proper transform of a ramification divisor of q in X. Then

for any χ ∈ G∨ there exists m ∈ Rχ such that vP (m) = 0, implying

v(P, χ) = 0.

Proof. This is a straightforward consequence of Corollary 3.12. Consider P ′ = π(P ), the

image of P in X. Unless P is exceptional, P ′ is a prime Weil divisor on X. Its generic

point lies in the open set on which the resolution map is an isomorphism, which implies

that for any f ∈ K(Cn), vP (f) = vP ′(f). Now Corollary 3.12 gives the result.

4. Toric picture

4.1. Basics

In this section we give a brief exposition of the necessary toric background and then

translate some of the results of Section 3 into the toric language.

A more thorough exposition of toric geometry in general can be found in [6] and of

toric geometry as related to quotient singularities in [9].

Consider the maximal torus (C∗)n ⊂ GLn(C) containing G. We have an exact sequence

of abelian groups:

(4.1) 0 // G // (C∗)n // T // 0

where T is the quotient torus which acts on the quotient space X.

By applying Hom( · ,C∗) to (4.1) we obtain an exact sequence

(4.2) 0 //M // Zn ρ // G∨ // 0

where Zn is thought of as the lattice of exponents of Laurent monomials. Thus given

m = (k1, . . . , kn) ∈ Zn we shall write xm for xk11 · · ·xknn . M is the sublattice in Zn of

(exponents of) G-invariant Laurent monomials.

Note that each Laurent monomial is a G-homogeneous function and ρ is precisely the

weight map, that is, xm(g · v) = ρ(m)(g)xm(v) for any v ∈ Cn.

Applying Hom( · ,Z) to (4.2) we obtain

0 // (Zn)∨ // L // Ext1(G∨,Z) // 0

where we write (Zn)∨ for the dual lattice of Zn, L for the dual of M and note that

Hom(G∨,Z) = 0 as G∨ is finite and Ext1(Zn,Z) = 0 as Zn is free.

Thus we see that L/(Zn)∨ ≃ Ext1(G∨,Z). Taking an injective resolution of Z:

0 → Z → Q → Q/Z → 0
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we see that Ext1(G∨,Z) ≃ Hom(G∨,Q/Z) as Hom(G∨,Q) = 0. Now a choice of a map

Q/Z → C∗ which is equivalent to a simultaneous choice of a primitive nth complex root

of unity for all n ∈ N, would give us

L/(Zn)∨ ≃ Hom(G∨,C∗) = G,

allowing us to identify points in L/(Zn)∨ with the elements of the group.

Tautologically, we have a Z-valued pairing between M and L. This pairing extends

naturally to a Q-valued pairing between Zn and L. For the purposes of the exposition

to follow, it will be convenient to think of elements of L as functions on the monomial

lattices M ↪→ Zn. Henceforth, given l ∈ L and m ∈ Zn, we shall write l(m) to denote the

pairing above.

For any cone τ ⊂ Zn ⊗ R, τ ∩ M and τ ∩ Zn are abelian semigroups. We shall

write C[τ ∩M ] and C[τ ∩ Zn] for the C-algebras generated by the corresponding Laurent

monomials. Whenever we omit the lattice, writing C[τ ], it should be assumed that the

lattice is M .

The fan of X in L consists of the single cone L+, the dual of the cone M+ of regular

Laurent monomials in M (similarly, we shall use Zn
+ and (Zn)∨+). The fan of any toric

resolution of X is given by a subdivision of L+ into basic cones.

Fix such a toric resolution Y . Write F for the set of basic cones which make up the

fan of Y . We shall denote by Aσ the toric variety SpecC[σ∨] corresponding to any cone σ

in L⊗ R. Then Y is constructed in toric geometry by gluing together {Aσ}σ∈F: Aσ1 and

Aσ2 are glued along Aσ1∩σ2 = SpecC[(σ1 ∩ σ2)
∨]. Thus {Aσ}σ∈F is an open affine cover

of Y .

Now write E ⊂ L for the set of all generators of these basic cones. In the toric

geometry each element of E corresponds to either an exceptional divisor on Y or the

proper transform of one of the coordinate hyperplanes in X. For ei ∈ E, write Ei for the

divisor on Y corresponding to it.

It is often important whether the resolution is crepant or not. The discrepancy of

each Ei depends only on ei and not on the choice of Y . If ei = (k1, . . . , kn) ∈ L, then

(see [9, 1.4] and [14, Proposition 4.8] for technicalities) the discrepancy of Ei is
(∑

ki
)
−1,

so the crepant divisors correspond to the elements of L which lie in the junior simplex:

∆ =
{
(k1, . . . , kn) ∈ L⊗ R

∣∣ ki > 0 and
∑

ki = 1
}
.

Note that if a basic cone contains e ∈ ∆∩L, then e must be one of its generators. So, for

any resolution, ∆ ∩ L is a subset of E and the crepant ones are precisely those for which

this inclusion is an equality.
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Example 4.1. Consider the group G being 1
8(1, 2, 5), the group of 8th complex roots of

unity embedded into SL3(C) by

ξ 7→


ξ1

ξ2

ξ5

 .

We shall write χk for the character of G given by ξ 7→ ξk. So x has weight χ1, y weight

χ2 and z weight χ5.

The lattice L is generated in (Z3)∨ ⊗ Q by elements of (Z3)∨ and 1
8(1, 2, 5). The

cone L+, the positive octant, is the fan of X. A crepant resolution of Y is given by a

triangulation of the junior simplex ∆ into basic triangles. For the subsequent examples,

we choose the following triangulation:

So E = ∆ ∩ L = {e1, . . . , e7}. And the basic cones of the fan F of Y are

F =
{
⟨e1, e2, e7⟩, ⟨e7, e2, e5⟩, ⟨e4, e2, e5⟩, ⟨e4, e3, e2⟩,

⟨e3, e4, e6⟩, ⟨e4, e6, e5⟩, ⟨e6, e5, e7⟩, ⟨e1, e6, e7⟩
}
.

This shall be the setup for all the subsequent examples.

4.2. Valuations

We now establish two simple results which translate the notions defined in Section 3 into

toric language.

