
Computational Physics

A Lattice Boltzmann method for free surface flows over partially 
submerged structures

Baoming Guo a, Jianping Meng b, Zhihua Xie a, Dezhi Ning c, Shunqi Pan a,*

a Hydro-environmental Research Centre, School of Engineering, Cardiff University, CF24 3AA, UK
b Research IT, IT Services, University of Liverpool, L69 3GG UK
c State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China

A R T I C L E  I N F O

Edited by Editor: Prof. Andrew Hazel

Keywords:
Lattice Boltzmann method (LBM)
Volume-of-fluid (VOF)
Partially submerged structures
Hydrodynamic forces

A B S T R A C T

The Lattice Boltzmann method (LBM) has been extensively developed to efficiently simulate free surface flows 
and interactions between single-phase flows and fully immersed structures. However, few studies have focused 
on modelling partially submerged structures, particularly on accurately evaluating their hydrodynamic forces 
under gravity and wave dynamic conditions. To advance the application of LBM in this area, this study presents a 
dynamic-pressure Lattice Boltzmann model tailored for simulating partially submerged stationary structures in 
free surface flows. In the free surface section, the volume-of-fluid method is implemented and the advection of 
volume fraction is governed by the streaming of intrinsic density distribution functions. For the fluid-structure 
interface, an interpolated bounce-back scheme is imposed on the no-slip fluid-structure boundary and an 
improved momentum exchange method is employed to assess the fluid loads, accounting for the effects of gravity 
and external sources. This paper details the implementation of modelling framework and presents the outcomes 
of five benchmark simulations conducted for model verification and validation. These cases include flows over a 
circular cylinder and a square cylinder, Rider-Kothe single vortex evolution, dam-break flows, and wave impact 
on two partially submerged fixed boxes. The developed numerical model yields satisfactory agreement with 
experimental and numerical results in terms of the hydrodynamic force evaluation and free surface deformation. 
The final case demonstrates the capability of the LBM model in investigating frequency response of wave impact 
on partially submerged structures, highlighting its potential for broader applications in coastal and ocean 
engineering.

1. Introduction

Marine structures interacted with free surface flows are a common 
focus in coastal and ocean engineering, involving applications such as 
wave energy converters (WECs) [1], floating liquid natural gas (FLNG) 
production systems [2,3], and offshore wind farms platforms [4] inter
acting with ocean waves and currents. Such a hydrodynamic problem 
often involves violent deformation of high-density-ratio air-water 
interface and strong slamming forces impacts on structures. Efficiently 
simulating the complex free surface fluid-structure interaction still re
mains a challenging task for computational fluid dynamics (CFD) [5]. 
With respect to conventional Navier-Stoke (NS) CFD methods, the Lat
tice Boltzmann method (LBM) offers several attractive features: linear 
advection between nodes, localized nonlinear fluid dynamics, and in
dependence from solving Poisson equation [6]. These characteristics 

render LBM particularly well-suited for high-performance computing 
(HPC) on parallel architectures. With significant advancements on par
allel HPC over the last decades, LBM has developed to be an efficient and 
powerful numerical tool for modelling both free surface flows [7,8] and 
hydrodynamics of immersed structures [9–11].

For studying an offshore structure coupling with free surface flows, it 
is essential to address two crucial aspects: gas-liquid interface capturing 
and fluid-structure boundary treatment. Within LBM, both diffuse 
interface and sharp interface capturing methods can be applied to model 
the free surface flows. The diffuse interface capturing method, popular 
in the early development of LBM for multi-phase flows with low Rey
nolds numbers, includes various models such as the colour-gradient 
[12], free-energy [13], and Shan-Chen pseudopotential [14] models. 
These models are powerful for simulating multiphase flows with com
plex geometries and topologies. However, for applications involving 
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high density and viscosity ratios or when computational resources are 
limited, sharp interface capturing methods might be preferred [8]. In 
terms of this, the volume-of-fluid (VOF) and level set methods have been 
incorporated into LBM [15,16]. These LBM-based sharp interface 
capturing methods solve the same advection equation of volume fraction 
(for VOF) or signed-distance functions (for level set) similarly to the 
NS-based methods. Specifically, in the Level Set approach, the algorithm 
for solving signed distance functions, which is independent from LBM 
evolutions, is the same as those used in NS-based solvers [16,17]. In the 
VOF approach, Korner et al [15] initially integrated the VOF method 
into LBM model where the advection of volume fraction is evaluated by 
the streaming of intrinsic density distribution functions (DFs), while 
Janssen and Krafczyk [18] coupled LBM with NS solver’s VOF algo
rithm, employing the piecewise linear interface reconstruction (PLIC). 
Recently, the VOF-LBM and Level Set-LBM models have been extended 
to coastal and ocean engineering. For example, the dam-break flows 
characterized by high Reynolds numbers were modelled in several 
studies to validate their free surface models [5,17–19], involving 
interface reconstruction algorithm, GPU implementation, and combi
nation of cumulant LBM. In wave dynamics simulations, Thorimbert et 
al [20] and Liu et al [21] observed wave energy dissipation and spurious 
current problems in their numerical wave model based on the original 
Korner’s VOF method, attributed to inconsistencies between gravity and 
pressure gradients. To address these, Liu et al [22] introduced the 
gravity into the pressure gradient term to reduce force 
imbalance-induced errors. Qiu et al [23] combined the VOF-LBM model 
with a fluid-structure boundary treatment approach for modelling 
landslide-induced tsunami waves. These studies concentrate on 
enhancing the free surface algorithms for stably and efficiently 
capturing the air-water interface deformation. They demonstrate that 
LBM has been effectively utilized for simulating free surface flows.

In terms of the fluid-structure boundary treatment, the numerical 
approach in the framework of LBM is broadly categorized into the bounce- 
back (BB) method, sharp-interface immersed boundary method (IBM), 
and diffused-interface IBM [6,24]. The BB treatment is intuitive and 
simple to implement the no-slip boundary conditions and is proven highly 
accurate and efficient for stationary boundaries with higher-order inter
polated methods, while the IBM is advantageous for handling complex 
moving solid boundary, particularly the flexible deforming structures. 
Hydrodynamic force evaluations normally depend on the solid boundary 
treatment scheme. For diffused-interface IBM, the hydrodynamic forces 
can be evaluated by integrating the boundary forces at Lagrangian solid 
nodes or at Eulerian fluid nodes. Meanwhile, the stress integration method 
(SIM) and momentum exchange method (MEM) [25] can be applied to the 
fluid loads calculation in BB and sharp-interface IBM approaches. The 
SIM, initially developed in NS solvers, integrates the stress and pressure 
along the body surface. Although the stress in LBM can be evaluated 
locally through the second-order velocity moment of non-equilibrium 
DFs, the extrapolation of DFs from nodes to solid boundary inevitably 
introduces instability and inefficiency [11,25]. Conversely, the MEM 
aligns well with the LBM evolution characteristics where the hydrody
namic force acting on structure equals the momentum change of fluid 
particles after the collision with the solid boundary. The conventional 
MEM violates local Galilean invariance, limiting its application for moving 
structures. Chen et al [26] and Wen et al [27] proposed corrections for 
MEM to restore the local Galilean invariance by taking the structure ve
locity into consideration, known as Galilean-invariant momentum ex
change method (GIMEM). Various benchmark cases have been simulated 
to validate the numerical approaches for fluid-structure treatment in 
laminar flows [10,11,28], including freely-settling cylinder in the vertical 
channel, transient laminar pipe flow, and flapping flag. For turbulent 
flows with complex geometries, the performance of interpolated BB and 
IBM have also been tested and compared through turbulent pipe flows and 
particle-laden flows [29,30]. Practically, Morrison and Leder [9] applied 
BB approach to study the scour and sedimentation around a horizontally 
bedded finite cylinder subjected to the uniform water flow. Fringand et al 

[31] established an IBM-LBM solver to investigate the dynamics of an 
elastic beam behind a cylinder, immersed in a parabolic turbulent flow. 
Overall, these fluid-structure treatment approaches in LBM have been 
well-developed and successfully applied to simulation of structures/solid 
particles in single-phase flows without an air-water interface.

