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Abstract

Quantum dots are nanoscale semiconductor crystals in which charge carriers are

con�ned in all three spatial dimensions. The discrete energy levels of quantum

dots make them promising candidates for qubits in quantum information process-

ing. However, at any temperature, there are lattice vibrations, known as phonons,

in the surrounding material. When a quantum dot is optically excited, an exci-

ton, a bound electron-hole pair, is created and there is an unavoidable coupling

of the exciton to the phonons. The interaction of a quantum system with these

phonons causes decoherence, limiting the coherence time, which restricts the util-

ity of qubits in quantum information processing applications. In this thesis, the

decoherence in a system of two spatially separated, electronically decoupled qubits,

with direct or mediated coupling, interacting with a shared three-dimensional bath

is investigated. For illustration, Förster or cavity-mediated coupling between semi-

conductor quantum dots interacting with acoustic phonons is treated. Using the

rigorous Trotter decomposition with linked cluster expansion technique, a reduc-

tion in decoherence at speci�c distances between the quantum dots is observed.

This reduction results from the collective coupling of the qubits to shared phonon

modes, enabled by the coherent properties of the bath. In particular, when the

qubit separation is an integer multiple of the phonon wavelength, selected by the

energy splitting of the coupled qubit states, there is a reduction in the decoher-

ence. We show that a near-vanishing dephasing rate, which can be referred to as
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a one-dimensional regime, can be achieved by utilising strong quantum dot-cavity

coupling strengths. We quantify the separations at which the one-dimensional-like

regime persists before transitioning to the expected three-dimensional behaviour.

To calculate the dynamics of these extended quantum systems, traditional path-

integral based tensor-multiplication schemes are not su�cient. To tackle this, an

optimisation scheme is developed, using a matrix representation of tensors and

their singular value decomposition to �lter out unimportant contributions. Im-

portantly, more memory-e�cient representations for the tensors exist; however,

this approach enables the usage of an extrapolation scheme which approximates

the exact long-time dynamics. This optimisation dramatically reduces both com-

putational time and memory usage compared with the traditional methods.
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Chapter 1

Introduction

When solids are scaled down to the nanometer range, they exhibit dramatically

di�erent physical properties compared to their bulk counterparts. One of the

most notable changes is observed in the electronic energy structure due to quan-

tum con�nement. Semiconductor quantum dots (QDs) are nanoscale semicon-

ductor structures where charge carriers experience quantum con�nement in all

three spatial dimensions, leading to discrete energy levels�formed when a narrow

bandgap material is enclosed within a wider bandgap material. Common material

choices include gallium arsenide (GaAs), aluminium gallium arsenide (AlGaAs)

and indium gallium arsenide (InGaAs), of which the properties of the latter are

used throughout this thesis. In these structures, charge carriers experience three-

dimensional (3D) quantum con�nement, leading to discrete energy levels [1�3].

These energy levels can be �ne-tuned by modifying the QD size and shape [4]

making them remarkably versatile for various applications. Excitation of an elec-

tron from the valence band (VB) to the conduction band (CB) creates a positively

charged quasi-particle called a hole in the VB. In quantum dots, spatial con�ne-

ment leads to quantised energy levels for both carriers, forming an exciton. The

Coulomb interaction between the electron and hole introduces additional correc-

tions to their energies and wave functions, which is not taken into account in this
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CHAPTER 1. INTRODUCTION

thesis.

Of particular importance to this thesis is a QDs ability to exhibit coherence be-

tween the excited and ground excitonic states, making them a promising candidate

for qubits�the basic units of quantum computing.

When QDs are spatially separated and uncoupled, each can act as an indepen-

dent single-photon emitter. In such systems, if coherence is maintained between

the excited and ground states of each individual dot, it enables the emission of

indistinguishable photons. This indistinguishability is crucial for two-photon inter-

ference e�ects, which have been observed experimentally [5�7]. Importantly, these

results demonstrate that coherence must be preserved within each QD, even in

the absence of inter-dot coupling. While coherence in single-dot systems is valu-

able for generating indistinguishable photons, more complex architectures, such

as quantum logic gates, require coupling between multiple QDs. When two QDs

are directly coupled, their states hybridise, and the system behaves as a single,

extended quantum emitter. In this regime, maintaining coherence between the

hybridised states becomes essential, for example in the implementation of two-

qubit gates [8, 9]. Long-range qubit interactions can also be mediated via strong

coupling to photonic cavities [10], but regardless of the interaction mechanism,

preserving coherence in coupled systems remains a fundamental challenge due to

unavoidable coupling to the environment [11, 12].

QDs, which are often described as �arti�cial atoms� due to their discrete energy

levels, di�er from isolated atoms because they are embedded within a solid-state

environment. This leads to interactions with quantised lattice vibrations, known

as phonons � which act as a source of decoherence. These exciton-phonon inter-

actions strongly in�uence the coherence and dynamics of QD systems, as demon-

strated by extensive theoretical and experimental research [13�32].

Several mechanisms underlie exciton-phonon interactions in QDs, including defor-
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CHAPTER 1. INTRODUCTION

mation potential coupling, piezoelectric coupling, and Fröhlich coupling. Among

these, deformation potential coupling to longitudinal acoustic (LA) phonons is typ-

ically the dominant source of dephasing at low temperatures [33�35]. Although

exceptions do exist, such as GaN-based QDs, where piezoelectric coupling can

surpass deformation potential coupling [14]. In contrast, Fröhlich coupling pri-

marily involves longitudinal optical (LO) phonons, which usually contribute little

to dephasing in GaAs-based QDs [36] at low temperatures. In particular, below a

temperature of 50K, the dominant source of dephasing is the deformation potential

coupling [37], phonon anharmonicity [38], and radiative decay.

The interaction between QDs and phonons di�ers signi�cantly from carrier-phonon

interactions in bulk semiconductors. Firstly, there is energy conservation in both

QDs and bulk semiconductors, but a strict momentum conservation takes places

only in the latter, as QDs break translational symmetry. In bulk materials,

phonons often mediate transitions between states of the electronic continuum.

However, in QDs, the discrete nature of the energy levels often leads to a mismatch

between the energy level di�erences and the typical phonon energies, known as the

phonon bottleneck [39, 40]. As a result, the coupling between QD electronic states

via phonons is relatively weak. Instead, on ultrafast timescales (ranging from a

few to tens of picoseconds), interactions with acoustic phonons become the domi-

nant mechanism of pure dephasing [13, 41]. The term pure dephasing arises from

the fact that, unlike transitions between electronic states, these interactions a�ect

the coherence of electronic states without altering their population.

In fact, following excitation with an ultrafast laser pulse, QD-phonon interac-

tions primarily in�uence the coherence dynamics of the system. This behaviour

is well-described by the exactly-solvable independent boson (IB) model (detailed

in Section 2.3), where even at low temperatures, acoustic phonons induce a rapid

non-Markovian decay of the QD coherence [42]. This rapid loss of coherence man-

ifests itself as broad side bands, known as the phonon broadband (BB), in the QD

absorption spectrum [14].
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CHAPTER 1. INTRODUCTION

In systems with additional interactions, such as coupling to optical cavity modes

or other QDs, new hybridised states can emerge in the strong-coupling regime.

There is a coherent oscillatory exchange of energy between a QD and, for exam-

ple, a cavity mode [15] described by the Jaynes-Cummings (JC) model (detailed

in Section 2.2). This coherent energy transfer is observed as Rabi oscillations,

where excitation is periodically exchanged between the QD exciton and a photon

in the cavity mode. Phonons modify this interaction, dressing the hybridised QD-

cavity states. Unlike bare QD and cavity states, where pure dephasing cannot

induce transitions, the hybridised states can experience phonon-mediated transi-

tions, leading to a damping of Rabi oscillations [43�45]. In the frequency domain,

this damping appears as a broadening of the zero-phonon line (ZPL), the sharp

peak associated with the exciton transition frequency. This damping of the Rabi

oscillations is observed as a nearly Markovian long-time decay of the coherences

due to real or virtual phonon-assisted transitions [37, 46].

Historically, the dominating source of decoherence in a multi-qubit system inside a

cavity was due to the leakage of photons from the cavity due to its low quality fac-

tor, causing coupling with the continuum of external photonic modes. Therefore,

previous works have focused on exploiting the photonic bath coherent properties

to reduce dephasing, such as decoherence-free subspaces of subradiant quantum

superpositions [47, 48]. Speci�cally, the introduction of a second qubit coupled to

the same cavity gives rise to a subradiant superposition state that is decoupled

from the lossy cavity. However, although the quality factor of optical cavities dra-

matically increased over the past decade, the coherence times remain limited. As

discussed, now acoustic phonons present the major intrinsic source of decoherence

in QD systems.

While the interaction of hybridised QD states with a shared environment usu-

ally causes their dephasing, one of the key results of this thesis show that the

decoherence can be reduced, or completely suppressed, in coupled QD systems.

This suppression results from the collective coupling of the QD qubits to the same
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CHAPTER 1. INTRODUCTION

phonon modes [49], enabled by the coherent properties of the bath. In particu-

lar, when the qubit separation is an integer multiple of the phonon wavelength,

selected by the energy splitting of the coupled qubit states, there is a reduction in

the decoherence.