Proposition 4.2. Let Y be a toric resolution of X, F its fan and E the set in L of the

generators of F. For any ei ∈ E and m ∈ Zn,

vEi(x
m) = ei(m) ∈ Q.
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Proof. Take any basic cone σ ∈ F such that ei ∈ σ. Without loss of generality i = 1 and

σ = ⟨e1, . . . , en⟩. Let ě1, . . . , ěn be the dual basis in M .

For any m ∈ Zn, |G|m ∈ M . Using the dual basis

|G|m =
∑

|G|ei(m) ěi,

therefore

x|G|m = (xě1)|G|e1(m) · · · (xěn)|G|en(m).

The restriction of the exceptional divisor E1 to Aσ is given by the principal Weil divisor

(xě1). Thus the local ring of Ei is the coordinate ring of Aσ localised at the ideal (xě1),

and so the valuation of x|G|m ∈ OY is |G|e1(m). By definition, vE1(x
m) = 1

|G|vE1(x
|G|m) =

e1(m).

The second result establishes which compatibility conditions a set of monomials {xmσ}σ∈F
must satisfy for it to define a G-Cartier divisor. When the conditions are satisfied, we

further establish the form which the corresponding G-Weil divisor must take.

Proposition 4.3. A set {xmσ}σ∈F ⊂ C[Zn] of Laurent monomials defines a G-Cartier

divisor {(Aσ, x
mσ)}σ∈F on Y if and only if for any ei ∈ E,

(4.3) ei(mσ) = ei(mτ ) for all σ, τ ∋ ei.

When (4.3) holds, denote by qi the value of ei(mσ) for any σ ∋ ei. Then, under the

isomorphism ϕ from Proposition 3.8, {(Aσ, x
mσ)}σ∈F corresponds to the G-Weil divisor∑

ei∈E
qiEi.

Proof. Observe that if σ, τ ∈ E are such that ei belongs to both, then the generic point pEi

of Ei lies in Aσ ∩Aτ . If {(Aσ, x
mσ)} is a G-Cartier divisor, then xmσ/xmτ ∈ O∗(Aσ ∩Aτ ),

so we have vEi(x
mσ/xmτ ) = 0 and hence

ei(mσ) = vEi(x
mσ) = vEi(x

mτ ) = ei(mτ ).

Conversely suppose we have ei(mσ) = ei(mτ ) for all ei ∈ σ ∩ τ . Then mσ − mτ ∈
(σ ∩ τ)⊥, and hence xmσ/xmτ is invertible in C[(σ ∩ τ)∨] = OY (Aσ ∩Aτ ) as required.

For the last part, recall that ϕ({(Aσ, x
mσ)}) is defined as the sum

∑
nDD over all

prime divisors on Y where nD = vD(x
mσ) for any σ such that D ∩ Aσ ̸= ∅. So it suffices

to prove that, for all σ ∈ F, the restrictions of the principal divisor (xmσ) and
∑

i∈E qiEi

to Aσ are identical.
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Without loss of generality, we can take σ = ⟨e1, . . . , en⟩. Then OAσ = C[t1, . . . , tn]
where ti = xěi . We have xmσ =

∏
ei∈σ t

qi
i and recall (proof of Proposition 4.2) that

Ei|Aσ = (ti). Therefore

(xmσ)|Aσ =
∑
ei∈σ

qi(ti) =

(∑
ei∈σ

qiEi

)∣∣∣
Aσ

and the result follows.

Remark 4.4. (1) Observe that the ‘only if’ part of the proof is completely general and

doesn’t rely on the toric technology. It is the standard argument used to show that the

morphism ϕ taking Cartier divisors to Weil divisors is well-defined.

On the other hand the ‘if’ argument is toric-specific and relies heavily on the fact that

the invertible functions on Aσ ∩Aτ are precisely the monomials in (σ ∩ τ)∨.

(2) Note that, in particular, we have proved that for any m ∈ Zn, the sum∑
i∈E

v(Ei, x
m)Ei

is a valid G-Weil divisor on Y . Recalling the definition of G-Weil divisors, this provides

an independent proof that for any prime divisor D which is not Ei for some i ∈ E, we

have

v(D,χ) = 0

for all χ ∈ G∨, since v(D,χ) is defined as the fractional part of the valuation of any

homogeneous rational function of weight χ on D.

Example 4.5. To illustrate the above, in the context of Example 4.1, we shall calculate

explicitly the χ6-Cartier divisor corresponding to the χ6-Weil divisor

D =
7

4
E4 +

1

2
E5 −

1

4
E7.

Consider the cone σ = ⟨e4, e5, e6⟩. Calculating the dual basis which generates the

abelian semigroup σ̌ ∩M , we get

ě4 = (−2, 0, 2), ě5 = (1, 2,−1), ě6 = (2,−1, 0).

So Aσ = SpecC
[
z2

x2 ,
xy2

z , x
2

y

]
and the restrictions of E4, E5 and E6 to Aσ are given by(

z2

x2

)
,
(xy2

x2

)
and

(
x2

y

)
, respectively. To specify D on Aσ we need f ∈ Kχ6(C3) such that

vE4(f) =
7
4 , vE5(f) =

1
2 and vE6(f) = 0, so we take(

z2

x2

)7/4(
xy2

z

)1/2(
x2

y

)0

=
z3y

x3
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to be f .

Repeating the same calculations for the remaining cones in the fan F we get the χ6-

Cartier divisor given by

and we can indeed see that, as all the monomials representing the divisor have weight

χ6, their ratios are all invariant and the sub-OY -module of K(Cn) they generate is an

invertible sheaf on Y with the natural action of G by χ2.

4.3. Representations of the McKay quiver

We now introduce a useful way to visualise the mechanics of a family of G-constellations

over a particular toric affine piece of Y . Suppose we have a family F of G-constellations

on Y and a cone σ in the fan F. In this section, we are interested in looking up close at

the structure of F restricted to the corresponding affine piece Aσ.

Over Aσ the sheaf F is trivialised and we have

F(Aσ) ≃ C[σ∨]⊗C Vreg ≃
⊕
χ

Fχ,

where each Fχ is isomorphic to C[σ∨] and G acts on it by χ. Evidently, the whole structure

of F as a family of G-constellations on Aσ is contained in the way that R acts on Fχ’s.

An effective method to visualise the mechanics of this is to consider the representations

of the McKay quiver of G. We shall briefly summarize the necessary background. For a

more detailed exposition of the following material, see [3].