Regarding the free surface flows over structures in LBM, Zhao et al 
[32] simulated wave deformation over a submerged breakwater based 
on depth-integrated continuity equation method and BB approaches. 
This water scattering by submerged structures was also modelled by 
others [21,22], using Korner’s VOF method combined with the BB 
approach. For these fully immersed structures, the numerical treatments 
for the free surface and the fluid-solid boundary are independent, 
facilitating straightforward integration of fluid-structure treatment ap
proaches into the free surface model. Efforts to extend LBM to partially 
submerged structures, which require coupled treatments of 
fluid-structure and free surface boundaries, have also been made. Using 
the diffuse-interface capturing method, Watanabe et al [33] applied the 
single-phase conservative phase-field method combining BB approaches 
to investigate the tsunami flows interacting with floating structures. 
Zhou et al [34] combined two-phase conservative phase-field approach 
with a central-moment collision model to construct a numerical wave 
tank and simulate the shoaling-induced wave deformation and breaking. 
Based on the sharp-interface VOF method, Janssen and Krafczyk [19], 
for example, employed the simple bounce back (SBB) scheme [35] in 
their GPU-based model to evaluate the slamming forces on a land-fixed 
cylinder subjected to dam-break flows. Sato et al [36] measured the 
water height and point pressure at a cubic structure surface during 
dam-break flows. Additionally, Thorimbert et al [20] investigated wave 
propagating through a fixed oscillating water column WEC, combining 
the VOF and BB approaches, and Liu et al [7] simulated a wave propa
gation around square cylinder and circular cone within their dynamic 
pressure scheme [22]. Since fully three-dimensional VOF simulations 
demand substantial computational resources, Yuan et al [37] coupled a 
two-dimensional shallow water model with the VOF-LBM model for 
modelling flood wave evolution in reservoirs and riverbeds. Most 
existing studies focus primarily on the influence of stationary structures 
on free surface deformation, while the reverse effect, the hydrodynamic 
forces exerted by free surface flows on structures, has received 
comparatively little attention, despite its critical importance for the safe 
design and operation of such structures. In particular, the hydrostatic 
pressure gradient induced by gravity can lead to significant force fluc
tuations, even when higher-order interpolation schemes are employed at 
the fluid-structure interface in LBM, as reported by Bogner and Rüde 
[38]. This highlights the need for improved force evaluation techniques 
to ensure accurate and robust prediction of hydrodynamic forces.

As reviewed above, previous LBM studies have primarily addressed 
either fully submerged bodies or free surface dynamics in isolation. Only 
a limited number of works have attempted to simulate free surface flows 
around partially submerged structures. Within the diffuse-interface 
framework, the phase-field-based solver developed by Watanabe et al 
[33] has demonstrated promising accuracy and robustness for this class 
of problems. However, the development of corresponding 
sharp-interface methods in the context of LBM remains relatively 
immature. This challenge involves the complex boundary treatment 
required at the triple junction where gas, liquid, and solid phases 
intersect. Furthermore, the presence of hydrostatic pressure gradients 
continues to complicate the accurate computation of forces on struc
tures. To address these challenges, this study aims to develop a 
sharp-interface VOF model combining with BB approaches within 
dynamic-pressure LB framework for simulating the partially submerged 
stationary structures in free surface flows and correctly evaluating the 
hydrodynamic forces. The remaining part of this paper is structured as 
follows: Section 2 describes the LBM including the multi-relaxation-time 
model, free surface capturing, and fluid-structure treatment method. 
The wave generation and absorption technique, and code performance 
are also incorporated into this section. Section 3 verifies the accuracy of 
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the hydrodynamic force evaluation and free surface deformation. Sec
tion 4 presents the model validation with two practical cases of fluid 
flows with high Reynolds number: classic dam-break flows and wave 
flow past partially submerged structures.

2. Numerical model

In this study, a numerical framework is developed using the Lattice 
Boltzmann method within the dynamic pressure scheme [22] for simu
lating partially submerged stationary structures in free surface flows, as 
shown in Fig. 1, where the partially submerged structure is represented 
as grey nodes. The VOF method [15], extensively applied in most of the 
aforementioned studies, is implemented here to capture the free surface. 
For fluid-stationary structure treatment, the interpolated bounce-back 
method (IBB) with relatively high accuracy is used at the solid wall 
boundary with the no-slip condition. The MEM is extended for force 
evaluation of partially submerged body within the present dynamic 
pressure LB scheme. The coupling problems of fluid-structure treatment 
and free surface capture algorithms are addressed.

2.1. Multi-relaxation-time lattice boltzmann model

For the isothermal incompressible flows, the governing equation is 

the continuous Boltzmann equation [6], 

∂f
∂t

+ e⋅
∂f
∂x

+ F ⋅
∂f
∂e

= Ω(f) (1) 

where f(x, e, t) is the molecular distribution function at position x and 
time t for molecular velocity e, and F is the external body force per unit 
mass. Ω(f) is the collision operator. Within multi-relaxation-time (MRT) 

collision model, extending beyond the Bhatnagar-Gross-Krook (BGK) 
approach [39], it can be rewritten as a discrete equation by fully dis
cretizing in the time t, space x and molecular velocity e, 

fα(x + δxα, t + δt) − fα(x, t) = − M− 1[S⋅(m − meq)] + M− 1
(

I −
1
2

S
)

Φδt

(2) 

in which, fα and eα are the discretised molecular distribution function 
and molecular velocity in direction α; δxα = eαδt; δt and δx =

̅̅̅
3

√
csδt are 

the time step and space step, respectively, where cs is the sound speed 
(cs =

̅̅̅̅̅̅̅̅̅
RT0

√
, where R and T0 is the specific gas constant and reference 

temperature [40,41]).
In the present two-dimensional study, the commonly used D2Q9 

scheme (nine molecular velocities in two space dimensions) is adopted, 
as shown in Fig. 2. In the standard MRT-LBM model, the relaxation 
matrix S = diag

(
1, ωe, ωϵ, 1, ωq, 1, ωq, ων, ων

)
, where ωe and 

ων = 1/(τ /δt+0.5) are the bulk and shear viscosities, respectively, and 
ωe, ωϵ and ωq can be adjusted for numerical stability and accuracy. τ is 
the non-dimensional relaxation time. The transformation matrix M to 
map distributions fα in the moment space, the equilibrium moments 
meq = Mfeq, and force term in the moment space Φ = MF with Guo 
Force scheme [42] for F , can be expressed as,  

where u is the macroscopic velocity and w is the weight coefficient 
specific to each molecular velocity discretisation. It should be noted that 
some revisions for , meq and Φ have been made to adapt the LBM model 
based on [40,41]. The second-order equilibrium molecular distribution 
function feq

α is expressed as, 

Fig. 1. Schematic diagram for partially submerged structure in free surface 
flows (the solid blue line is the free surface, and the arrow lines denote that DFs 
from gas and solid nodes are reconstructed using either the free surface or the 
bounce-back boundary condition schemes).

Fig. 2. Discretised directions and molecular velocities in a D2Q9 LBM 
discretization.

(3)
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f eq
α (x, t) = wαρ

[

1+
eα⋅u
c2

s
+
(eα⋅u)2

2c4
s

−
u2

2c2
s

]

(4) 

The macroscopic quantities can be calculated by the velocity 
moments, 

ρ =
∑

α
fα, u =

∑

α
eαfα

/

ρ +
F

2
δt (5) 

where α is molecular velocity direction. More details regarding the MRT- 
LBM model can be found in [6,22,43].