To investigate these e�ects, this thesis explores coherence in multi-QD-cavity sys-

tems with acoustic phonon coupling. The core elements are introduced in the next

chapter, beginning with a de�nition of key concepts, followed by a discussion of

the JC model to describe light-matter interactions. Next, QD-phonon interactions

are explored using the IB model. Both the JC and IB model are exactly solv-

able, and utilising these models when addressing the problem of phonon-induced

dephasing in the multi-QD�cavity systems is natural. However, the combina-

tion of the two models presents a signi�cant challenge. To combine the models,

Feynman's path-integral formulation provides an e�ective tool, giving an asymp-

totically exact solution for the density matrix dynamics. The later chapters of this

thesis develop a path-integral technique, combining Trotter's decomposition with

linked cluster expansion to treat systems containing multiple QDs coupled to the

same phonon bath. These path-integral formulations lead to tensor-multiplication

schemes which are computationally expensive, and to address this, this thesis

provides an optimisation scheme to reduce computational requirements. The opti-

misation is based on remapping the tensors as matrices and employing a singular-

value decomposition (SVD) scheme to �lter out unimportant contributions to re-

duce memory requirements and computational time.
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Chapter 2

Background

2.1 The density matrix and coherences

This thesis focuses on the linear optical response, which we call throughout the

linear optical polarisation or more simply, the linear polarisation. In this context,

the linear polarisation corresponds to the o�-diagonal elements of the density

matrix representing the coherences within the system. To understand this concept,

it is useful to introduce the the density matrix and clarify the signi�cance of its

various elements.

The density matrix, denoted ρ, is a fundamental tool in quantum mechanics used

to describe the state of a quantum system, especially when dealing with mixed

states or systems subject to environmental interactions. It generalises the concept

of a wave function |Ψ⟩ to take into account statistical mixtures of quantum states.

For a system with a set of basis states |i⟩, the density matrix is expressed as

ρtotal =
∑
i,j

ρij |i⟩ ⟨j| , (2.1.1)

where ρij = ⟨i| ρ |j⟩ are the elements of the matrix. The elements ρij contain
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CHAPTER 2. BACKGROUND

information about the populations and coherences of the system. The diagonal

elements, ρii, represent the population of the system in the corresponding basis

state |i⟩. Physically, this is the probability of �nding the system in state |i⟩. The

o�-diagonal elements, ρij (i ̸= j), represent the coherences between the basis states

|i⟩ and |j⟩, encoding the quantum superpositions. Since this thesis focuses on the

linear polarisation, emphasis is placed on the o�-diagonal elements. Their evolu-

tion reveals how the system maintains or loses coherence due to interactions with

the environment. However, when a system interacts with a phonon environment,

the full density matrix ρtotal contains both the system and phonon degrees of free-

dom, making it impractical to work with ρtotal directly due to the large phonon

Hilbert space. Instead, the reduced density matrix describing only the system is

used, given by

ρs = Tr{ρtotal}ph, (2.1.2)

where the phonon degrees of freedom are traced out. This results in an e�ective

evolution for ρs that incorporates dissipative and decoherence e�ects due to phonon

interactions, rather than explicitly including phonon states.

For illustration, consider a QD-cavity system without phonons, where the reduced

density matrix (equivalent to the full density matrix in this case) can be expressed

in a basis of three possible states (considering only single particle states). We have

the state |0⟩, which represents the absolute ground state of the exciton and cavity,

the �rst excited exciton state |X⟩ and the cavity with a single photon |C⟩. Then,

the density matrix of the QD-cavity system is given by

ρ(t) =
∑

i,j=0,X,C

ρij(t) |i⟩ ⟨j| , (2.1.3)

where the time dependent coe�cients are expressed as ρij(t).

Introducing now the exciton or cavity creation (d† or a†) and destruction operators

(d or a), de�ned as

d† = |X⟩ ⟨0| , d = |0⟩ ⟨X| , (2.1.4)
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CHAPTER 2. BACKGROUND

a† = |C⟩ ⟨0| , a = |0⟩ ⟨C| , (2.1.5)

the creation or destruction e�ects of these operators can be seen by applying them

on the system states

d† |0⟩ = |X⟩ ⟨0|0⟩ = |X⟩ , d |X⟩ = |0⟩ ⟨X|X⟩ = |0⟩

and

a† |0⟩ = |C⟩ ⟨0|0⟩ = |C⟩ , a |C⟩ = |0⟩ ⟨C|C⟩ = |0⟩ ,

where the orthonormality of the states has been used, ⟨n|m⟩ = δnm, where δnm

is the Kronecker delta. In addition, note that the states are limited to single

particle states, such that a† |X⟩ = d† |C⟩ = 0. Furthermore, applying a destruction

operator onto the ground state gives zero, i.e. d |0⟩ = a |0⟩ = 0.

The expectation value of an operator Ô in the density matrix formalism is given

by the trace formula,

⟨Ô⟩ = Tr
{
ρÔ
}

(2.1.6)

and by de�nition the polarisation is

P(t) = Tr{ρ(t)c}, (2.1.7)

where c is the destruction operator associated with the measurement channel.

Since the polarisation that is measured is determined by the operator c, if it is

d (a), then the polarisation will represent the coherence between the �rst excited

excitonic (photon) state, |X⟩ (|C⟩), and the ground state |0⟩. To get a non-trivial

polarisation, a pulsed excitation is applied to the ground state of the system and

has the form

Hext(t) = Vδ(t), (2.1.8)

with

V = µ(c̃† + c̃), (2.1.9)

where µ is a constant, and c̃† is a general creation operator, referring to either

8



CHAPTER 2. BACKGROUND

the exciton creation operator (d†) or cavity photon creation operator (a†). The

operator chosen depends on the mode of excitation being considered. The reason

both the creation and destruction operator appears in V is due to Hermiticity, and

consequently the excitation is symmetrically applied to the density matrix. The

excitation is applied at time t = 0, and the density matrix of the QD-cavity system

immediately after the pulsed excitation is given by the following transformation,

ρ(0+) = e−i
∫∞
−∞ Hext(t′)dt′ρ(−∞)ei

∫∞
−∞ Hext(t′)dt′ = e−iVρ(−∞)eiV . (2.1.10)

Here ρ(−∞) is the density matrix of the system in the fully unexcited state, |0⟩ ⟨0|.

By expanding the operator e−iV as a Taylor series and applying it to the ground

state |0⟩, the e�ect of the excitation can be seen. Assuming the excitation occurs

in the excitonic channel, the Taylor series gives

e−iµ(d†+d) |0⟩ =
(
1− iµ(d† + d)− µ2

2
(d† + d)2 + ...

)
|0⟩ . (2.1.11)

For a weak pulse the expansion can be truncated to �rst order, yielding |0⟩−iµ |X⟩,

therefore creating a coherent superposition of the ground state |0⟩ and the single-

exciton state |X⟩. In the case of cavity channel excitation, this creates a Glauber

coherent state [50], however we reduce consideration to single-particle e�ects and

therefore it is only a superposition of |0⟩ and |C⟩ (one-photon cavity state). The

following time-evolution of the density matrix immediately after the pulsed ex-

cition is given by standard time-evolution in the Schrödinger representation (see

AppendixA for details on representations),

ρ(t) = e−iHtρ(0+)e
iHt = e−iHte−iVρ(−∞)eiVeiHt, (2.1.12)

where H is the system Hamiltonian. By de�nition, using Eq. (2.1.7), the polarisa-

tion is

P(t) = Tr
{
e−iHte−iVρ(−∞)eiVeiHtc

}
. (2.1.13)

However, in this thesis, Eq. (2.1.13) is reduced to the linear optical polarisation by

accounting for only terms linear in µ. The linear optical polarisation is then given

9
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by

PL(t) = Tr
{
e−iHtVρ(−∞)eiHtc

}
, (2.1.14)

where the unimportant factor −iµ has been dropped. Eq. (2.1.14) describes the

linear response to a pulsed excitation in the channel determined by c̃† and c̃ in V ,

and subsequent measurement in the channel determined by c. For the rest of the

thesis, the subscript L is dropped since we only consider the linear response.

2.2 Jaynes-Cummings (JC) model

We use the Jaynes-Cummings model to capture the essential features of light-

matter interaction by describing the coupling between a single fermionic two-level

system and a bosonic photon mode, in the absence of phonons [51]. In the full

JC model, multiple excitation levels can exist, where higher-energy states involve

additional cavity photons. These give rise to a series of coupled states forming

what is known as the Jaynes-Cummings ladder [52]. Here we consider an excitonic

system with only a ground state |0⟩ and a single excited state |X⟩, forming a two-

level system, coupled to a single mode of a photonic cavity |C⟩, where a single

excitation is shared between the exciton and the cavity mode. The Hamiltonian

of this exciton-cavity system is given by (with ℏ = 1 taken throughout)

H = ωXd
†d+ ωCa

†a+ g(a†d+ d†a), (2.2.1)

where d†(a†) is the exciton (photon) creation operator, ωX(ωC) is the exciton

(photon) energies and g is the exciton-cavity coupling strength. The exciton and

cavity photon frequencies are, in general, complex and written as

ωX,C = ΩX,C − iγX,C . (2.2.2)

The imaginary component, γX , of the exciton energy ωX represents the phe-

nomenological ZPL linewidth, which accounts for the radiative decay of the exci-

ton. Similarly, γC corresponds to the cavity losses, due to photons escaping from

the cavity.
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The coupling term g in the JC model originates from the interaction between the

optical transition dipole moment of the QD exciton and the quantised electric �eld

of the cavity mode. The transition dipole moment is de�ned as

µ = ⟨X|d |0⟩ , (2.2.3)

where d is the dipole operator. This transition dipole moment depends crucially

on the overlap between electron and hole wave functions. The cavity con�nes a

single quantised mode of the electromagnetic �eld described by the operator

E(r) = E0u(r)(a+ a†), (2.2.4)

where E0 =
√
ωC/2ϵ0V represents the vacuum �eld amplitude with V being the

e�ective mode volume. Here, u(r) denotes the normalised spatial mode pro�le (e.g.

a standing wave pattern in a Fabry-Pérot cavity). The Hermitian form (a + a†)

emerges naturally from the canonical quantisation of the �eld. The light-matter

interaction Hamiltonian

Hint = −d · E (2.2.5)

couples the exciton dipole moment to the cavity �eld. Expanding the dipole

operator in the excitonic basis yields

d = µ |X⟩ ⟨0|+ µ∗ |0⟩ ⟨X| , (2.2.6)

where the permanent dipole terms are omitted since they do not contribute to

optical transitions. Substitution into the interaction Hamiltonian Eq. (2.2.5) leads

to four interaction terms: −(µ ·uE0) |X⟩ ⟨0| a and −(µ∗ ·u∗E0) |0⟩ ⟨X| a† describ-

ing energy-conserving processes (photon emission with exciton recombination and

photon absorption with exciton creation), along with −(µ · u∗E0) |X⟩ ⟨0| a† and

−(µ∗ · uE0) |0⟩ ⟨X| a representing non-energy-conserving counter-rotating terms.