Definition 4.6. A quiver consists of a vertex set Q0, an arrow set Q1 and two maps

h : Q1 → Q0 and t : Q1 → Q0 giving the head hq ∈ Q0 and the tail tq ∈ Q0 of each arrow

q ∈ Q1.

Definition 4.7. Let G be a finite subgroup of GL(Vgiv). Then the McKay quiver of G is

the quiver with the vertex set Q0 labelled by the irreducible representations ρ of G and

the arrow set Q1 which has precisely dimHomG(ρi, ρj⊗Vgiv) arrows going from the vertex

ρi to the vertex ρj .
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Example 4.8. (1) In our case of G being abelian and Vgiv identified with Cn, we have a

decomposition of V ∨
giv into irreducible representations as

⊕
Cxi, where xis are the basic

monomials. Then, writing Uχ for the representation corresponding to χ ∈ G∨,

HomG(Uχi , Uχj ⊗ Cn) =
⊕

xk|χiρ−1(xk)=χj

HomG(xk ⊗ Uχi , Uχj ),

where by xk⊗Uχi , we denote the space Cxk⊗CUχi . Each of the spaces HomG(xk⊗Uχi , Uχj )

is one-dimensional and so has one arrow from χi to χj corresponding to it. Thus the quiver

consists of |G| vertices labelled by characters χ ∈ G∨ and out of each vertex χ emerge n

arrows, each corresponding to one of the one-dimensional spaces HomG(xk ⊗Uχ, Uχρ(xk)).

We shall write (χ, xk) ∈ Q1 to denote such an arrow.

(2) For a concrete example, the reader can verify that the McKay quiver for G =
1
8(1, 2, 5) (see Example 4.1) looks like

A good reason for contemplating the McKay quiver ofG is that it is possible to establish

a one-to-one correspondence between a subset of its representations and (G,R)-modules.

Definition 4.9. A representation of a quiver is a graded vector space
⊕

i∈Q0
Vi and a

collection {αq : Vtq → Vhq}q∈Q1 of linear maps indexed by the arrow set of the quiver. A

morphism from
(⊕

Vi, {αq}
)
to
(⊕

V ′
i , {α′

q}
)
is a collection of linear maps {θi : Vi →

V ′
i }i∈Q0 forming commutative squares with αqs and α′

qs.

Given a G-representation V , it is traditional, in case of G being a general finite sub-

group of GLn, to consider representations of the McKay quiver on a graded vector space⊕
Vρ where Vρ = HomG(ρ, V ). It is then possible (see [16]) to establish a one-to-one

correspondence between such representations and elements of HomG(V
∨
giv⊗V, V ). And, in

the light of the remarks after Definition 2.2, there is a one-to-one correspondence between

all the (G,R)-module structures on V and the elements of HomG(V
∨
giv⊗V, V ) which satisfy

the commutator relations (2.3).
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However, in the case when the group G is abelian, a considerable shortcut can be taken

by considering the representations directly into graded vector space
⊕

Vχ, where Vχ is the

χ-eigenspace of V . We again have the correspondence between representations of McKay

quiver on
⊕

Vχ and elements of HomG(V
∨
giv ⊗ V, V ) and consequently the correspondence

with G-constellations. Explicitly, if we have a (G,R)-structure on V , then the action map

V → V for each basic monomial xi is G-equivariant and so splits into maps Vχ → Vχ/ρ(xi).

Each such map gives precisely the map αχ,xi ∈ Hom(Vχ, Vχ/ρ(xi)) in the corresponding

representation of the quiver.

In case of V = Vreg, if we make an explicit choice of a basis vector eχ for each Vχ, this

gives us bases for all HomG(xi ⊗ Vχ, Vχ/ρ(xi)). Then every McKay quiver representation

on
⊕

Vχ gains a unique map ξ : Q1 → C associated with it, defined by

αχ,xi(eχ) = ξ(χ, xi)eχ/ρ(xi).

Considering a family of G-constellations F parametrised by an affine piece Aσ of Y ,

we have, as outlined in the beginning of the section,

F(Aσ) ≃ C[σ∨]⊗C Vreg.

We then write the χ-eigenspace decomposition F(Aσ) =
⊕

Fχ, and all the correspon-

dences above work just as well with C[σ∨]-modules as they did with complex vector spaces.

This technology presents us with a compact way to write down the R-module structure

on F|Aσ . After a choice of bases, a representation of the McKay quiver becomes a map

ξ : Q1 → C[σ∨] readily pictured as a McKay quiver of G with ξ(χ, xi) written above each

arrow (χ, xi) ∈ Q1. In this way it is also easy to calculate explicitly the G-constellation in

F parametrised by any point of Aσ. If a point p ∈ Aσ is defined by a map evp : C[σ∨] → C,
then the corresponding quiver representation is given by the map ξp = evp ◦ ξ : Q1 → C.

Finally, let us consider deformations of the generic orbit. If F is one such, then it comes

with an embedding ι : F → K(Cn). Its image ι(F) splits into χ-eigenspaces, which are

invertible sheaves, so we can take a set {fχ} ∈ K(Cn), where each fχ is homogeneous of

weight χ and a genereator of χ−1-eigenspace of F over Aσ. The R-module structure comes

for free with the embedding into K(Cn) and the corresponding quiver representation is

given by the map ξ : Q1 → C[σ∨] defined by

(χ−1, xi) 7→
xifχ
fρ(xi)χ

with respect to the choice of generators fχ.

Example 4.10. Let us work through an actual example. Let G = 1
8(1, 2, 5) and σ =

⟨e4, e5, e6⟩. Recall from Example 4.5 that the calculation of the dual basis in M gives us

the local coordinates on Aσ = SpecC[σ∨] as C[σ∨] = C
[
z2

x2 ,
xy2

z , x
2

y

]
.
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Consider F =
⊕

χi∈G∨ OAσfi ⊂ K(Cn) where

f0 = 1, f1 = x, f2 = y, f3 = xy, f4 =
z

x
, f5 = z, f6 =

yz

x
, f7 = yz.

Now for any choice of fi, as long as each fi ∈ Kχi(Cn), the generic fiber
⊕

K(Y )fi is

the whole of K(Cn). The latter has a natural structure of a G-constellation, and so it has

a corresponding quiver representation. Let ξ′ : Q1 → K(Y ) be the map specifying it with

respect to {fi}s as the choice of eigenspace bases.