The N-S equations can be recovered through the Chapman-Enskog 
expansion [6] as, 

∂ρ
∂t

+
∂(ρui)

∂xi
= 0

∂(ρui)

∂t
+

∂
(
ρuiuj

)

∂xj
= −

∂p
∂xi

+
∂

∂xj

(

μ
(

∂ui

∂xj
+

∂uj

∂xi

)

+

(

μB −
2μ
3

)

δij
∂uk

∂xk

)

+ ρF i

(6) 

where p = ρc2
s , shear viscosity μ = p

(
δt
ων

− 0.5δt
)

, bulk viscosity μB 

= p
(

δt
ωe
− 0.5δt

)

−
μ
3 and F i is the force terms, including the gravity 

force and source term from wave generation and absorption methods.
Liu et al [22] demonstrated that the inconsistency of gravity and 

pressure gradient induces the unphysical current and further causes the 
numerical instability and energy dissipation. Bogner and Rüde [38] also 
pointed out that the buoyancy force from the hydrostatic pressure 
gradient cannot be accurately evaluated due to the staircase approxi
mation of the liquid-solid interface on Cartesian grids. To reduce those 
numerical errors, the modified-pressure LB scheme developed by Liu et 
al [22] is applied here. In this scheme, the gravity is incorporated into 
the pressure gradient term as p∗ = p − ρ0g

(
x − xref

)
. The reference 

surface is chosen as the still water surface. 

∂ρ
∂t
+

∂(ρui)

∂xi
=0

∂ρui

∂t
+

∂
(
ρuiuj

)

∂xj
=−

∂p∗

∂xi
+

∂
∂xj

(

μ
(

∂ui

∂xj
+

∂uj

∂xi

)

+

(

μB −
2μ
3

)

δij
∂uk

∂xk

)

+ρ(F i − gi)

(7) 

To include the turbulent effects at some scales for the free surface 
flows characterized by high Reynolds numbers, a large eddy simulation 
subgrid-scale model, i.e., the Smagorinsky model, is used as, 

μ = μf + μt

μt = ρ(Csδ)2
‖ S ‖ = ρ(Csδ)2‖ σ‖

2μ
(8) 

where, μ is the total dynamic viscosity; μf is the fluid dynamic viscosity; 
μt is the turbulent eddy viscosity; Cs is the Smagorinsky coefficient, in 
the range of 0.05–0.18; δ= δx is the filter length; and ‖ σ‖=

̅̅̅̅̅̅̅̅̅̅̅̅̅
2σijσij

√

where σij is stress tensor evaluated by the second-order velocity moment 
of non-equilibrium part in LBM as, 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Sij = −
σij

2μ = −
1

2pτ
2τ

2τ + δt
σ̂ ij

σ̂ ij =
∑

α
eαieαj

(
fα − feq

α
) (9) 

Substituting Eq. (9) into Eq. (8), which yields, 

τ =
1
2
(
τf − 0.5δt

)
+

1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
τf + 0.5δt

)2
+

2(Csδ)2

ρc4
s

̅̅̅̅̅̅̅̅̅̅̅̅̅

2σ̂ ij σ̂ ij

√
√

(10) 

Following [40,41], the non-dimensional variables (with hat) are 

adopted in this study expressed as: 

x̂i =
xi

L0
, ûi =

ui
̅̅̅̅̅̅̅̅
RT0

√ , t̂ =
t

L0
/ ̅̅̅̅̅̅̅̅

RT0
√ , ĝ i =

gi

RT0/L0
, T̂ =

T
T0

,

τ̂ =
τ

L0
/ ̅̅̅̅̅̅̅̅

RT0
√ , p̂ =

p
p0
, ρ̂ =

ρ
ρ0
, σ̂ ij =

σij

p0
, τ̂ =

μ
ρ0

̅̅̅̅̅̅̅̅
RT0

√
L0 

For brevity hereafter, the hat symbol is removed from the non- 
dimensional quantities.

2.2. Free surface capturing method

The single-phase VOF is applied to capture the gas-liquid interface 
where the volume fraction of liquid ε in each cell is used to determine 
the cell state: liquid (ε = 1), gas (ε = 0) or interface (0 < ε < 1). It is 
assumed that the dynamics of gas phase is not simulated through LBM, 
and a free surface boundary condition is imposed at the interface cells to 
reconstruct the DFs for the balance of hydrodynamic stress and gas 
pressure, instead. Concerning partially submerged structures, the 
concept of porosity and solid fraction is introduced to address a situation 
that a cell is occupied by gas, liquid and solid phases simultaneously, as 
the cells in orange colour shown in Fig. 1. 

ε(x, t) = m(x, t)
φ(x, t)δx2ρ(x, t) (11) 

where m and ρ are the mass and density of liquid phase, respectively, 
φ(x, t) = 1 − εs is the porosity and εs is the solid fraction (εs = Vs/δx2). 
During the streaming, the free surface movement in those interface cells 
is captured by computing the mass exchange between local x and 
neighbouring cells x+ δxα, 

∂ρ
∂t

+∇⋅(ρu) = 0→m(x, t+ δt) = m(x, t) +
∑

α
Δmα (12) 

The mass exchange Δmα, associated with the convective term is 
evaluated as, 

Δmα(x, t) =
(
f ∗α (x + δxα, t) − f ∗α (x, t)

)
Aαδx2 (13) 

where eα = − eα; f∗α is the post-collision DF; and Aα denotes the face fill 
level determined by the averaged ε of cells at x and x+ δxα 

Aα =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if cell at x + δxα is gas
ε(x)φ(x) + ε(x + δxα)φ(x + δxα)

2
if cell at x + δxα is interface

φ(x) + φ(x + δxα)

2
if cell at x + δxα is liquid

(14) 

In the present single-phase VOF model, the free surface dynamic 
boundary condition (FSK) proposed by Korner et al [15] is applied here 
to reconstruct those missing distributions from gas phase without valid 
information, 

fα(x, t+ δt) = − f ∗α (x, t) + feq
α (ρG,uG) + f eq

α (ρG,uG) (15) 

where uG is the free surface velocity extrapolated from fluid nodes. 
Within modified-pressure LBM scheme described above in Eq. (7), the 
present fluid pressure or density fields solved is the dynamic pressure. 
Therefore, the pressure at gas-liquid interface ρG is not a constant but is 
expressed as ρG = ρ0 − ρ0g

(
x − xref

)
/c2

s , rather than ρG = ρ0.
Once the mass exchange and DFs reconstruction are completed, the 

volume fraction ε can be updated by Eq. (11). If new ε exceeds 1, the 
interface cell is marked as filled and the neighbouring gas cells of those 
filled cells change to new-interface cells for closing the gas-liquid 
interface. In contrast, the interface cell is marked as emptied if ε is 
lower than 0 and its liquid neighbours change to interface cells. 
Consequently, a new free interface layer can be generated.
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New-interface cells need to be initialized as previous gas cells do not 
contain valid information. The macroscopic velocity is interpolated from 
neighbouring liquid and interface cells as follows, 

⎧
⎨

⎩

ρ(x, t + δt) =
∑

α
wαρ(x + δxα, t + δt)

/
∑

α
wα

u(x, t + δt) =
∑

α
wαu(x + δxα, t + δt)

/
∑

α
wα

(16) 

Then the density distribution functions are initialized by equilibrium 
DFs as expressed in Eq. (4). The non- equilibrium term is obtained by a 
consistent initial condition proposed by Mei et al [44] to improve the 
accuracy. It is an iterative procedure: initialized as above, the collision 
and stream are implemented at the new-interface cells and then we 
update the local density but keep velocity constant. The iteration ends 
up in stable density field at those new-interface cells as, 

∑

x

|ρ(t + δt) − ρ(t)|
|ρ(t + δt) + ρ(t)| < δ (17) 

where δ is a tiny quantity as the convergence criteria. Finally, DFs are 
taken as f∗α after collision before streaming process.