The rotating wave approximation (RWA) provides a simpli�cation by keeping only

the energy-conserving terms. In the interaction picture, the energy-conserving

terms evolve as e±i(ωX−ωC)t (slow oscillations), while the counter-rotating terms
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oscillate rapidly as e±i(ωX+ωC)t. When the coupling strength g satis�es

g ≪ ΩX ,ΩC , (2.2.7)

where Ω is the real component, these counter-rotating terms average to zero on the

system's characteristic timescale ∼ 1/g and can be neglected. This approximation

yields the simpli�ed interaction Hamiltonian

Hint ≈ g(a† |0⟩ ⟨X|+ a |X⟩ ⟨0|), (2.2.8)

which is equivalent to the interaction term in Eq. (2.2.1) and where the coupling

strength

g = µ · uE0 ∝
µ√
V

(2.2.9)

depends on the transition dipole moment, vacuum �eld amplitude, and mode over-

lap. The coupling strength g fundamentally re�ects the strength of the overlap

between the exciton's transition dipole moment and the cavity's vacuum electric

�eld, while the RWA's validity requires the coupling to be much smaller than

the system's natural frequencies. Beyond this regime, such as in ultrastrong cou-

pling situations, one must consider the full quantum Rabi model that retains the

counter-rotating terms. As outlined in the previous section, for a single-particle

treatment (�rst rung of the JC ladder), the exciton and cavity operators can be ex-

pressed in the {|X⟩ , |C⟩} basis, which expressed in matrix form, the Hamiltonian

Eq. (2.2.1), is given by

H =

ωX g

g ωC

 . (2.2.10)

When a pulsed excitation is applied to the system, the linear optical polarisation

PL(t), determined from Eq. (2.1.13), for the JC model is given by (see AppendixB

for the full derivation)

Pjk(t) = ⟨j| e−iHt |k⟩ , (2.2.11)

where k represents the excitation channel and j is the measurement channel.

Eq. (2.2.11), which accounts for all possible combinations of excitation and mea-

12
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surement channels, expressed in matrix form is

P̂(t) =

PXX(t) PXC(t)

PCX(t) PCC(t)

 = Ŷ −1

e−iω1t 0

0 e−iω2t

 Ŷ , (2.2.12)

where e−iHt has been evaluated by diagonalising the JC Hamiltonian matrix, given

in Eq. (2.2.10), with the help of the eigenvector matrices Ŷ and Ŷ −1 de�ned as

Ŷ =

α −β

β α

 , (2.2.13)

where

α =
∆√

∆2 + g2
, (2.2.14)

β =
g√

∆2 + g2
, (2.2.15)

and ∆ =
√
δ2 + g2 − δ with δ = 1

2
(ωX − ωC) being half of the detuning. The

eigenenergies ω1,2 are given by

ω1,2 =
ωX + ωC

2
∓
√
g2 + δ2, (2.2.16)

which are complex in general and can therefore be written as ω1,2 = Ω1,2 − iγ1,2.

Here, Ω1,2 are the real eigenenergies and γ1,2 are the linewidths. Physically,

the exciton-cavity coupling parameter g is mixing the exciton and cavity photon

modes, resulting in upper (2) and lower (1) polariton states.

2.2.1 Weak and strong coupling regimes

In this section, the in�uence of the term ∓
√
g2 + δ2 within Eq. (2.2.16) is investi-

gated to identify the weak and strong coupling regimes. Firstly, consider the case

of zero detuning for simplicity (ΩX = ΩC), Eq. (2.2.16) can then be written as

ω1,2 = ΩC − i

2
(γX + γC)∓

1

2

√
4g2 − (γX − γC)2. (2.2.17)
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Focusing on the square root term, if g < 1
2
|γX − γC |, then the splitting in ω1,2

is purely imaginary. As a result, the real parts of the eigenenergies, Ω1,2, are

degenerate, which de�nes the weak coupling regime. In contrast, if g > 1
2
|γX−γC |,

the square root becomes real, leading to a real energy splitting. Therefore, the real

eigenenergies Ω1,2 are non-degenerate, characterising the strong coupling regime.
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Figure 2.1: Real and imaginary components of the upper (2) and lower (1) polari-
ton eigenenergies for the case of zero detuning (ΩX = ΩC) with γX = 2µeV and
γC = 30µeV.

Fig. 2.1 shows the e�ect of increasing the exciton�cavity coupling strength g on

the real and imaginary parts of the eigenvalues of the JC Hamiltonian. These

correspond to the energies Ω1,2 and linewidths γ1,2 of the polariton states. At low

g, there is no clear energy splitting, and the system remains in the weak coupling

regime. In this regime, although enhanced spontaneous emission � known as the

Purcell e�ect [53] � can occur due to the presence of the lossy cavity, it is not

visible in the eigenvalues of this diagonalised Hamiltonian. Instead, the imaginary

parts γ1,2 simply re�ect the mixing of the exciton and cavity linewidths γX and

γC , and there is only one distinct eigenenergy. Physically, in the weak coupling

regime the emission spectrum consists of a single broadened peak (at or near

the cavity resonance) with a decay rate faster than the bare exciton lifetime, the

enhancement factor being given by the Purcell factor FP ∝ Q/V , where Q is the
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cavity quality factor and V the mode volume. This is a purely irreversible process

without coherent Rabi oscillations.

As g increases further, the eigenstates begin to hybridise more signi�cantly, and

at a speci�c value of g, there is an exceptional point resulting in the formation of

two branches, known as polariton branches. This marks the onset of the strong

coupling regime. The value at which this occurs is observed to be g ≈ 14µeV for

the parameters used here, but is dependent on the broadening parameters γX,C .

In strong coupling, the emission spectrum shows two well-resolved peaks (upper

and lower polaritons) whose splitting follows the well-known avoided crossing as

a function of exciton�cavity detuning. In the time domain, this corresponds to a

reversible exchange of energy between the exciton and cavity mode at the Rabi

frequency.

The di�erence between the polariton eigenenergies is known as the Rabi splitting,

which for g ≫ δ is simply given by

∆Ω = Ω2 − Ω1 ≈ 2g, (2.2.18)

and is often referred to as the nominal Rabi splitting. There is a timescale asso-

ciated with the coherent exchange of energy between the polariton states, called

the characteristic polariton timescale, τJC, and is de�ned as

τJC =
2π

∆Ω
, (2.2.19)

in general. This is the period of the Rabi oscillations, and in the speci�c case of

zero detuning, τJC ≈ π/g.
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Figure 2.2: The absolute value of the linear polarisation, |PXX(t)|, in the JC
model in the strong-coupling regime, according to Eq.(2.2.12). The calculations
are performed for zero detuning (ΩX = ΩC) and no added damping (γX,C = 0) for
two exciton-cavity coupling strengths, g = 50µeV (red) and 100µeV (blue).

Fig. 2.2 shows the linear polarisation for excitation and measurement in the ex-

citonic channel |PXX(t)|. The oscillations show the coherent exchange of energy

between the exciton and cavity, with the frequency determined by the Rabi split-

ting given by Eq. (2.2.18), related to the timescale Eq. (2.2.19). The larger exci-

ton�cavity coupling strength of 100µeV shows an oscillation frequency twice that

of the lower, g = 50µeV coupling, as expected. Notably, there is no gradual loss

of coherence, since there are no phonons and no phenomelogical dampings (γX,C)

added.

Experimentally, some controllable parameters in the JC model are: g, which can

be increased by reducing the cavity mode volume and improving the spatial and

spectral overlap between the exciton and the cavity mode. γC , which depends on

the cavity Q-factor and can be lowered via improved fabrication or mirror re�ec-

tivity; γX , which is set by the intrinsic exciton lifetime, and can be reduced at

low temperatures or in high-quality QDs. The detuning, ∆ = ΩX − ΩC , can be

tuned via temperature, electric �eld (quantum con�ned stark e�ect), or mechani-

cal strain since these mostly a�ect the exciton transition energy and not the cavity.
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Transitioning from weak to strong coupling requires increasing g and/or reducing

γX and γC . The onset of strong coupling is con�rmed experimentally by the obser-

vation of a resolvable Rabi splitting in the spectrum or coherent Rabi oscillations

in the time domain, in contrast to the single broadened peak characteristic of weak

coupling.

Using the polarisation, given by Eq.(2.2.12), the absorption spectra can be found

by taking the real component of the Fourier transform (FT) of P̂(t), see Ap-

pendixC for details. Considering only excitation and measurement in the exciton

mode, i.e. PXX(t), the absorption in the exciton mode under exciton feeding is

given by

AXX(ω) = Re

{
iα2

ω − ω1

+
iβ2

ω − ω2

}
, (2.2.20)

which is just two Lorentzian broadened lines, corresponding to the polariton states.
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Figure 2.3: Absorption spectra, AXX(ω), for zero detuning between the exciton
and cavity modes (ΩX = ΩC) for three di�erent exciton-cavity coupling strengths,
g = 10, 50 and 500µeV. The phenomenological dampings used for a �nite ZPL
width are γX = 2µeV and γC = 30µeV.