We claim that F is closed under R-action in K(Cn) and hence defines a family of

G-constellations parametrised by Aσ. We shall verify this statement in the course of

calculating the map ξ′ and seeing that it restricts to a map Q1 → C[σ∨], which defines

the quiver representation corresponding to our family.

Consider the arrow (χ0, x). As described above, in the corresponding quiver represen-

tation the map K(Y )f0 → K(Y )f1 is given by multiplication by x. Hence we get

f0 7→ 1 f1,

and so we label this arrow by

1 =

(
z2

x2

)0(
xy2

z

)0(
x2

y

)0

.

Similarly the arrow (χ5, z) corresponds to the map f3 7→ xyz f0 and so we label it by

xyz =

(
z2

x2

)1(
xy2

z

)1(
x2

y

)1

.

Repeating this for all the arrows of the quiver we obtain

In the diagram on the right we have written all the functions marking the arrows in

terms of positive powers of the local coordinates α, β, γ on Aσ. This demonstrates that
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we indeed have a map

ξ : Q1 → C[σ∨] = C
[
z2

x2
,
xy2

z
,
x2

y

]
,

so F is indeed a family of G-constellations parametrised by Aσ = Spec[α, β, γ]. The G-

constellations parametrised by each point of Aσ are readily calculated by assigning specific

values to α, β and γ in the diagram on the right.

5. Reductors

5.1. Reductor pieces

As in Section 4.3, let Y be a toric resolution, σ ∈ F a cone in its fan and F a deformation

of the generic orbit across Y . If we have a set of generators {fχ | fχ ∈ Kχ(Cn)} such that

ι(F)(Aσ) =
⊕

C[σ∨]fχ,

then we must have

(5.1)
xifχ
fρ(xi)χ

∈ C[σ∨]

for all basic monomials xi and χ ∈ G∨.

But observe that, conversely, for any set {fχ | fχ ∈ Kχ(Cn)} for which (5.1) holds,

the C[σ∨]-submodule of K(Cn) generated by fχ is closed under the natural action of R

on K(Cn) by multiplication. It is certainly closed under the G-action, so it is a (G,R)-

submodule of K(Cn) and a family of G-constellations parametrised by Aσ.

This observation motivates the rest of this section. But first we make a useful definition

Definition 5.1. A reductor piece for a basic cone σ ⊂ L of the fan F of the toric resolution

Y is a set {fχ | fχ ∈ Kχ(Cn)} such that for any basic monomial xi and any χ ∈ G∨ we

have
xifχ
fρ(xi)χ

∈ C[σ∨].

Thus, if we wanted to explicitly construct a family of G-constellations parametrised by

Y , we could do it by producing a reductor piece for each cone σ in the fan F. Every such

would give a family of G-constellations parametrised by open affine piece Aσ. However, we

would need these families to ‘glue together’, i.e., the restrictions to Aσ∩Aσ′ of the families

generated on Aσ and Aσ′ , respectively, must be isomorphic for any two cones σ, σ′ ∈ F.

The general way to guarantee this is independent of the toric technology altogether, taking

us back to G-Weil divisors and to where Section 3 left off.
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5.2. Reductor sets

From now on Y is once again an arbitrary, not necessarily toric, resolution of X.

Let F be a deformation of the generic orbit. It comes with a choice of an embedding

ι′ : F ↪→ K(Cn). Then F splits into G-eigensheaves as
⊕

Fχ and, as per Section 3, each

Fχ defines a linear equivalence class of χ-divisors embedding it into K(Cn), and ι′(Fχ)

pinpoints a specific element of that class. Hence ι′(F) =
⊕

χ L(−Dχ) for some unique set

of G-divisors {Dχ}χ∈G∨ . Note that it is important here that L(−Dχ) is not merely an

abstract line bundle corresponding to Dχ, but a specific sub-OY -module of K(Cn) as per

its definition.

Thus each subsheaf of the constant sheaf K(Cn) on Y , which is an image of an iso-

morphism class of deformations of the generic orbit, is of the form
⊕

L(−Dχ), where each

Dχ is a χ-divisor on Y .

Lemma 5.2. Let F =
⊕

L(−Dχ) and F ′ =
⊕

L(−D′
χ) be two deformations of the

generic orbit across Y . Then they are isomorphic as sheaves of (G,R)-modules if and

only if there exists g ∈ K(Y ) such that

D′
χ −Dχ = (g)

for all χ ∈ G∨.

Proof. The ‘if’ part is immediate, observe that we have a natural isomorphism L(A) ⊗
L(B) → L(A+B) given by multiplication in K(Cn). Applying this to −Dχ − (g) = −D′

χ

yields isomorphism F → F ′ given by s 7→ s/g.

For the ‘only if’ part, let ϕ :
⊕

L(−Dχ) →
⊕

L(−D′
χ) be a (G,R)-equivariant iso-

morphism. Then it restricts to ϕχ : L(−Dχ)
∼−→ L(−D′

χ) for all χ ∈ G∨. Then ϕχ induces

a map L(0) ∼−→ L(−D′
χ+Dχ), so let gχ ∈ K(Cn)G be an image of 1 under this map. Then

D′
χ −Dχ = (gχ) and ϕχ is given by s 7→ gχs for any s ∈ L(−Dχ).

It remains to show that all gχ are equal. Fix any χ ∈ G∨ and consider any G-

homogeneous m ∈ R of weight χ. Take any s ∈ L(−Dχ0) ⊂ K(Cn). Then ms ∈ L(−Dχ)

and using R-equivariance of ϕ:

ϕ(ms) = mϕ(s) = gχ0ms,

and hence gχ = gχ0 for all χ ∈ G∨.

Corollary 5.3. Let F =
⊕

L(−Dχ) and F ′ =
⊕

L(−D′
χ) be two deformations of the

generic orbit across Y . Then they are equivalent if and only if there exists a χ0-divisor N

such that

D′
χ −Dχ = N

for all χ ∈ G∨.
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Proof. Once again, the ‘if’ direction is immediate: an isomorphism F ⊗ L(−N) → F ′ is

given by multiplication in K(Cn).