Concerning the mass conservation, the excess mass from emptied (ε 
< 0) and filled (ε > 1) cells needs to be allocated to neighbouring 
interface and new-interface cells. Several distribution weight methods 
have been developed such as velocity-based [18], normal 
direction-based [15]. In present study, the normal direction-based al
gorithm is applied, 

m(x+ δxα) = m(x+ δxα) + mex να

νtotal
(18) 

να =

{
n⋅eα, if n⋅eα > 0

0, otherwise
for filled cells

να =

{
− n⋅eα, if n⋅eα < 0

0, otherwise
for emptied cells

(19) 

n =
∑

α
− sαeαε(x+ δxα) (20) 

where excess mass mex = ρ for emptied cells and mex = m − ρ for filled 
cells; νtotal is the sum of all weight να; and n is the normal direction of the 

free interface. Finally, cells marked as transition state are converted into 
their final state, that is to say, Emptied, Filled, and New-interface cells 

are converted to gas, liquid, and interface cells, respectively. More 

details can be found in [15].
In fact, Eq. (14) corresponds to the averaging of the fill levels of two 

adjacent cells to approximate the face fill level. However, this imple
mentation may lead to free surface oscillations, as it does not accurately 
capture the wetted interface between the cells [18]. To address this 
issue, the PLIC is adopted to determine the face fill level more precisely 
by which the mass flux term Δmα is not only associated with the hy
drodynamic quantities (i.e., u, fα), but also the functions of geometrical 
parameters, namely the normal direction n and line parameter k calcu
lated from ε [18,45], i.e. Δmα = V (n,k,fα). In a 2D model, PLIC assumes 
that the free surface in each interface cells can be approximated as a line 
segment defined by n⋅x = k. To determine the face fill level is in fact to 
calculate the intersections between the line and the four edges of 
interface cell. Referring to the 2D inverse problem [45], the line 
parameter k can be analytically obtained as follows, 

k =

⎧
⎨

⎩

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2m(1 − m)ε

√
0 ≤ ε ≤ ε1

ε(1 − m) +
m
2

ε1 ≤ ε ≤ 0.5
(21) 

where m = min
{
abs

(
nx, ny

)
/(abs(nx)+abs

(
ny
)}

and critical volume 
ε1 = m

2(1− m)
.

When the equation of straight line is determined, the face fill level 
can be calculated easily at each interface cell. For negative normal di
rections, the linear transformation and mirror reflection is applied so 
that all situations are generalized to the same problem solved as above. 
Different from the hybrid VOF-based algorithm described in [18], this 
study uses the DFs-based mass exchange for computational efficiency 
and stability, i.e., eight lattice directions for mass advection are used as 
in Eq. (13). The face fill level (regarded as the wet area between two 
cells) at orthogonal directions ( |eα|

2
= 3c2

s ) is evaluated according to 
PLIC, but that at diagonal directions is calculated by averaged fill level 
of two cells where mass exchanges with diagonal cells ( |eα|

2
= 6c2

s ).

2.3. Fluid-structure treatment

The bounce back scheme is imposed at liquid-solid boundary to 
reconstruct the unknown DFs from solid. As represented in Fig. 1, if the 
neighbouring node at xf = x+ eαδt and xff = x + 2eαδt is not gas cell, 
the united interpolated bounce back (UIBB) scheme [46] is imple
mented, otherwise the simple bounce back (SBB) is applied.  

with 

where the distance q is defined as q = |x − xw|/|eαδt|, uw is the solid 

fα(x, t + δt) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
(1 + q)(2 + q)

fα(xw, t + δt) +
2q

(1 + q)
f ∗α (x, t) −

q
(2 + q)

f ∗α
(
xf , t

)
Quadratic UIBB

1
1 + q

(
fα(xw, t + δt) + qf∗α (x, t)

)
Linear UIBB

f∗α (x, t) − 2wαρweα⋅uw SBB

(22) 

fα(xw, t+ δt) =

⎧
⎪⎨

⎪⎩

(
q(1 + q)

2
f ∗α (x, t) + (1 − q)(1 + q)f∗α

(
xf , t

)
−
(1 − q)q

2
f ∗α
(
xff , t

)
− 2wαρweα⋅uw

)

Quadratic
(
qf∗α (x, t) + (1 − q)f∗α

(
xf , t

)
− 2wαρweα⋅uw

)
Linear 
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boundary velocity at xw and ρw is the solid boundary density, estimated 
as local liquid density ρ(x, t) in present nearly incompressible flows.

The change of momentum between post-collision f∗α (x, t) and post- 
streaming fα(x, t+δt) denotes the discrete net force from solid to 
liquid in the momentum-exchange method (CMEM). For a stationary 
structure, the CMEM is the same as GIMEM, 

Fα(x, t+ δt) =
δx2

δt
(
fα(x, t+ δt) eα − f ∗α (x, t)eα

)
(23) 

where eα is the discrete velocity pointed to solid nodes; xw is the 
intersection of links and solid boundary. In the case of the fully 
immersed solid represented by the magenta nodes in Fig. 1, the contri
bution of atmospheric pressure to the hydrodynamic forces cancels out 
and hydrostatic buoyancy equal to ρgVs. However, for a partially sub
merged structure represented by the grey coloured nodes in Fig. 1, the 
contribution of atmospheric pressure and hydrostatic buoyancy depend 
on the submerged depth, therefore we need to eliminate the effect of 
atmospheric pressure and correctly take hydrostatic pressure gradient 
(due to gravity) into account in the present LBM model. One correction 
introducing the equilibrium distribution function feq

α
(
ρG,w, uw

)
into 

CMEM is expected to eliminate the contribution of atmospheric pressure 
and correctly evaluate the hydrostatic buoyancy force, 

Fα = ε δx2

δt
( (

fα(x, t+ δt) − feq
α
)

eα −
(
f∗α (x, t) − feq

α
)
eα
)

(24) 

where ρG,w is the fluid density at position xw, ρG,w = ρ0 − ρ0g
(
xw − xref

)

/c2
s .
Then the total hydrodynamic forces acting on the object are summed 

as, 

F = −
∑

x

∑

G(x)

Fα(x, t+ δt) (25) 

where the set G(x) includes all discrete direction α that link to solid 
nodes at the non-solid node x.

2.4. Wave generation and absorption

To explore the capability of the present model in a dynamic scenario, 
a numerical wave tank (NWT) is developed, as shown in Fig. 3, including 
wave generation and absorption techniques,

Stoke waves are generated by a classic momentum source [21,47] in 
the generation region, and the equivalent source term Sg is, 
⎧
⎨

⎩

Sg,x = g(2β(x − xs))e− β(x− xs)
2 δ
ω sinωt

Sg,y = 0
(26) 

where g is the gravity acceleration and β = 20/W2 is a coefficient of 
source width W; xs is the centre of wave generating area; δ is distribution 
source density, 

δ =
2A

(
ω2 − α1gk4d3

)

ωIk
(
1 − α(kd)2) (27) 

where A is the wave amplitude; α =-0.38955 and α1 = α +1 /3 is a 

coefficient of the basic Boussinesq equation; d is the still water depth; k 
=2π/L is the wavenumber and L is the wavelength; I =

̅̅̅̅̅̅̅̅
π/β

√
e− k2/4β.

Concerning reflected waves from both ends of NWT, numerical 
damping layer (sponge layer) is imposed to achieve wave attenuation. In 
the absorption region with width Ls, the damping force Sd is given as, 

Sd(t+ δt) = − B1u(t)
e

⃒
⃒
⃒
⃒
x− x0

Ls

⃒
⃒
⃒
⃒

ns

− 1
e − 1

(28) 

where B1 and ns are empirical coefficients, and x0 is the starting location 
of the sponge layer.