Fig. 2.3 shows the absorption spectra |AXX(ω)| for three di�erent coupling strengths
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g. For low g (10µeV), there is only one distinct Lorentzian pro�le, as expected,

due to the degeneracy of the real eigenenergies in the weak coupling regime. Phys-

ically, this is reasonable, since it shows the absorption is occurring at an energy of

ω = ΩC = ΩX in the case of zero detuning, meaning that light is being absorbed at

the transition frequency of the exciton, as one would expect for no/weak coupling

to the cavity mode. For the spectra corresponding to larger g, there are clearly two

distinct peaks which is a signature of the strong coupling regime. These peaks are

located at the real eigenenergies of the polariton states Ω1,2 and have linewidths

γ1,2, where the separation between the peaks is approximately given by the Rabi

splitting 2g. Furthermore, the linewidths of the Lorentzian pro�les appear to be

the same, as shown in Fig. 2.1, consistent with Eq.2.2.17. To summarise, in the

strong-coupling regime, the exciton and cavity photon form a hybridised quasi-

particle called a polariton. Polaritons have two distinct eigenenergies, referred to

as the upper polariton (UP) and lower polariton (LP) branches. Physically, this

means that energy is coherently exchanged between the exciton and the photon,

leading to the joint absorption and emission of light.

The Jaynes-Cummings model will be used later as part of a model that includes

the presence of the phonon environment in QD-cavity or multi-QD systems.

2.3 Independent boson (IB) model

The next step is to examine the independent boson model, an exactly solvable

model that successfully explains phonon-induced dephasing in QDs [54]. We con-

sider a polaron, which is formed when a single QD couples to bulk acoustic phonons

[13]. The coherence of an exciton in a QD is fundamentally limited by its inter-

action with phonons in the surrounding lattice. This interaction arises because

lattice vibrations modify the crystal's periodic potential, leading to shifts in the

electronic band edges. For acoustic phonons, the dominant coupling mechanism

is the deformation potential. The relevant lattice quantity is the local volumetric

strain associated with lattice displacement u, given by ∇ · u. This strain �eld in-
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duces energy shifts in the conduction and valence bands given by ∆Ec = Dc∇ · u

and ∆Ev = Dv∇ · u, respectively, where Dc and Dv are the deformation poten-

tials. The total shift for the exciton energy is then ∆EX = ∆Ec − ∆Ev, where

the negative sign accounts for the fact that a given strain has opposite e�ects on

electrons and holes. This coupling mechanism is highly selective and the defor-

mation potential interaction primarily involves LA phonons. Transverse acoustic

(TA) phonons are neglected as their shear strain (∇ · u = 0) results in negligible

coupling via this mechanism. Optical phonons are also disregarded, as they are

not thermally populated at the low operating temperatures considered. In GaAs

QDs, optical phonon modes have high energies (∼ 36meV) which corresponds to

around room temperature. Having established the deformation-induced energy

shifts, the interaction Hamiltonian term for an exciton can be expressed as

HX−ph = Dc(∇ · u(re))−Dv(∇ · u(rh)) , (2.3.1)

where u(r) is the phonon displacement �eld at position r. The displacement �eld

for LA phonons is quantised as

u(r) =
∑
q

√
1

2ρmΩωq

(bq + b†−q)q̂e
iq·r , (2.3.2)

where b†q is the bosonic creation operator of a bulk phonon mode with the mo-

mentum q and frequency ωq (denoting q = |q|). q̂ is the unit vector along q and

ωq = vsq is the phonon energy, assuming a linear dispersion. The linear dispersion

assumption is valid as the LA branch is well approximated by a straight line near

q = 0 (long wavelength limit). Deviations from this approximation occur near

the Brillouin zone edges, but those higher energy phonons contribute negligibly at

the low temperatures considered here. ρm is the material mass density, vs is the

sound velocity in the material and Ω is the sample volume. The functional form

of Eq. (2.3.2) remains the same across materials, provided deformation potential

coupling dominates and linear dispersion holds, though parameters like ρm and vs

vary. The model in this thesis uses realistic InGaAs QD parameters, which can be
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found in Table 2.1. Taking the divergence ∇ · u gives:

∇ · u(r) = i
∑
q

√
q2

2ρmΩωq

(
bq + b†−q

)
eiq·r. (2.3.3)

Projecting onto the exciton wavefunction ΨX(re, rh), the interaction Hamiltonian

is:

HX-ph =

∫
dre

∫
drh |ΨX(re, rh)|2 [Dc(∇ · u(re))−Dv(∇ · u(rh))] . (2.3.4)

Substituting ∇ · u into the interaction Hamiltonian, we are able to write it as

HX−ph =
∑
q

(λqbq + λ∗qb
†
−q)d

†d , (2.3.5)

where d†d = |X⟩ ⟨X| is the projector onto the exciton state, re�ecting the fact that

the phonons only couple to the system when the exciton is present. The coupling

element λq is

λq = i

√
q2

2ρmΩωq

D(q) , (2.3.6)

and D(q) is the exciton-phonon form factor, given by

D(q) =

∫
dre

∫
drh|ΨX(re, rh)|2

(
Dce

iq·re −Dve
iq·rh

)
. (2.3.7)

Using the linear dispersion of LA phonons and neglecting the factor i, since only

|λq|2 matters physically, we �nd for the exciton-phonon coupling element

λq =

√
qD(q)

√
2ρmΩvs

. (2.3.8)

The coupling term Eq. (2.3.8) enables computation of the spectral density, which

characterises the bath's in�uence. The phonon spectral density is de�ned as

J(ω) =
∑

q |λq|2δ(ω−ωq), which is e�ectively the exciton-phonon coupling strength

weighted by the phonon density of states (the derivation is provided in AppendixH).

From AppendixH, it is worth noting that for LA phonons the density of states con-

tributes an ω2 term, and the exciton-phonon coupling |λq|2 contributes ω, which
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results in the phonon spectral density having a super-ohmic form of ω3. This super-

ohmic form means low-frequency phonons couple much more weakly to the exciton

and results in the dominant interactions coming from higher energy phonons, up

to a cut-o� value set by the �nite QD size. This super-ohmic spectral density

creates a structured environment where a speci�c, narrow range of phonon modes

around the cut-o� frequency dominates the interaction with the exciton. In fact,

the structured environment introduces �nite bath correlation times, leading to

memory e�ects and non-Markovian dynamics. A �at spectral density corresponds

to a bath having no correlation time, i.e. it �forgets� instantly, so the system

only displays Markovian dynamics. While deformation potential coupling to LA

phonons yields a super-ohmic (ω3) form, other mechanisms such as piezoelectric

coupling can produce ohmic (ω) behaviour.

Having established the microscopic interaction between the QD exciton and LA

phonons, we now turn to the IB model, which describes this system with the

following Hamiltonian:

H = Hph + (ωX + V )d†d, (2.3.9)

where as before, d†(d) is the exciton creation (annihilation) operator, and ωX is

the exciton energy. The energy of the phonon continuum is given by

Hph =
∑
q

ωqb
†
qbq, (2.3.10)

and the exciton-phonon coupling by

V =
∑
q

λq(bq + b†−q), (2.3.11)

as shown in Eq. (2.3.5). The coupling of the exciton with the phonon mode q is

given by the matrix element λq, which depends on the material parameters and

exciton wave function (details of the speci�c form given in AppendixH). While the

IB model e�ectively accounts for a major source of non-Markovian pure dephasing

[37], it does not capture the broadening of the ZPL, a limitation arising from the
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linear system-bath coupling.

Applying the formalism of open quantum systems [55], the exciton can be consid-

ered as the system and the phonons as the environment. The Hilbert space H of

the combined system and environment is given by the tensor product (⊗) of the

excitonic Hilbert space H(X) and phonon Hilbert space H(ph),

H = H(X) ⊗H(ph). (2.3.12)

Likewise, the density matrix of the combined system, which is used to �nd the

polarisation, is given by the tensor product between the density matrices of the

excitonic system and phonon environment,

ρ(t) = ρX(t)⊗ ρph(t). (2.3.13)

The density matrix before any excitation, ρ(−∞), is the density matrix of the

fully unexcited system,

ρ(−∞) = |0⟩ ⟨0| ⊗ ρph, (2.3.14)

consisting of the absolute ground state of the exciton and the phonon environment

in thermal equilibrium, described by the density matrix

ρph =
e−βHph

Tr{e−βHph}ph
, (2.3.15)

where β = 1
kBT

with T being the temperature and kB is the Boltzmann constant.

The subscript ph on the trace refers to the trace being taken over all phonon states.

As previously mentioned in the Sec.2.2, a pulsed excitation is applied at t = 0 to

get a non-trivial polarisation. However, the pulsed excitation Eq. (2.1.9) containing

c̃†(c̃) must be d†(d), the exciton creation (destruction) operator, since the cavity

does not exist in this model:

V = µ(d† + d). (2.3.16)
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The following time-evolution of the density matrix is once again given by the

Schrödinger representations time evolution, as in Eq.(2.1.12). Then, an expression

for the linear optical polarisation is obtained by substituting the relevant quantities

into Eq.(2.1.13) (see AppendixB for full derivation), giving

PXX(t) = e−iωXt⟨U(t)⟩ph, (2.3.17)

where ⟨...⟩ph is the expectation value taken over all phonon states in thermal equi-

librium and U(t) = eiH0te−iHt is the time-evolution operator in the interaction

representation. The subscript denoting exciton channel excitation and measure-

ment is dropped for the rest of this section, since it is the only possible choice.