Conversely, if the families are equivalent then let N be an invertible sheaf on Y such

that F ′ ≃ F ⊗ N . Choose any Weil divisor N ′ such that N = L(−N ′). Then apply

Lemma 5.2 to the isomorphic families
⊕

L(−Dχ −N ′) and L(−D′
χ) to obtain g ∈ K(Cn)

such that D′
χ−Dχ−N ′ = (g) for all χ ∈ G∨. Setting N = N ′+(g) finishes the proof.

Corollary 5.4. In every equivalence class of deformations of the generic orbit there exists

a unique family F of the form
⊕

L(−Dχ) with Dχ0 = 0.

Proof. Given an arbitrary deformation of the generic orbit F we can find an isomorphic

family of the form
⊕

L(−Dχ). Then settingD′
χ = Dχ−Dχ0 we obtain an equivalent family

L(−D′
χ) with the required properties. Finally, Corollary 5.3 shows the uniqueness.

In the view of all of the above, we make the following definition.

Definition 5.5. Let {Dχ}χ∈G∨ be a set of G-divisors. We shall call it a prereductor set if

each Dχ is a χ-Weil divisor. We shall call it a reductor set if
⊕

L(−Dχ) with the inclusion

map into K(Cn) is a deformation of the generic orbit. We shall say the reductor set is

normalised if Dχ0 = 0.

5.3. Reductor condition

We have seen that a deformation of the generic orbit can be specified (up to an isomor-

phism) by a set of G-Weil divisors on Y which gives its embedding into K(Cn). Here we

investigate an opposite question. For which prereductor sets {Dχ}, is
⊕

L(−Dχ) a family

of G-constellations?

We observe that
⊕

L(−Dχ) is always a sub-OY -module of K(Cn) closed under the

G-action. However, for a general choice of divisors Dχ, there is no guarantee that the⊕
L(−Dχ) will be closed under the R-action on K(Cn).

Proposition 5.6 (Reductor condition). Let {Dχ} be a prereductor set. Then it is a

reductor set if and only if, for any f ∈ RG, a G-homogeneous polynomial, the divisor

(5.2) Dχ + (f)−Dχρ(f) ≥ 0,

i.e., it is effective.

Remark 5.7. (1) It is, of course, sufficient to check (5.2) only for f being one of the

basic monomials x1, . . . , xn. This leaves us with a finite number of inequalities to check.

Note also that the principal divisor (xj) is very easy to compute in toric case. It follows
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immediately from Proposition 4.3 that it is
∑

ei∈E ei(xj)Ei. Observe that ei(xj) is simply

the jth coordinate of ei in L.

(2) Numerically, if we write each Dχ as
∑

qχ,PP , each inequality (5.2) becomes a set

of inequalities

(5.3) qχ,P + vP (f)− qχρ(f),P ≥ 0

for all prime divisors P on Y . The important thing to notice here is that the subsets

of inequalities for each prime divisor P are all independent of each other. We can speak

of {Dχ} satisfying or not satisfying the reductor condition at a given prime divisor P .

Moreover, we can construct reductor sets {Dχ} by independently choosing for each prime

divisor P any of the sets of numbers {qχ,P }χ∈G∨ which satisfy (5.3).

Proof of Proposition 5.6. Take an open cover Ui on which all L(−Dχ) are trivialised and

write gχ,i for the generator of L(−Dχ) on Ui. {Dχ} being a reductor set is equiva-

lent to
⊕

L(−Dχ) being closed under R-action on K(Cn). As R is a direct sum of its

G-homogeneous parts, it is sufficient to check the closure under the action of just the

homogeneous functions. So on each Ui, we want

fgχ,i ∈ OY (Ui)gχρ(f),i

to hold for all f ∈ RG, χ ∈ G∨.

On the other hand, with the notation above, G-Cartier divisor Dχ + (f) − Dχρ(f) is

given on Ui by
fgχ,i

gχρ(f),i
and it being effective is equivalent to

fgχ,i
gχρ(f),i

∈ OY (Ui)

for all Ui’s. The result now follows.

We now translate the reductor condition (5.2) into toric language and investigate

what it implies for the reductor pieces of the family on the open toric charts Aσ of a toric

resolution Y .

Example 5.8. Let G and Y be as in previous examples. Let {Dχ} be a prereductor set

where each Dχ =
∑

qχ,iEi is given as follows:

Dχ0 = 0, Dχ1 =
1

8
E4 +

2

8
E5 +

4

8
E6 +

5

8
E7,

Dχ2 =
2

8
E4 +

4

8
E5 +

2

8
E7, Dχ3 =

3

8
E4 +

6

8
E5 +

4

8
E6 +

7

8
E7,

Dχ4 =
4

8
E4 +

4

8
E7, Dχ5 =

5

8
E4 +

2

8
E5 +

4

8
E6 +

1

8
E7,

Dχ6 =
6

8
E4 +

4

8
E5 +

6

8
E7, Dχ7 =

7

8
E4 +

6

8
E5 +

4

8
E6 +

3

8
E7.
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In the view of Proposition 4.2, the reductor condition (5.2) is equivalent to

(5.4) qχ,i + ei(m)− qχρ(m),i ≥ 0

for all χ ∈ G∨, ei ∈ E and m ∈ Zn
+.

The careful reader could now verify that (5.4) holds for m = (1, 0, 0), (0, 1, 0) and

(0, 0, 1) and hence {Dχ} is a reductor set and
⊕

L(−Dχ) is a family of G-constellations.

Recall now reductor pieces introduced in Definition 5.1. Let us calculate the reductor

piece {xpχ} specified by the generators of L(−Dχ) on the affine piece A⟨e5,e6,e7⟩. This is

the same calculation of a generator of a G-Weil divisor on a given open toric chart that

we saw in Example 4.5, e.g.,

pχ1 = qχ1,5 ě5 + qχ1,6 ě6 + qχ1,7 ě7,

and so

xpχ7 =

(
y2z

x

)2/8(
z2

y

)4/8(
x2

z2

)5/8

= x.