In Eq. (28), the damping force is evaluated by the water fluid velocity 
at the last time step. To avoid the resulting instability and error, we 
introduce the force source term into equilibrium DFs so that Sd can be 
calculated from velocity at current time step. Then the equilibrium 
distribution functions feq

α is expressed as in the absorption region, 

f eq
α (x, t) = wαρ

[

1+

(

1+
χ

ων

)
eα⋅u
c2

s
+

(

1+
2χ
ων

)(
(eα⋅u)2

2c4
s

−
u2

2c2
s

)]

(29) 

where χ = − B1
e
|
x− x0

Ls
|ns

− 1
e− 1 . In wave absorption region, substituting Eq. 

(29) into (3), 

2.5. Implementation and performance

The development of the proposed LBM model relies on the open- 
source multi-platform lattice Boltzmann code (MPLB), which is a 
backend code of the High-Level Mesoscale Modelling System 
(HiLeMMS) project (EP/P022243/1) supported by the Engineering and 
Physical Sciences Research Council (EPSRC) of the UK Research and 
Innovation under the UK Consortium on Mesoscale Engineering Sciences 
(UKCOMES) [48].

The HiLeMMS is a computational framework designed to provide a 
high-level abstraction system for LBM. It hides the low-level imple
mentation details (e.g., MPI) for utilizing high-performance computing 
resources, simplifies parallel programming and enables researchers to 
focus on physical modelling and numerical analysis. Its detailed 
description can be found at GitHub: https://github.com/inmeso/hi 
lemms.git.

As a backend code of HiLeMMS, MPLB is written by using the oxford 
parallel library for structured mesh solvers (OPS) [49], which provides 
the mesh management for parallel computing and the capability of 
running on a heterogeneous computing platform. MPLB has been uti
lized in a range of applications, including shallow water flows [50], 
particle-fluid two-phase flows [51,52].

In this study, we focus on fluid flows consisting of two immiscible 
Newtonian fluids and the coupling with partially submerged structures, 
which involve an algebraic VOF algorithm for capturing sharp interface 
between phases and IBB-MEM algorithm for fluid-solid boundary 
treatment. The implementation of these algorithms is based on MPLB 
and the source has been made publicly available at https://github.com/ 
BaomingGuo/mplb.git. The structure of the code is briefly illustrated in 
Fig. 4, and more details about the workflow are given as follows. 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

meq = ρAd •

[

1,
(

1 +
2χ
ωe

)

u2 − 2, 1 −

(

1 +
2χ
ωϵ

)

u2, ux, − ux, uy, − uy, u2
x − u2

y , uxuy

]T

Ad = diag
([

1, 1, 1, 1 + χ, 1 +
χ

ωq
, 1 + χ, 1 +

χ
ωq

, 1 +
2χ
ων

, 1 +
2χ
ων

]) (30) 
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1). Input user parameters via JSON configuration files. These pa
rameters typically include geometry settings, domain size, mesh 
resolution, convergence criteria, etc.

Preprocessing, 

1). Define the problem domain, macroscopic variable types, and 
body force schemes, and domain boundary types.
2). Decompose the computational domain onto allocated CPU pro
cessors and memory space, and set halo points. These operations are 
automatically managed by HiLeMMS and MPLB.
3). Set node types for all grid nodes, including empty (gas), liquid, 
interface, solid, boundary conditions.
4). Initialize all variables, including macroscopic variables derived 
from DFs (e.g., density, velocity) and auxiliary quantities (e.g., solid 
fraction, fluid fraction, relative distance).

From this point onward, the main time loop of the LBM simulation is 
executed, 

1). Calculate the body force term at DF level: including a momentum 
source from wave generation and absorption, and updating the 
discrete force term using the Guo’s force scheme, followed by 
updating the macroscopic variables, e.g., density and velocity.
2). Execute the collision step to compute post-collision DFs. Then, 
perform the streaming step to exchange DFs with neighbouring 
nodes.
3). Implement boundary conditions, including domain boundaries 
(e.g., outflow or no-slip wall), free surface Eq. (15), and fluid-solid 
boundaries Eq. (22).
4). Calculate momentum exchange for fluid nodes based on Eq. (24), 
and store the total hydrodynamic force acting on structures (see 
Algorithm 1).
5). Calculate mass exchange at interface nodes during the streaming 
step according to Eq. (13) (see Algorithm 2), (VOF).
6). Identify transmitted cells and predefine node types. Refill new 
interface cells and allocate excess mass accordingly (see Algorithm 
3), (VOF).

Fig. 3. Schematic diagram for a numerical wave tank.

Fig. 4. Flowchart of the LBM program structure. More details can be found at the numbered list above.
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7). Update node states and calculate the volume fraction of liquid, 
(VOF).
8). Repeat 6) – 12) until the convergence criteria are satisfied.

In this code, as shown at the right-hand side of Fig. 4, each algorithm 
is implemented via a kernel function, which conducts a specific set of 
operations on a grid node and will be populated to the whole compu
tational domain. These kernel functions in MPLB are presented below in 
the form of pseudo-codes.

The numerical simulations are conducted on ARCHER2 HPC cluster 
(UK National Supercomputing Service). To evaluate the code perfor
mance, an NWT case is simulated using different numbers of computa
tional nodes on ARCHER2. The wave period and amplitude are 1 s and 
0.01 m, respectively, with a still water depth of 0.2 m. The 2D case 
consists of 4.32 million structured grids (18,000 × 240). The wave 
generation domain, spanning one wavelength (as shown in Fig. 5), is 
positioned at the center, and the sponge layer extending two wave
lengths is placed only at the right-hand end of the NWT to absorb out
going waves.

Fig. 5 (a) and (b) illustrate the free surface elevation in different 
domains, along with the velocity fields in the left region. As expected, 
the superposition of incident and reflected waves on the left-hand side 
results in the formation of standing waves, whereas the right-hand side 
exhibits a train of progressive waves. Fig. 5 (c) and (d) present the 
parallel speed-up ratio and efficiency in a strong scaling test. For a 2D 
case with approximately four million grids, the free surface LBM model 
implemented in HiLeMMS achieves 90 % parallel efficiency using 1024 
CPUs, demonstrating its good parallel scalability.

Moreover, the scalability of the LBM model is analyzed through weak 
scaling tests. Table 1 lists the wall time of different tank lengths. When 
the number of CPU cores increases in proportion to the total number of 
grid cells, the single-core performance of the solver remains nearly un
affected. This indicates that the current LBM-based NWT can efficiently 
handle large-scale problems by scaling up the number of CPU cores.

3. Model validation

The model validation is structured in three progressive stages: single- 
phase flows over fully submerged structures, pure free surface flows, and 
free surface flows over partially submerged structures, which corre
spond to five benchmark cases including flow over a circular cylinder 
[53–59], flow over a square cylinder [60–63], Rider-Kothe single vortex 
evolution [18,64], dam-break flows [65], and wave impact on stationary 
structures [2,3]. The steady and unsteady flows with different Reynolds 
numbers (Re) over the circular and square cylinders are first studied, 
which are compared with published experimental and numerical results.