The time-evolution operator has the form (see AppendixE for derivation)

⟨U(t)⟩ =

〈
T
[
exp

(
− i

∫ t

0

dt1Ṽ (t1)
)]〉

, (2.3.18)

where T denotes the time ordering operator and ⟨...⟩ denotes the expectation

value taken over all phonon states, dropping the subscript ph. The tilde denotes

the interaction representation of V (see AppendixA.3 for details on the interaction

representation), which is given by

Ṽ (t) = eiHphtV e−iHpht =
∑
q

λ∗qbqe
−iωqt + λqb

†
−qe

iωqt, (2.3.19)

where the Baker-Hausdor� lemma has been used (see AppendixD) to �nd the

explicit time dependence and noting also that λq = λ∗−q. Then, by using linked

cluster expansion [37, 46, 54], Eq. (2.3.18) can be expressed compactly in terms of

the cumulant K(t),

⟨U(t)⟩ =

〈
T
[
exp

(
− i

∫ t

0

dt1Ṽ (t1)
)]〉

= eK(t), (2.3.20)

where the cumulant is given by

K(t) = −1

2

∫ t

0

dt1

∫ t

0

dt2⟨T Ṽ (t1)Ṽ (t2)⟩, (2.3.21)
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as detailed in AppendixF. Eq. (2.3.20) can be substituted into the linear polarisa-

tion, Eq. (2.3.17), giving

P(t) = e−iωX teK(t). (2.3.22)

This approach is particularly powerful, as it allows for an elegant and exact re-

summation of contributions from all orders of the perturbation generated from

expanding the time evolution operator. This is possible due to the system-bath

interaction, given by Eq. (2.3.11), which is linear in the phonon operators and

diagonal in the exciton operators. This linearity allows for the use of Wick's the-

orem to reduce all higher-order phonon correlations to second-order correlations.

Unlike models with non-linear system-bath couplings (which require truncation

or approximations), the IB model allows the exact form of K(t) to be computed,

and thus, the polarisation is known exactly. However, the IB model does not

capture ZPL broadening due to the linear coupling, for example, in Ref.37 the

quadratic coupling to phonons leads to ZPL broadening. Also, in Ref.[56], using

one-dimensional (1D) phonons, the same coupling leads to a �nite ZPL width due

to the speci�cs of the phonon spectral density.

The expectation value in the cumulant K(t), where Ṽ (t) is de�ned in Eq.(2.3.19),

is evaluated in AppendixG as

K(t) =
∑
q

|λq|2
(
N(ωq)

ω2
q

[eiωqt − 1] +
N(ωq) + 1

ω2
q

[e−iωqt − 1] +
it

ωq

)
, (2.3.23)

where N(ω) is the Bose-distribution function, given by

N(ω) = 1/
[
eβω − 1

]
, (2.3.24)

for phonons of energy ω, and noting that it is also a function of the temperature,

contained within β. The summation over q can be converted to an integration in

the following way,

∑
q

→ Ω

(2π)3

∫
d3q =

Ω

(2π)3

∫ ∞

0

q2dq

∫ π

0

sinθdθ

∫ 2π

0

dϕ, (2.3.25)
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then, integrating over angles gives

∑
q

→ Ω

(2π)3
· 4π

∫ ∞

0

q2dq =
Ω

2π2

∫ ∞

0

q2dq. (2.3.26)

Now, using the linear dispersion relation ω = vsq (where q = |q|), so q = ω/vs and

dq = dω/vs, we �nd ∑
q

→ Ω

2π2v3s

∫ ∞

0

ω2dω, (2.3.27)

Note also that |λq|2 can be expressed in terms of the spectral density J(ω) =∑
q |λq|2δ(ω − ωq). The spectral density describes the strength of the exciton-

phonon coupling as a function of the phonon frequency ω, weighted by the density

of phonon states at that frequency, and is given explicitly by

J(ω) =
ω3(Dc −Dv)

2

4π2ρmv5s
e

−ω2

ω2
0 (2.3.28)

for spherical (isotropic) QDs (see AppendixH for derivation). Eq. (2.3.28) assumes

a factorisable form of the exciton wave function, ΨX(re, rh) = ψe(re)ψh(rh), where

ψe(h)(r) is the con�ned electron (hole) ground state wave function. Also chosen

is spherically symmetric parabolic con�nement potentials which give Gaussian

wave functions. This Gaussian form results in the Gaussian factor in the spectral

density, and thus ω0 is inversely proportional to the Gaussian length. Where ω0 is

related to the time scale of the phonon system, given by

ω0 =

√
2vs
l

. (2.3.29)

l is the electron/hole con�nement length, taken to be equal for simplicity. In

short, some assumptions made in deriving the spectral density are, (i) the phonon

parameters in the QD are not signi�cantly di�erent from those in the surrounding

material, (ii) the acoustic phonons follow a linear dispersion of ωq = vs|q|, and

(iii) there is a spherically symmetric parabolic con�nement potential resulting

in Gaussian wave functions. Using the spectral density, is possible to rewrite
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Eq.(2.3.23) as

K(t) =

∫ ∞

0

dω J(ω)

(
N(ω)

ω2
[eiωt − 1] +

N(ω) + 1

ω2
[e−iωt − 1] +

it

ω

)
. (2.3.30)

In the long-time limit, Eq.(2.3.30) simpli�es to

K∞(t) = −iΩpt− S, (2.3.31)

where Ωp is the polaron shift, and is de�ned as

Ωp = −
∫ ∞

0

dω
J(ω)

ω
. (2.3.32)

Physically, the polaron shift represents a renormalization of the excitonic energy

level due to the formation of a phonon cloud surrounding the quantum dot, which

arises from the exciton�phonon interaction. This shift re�ects the reorganisation

of the lattice upon exciton creation, e�ectively dressing the exciton and forming a

quasiparticle known as a polaron. The polaron shift is a temperature-independent

e�ect. The next term in Eq. (2.3.31), S, is an e�ective Huang�Rhys factor which

depends on the temperature and quanti�es the coupling strength between the ex-

citon and the phonon bath. The Huang�Rhys factor, in the context of a single

vibrational mode, is given by SHR = |λq |2
ω2
q
. It is a dimensionless measure of the

strength of the electron-phonon coupling. It quanti�es the number of phonons

emitted during a transition and the associated reorganisation energy. For a con-

tinuum of phonon modes, the Huang�Rhys factor generalises to the integral form

SHR =

∫ ∞

0

dω
J(ω)

ω2
, (2.3.33)

which determines the ZPL weight e−S at zero temperature. In the IB model at

�nite temperature, the relevant quantity controlling the long-time value of the

polarisation incorporates the phonon populations, yielding

S =

∫ ∞

0

dω
J(ω)

ω2
(2N(ω) + 1). (2.3.34)
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This temperature-dependent generalisation can be regarded as an e�ective Huang�

Rhys factor, since it plays the same role in renormalising the ZPL but also incor-

porates thermal �uctuations in addition to zero-point contributions.

Using Eqs.(2.3.30)-(2.3.32) and Eq. (2.3.34), the cumulant K(t) can be separated

into the long-time asymptotic behaviour K∞(t), which forms the ZPL in frequency

space and a rapid initial decay KBB(t) which results in the phonon broadband in

frequency space, given by

KBB(t) =

∫ ∞

0

dω
J(ω)

ω2

(
N(ω)eiωt + [N(ω) + 1]e−iωt

)
. (2.3.35)

Thus, the full cumulant is a sum of the two,

K(t) = KBB(t) +K∞(t). (2.3.36)

The polarisation, given in Eq.(2.3.22), is then re-expressed as

P(t) = e−iωX teK∞(t)eKBB(t) (2.3.37)

The Huang-Rhys factor S and the broadband contribution KBB(t) must be nu-

merically integrated, allowing for the polarisation Eq.(2.3.37) to be calculated.

Throughout this thesis, the properties of InGaAs QDs are used [37, 46], which

are listed in Table 2.1. The rest of the parameters, such as con�nement lengths,

phonon bath temperature and coupling strengths, will be provided in the �gure

captions.

Table 2.1: Physical parameters of QD material (InGaAs)

Parameter Value Units

Deformation potential di�erence (Dc −Dv) −6.5 eV
Mass density (ρm) 5.65 g/cm3

Speed of sound(vs) 4.6 km s−1
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Figure 2.4: The absolute value of the independent boson model linear polarisation
|P(t)| for T = 50K according to Eq.(2.3.37). The calculation was performed using
the QD parameters in Table 2.1 and using an isotropic QD model with Gaussian
con�nement length l = 3.3 nm.

Fig. 2.4 shows the absolute value of the linear optical polarisation in the IB model

for T = 50K and isotropic QDs with con�nement length l = 3.3 nm. No phe-

nomenological damping was used, i.e. γX = 0, so that the exciton energy ωX is

real. There is a rapid initial decay due to KBB(t), where it is observed that the

initial decay occurs within roughly 2 ps at T = 50K.

The cumulant in the IB model, Eq. (2.3.36), describes the e�ects of the phonon

bath on the system, and has been separated into di�erent frequency components

of the bath (leading to early and long time e�ects). The broadband component

KBB(t) is mostly referring to the contribution from high-energy phonon modes, re-

�ecting the rapid adjustment of high-frequency phonons to the new exciton state

at t = 0, following the pulsed excitation of the QD. These high-frequency modes

quickly interact with the system at early times, causing a rapid non-Markovian

decay in the polarisation i.e. quickly disturbing the coherence between the exci-

tonic state and ground state. This initial decay arises because the phonons induce

memory e�ects over short timescales, known as the memory time, during which

the system retains information about its earlier states rather than �forgetting�

them immediately, as in Markovian evolution.
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Once the polaron is formed, the phonon bath stabilises because the phonons couple

only diagonally to the system, meaning they shift the energy of the excited state

without inducing transitions. Consequently, after the initial decay, the polarisation

stabilises to a reduced but constant value, proportional to e−S (the ZPL weight),

with no further reduction at long times in the IB model. To introduce long-time

ZPL broadening, one would need some o�-diagonal coupling to induce transitions

between system states which is not present in the IB model, or introduce higher-

order phonon-phonon interactions, e.g. cubic interactions in [38].