Repeating this for each χ ∈ G∨, we obtain {xpχ} =
{
1, x, y, xy, xz , z,

xy
z , yz

}
, the

reductor piece pictured below as a diagram in the monomial lattice Zn:

The inequalities (5.4) now translate into the following form

ei(pχ +m− pχρ(m)) > 0, i = 5, 6, 7,

that is,

(5.5)
xpχxm

xpχρ(m)
∈ C[σ∨]

for every m ∈ Zn
+. This agrees with the discussion in Section 5.1, where it is precisely the

condition for
⊕

OAσx
pχ to be a family of G-constellations parametrised by Aσ.

The reader may find the diagrams set in the monomial lattice Zn convenient for check-

ing if a given monomial set {xpχ} satisfies the reductor equations in the form (5.5). One
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merely needs to check that when adding (1, 0, 0), (0, 1, 0) or (0, 0, 1) to any pχ, the vector

reducing the result to pχ′ (for appropriate χ′) lies within the cone σ∨.

5.4. Existence and symmetries

So far we have seen no indication that, over an arbitrary resolution Y , there exist any

deformations of the generic orbit in the first place. There is apriori, for an arbitrary Y , no

reason why it could at all be able to parametrise a family of G-constellations with such a

strong relation to the geometry of Y (see Proposition 2.5) as that of a deformation of the

generic orbit. However, the following result shows that, for an absolutely any resolution

Y , we always have at least one such family.

Proposition 5.9 (Canonical family). For an arbitrary resolution Y of X the set of G-

Weil divisors given by Dχ =
∑

v(P, χ)P , where P runs over all prime Weil divisors on

Y , satisfies the reductor condition.

We shall call the family F =
⊕

L(−Dχ) the canonical deformation of the generic orbit

of G across Y .

Remark 5.10. For Dχ =
∑

v(P, χ)P to be a G-Weil divisor we need, in particular, for it

to be a finite sum. This is implied by Corollary 3.12.

Proof of Proposition 5.9. We need to show that for any χ ∈ G∨, any G-homogeneous

f ∈ RG and any prime divisor P on Y we have

v(P, χ) + vP (f)− v(P, χρ(f)) ≥ 0.

First observe that the above expression must be integer valued. Also v(P, χ) ≥ 0 and

−v(P, χρ(f)) > −1 by definition, while vP (f) ≥ 0 since fn is regular on all of Y . So we

must have

v(P, χ) + vP (f)− v(P, χρ(f)) > −1,

and the result follows.
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Corollary 5.11. Let Y be a toric resolution of X. Then the canonical family of G-

constellations on Y is given by {Dχ} where

Dχ =
∑
i∈E

v(Ei, χ)Ei.

Moreover, on any affine open piece Aσ, we have

F(Aσ) = C[σ ∩ Zn].

Proof. The first statement follows trivially from the definition of the canonical family and

the fact that v(P, χ) = 0 whenever P is not one of the divisors Ei (see Corollary 3.14).

For the second statement, without loss of generality let σ = ⟨e1, . . . , en⟩. Write

F(Aσ) =
⊕

C[σ∨ ∩M ]xpχ , where xpχ are the generators of L(−Dχ)(Aσ). Proposition 4.3

implies that for each pχ we have ei(pχ) = v(Ei, χ) for all i ∈ 1, . . . , n. But all the num-

bers v(Ei, χ) are positive by definition, which implies that each pχ lies in σ∨ and so

F(Aσ) ⊆ C[σ∨ ∩ Zn]. Conversely, given any m ∈ σ∨ ∩ Zn,

ei(m− pρ(m)) = ei(m)− v(ρ(m), Ei) ≥ 0

as v(Ei), ρ(m) is precisely the fractional part of vEi(m) = ei(m). Therefore m− pρ(m) ∈
σ∨ ∩M and so we have the inclusion in the other direction.

Geometrically, one could easily convince oneself in the truth of this statement by

picturing the cone σ∨ = {v ∈ Rn | ei(v) ≥ 0} in Zn⊗R and observing that the set {pχ} of

the exponents of the reductor piece of F on Aσ consists precisely of all the elements of Zn

lying within the topmost area U of σ∨ given by 1 > ei(v) ≥ 0. σ∨ ∩ Zn is then precisely

(U ∩ Zn) + (σ∨ ∩M). We can also see why reductor condition holds: as the cone Rn
+ lies

within the cone σ∨, pχ +m lies within σ∨ ∩ Zn for any xm ∈ R.

Example 5.12. The reductor set {Dχ} given in Example 5.8 specifies the canonical family

on Y . Indeed, observe that all the numbers qχ,i are between 0 and 1. The (3.2) in definition

of a G-Weil divisor implies they must be v(Ei, χ).

Generally, to calculate the canonical family in a toric case, one needs to choose a

monomial mχ of weight χ for each χ ∈ G. Then, for each ei ∈ F, one calculates the

rational number ei(mχ) and takes its fractional part, which is precisely v(Ei, χ). The

G-Weil divisors Dχ =
∑

i v(Ei, χ)Ei are then the reductor set for the canonical family.

For instance, the numbers for the canonical family in Example 5.8 were obtained as

follows: take character χ3 ∈ G∨ and then take x3, a monomial of weight χ3. Calculating

e5(3, 0, 0) =
1
8(2× 3+ 4× 0+ 2× 0) = 6

8 , we obtain the coefficient of E5 in Dχ3 . Similarly

e7(3, 0, 0) =
15
8 and its fractional part 7

8 is the coefficient of E7 in Dχ3 .
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Observe also that given any other reductor set {D′
χ}, its qχ′,i will differ from those of

the canonical one by integer numbers.

Observe also that on the level of reductors {xpχ}, the change introduced to the family

by adding an integer n to qχ,i amounts precisely to shifting pχ by něi in the reductor of

those open pieces Aσ where ei ∈ σ. But note that ěi is a different vector in M for each

such σ.

Having established that deformations of the generic orbit across Y always exist, we

now consider symmetries which the set of them must possess.

Proposition 5.13 (Character shift). Let {Dχ} be a reductor set. Then for any λ-Weil

divisor N , the set {Dχ +N} also satisfies the reductor condition.

Moreover, up to equivalence of families, the deformation F ′ it specifies depends only

on λ and not on the choice of N , and the unique normalized reductor set {D′
χ} specifying

F ′ is given by

D′
χλ = Dχ −Dλ−1 .

Proof. It is trivial that the new set of divisors satisfies the reductor condition:

(Dχ +N) + (m)− (Dχρ(m) +N) ≥ 0

is immediately equivalent to the statement that {Dχ} satisfy the reductor condition.