3.1. Flow over a circular cylinder

The flow past a circular cylinder has been extensively studied by 
many researchers. With the Reynolds number defined by Re = u0D/v, 
the steady flow is generated with two symmetric vortexes behind the 
cylinder when Re is lower than the critical value (Recr ≈ 47), where u0 
and D are the freestream velocity at far distance and cylinder diameter, 
respectively. The unsteady laminar flow is then obtained when Re ex
ceeds the critical value and the periodic vortex shedding occurs. In this 
study, the lift, drag coefficients and Strouhal number are evaluated for 
comparison with published results: Drag coefficient CD = 2FD/

(
u2

0D
)
, 

lift coefficient CL = 2FL/
(
u2

0D
)
, and dimensionless shedding frequency 

St = fqD/u0.
In this case, a rectangular simulation domain is set as 50D × 30D The 

inlet boundary is imposed with the velocity inlet with uniform profile 
(u0 =1), and a second-order time implicit convective boundary condi
tion (CBC) [66] is imposed on the outlet boundary, expressed by Eq. (31)
for avoiding boundary reflection. To simulate uniform flows, the sym
metrical condition is implemented for the top and bottom free-slip walls. 
The center of circular cylinder is located at x = y = 0 in the computa
tional domain (-20D ≤ x ≤ 30D and -15D ≤ y ≤ 15D). The uniform grid is 
adopted with grid resolution D/32 and the grid is thus 1600 × 960 for 
both flows characterized by Re =40 and 100. 

fα(xN, t+ δt) =
1

1 + 1.5γ
(fα(xN, t)+2γfα(xN− 1, t+ δt) − 0.5γfα(xN− 2, t+ δt))

(31) 

where γ = u0/cs and xN is the outlet boundary node and xN− 1 and xN− 2 
are the neighbouring liquid nodes towards negative normal direction.

Fig. 6 shows the streamline and vortex contours of the flows at 
Reynolds numbers of 40 and 100, where dimensionless vorticity is 
ωD/u0 and the dimensionless time was defined as T = u0t/D. At Re =40, 
the flow is stable with good symmetricity on both sides of the central 
line, but at Re =100, the streamlines become wavy, and flow is asym
metrical. Strong vortex shedding in the wake of the cylinder is formed. 
The comparisons of the drag coefficient (CD), the length of bubble 
recirculation (L) and the distance between two vortices (b) with the 

Algorithm 2 
Pseudo-code for implementing mass exchange in VOF model (MassExchange).

// ops_par_loop(KerMassExchange, …)
if (node.type == INTERFACE) {
for each lattice direction α {
// according to neighbouring node state to compute convective mass
Evaluate mass exchange Δmα by Eqs. (13) and (14)
Accumulate Δmα into the liquid mass of this local interface cell
}
}

Algorithm 3 
Pseudo-code for implementing excess mass allocation in VOF model 
(AllocateMass).

// ops_par_loop(KerCalcTotalWeight, …) compute the total weights νtotal at each node 
if (node.type == FILLED or node.type == EMPTIED) {

for each lattice direction α {
if (neighbor.type == INTERFACE) {
Determine allocation weight να by Eq. (19)
}
Sum up να to calculate νtotal
}
}
// ops_par_loop(KerAllocateMassMpi, …) allocates excess mass
if (node.type == INTERFACE) {
for each lattice direction α {
if (neighbor.type == FILLED or neighbor.type == EMPTIED) {
Determine allocation weight να by Eq. (19) using − n(x + δxα)⋅eα
Calculate excess mass mex

modify Eq. (18) to avoid nonlocal write operation to update liquid mass m(x) + =

mex να
νtotal

}
}
}

Algorithm 1 
Pseudo-code for calculating fluid forces by MEM (MomentumExchangeSolid in 
MPLB).

// ops_par_loop(KerUIBB_GIMEM, …) executes the kernel function in parallel over all grid 
nodes

if (node.type == LIQUID or node.type == INTERFACE) {
for each lattice direction α {
if (neighbor.type == SOLID) {
sum up the discrete fluid force at the αth direction computed by Eq. (24)
}
}
}
// Use ops_par_loop(KerTotalHydroForce, …) with ops_arg_reduce(…) to sum up total fluid 

forces

B. Guo et al.                                                                                                                                                                                                                                     Computer Physics Communications 317 (2025) 109852 

8 



published results are listed in Table 2. It agrees well with other nu
merical and experimental results. where IBM and IIM are the immersed 
boundary method and immersed interface method, respectively.

3.2. Flow over a square cylinder

In addition to the circular cylinder, we also simulate the flow past a 
square cylinder to validate the stability of the present model when the 
uniform flow encounters sharp corners. The same simulation domain, 
initial flow field, and boundary conditions are set up as in the circle 
cylinder case. The resulting flow fields are depicted in Fig. 7 showing the 
streamline and vorticity near square cylinder. The averaged drag coef
ficient CD, root mean square lift coefficient CL,rms, recirculation length L/ 
D, and vortex shedding frequency St are compared in Table 3. In terms of 
hydrodynamic forces and vortex characteristics, the present LBM model 
agrees well with those published results. These results demonstrate that 
the LBM model can accurately solve the hydrodynamics of the square 
structure in steady and unsteady flows.

3.3. Rider-Kothe single vortex

To validate the capability of the model in tracking free surface, the 
Rider-Kothe single vortex test case [18,64] is carried out. Without 
solving Boltzmann-BGK equation, the simulation solutions of each 
iteration are specified as the equilibrium distribution functions instead, 
according to the streaming function in Eq. (32). It depicts a free surface 
deformation where one circular liquid drop twists into a spiral pattern 
and is gradually restored to the initial state after half a period. The initial 
circle centre is located at (0.5, 0.75) with the radius of 0.15 and period T 
is set as 2 in the 1 × 1 square domain. 

ψ =
u0

π sin2πx⋅sin2πy⋅cos
πt
T

(32) 

The Relative error between simulated and theoretical VOF is defined 
by, 

Er =
δx2 ∑

|εs − εtheo|

Vtheo
(33) 

where Vtheo is the total theoretical liquid volume.
Fig. 8. shows the free surface deformation process with computa

tional grid 512 × 512. It can be observed that the free surface de
formations generally overlap between the first and last half-periods. 
With grid refinement, the present model can capture the 2D free inter
face well whether face fill levels are evaluated by average of ε or PLIC. 
Table 4 compares the errors between the results of different grid reso
lutions and face fill level evaluation methods, and the published 

Fig. 5. Performance test of free surface LBM model through a numerical wave tank case. (a) Standing waves in the left-hand side of NWT, (b) progressive waves in 
the right-hand side of NWT, and (c)&(d) the parallel speed-up ratio from strong scaling tests conducted using 1, 2, 4 and 8 nodes, where each node on Archer2 
comprises 128 CPU cores.

Table 1 
Wall time required to complete 0.4-million time steps for numerical wave tank 
(NWT) cases with varying tank lengths in the weak scaling tests.

CPU cores Length of NWT (m) Number of grid Wall time (s)

128 (1 node) 18 18,000 × 240 20,332
256 (2 nodes) 36 36,000 × 240 20,375
512 (4 nodes) 72 72,000 × 240 20,413
1024 (8 nodes) 144 144,000 × 240 20,495
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Fig. 6. The computed streamline and vorticity contour near circular cylinder at T = 451 within 50D × 30D computational domain. (a) & (b) steady flow Re =40 and 
(c) & (d) unsteady flow Re =100.

Table 2 
Comparison of the present study with the published results at Re = 40 and 100 for the flow past circular cylinder.

Study Re = 40 Re =100

CD L/D b CD CL St

Experiment [53] 1.59 – – NS-based body-fitted [54] 1.35±0.012 ±0.339 0.164
NS-based IBM [55] 1.54 2.30 0.6 NS-based IBM [56] 1.38±0.01 ±0.34 0.169
NS-based IBM [57] 1.52 2.27 0.6 NS-based IBM [57] 1.35±0.012 ±0.303 0.167
NS-based IIM [58] 1.54 2.28 0.6 NS-based IIM [58] 1.34±0.009 ±0.333 0.166
NS-based cut-cell [59] 1.534 2.21 0.594 NS-based cut-cell [59] 1.33±0.009 ±0.320 0.17
Present 1.555 2.25 0.594 Present 1.346±0.009 ±0.325 0.167

Fig. 7. The computed streamline and vorticity contour near square cylinder at T = 451 within 50D × 30D computational domain. (a) & (b) steady flow Re =40 and 
(c) & (d) unsteady flow Re =100.
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numerical solutions (with grid resolution 128 × 128) [18,64,67]. 
Indeed, PLIC is better than averaged fill level, but the discrepancy is 
regarded acceptable between them for remaining the high computa
tional efficiency. For all cases with PLIC, since the diagonal mass flux 
terms cannot be calculated accurately, the present model with DF-based 
mass exchange performs slightly worse than those models using 
macroscopic velocity-based mass exchange.