It is intuitive that temperature plays an important role, since KBB depends on

the phonon populations, determined via N(ω), which increases with increasing

temperature. The increasing temperature means that more phonon modes are

thermally populated, increasing the e�ective coupling strength to phonons and

speeding up the initial loss of coherence. The broadband contribution can be found

by taking the full linear polarisation Eq. (2.3.37) and subtracting the asymptotic

behaviour P∞(t), PBB(t) = P(t) − P∞(t), leaving only the early-time broadband

contribution. Fig. 2.5 shows the broadband contribution to the linear polarisation

0 2 4 6 8 10
time (ps)
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10 2
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100

|P
(t)
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T = 0K
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Figure 2.5: The absolute value of the broadband contribution to the independent
boson model linear polarisation |P(t)−P∞(t)| for T = 0, 5, 50K. The calculation
was performed using the QD parameters in Table 2.1 and using an isotropic QD
with con�nement length l = 3.3 nm

for three temperatures, T = 0, 5 and 50K. At T = 0,K, the phonon bath is in the
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ground state with no thermally active phonons. When the exciton is �rst created,

the lattice is immediately pushed out of its equilibrium position, creating lattice

vibrations (polaron formation). The excitonic state becomes entangled with the

phonons created by the excitation causing the loss of coherence. In the �nite

temperature case, the phonon bath is already thermally populated and introduces

further decoherence. The exciton-induced lattice displacement interacts with these

active modes, producing additional phase �uctuations in the exciton's coherence

during the initial polaron formation. This accelerates the early-time dephasing

relative to the T = 0K case.

2.3.1 Phonon memory time

It is useful to de�ne the characteristic timescale associated with this system τIB,

de�ned as

τIB ≈ 2π

ω0

=

√
2πl

vs
, (2.3.38)

where ω0 is given in Eq. (2.3.29). This quantity provides an approximate timescale

for the phonon memory time. Physically, τIB corresponds to the time required

for lattice atoms to return to their equilibrium positions once the exciton has

recombined (or similarly, the formation time of the phonon cloud following exciton

creation). For the system parameters used in this section, τIB is approximately

3.2 ps, and as shown in Fig. 2.5, this approximation is reasonable for temperatures

exceeding 5K. A more precise characterisation of the phonon memory time could

be obtained by identifying the time at which the KBB term decays below a given

threshold, such as 10−3. This approach more closely aligns with how memory

times (or correlation times) are de�ned in non-Markovian methods.

At this point the absorption spectra can be considered, which is obtained by taking

the real component of the FT of the linear polarisation, given in Eq. (2.3.37).

Taking the FT of the initial rapid decay would result in spectrally broad absorption

features, giving the phonon broadband. However, the ZPL does not have a �nite

linewidth in the IB model, therefore, one can add a phenomenological damping γX ,

resulting in complex exciton energy ωX = ΩX− iγX . The result is that an arti�cial
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ZPL linewidth is introduced in the absorption spectra, though not intrinsic to the

IB model.

It is possible to �nd the ZPL by neglecting the broadband contribution from

KBB(t) in Eq. (2.3.37), allowing an analytical solution,

AZPL(ω) =
e−SγX

(ω − Ω̄X)2 + γ2X
, (2.3.39)

where the complex frequency ωX has been separated into real (ΩX) and imaginary

(γX) components, and de�ning Ω̄X = ΩX +Ωp. Thus, Ω̄X has the meaning of the

ZPL position in frequency space shifted by Ωp from the bare exciton energy ΩX ,

hence the name polaron shift. Eq. (2.3.39) is simply a Lorentzian broadened line

centred on the real energy Ω̄X. By neglecting the phonon contributions entirely,

the absorption spectra of the ZPL is given by

A(ω) =
γX

(ω − ΩX)2 + γ2X
. (2.3.40)

By comparing Eq. (2.3.39) with Eq. (2.3.40), it can be seen that the e�ects of

phonon interaction with the exicton are to (i) suppress the ZPL weight by a factor

of e−S, (ii) displace the ZPL from the bare exciton energy by the polaron shift

Ωp. There are further e�ects associated with the eKBB term we neglected in the

absorption spectra. The long-time asymptotic behaviour of Eq.(2.3.37) can be

subtracted from the full expression, as performed in Fig. 2.5, leaving only the

rapid initial decay of the polarisation. Then numerically taking the real part of its

FT, the phonon broadband can be found, which is then added to the analytic ZPL

result from Eq.(2.3.39) to produce the full absorption spectra of the IB model.

Fig. 2.6 shows the absorption spectra of the independent boson (IB) model at T =

5,K (left) and T = 50,K (right). The central peak corresponds to the zero-phonon

line (ZPL), as described by Eq. (2.3.39). It represents the direct optical transition

between the ground state and the �rst excited exciton state, shifted by the polaron

shift due to exciton�phonon coupling. The in�uence of phonons is evident even at
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Figure 2.6: Left: Absorption spectra A(ω) for T = 5 K. Right: Absorption spectra
for T = 50K. The calculation was performed using the QD parameters in Table
2.1 and using an isotropic QD with con�nement length l = 3.3 nm.

T = 5K, where it is clear that absorption occurs at frequencies above the ZPL.

This corresponds to phonon emission processes, i.e. the exciton absorbs a photon of

higher energy than the bare transition energy, and the excess energy is released by

emitting one or more phonons. At T = 50K (right), the spectrum becomes more

symmetric. This is due to an increased phonon population at higher temperatures,

enabling phonon absorption processes, i.e. photons with less energy than the bare

exciton transition can still excite the system if the missing energy is provided by

absorbing phonons from the environment. These features re�ect phonon-assisted

transitions, where the exciton can absorb light at o�-resonant energies due to

energy exchange with the phonon bath. As a result, the absorption spectrum

broadens and develops sidebands around the ZPL, with the shape becoming more

symmetric at higher temperatures due to the balance between phonon emission

and absorption.

2.4 Summary

In this chapter, we used the JC model to investigate the linear polarisation and

absorption spectra in a QD-cavity system. We saw that in the strong-coupling

regime, the coherent exchange of energy between the QD and cavity results in the
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formation of a polariton with an upper and lower branch. The energy splitting

between the branches is known as the Rabi splitting, determined via the exciton-

cavity coupling strength. The transfer of energy between these branches results in

Rabi oscillations seen in the quantum dynamics. Then, the QD exciton-phonon

interactions described by the IB model were studied. This introduced techniques

on how to incorporate the in�uence of phonons on the system. Also, the e�ect that

phonons have on the coherences was observed, in particular the non-Markovian

dynamics which is characterised by the rapid initial decay in the linear polarisation.

This rapid initial decay is a �ngerprint of the polaron formation. We also saw that

the IB model, which only has diagonal QD-phonon coupling, does not introduce

any long-time decay of the linear polarisation. Importantly, both the JC and IB

models have exact solutions, but the combination of these techniques presents a

challenge. The IB model allowed us to understand the loss of coherence in a single

QD system coupled to a phonon bath, but more complex architectures, such as

quantum logic gates, require coupling between multiple QDs. When two QDs

are directly coupled, their states hybridise, and the system behaves as a single,

extended quantum emitter. In this regime, maintaining coherence between the

hybridised states becomes essential, for example in the implementation of two-

qubit gates [8, 9]. In the following chapter, an approach is developed to extend

beyond the IB model, allowing us to study multi-qubit systems and decoherence.

Through this, a method to preserve coherence in these coupled qubit systems is

described and illustrated.

33



Chapter 3

Path-Integral based approach:

Combining the JC and IB models

3.1 Introduction

The decoherence and phenomena such as energy relaxation dynamics of open

quantum systems is characterised by the interaction between the system and its

surrounding environment (bath). In the simplest case, the system-environment

coupling is weak and it can be assumed that the environment lacks memory, i.e.

Markovian, and remains uncorrelated with the system. This assumption allows

the use of Born and Markov approximations [55, 57, 58] resulting in a time-local

equation of motion. This is valid because the environments e�ect on the system

occurs on a much larger timescale than the correlation time of the environment.

However, many quantum systems deviate from this idealised case, and memory

e�ects play a critical role and render the Born-Markov approximation invalid. In

such non-Markovian regimes, the system's evolution depends on its past inter-

actions, leading to complex phenomena [13, 18, 22, 30]. Accurately capturing

these non-Markovian e�ects is essential but comes with signi�cant computational

challenges, often limiting the scope of treatable systems and coupling regimes.
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The typical approaches to solving the dynamics in non-Markovian open quantum

systems can broadly be divided into perturbative and non-perturbative meth-

ods. With perturbative treatments typically being limited to speci�c parame-

ter regimes, e.g. strong QD-cavity coupling and weak electron-phonon interac-

tions [17]. Or, via the polaron transformation combined with a perturbation the-

ory [24, 59]. However, for stronger exciton-phonon coupling, phonons play a more

signi�cant role that requires non-perturbative techniques [60].