For the second claim, observe that the divisor in the trivial character class is now

(Dλ−1 +N). Normalising by it we obtain in character class χ+ λ:

Dχ +N −Dλ−1 −N,

which establishes the claim.

Definition 5.14. Given a normalized reductor set {Dχ}, we shall call normalized reductor

set {Dχ −Dλ−1} the λ-shift of {Dχ}.

Example 5.15. On the level of reductors {xpχ}, λ-shift leaves the geometrical configu-

ration of pχ’s in the lattice Zn the same, but permutes them and shifts the origin to the

new location of pχ0 .

For example, consider the case of the reductor piece calculated in Example 5.8. After

a χ4-shift it becomes
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Proposition 5.16 (Reflection). Let {Dχ} be a reductor set. Then the set {−Dχ} also

satisfies the reductor condition.

Proof. We need to show that

−Dχ−1 + (m)− (−Dχ−1ρ(m)−1) ≥ 0.

Rearranging we get

Dχ−1ρ(m)−1 + (m)−Dχ−1ρ(m)−1ρ(m) ≥ 0,

which is one of the reductor equations the original set {Dχ} must satisfy.

Definition 5.17. Given a reductor set {Dχ}, we shall call the reductor set {−Dχ} the

reflection of {Dχ}.

Example 5.18. On the level of reductors {xpχ}, the reflection is precisely the reflection

of pχ about the origin in the lattice Zn.

For example, consider the case of the reductor piece calculated in Example 5.8. After

a reflection it becomes
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5.5. Maximal shifts

We now examine the individual line bundles L(−Dχ) in a deformation of the generic orbit

and show that the reductor condition imposes a restriction on how far apart from each

other they can be.

Lemma 5.19. Let {Dχ} be a reductor set. Write each Dχ as
∑

qχ,PP , where P ranges

over all the prime Weil divisors on Y . Then we necessarily have for any χ1, χ2 ∈ G∨ and

for any prime Weil divisor P ,

min
f∈Rχ1/χ2

vP (f) ≥ qχ1,P − qχ2,P ≥ − min
f∈Rχ2/χ1

vP (f),

where Rχ is the set of all the χ-homogeneous functions in R.

Proof. Both inequalities follow directly from the reductor condition (5.2): the right in-

equality by setting χ = χ1 ∈ G∨, ρ(f) = χ2

χ1
and letting f vary within Rρ(f); the left

inequality by setting χ = χ2 and ρ(f) = χ1

χ2
.

This suggests the following definition.

Definition 5.20. For each character χ ∈ G∨, the maximal shift χ-divisor Mχ is defined

to be

(5.6) Mχ =
∑
P

(
min
f∈Rχ

vP (f)

)
P,

where P ranges over all prime Weil divisors on Y .

Observe that the fact that the sum in (5.6) is finite follows directly from Corollary 3.14.

Lemma 5.21. The G-Weil divisor set {Mχ} is a normalised reductor set.

Proof. To show that the set {Mχ} satisfies the reductor condition, we need to show that

for every f ∈ RG and any prime divisor P on Y ,

vP (mχ) + vP (f)− vP (mχρ(f)) ≥ 0,

where mχ and mχρ(f) are chosen to achieve the minimality in (5.6).

Observe that mχf is also a G-homogeneous element of R, therefore by the minimality

of vP (mχρ(f)) we have

vP (mχf) ≥ vP (mχρ(f)),

as required.

To establish that Mχ0 = 0, we observe that vP (1) = 0 for any prime Weil divisor P on

Y and vP (f) ≥ 0 for any G-homogeneous f ∈ R.
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Observe that with Lemma 5.21 we have established another deformation of the generic

orbit of G which always exists across any resolution Y . While in some cases it coincides

with the canonical family, the reader will see in Example 5.23 the case when the canonical

family and the maximal shift family differ.

Putting together Lemmas 5.19 and 5.21 gives a result which shows that the reductor

set {Mχ} and its reflection {−Mχ} provide bounds on the set of all normalized reductor

sets on Y .

Proposition 5.22 (Maximal shifts). Let {Dχ} be a normalized reductor set. Then for

any χ ∈ G∨,

(5.7) Mχ ≥ Dχ ≥ −Mχ−1 .

Moreover both the bounds are achieved.

Proof. To establish that (5.7) holds, set χ2 = χ0 in Lemma 5.19. Lemma 5.21 shows that

bounds are achieved.

Example 5.23. Let us calculate the maximal shift divisor set {Mχ} for the setup intro-

duced in Example 4.1.

By definition, Mχ =
∑

mχ,PP where mχ,P = minf∈Rχ vP (f). By Corollary 3.14, the

numbers mχ,P are only non-zero for divisors corresponding to elements of E. Therefore

for each ei ∈ E, we need to find mχ,Ei = min ei(p) where p ranges over elements of Zn
+

such that ρ(p) = χ.

It is only necessary to consider a finite number of choices for p to establish each mχ,P .

Observe that it suffices to take the ones with 0 ≤ pi ≤ |G| as p′ = p−(0, . . . , 0, |G|, 0, . . . , 0)
is again an element of Zn with ρ(p′) = ρ(p) and ei(p

′) ≤ ei(p) for all ei ∈ E.

For example, taking e5 =
1
8(2, 4, 2) and considering all such p, we see that

mχ0,E5 = vE5(1) = e5(0, 0, 0) = 0, mχ1,E5 = vE5(x) = e5(1, 0, 0) =
2

8
,

mχ2,E5 = vE5(x
2) = e5(2, 0, 0) =

4

8
, mχ3,E5 = vE5(x

3) = e5(3, 0, 0) =
6

8
,

mχ4,E5 = vE5(x
4) = e5(4, 0, 0) = 1, mχ5,E5 = vE5(z) = e5(0, 0, 1) =

2

8
,

mχ6,E5 = vE5(zx) = e5(1, 0, 1) =
4

8
, mχ7,E5 = vE5(zx

2) = e5(2, 0, 1) =
6

8
.