3.4. Dam-break flows

The classic benchmark for dam-break flows by Martin and Moyce 
[65] is used here to demonstrate the capability of the present model in 
simulating free surface flows. Martin and Moyce [65] determined a 
maximum dimensionless velocity U∗

max = Umax/
̅̅̅̅̅̅̅̅
2ga

√
= 1.71 in the 

water-column collapse. Table 5 gives parameters of model domain 
assuming initial water width (a) being 0.05715 m and kinematic vis
cosity (v) being 10− 6 m2/s. In the present simulation, the slip boundary 
condition is imposed at all four boundaries with UIBB. Fig. 9 gives free 
surface deformation at four different moments, illustrating the 
collapsing water column moving forward. And then the positions of 

Table 3 
Comparison of the present and well-published results at Re = 40 and 100 for flow past square cylinder.

Study Re = 40 Re =100

CD L/D b CD CL,rms St

NS-based FVM [60] 1.767 2.822 – NS-based FVM [61] 1.477 0.156 0.146
NS-based FVM [62] 1.793 2.83 – NS-based FVM [62] 1.494 0.192 0.149
NS-based FEM [63] 1.787 2.807 – NS-based FEM [63] 1.529 0.193 0.145
Present 1.712 2.825 0.334 Present 1.479 0.188 0.144

Fig. 8. Snap shots of free surface deformation of Rider-Kothe vortex during one period with computational grid 512 × 512 and u0 =2.

Table 4 
Comparison of relative errors Er for the single vortex case.

Study Er

average of ε PLIC

u0 =1 Rider and Kothe [64] (128 × 128) – 0.2 × 10–2

Harvie and Fletcher [67] (128 × 128) – 0.3 × 10–2

Present (128 × 128) 2.1 × 10–2 1.5 × 10–2

Present (256 × 256) 1.2 × 10–2 0.9 × 10–2

Present (512 × 512) 0.8 × 10–2 0.5 × 10–2

u0 =2 Janssen and Krafczyk [18] (128 × 128) 5.6 × 10–2 1.0 × 10–2

Present (128 × 128) 3.0 × 10–2 2.1 × 10–2

Present (256 × 256) 2.1 × 10–2 1.4 × 10–2

Present (512 × 512) 1.5 × 10–2 0.9 × 10–2

Table 5 
Simulation setup for the dam break flow.

Domain Lattice Water 
height

Water 
width

Re =

Umaxa
v

Fr =

Umax
̅̅̅̅̅ga√

Cs

10a ×
2.5a

1024 ×
256

2a a 103,483 2.42 0.1

Fig. 9. Free surface deformation at different moments. Bule, red, black, and pink lines deonte the free surface at t
̅̅̅̅̅̅̅̅̅̅
2g/a

√
= 0, 3.30, 4.96, and 7.91, respectively, 

where H is the height of the computational domain.
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water column top and surge front for different grid resolutions against 
dimensionless time are shown in Fig. 10, compared with the numerical 
and experimental data from [65,68]. It can be observed that the present 
model agrees well with the numerical results by Greaves [68]. The 
predicted water column height shows good agreement with experi
mental results while the waterfront moves more quickly than that of the 
experiment. A similar discrepancy is observed in [18,68]. It is explained 
that it is difficult to determine the exact location of the waterfront in the 
experiment. The numerical results demonstrate that the present model is 
capable of simulating real free surface flows.

3.5. Wave propagation through stationary boxes

The final case for model validation is to simulate the waves passing 
through two closely adjacent stationary boxes (the upstream and 
downstream boxes are denoted as Box 1 and Box 2, respectively), where 
a wave-induced narrow gap resonance phenomenon is studied. As 
shown in Fig. 11, the draft of both boxes is 0.252 m and the breadth is 
0.5 m, with a narrow gap of 0.05 m between the boxes. Table 6 gives all 
parameters for waves and NWT. The dimensionless LBM is referred to Re 

= L/T⋅d/ν. Here, the left and right boundaries are imposed as the 
Neumann outflow condition, and no-slip wall condition is implemented 
on the box and bottom boundaries. The wave response Hg in the narrow 
gap and hydrodynamic force on both bodies are evaluated with respect 
to experimental and numerical results in [2,3]. In addition, a theoretical 
potential-flow solution is given based on matching eigenfunction ex
pansions for comparison. For brevity, details of this potential-flow 
model are shown in Appendix A.

Fig. 12 displays the time series of hydrodynamic forces exerted on 
two boxes at kd =1.5. It can be observed that the present NWT can stably 
measure the hydrodynamic forces near narrow gap resonance fre
quency. This measurement stability is corroborated by the consistent 
and periodic wave elevation (with a period equal to the wave period) 
observed in the narrow gap, as shown in Fig. 13 (a). These findings 
together confirm the stability of the combination of IBB and VOF 
treatments. Then, the variation of wave amplitude in the narrow gap and 
hydrodynamic forces on both boxes against wave frequency are depicted 
in Fig. 13, Fig. 14, Fig. 15. The predicted variation trends of Ag and |F| 
are in good agreement with experimental [2,3] and numerical results 
[2] in which the fluid response near gap resonance frequency is the most 

Fig. 10. Comparison of present LBM predictions, NS-based numerical results by Greaves [68], and experimental results by Martin and Moyce [65], where Ny is the 
grid number in the vertical direction. (a) Dimensionless water column height, Y = ytop/2a and τ = t

̅̅̅̅̅̅̅̅
g/a

√
, (b) position of water surge front X = xfront /a and T =

t
̅̅̅̅̅̅̅̅̅̅
2g/a

√
.

Fig. 11. Schematic diagram of two closely adjacent stationary boxes in the NWT.

Table 6 
The parameters of NWT in Fig. 11.

Waves L (m) T (s) H (m) d (m) NWT Length (m) Height (m)
1.05~3.14 0.82~1.63 0.024 0.5 10L 1.3d

Wave Absorption B1 (s-1) ns Ls (m) Wave Generation W (m)
20 2 2L L

Boxes D (m) B (m) Bg (m) ​ Subgrid-scale model Cs

0.252 0.5 0.05 ​ 0.1
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violent within the calculated frequency interval. Owing to their ability 
to capture nonlinear and viscous fluid behavior, the LBM and NS-based 
CFD models offer significantly improved quantitative agreement with 
experimental measurements, compared with linear potential-flow 
solutions.

The present LBM framework exhibits good agreement with experi
mental measurements and NS-based numerical results, in predicting 
both water surface elevation and hydrodynamic forces. However, a 
noticeable discrepancy is observed in capturing the resonant response, 
particularly in the peak frequency of Ag-kd curve. This deviation is 

primarily attributed to insufficient spatial resolution within the narrow 
gap between structures, which compromises accuracy around reso
nance. As illustrated in Fig. 13, Fig. 14, Fig. 15, the simulation using a 
finer grid resolution δx = Bg/40 yields results that closely align with the 
NS-based benchmark in Ref [2]. To quantify this improvement, relative 
errors around the resonant frequency (kd =1.5 and 1.6) are presented in 
Table 7, calculated as Er = |φLBM − φNS|/φNS, where φLBM and φNS 
represent the physical quantities from the present LBM and NS-based 
models, respectively. These results clearly demonstrate that grid 
refinement substantially enhances the predictive capability of the LBM 

Fig. 12. Time series of hydrodynamic forces on Box 1 and 2 at kd =1.5.