In particular, Feynman's path integral formulation is a non-perturbative technique

which is very well suited for system-bath dynamics as it avoids dealing with the

large Hilbert space of the bath by targeting the system's reduced density matrix

(RDM). The formulation takes into account the e�ects of a harmonic bath on the

system dynamics through the well known Feynman-Vernon in�uence functional

[61], valid for any system-bath coupling strength. In practice, the issue is that

the in�uence functional is nonlocal in time, meaning that the coordinates of a

path at any particular time point are connected to coordinates at all other time

points, leading to full entanglement. This is discussed in more detail in Chapter

5. As a consequence, as the number of correlations grows with each time step,

there is an exponential scaling with propagation time, restricting the dynamics to

only short times. However, as there is a �nite length to the nolocal interactions

contained in the in�uence functional, known as the memory time. An example of

this memory time was observed in the previous section, where the phonon memory

time was τIB in the IB model. This �nite memory time led to the development of

the iterative quasi-adiabatic propagator path integral (i-QuAPI) approach [62�67],

resulting in a linear scaling with the number of propagations (time steps). This

linear scaling is due to the fact that the in�uence functional is not growing in size

as time progresses and is of a �xed size, i.e. �xed number of correlations. To

clarify, the number of correlations within the memory time depends on how small

the time step is. If there is a small time step, there will be more steps within the

memory time, and thus, more correlations. The i-QuAPI approach is a tensor-

multiplication scheme based on the combined use of Trotter's decomposition and
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the Feynman-Vernon in�uence functional. Due to the �nite memory time, it can

be used to evaluate the dynamics of the reduced density matrix for an arbitrary

time length, not limited to short times. The amount of correlations (and thus the

number of time steps) contained within the in�uence functional determines the

accuracy of the calculation, however, the computational cost grows exponentially

with the number of correlations. The memory storage requirements can quickly

become too large and in some systems convergence is not achievable. To address

this, �ltering techniques [68�70], modi�ed truncation schemes [71], path segment

merging (MACGIC-iQuAPI) [72], and in some regimes blip decomposition [73, 74]

have been developed to o�er improvements to the storage requirements or extend

the applicability to longer memory times. However, there is still great di�culty

in accurately modelling systems where memory e�ects from the environment are

signi�cant, such as energy transfer processes with long coherence times (e.g., pho-

tosynthetic complexes) or multi-qubit decoherence in structured environments [45,

75].

More recently, the development of approaches utilising modern tensor network

(TN) techniques have provided exceptional reductions in memory requirements,

such as the Time-Evolving Matrix Product Operator (TEMPO) algorithm [32]

(more recently packaged as OQuPY [76]). Or the ACE algorithm [77], another

TN approach which further reduces requirements by concentrating only on the

most relevant degrees of freedom of the bath. An enhanced TEMPO algorithm

has also been developed to include an o�-diagonal system bath coupling to the

Hamiltonian, leading to multi-time correlations [78].

Another path-integral based, numerically exact tensor multiplication scheme is the

Trotter decomposition with linked cluster expansion technique [43], developed in

parallel with the techniques mentioned. This technique has been used in several

cases, such as the four-wave mixing (FWM) polarisation in QD-cavity systems [44],

the linear polarisation in multi-qubit systems [45], and the population dynamics in

Förster coupled QDs [79]. However, being a tensor multiplication scheme, it also
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su�ers from the exponential scaling with number of correlations included in the

�nite memory time. An optimisation scheme to reduce the storage requirements

is developed in the Chapter 5.

In this chapter, the Trotter decomposition with linked cluster expansion technique

is described for a pair of spatially separated two-level systems (TLSs) inside a

microcavity and interacting with a common environment. The spatial separation

combined with the common environment introduces non-trivial modi�cations to

the technique described in [43].

3.2 System, excitation and the linear polarisation

As an example, we consider the decoherence of electronically decoupled qubits

separated by a distance d and interacting with a shared bath. The coupling of

the qubits is taken as either direct through Förster-like coupling [75, 80�82], or

indirectly via cavity-mediation [83�85]. As a qubit and bath realisation, we use

semiconductor QDs interacting with a bath of 3D acoustic phonons, widely studied

in the literature [13, 33, 37, 42, 46]. The system Hamiltonian can be written as a

Figure 3.1: Schematic of the system with a pair of dipole-coupled qubits separated
by a distance vector d, coupled to an optical cavity, and interacting with three-
dimensional acoustic phonons described by a wave vector q and angle θ.

sum of two exactly solvable parts,

H = H0 +HIB , (3.2.1)
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where H0 describes the coupling between the qubits and the cavity, and HIB is

a generalised IB model Hamiltonian describing the coupling of the qubits to the

shared environment. For the system of two remote QDs coupled to each other and

to an optical cavity (as illustrated in Fig. 3.1), H0 takes the form (using ℏ = 1)

H0 = Ω1d
†
1d1 + Ω2d

†
2d2 + ΩCa

†a+ g(d†1d2 + d†2d1)

+ g1(d
†
1a+ a†d1) + g2(d

†
2a+ a†d2) ,

(3.2.2)

where d†j is the fermionic exciton creation operator in QD j (j = 1, 2), a† is the

cavity photon creation operator, Ωj (ΩC) is the exciton (cavity photon) frequency,

and g and gj are the coupling strengths between the QD excitons, and the exciton

in QD j and the cavity photon, respectively. The IB model Hamiltonian describes

the interaction of the QD excitons with a shared acoustic-phonon bath,

HIB = Hph + d†1d1V1 + d†2d2V2 , (3.2.3)

where

Hph =
∑
q

ωqb
†
qbq and Vj =

∑
q

λq,j(bq + b†−q) (3.2.4)

are, respectively, the free phonon bath Hamiltonian and the QD coupling to the

bath, and b†q is the bosonic creation operator of a bulk phonon mode with the

momentum q and frequency ωq (denoting q = |q|). The coupling of the exciton in

QD j to the phonon mode q is given by the matrix element λq,j, which depends

on the material parameters, exciton wave function, and position of the QD. Their

explicit form for isotropic and anisotropic QDs is provided in AppendixH. For

identical QD qubits separated by a distance vector d, the matrix elements satisfy

the relation

λq,2 = eiq·dλq,1 . (3.2.5)

In the following, we focus on the linear polarisation, allowing us to study the

coherence of the system as a function of the distance between the qubits. The

linear polarisation of qubit j is de�ned as Pjk(t) = Tr{ρ(t)dj}, where ρ(t) is the

full density matrix, as discussed in Chapter 2. We assume that starting from the
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system ground state the qubit with index k is instantaneously excited at time

t = 0. As has been derived in AppendixB.1, the linear polarisation can be written

as

Pjk(t) = ⟨⟨j|U(t) |k⟩⟩ph , (3.2.6)

where U(t) = eiHphte−iHt is the evolution operator and ⟨...⟩ph denotes the expec-

tation value over all phonon degrees of freedom in thermal equilibrium. Here and

below we use the following basis states

|j⟩ = d†j |0⟩ and |C⟩ = a† |0⟩ , (3.2.7)

where |0⟩ represents the vacuum state of the QD-cavity subsystem, and j = 1, 2.

Taking advantage of the two exactly solvable parts of the Hamiltonian, given in

Eq. (3.2.1), we apply the method of Trotter's decomposition with linked cluster

expansion [43], summarised in the following section, that allows us to take into

account the e�ect of the phonon environment exactly.

3.3 Trotter's decomposition with linked cluster ex-

pansion

The method of Trotter's decomposition with linked cluster expansion was devel-

oped in [43], providing an exact calculation of the linear polarisation of a single

QD simultaneously coupled to a cavity and a phonon bath. Here, it is further

developed and applied to the more general case of cavity-mediated coupling be-

tween the QDs (with the coupling constants g1 and g2) and their direct dipolar

coupling (with the coupling constant g), as described by Eq. (3.2.2). It is worth

noting that linked cluster expansion is also commonly called cumulant expansion

in some other works.
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3.3.1 Trotter's decomposition

We commence by splitting the time interval [0, t], where t is the observation time,

into N equal steps of duration ∆t = t/N = tn−tn−1, where the time tn = n∆t rep-

resents the time after the n-th step. Trotter's theorem is then used to separate the

time evolution of the two non-commuting operators, H0 and HIB. For su�ciently

small ∆t, we can assume independent evolution of the two exactly solvable com-

ponents within each time step. In fact, applying Trotter's decomposition theorem,

the time evolution operator U(t) can be written as

U(t) = lim
N→∞

eiHpht(e−iHIBt/Ne−iH0t/N)N . (3.3.1)

Eq.(3.3.1) can be further expressed as U(t) = limN→∞ UN(t), with

UN(t) = eiHphteiHIB(t−tN−1)e−iHphtN−1e−iH0(t−tN−1)

× eiHphtN−1eiHIB(tN−1−tN−2)e−iHphtN−2e−iH0(tN−1−tN−2)...

× eiHphtneiHIB(tn−tn−1)e−iHphtn−1e−iH0(tn−tn−1)...