Observe that in case of χ4 we have mP,χ ̸= vP,χ. So the maximal shift family for this Y

differs from the canonical family.
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If we repeat this calculation for all elements of E to obtain all numbers mei,χ, we will

obtain

Mχ0 = 0, Mχ1 =
1

8
E4 +

2

8
E5 +

4

8
E6 +

5

8
E7,

Mχ2 =
2

8
E4 +

4

8
E5 +

2

8
E7, Mχ3 =

3

8
E4 +

6

8
E5 +

4

8
E6 +

7

8
E7,

Mχ4 =
4

8
E4 + E5 +

4

8
E7, Mχ5 =

5

8
E4 +

2

8
E5 +

4

8
E6 +

1

8
E7,

Mχ6 =
6

8
E4 +

4

8
E5 +

6

8
E7, Mχ7 =

7

8
E4 +

6

8
E5 +

4

8
E6 +

3

8
E7.

Compare it to the reductor set of the canonical family given in Example 5.8.

If we now want to calculate all the normalised reductor sets (and hence all the nor-

malised deformations of the generic orbit), we simply need to check each of the finite

number of prereductor sets between {Mχ} and its reflection {−Mχ} and pick out the ones

which satisfy the reductor condition (5.2).

Recall now Remark 5.7 about checking reductor condition independently at each prime

divisor in Y . Here, it means that for any reductor set
{∑

i qχ,iEi

}
χ∈G∨ , the numbers

{qχ,i}χ∈G∨ satisfy or fail the reductor condition inequalities independently for each ei ∈ E.

This can be seen from the fact that each of the inequalities (5.4) features numbers qχ,i all

for the same i.

In particular it means that to list all the possible normalized reductor sets on Y , it is

sufficient to list for each Ei all the sets {qχ,i}χ∈G∨ satisfying the inequalities (5.4). Then

all the normalized reductor sets on Y are given by all the possible choices of one of these

sets {qχ,i}χ∈G∨ for each Ei.

For our particular Y , we give such list below:

E4:

1

8



χ0 χ1 χ2 χ3 χ4 χ5 χ6 χ7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 −1

0 1 2 3 4 5 −2 −1

0 1 2 3 4 −3 −2 −1

0 1 2 3 −4 −3 −2 −1

0 1 2 −5 −4 −3 −2 −1

0 1 −6 −5 −4 −3 −2 −1

0 −7 −6 −5 −4 −3 −2 −1



,
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E5:

1

8



χ0 χ1 χ2 χ3 χ4 χ5 χ6 χ7

0 2 4 6 8 2 4 6

0 2 4 6 0 2 4 6

0 2 4 −2 0 2 4 6

0 2 4 6 0 2 4 −2

0 2 4 −2 0 2 4 −2

0 2 −4 −2 0 2 4 −2

0 2 4 −2 0 2 −4 −2

0 2 −4 −2 0 2 −4 −2

0 −6 −4 −2 0 2 −4 −2

0 2 −4 −2 0 −6 −4 −2

0 −6 −4 −2 0 −6 −4 −2

0 −6 −4 −2 −8 −6 −4 −2



,

E6:

1

8


χ0 χ1 χ2 χ3 χ4 χ5 χ6 χ7

0 4 0 4 0 4 0 4

0 −4 0 −4 0 −4 0 −4

 ,

E7:

1

8



χ0 χ1 χ2 χ3 χ4 χ5 χ6 χ7

0 5 2 7 4 1 6 3

0 5 2 −1 4 1 6 3

0 5 2 −1 4 1 −2 3

0 −3 2 −1 4 1 −2 3

0 −3 2 −1 −4 1 −2 3

0 −3 2 −1 −4 1 −2 −5

0 −3 −6 −1 −4 −7 −2 −5



.

For one particular resolution Y , the family provided by the maximal shift divisors is

already quite well-known.

Proposition 5.24. Let Y = G -HilbCn, the moduli space of G-clusters in Cn. If Y is

smooth, then
⊕

L(−Mχ) is the universal family F of G-clusters parametrised by Y , up to

the usual equivalence of families.
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Proof. Firstly F is a deformation of the generic orbit, as over any set U ⊂ X such that G

acts freely on q−1(U) we have π∗F|U ≃ q∗OCn |U . Hence write F as
⊕

L(−Dχ) for some

reductor set {Dχ}. Take an open cover {Ui} of Y and consider the generators {fχ,i} of

Dχ on each Ui. Working up to equivalence, we can consider {Dχ} to be normalised and

so fχ0,i = 1 for all Ui.

Now any G-cluster Z is given by some invariant ideal I ⊂ R and so the corresponding

G-constellation H0(OZ) is given by R/I. In particular note that R/I is generated by

R-action on the generator of χ0-eigenspace. Therefore any fχ,i is generated from fχ0,i = 1

by R-action, which means that all fχ,i lie in R.

But this means that for any prime Weil divisor P on Y we have

vP (fχ,i) ≥ min
f∈Rχ

vP (f),

and therefore Dχ ≥ Mχ. Now Proposition 5.22 forces the equality.

5.6. Summary

Finally, we combine the results achieved thus far into a classification theorem.

Theorem 5.25 (Classification). Let G be a finite abelian subgroup of GLn(C), X be the

quotient of Cn by the action of G and Y be a resolution of X. Then all deformations of

the generic orbit across Y , up to isomorphism, are of form
⊕

χ∈G∨ L(−Dχ), where each

Dχ is a χ-Weil divisor and the set {Dχ} satisfies the inequalities

Dχ + (f)−Dχρ(f) ≥ 0

for all χ ∈ G∨ and all G-homogeneous f ∈ R. Here ρ(f) is the homogeneous weight of f .

Conversely for any such set {Dχ},
⊕

L(−Dχ) is a deformation of the generic orbit.

Moreover, each equivalence class of families has precisely one family with Dχ0 = 0.

The divisor set {Dχ} corresponding to such a family satisfies inequalities

Mχ ≥ Dχ ≥ −Mχ−1 ,

where {Mχ} is a fixed divisor set depending only on G and Y . In particular, the number

of equivalence classes of families is finite.

Proof. Proposition 5.6 establishes the correspondence of isomorphism classes of deforma-

tions of the generic orbit and reductor sets. Corollary 5.4 lifts the correspondence to

the level of equivalence classes and normalised reductor sets. Proposition 5.22 gives the

bounds on the set of all normalised reductor sets, and as due to Corollary 3.14 each Mχ

is a finite sum, this set is finite.
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