Fig. 13. (a) Time series of free surface elevation in the gap at kd =1.5 and 1.55. (b) Comparison of wave amplitude inside the gap versus dimensionless wavenumbers 
obtained from the present model, NS-based model by Jiang et al [2], and experiment by Lu et al [3].

Fig. 14. Comparison of horizontal forces on Box 1 and Box 2 versus dimensionless wavenumbers obtained from the present model, NS-based model by Jiang et al [2]: 
(a) |Fx1|/ρgdA and (b) |Fx2|/ρgdA.
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model in resolving resonance dynamics.
Nonetheless, due to the current implementation of uniform Cartesian 

grids without local mesh refinement strategies, the computational cost 
increases roughly as O(N³) with grid refinement in 2D framework, where 
N denotes the refinement factor. For the refined case of δx = Bg /40, the 
total number of computational cells reaches approximately 10 million 
even for a two-dimensional simulation, posing a significant computa
tional burden. To balance accuracy and efficiency, a coarser resolution is 
adopted in most simulations, wherein 20 grid points are used to span the 
0.05 m-wide gap region. In future work, the incorporation of local mesh 
refinement techniques may be explored to better handle the multi-scale 
nature of the problem, where large-scale wave propagation coexists with 
small-scale flow features such as those in narrow gaps.

Overall, the comparison results validate the robustness of the pro
posed LBM framework for simulating free surface flows involving 
partially submerged stationary structures, demonstrating its potential as 
an effective tool for hydrodynamic analysis in such configurations.

4. Concluding remarks

In this study, we developed a numerical model based on the MRT- 
LBM for simulating the partially submerged stationary structures in 
free surface flows. For high computational efficiency and stability, the 
LBM-characteristic VOF and the improved momentum exchange method 

were adopted to capture gas-liquid interface and evaluating hydrody
namic forces, respectively. Three benchmark cases were first performed 
for code verification: the flows over the circular and square cylinders, 
and Rider-Kothe single vortex evolution. Subsequently, two real-world 
problems, the dam-break flow and wave flow past two stationary 
boxes were simulated to validate the feasibility of coupling treatments 
for fluid-structure boundary and VOF methods. Compared with experi
mental and NS-based numerical results, it was confirmed that the 
developed LBM model is capable of simulating free surface deformation 
and accurately predicting the hydrodynamic forces for stationary 
bodies. These findings highlight the potential of LBM for extending its 
application to ocean engineering, where wave-structure interactions are 
of significant research interest.
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Fig. 15. Comparison of vertical forces on Box 1 and Box 2 versus dimensionless wavenumber obtained from the present model, NS-based model by Jiang et al [2]: (a) 
|Fy1|/ρgdA and (b) |Fy2|/ρgdA.

Table 7 
The relative errors Er of the water surface elevation inside the gap and hydro
dynamic forces acted on the two boxes for kd =1.5 and 1.6.

kd δx Er

Ag Fx1 Fx2 Fy1 Fy2

1.5 Bg 

/20
0.025 0.172 0.018 0.132 0.092

Bg 

/40
0.073 0.100 0.049 0.012 0.059

1.6 Bg 

/20
0.156 0.051 0.159 0.262 0.251

Bg 

/40
0.049 0.019 0.040 0.088 0.038
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Appendix A. Boundary value problem

Based on linear potential flow theory, Fig. A1 shows a boundary value problem, and its governing equation and boundary conditions of those 
velocity potentials can be expressed as,

Fig. A1. The sketch of two stationary boxes.

∇2ϕn =
∂2ϕn

∂x
+

∂2ϕn

∂z2 = 0 (A.1) 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ϕn

∂z
=

ω2

g
ϕn +

⎧
⎪⎪⎨

⎪⎪⎩

iω
ρg

δn,1, xr,i ≤ x ≤ xl,i+1, z = 0

0, x ≤ xl,1, x ≥ xr,2, z = 0

∂ϕn

∂x
= 0 x = xl,i, x = xr,i, − Di ≤ z ≤ 0

∂ϕn

∂z
= 0 z = − d

∂ϕn

∂z
= 0 xl,i ≤ x ≤ xr,i, z = − Di

lim
x→±∞

{
∂

∂x
∓ ik

}

(ϕ0 − ϕinc,ϕ1) = 0

(A.2) 

where, xr,i and xl,i are the x coordinates of right and left surface for the ith box; − Di is y coordinate of the box bottom. The total potential is expressed as 
ϕ =

∑1
n=0ζnϕn in which ϕ0 and ϕ1 are the diffraction and radiation potentials. They can be expressed in each subdomain (I, II, III, IV, V) shown in 

Fig. A1 as, 

ϕI
n = −

igA
ω

∑∞

m=0
AI

n,meλmxZm(kmz) + ϕincδn,0 (A.3) 

ϕII
n = −

igA
ω

[
(

AII
n,0 + BII

n,0x
)

Y0(γ0z) +
∑∞

m=1

(
AII

n,meγmx + BII
n,me− γmx

)
Ym(γmz)

]

(A.4) 

ϕIII
n = −

igA
ω

∑∞

m=0

(
AIII

n,meλmx +BIII
n,me− λmx

)
Zm(kmz) −

i
ρωδn,1 (A.5) 

ϕIV
n = −

igA
ω

[
(

AIV
n,0 + BIV

n,0x
)

Y0(γ0z) +
∑∞

m=1

(
AIV

n,meγmx + BIV
n,me− γmx

)
Ym(γmz)

]

(A.6) 

ϕV
n = −

igA
ω

∑∞

m=0
AV

n,me− λmxZm(kmz) (A.7) 

where km and γm are eigenvalues, and Zm(kmz) and Ym(γmz) are vertical eigenfunctions at given subdomains, 

Zm =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

coshk0(z + d)
̅̅̅̅̅̅
N0

√

coskm(z + d)
̅̅̅̅̅̅̅
Nm

√

with Nm =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2

(

1 +
sinh2k0d

2k0d

)

, j = 0

1
2

(

1 +
sin2kmd

2kmd

)

, j ≥ 1 

Ym =

⎧
⎪⎨

⎪⎩

̅̅̅
2

√

2
, j = 0

cosγm(z + d), j ≥ 1 

The continuous pressure and velocity need to be satisfied between the adjacent subdomains. At the right and left boundaries of the first box, it has, 
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∂ϕI
m

∂x
=

⎧
⎪⎨

⎪⎩

∂ϕII
m

∂x
x = xl,1, − d ≤ z ≤ − D1

0, x = xl,1, − D1 ≤ z ≤ 0
(A.8) 

∂ϕIII
m

∂x
=

⎧
⎪⎨

⎪⎩

∂ϕII
m

∂x
x = xr,1, − d ≤ z ≤ − D1

0, x = xr,1, − D1 ≤ z ≤ 0
(A.9) 

ϕI
m = ϕII

m, x = xl,1, − d ≤ z ≤ − D1 (A.10) 

ϕIII
m = ϕII

m, x = xr,1, − d ≤ z ≤ − D1 (A.11) 

Similar continuous conditions exist at the boundaries of the second ones. Then a set of linear algebraic equations can be deduced to determine those 
unknown coefficients by substituting Eqs. A.3 – A.7 into continuous conditions and applying the orthogonality of vertical eigenfunctions. It should be 
mentioned the radiation potential denotes the hydrodynamic response when the free surface between two boxes (subdomain III) is imposed the 
external air pressure. More details regarding the theoretical model can be found in [69,70].

Data availability

I have shared the link to my code at the Attached File Step.
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