× eiHpht1eiHIBt1e−iH0t1 . (3.3.2)

Eq.(3.3.2) can be written in this way because Hph and H0 commute, therefore we

are able to introduce e−iHphtn−1 and eiHphtn−1 on either side of each e−iH0(tn−tn−1)

term. We now introduce two matrices to compactly represent Eq.(3.3.2), M̂ and

Ŵ , which describe the dynamics due to H0 and HIB, respectively, each being

analytically solvable. Using these operators, the QD-QD and QD-cavity dynamics

over a single time step, without phonons, is described by

M̂(tn − tn−1) = M̂(∆t) = e−iH0∆t (3.3.3)

and the exciton-phonon dynamics is given by

Ŵ (tn, tn−1) = eiHphtne−iHIB∆te−iHphtn−1 . (3.3.4)
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Then, one can write the time evolution operator Eq. (3.3.1) as

U(t) = T
N∏

n=1

Ŵ (tn, tn−1)M̂(tn − tn−1) , (3.3.5)

where T is the time-ordering operator. Ŵ and M̂ are both 3× 3 matrices in the

|1⟩, |2⟩, |C⟩ basis, and due to the diagonal form of the exciton-phonon interaction,

Ŵ is diagonal. Its diagonal matrix elements can be written as

Win(tn, tn−1) = T exp

{
−i
∫ tn

tn−1

Ṽin(τ)dτ

}
, (3.3.6)

as shown in AppendixE, with

Ṽin(τ) = ξinṼ1(τ) + ηinṼ2(τ) (3.3.7)

for τ within the time interval tn−1 ⩽ τ ⩽ tn . Here ξi and ηi are the components

of the vectors

ξ⃗ =


1

0

0

 and η⃗ =


0

1

0

 , (3.3.8)

respectively, and Ṽj(τ) = eiHphτVje
−iHphτ is the exciton-phonon coupling in the

interaction representation, with Ṽj de�ned in Eq. (3.2.4). The explicit time depen-

dence of Vj(τ) is found via the Baker-Hausdor� lemma, detailed in AppendixD

and results in

Ṽj(τ) =
∑
q

λ∗q,jbqe
−iωqτ + λq,jb

†
−qe

iωqτ . (3.3.9)

We use the indices in to indicate which state the system is in at a given time step

n, being either |1⟩, |2⟩, or |C⟩, with in taking the values 1, 2, or C, respectively.

The elements of the vectors ξ⃗ and η⃗ take care of the choice for which exciton is

coupled to phonons at time step n. For example, if the system is in the �rst QD

exciton state at time step n, then in = 1, and the exciton-phonon interaction V1

occurs.
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To �nd the polarisation, we use Eq. (3.3.5) to substitute U(t) in Eq. (3.2.6), and

write the matrix products explicitly, yielding

Pjk(t) =
∑

iN−1=1,2,C

· · ·
∑

i1=1,2,C

MiN iN−1
. . .Mi1i0 × ⟨WiN (t, tN−1) . . .Wi1(t1, 0)⟩ph ,

(3.3.10)

where i0 = k and iN = j denote the excitation channel k at t = 0 and measurement

channel j at the �nal time step tN = t, and Minim = [M̂(∆t)]inim . The Win

operators include the phonon contributions, therefore we separate this product

from the rest of the expression in order to take the expectation value and apply

the linked cluster theorem [37, 46, 54].

3.3.2 Linked cluster expansion

To calculate the expectation value of the products of the exciton-phonon interac-

tion operators in Eq. (3.3.10), we apply the linked cluster theorem. It allows us to

write this expectation value as an exponential with a double sum over all possible

second-order cumulants (as in the IB model) in the exponent [43, 44, 54],

⟨WiN (t, tN−1) . . .Wi1(t1, 0)⟩ph = exp

(
N∑

n=1

N∑
m=1

Kinim(|n−m|)

)
(3.3.11)

Each cumulant in Eq. (3.3.11) is given by

Kinim(s) = −1

2

∫ tn

tn−1

dτ1

∫ tm

tm−1

dτ2⟨T Ṽin(τ1)Ṽim(τ2)⟩ph, (3.3.12)

where s = |n−m|. Using Eq. (3.3.7), this cumulant can be expressed as (dropping

the tilde notation on Vj which denotes the interaction representation for brevity)

Kinim(s) = −1

2

∫ tn

tn−1

dτ1

∫ tm

tm−1

dτ2 ⟨T [ξinV1(τ1) + ηinV2(τ1)] [ξimV1(τ2) + ηimV2(τ2)]⟩ph .

(3.3.13)
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Expanding the integrand yields time ordered pair products T Vj(τ1)Vj′(τ2), so it is

natural to introduce phonon autocorrelation functions,

Djj′(τ1−τ2) = ⟨T Vj(τ1)Vj′(τ2)⟩ph =
∑
q

λq,jλ
∗
q,j′

[
(N(ωq) + 1)e−iωq |τ1−τ2| +N(ωq)e

iωq |τ1−τ2|
]
,

(3.3.14)

with N(ω) is the Bose-distribution function de�ned in Eq.2.3.24, and the explicit

time dependence of the phonon operators, given by bq(t) = bqe
−iωqt (see Ap-

pendixD for details on the time dependence), has been used to derive Eq. (3.3.14)

(see also AppendixG for more details). Introducing the phonon spectral density,

Jjj′(ω) =
∑
q

λq,jλ
∗
q,j′δ(ω − ωq) , (3.3.15)

the phonon autocorrelation function takes the form

Djj′(t) =

∫ ∞

0

dω Jjj′(ω)D(ω, t) , (3.3.16)

where

D(ω, t) = [N(ω) + 1]e−iω|t| +N(ω)eiω|t| . (3.3.17)

is the standard phonon propagator. Speci�c forms of the coupling matrix elements

λq,j and the corresponding spectral functions Jjj′(ω) for isotropic and anisotropic

QDs are derived in AppendixH.

Now, using Eq. (3.3.14) and introducing cumulant elements

Kjj′(s) = −1

2

∫ tn

tn−1

dτ1

∫ tm

tm−1

dτ2Djj′(τ1 − τ2), (3.3.18)

the cumulants Eq. (3.3.12) can be written as

Kinim(s) = ξinξimK11(s) + ηinηimK22(s) + (ξinηim + ηinξim)K12(s) , (3.3.19)

using K21(s) = K12(s), due to the symmetry of the spectral function,

Jjj′(ω) = Jj′j(ω). This follows from the isotropic phonon dispersion ωq and the
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general property of the matrix elements, λ−q,j = λ∗q,j. Kinim is simply a general

cumulant element which takes into account all possible cases.

A convenient way to compute the cumulant elements Eq. (3.3.18) is by de�ning

the cumulant function

Cjj′(t) = −1

2

∫ t

0

dτ1

∫ t

0

dτ2 Djj′(τ1 − τ2) , (3.3.20)

which assumes the system remains in the same states across the time evolution

[0, t]. With this, Fig. 3.2 shows how Eq. (3.3.20) can be expressed as linear com-

Figure 3.2: A portion of the time grid up to t = 2∆t. Cjj′(2∆t) is composed of
two contributions, Kjj′(s = 0) and Kjj′(s = 1).

binations of individual cumulant elements Kjj′(s). Therefore, if we wish, for ex-

ample, to compute K11(1), using Fig. 3.2 as reference, it is clear that K11(1) =

1
2
(C11(2∆t)− 2K11(0)). Also using the fact that Kjj′(s) depends on the di�erence

|n − m| only, and not on both time steps tn and tm individually every possible

cumulant element across any time step can be computed. To summarise, all cu-

mulant elements are described by the following:

Kjj′(0) = Cjj′(∆t) . (3.3.21)
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The remaining s > 0 cumulant elements are found recursively via

Kjj′(s) =
1

2

[
Cjj′

(
(s+1)∆t

)
− (s+1)Kjj′(0)− 2

s−1∑
h=1

(s+1−h)Kjj′(h)

]
. (3.3.22)

One further note is that the cumulant elements K12(s) require contributions from

K12(s = 0), meaning that at time steps n = m, the system excitation is in both

quantum dots. This is physically not the case, however is mathematically intro-

duced for consistency.

The linear polarisation Eq. (3.3.10) then takes the �nal form

Pjk(t) =
∑

iN−1=1,2,C

· · ·
∑

i1=1,2,C

MiN iN−1
. . .Mi1i0 exp

(
N∑

n=1

N∑
m=1

Kinim(s)

)
. (3.3.23)

A particular realisation of the system evolution is indicated by the indices iN−1, . . . , i2, i1.

However, to obtain the full quantum dynamics of the system, all possible realisa-

tions are to be summed over, meaning a summation over all of these indices, which

is done in Eq. (3.3.23). This is equivalent to the idea of path-integral approach.

For a �nite bath memory time, it is su�cient to consider only a portion of the grid

at least up to the memory time, which is referred to as the number of neighbours

L, de�ned as the maximum value of |n−m| taken into account in the calculation.

3.3.3 Nearest-neighbours (NN) approach

The simplest case is that of L = 1 (s = |n−m| ⩽ 1), which provides the most basic

starting point of the more general L-neighbour approach. In this NN regime, the

full cumulant summed over all time steps in Eq. (3.3.23) is approximated by only

taking into account the self interaction and NN interaction as shown in Fig. 3.3.

From Eqs. (3.3.8) and (3.3.19) we have in general

Kinim(s) =

ξ
2
inK11(s) + η2inK22(s) in = im

(ξinηim + ηinξim)K12(s) in ̸= im,

(3.3.24)
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Figure 3.3: A portion of the time grid used in the nearest-neighbour approach,
showing the self interaction (main diagonal, yellow squares) and NN interactions
(blue squares).

and summing over all time steps while maintaining |n−m| ⩽ 1, the full cumulant

in Eq. (3.3.23) is reduced to

N∑
n=1

N∑
m=1

Kinim(s) ≈
N∑

n=1

(ξinξinK11(0) + ηinηinK22(0))

+ 2
N−1∑
n=1

[
ξin+1ξinK11(1) + ηin+1ηinK22(1)

+ (ξin+1ηin + ηin+1ξin)K12(1)
]

(3.3.25)

Substituting Eq. (3.3.25) back into Eq. (3.3.23), relabelling and combining the cu-

mulant elements with the Min+1in factors, we obtain

Pjk(t) = eξ
2
jK11(0)+η2jK22(0)

∑
iN−1=1,2,C

· · ·
∑

i1=1,2,C

Gj iN−1
. . . Gi2i1Mi1k , (3.3.26)

where the matrix

Ginin−1 =Minin−1e
Kin−1in−1

(0)+2Kinin−1
(1) , (3.3.27)
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written explicitly in terms of the cumulant elements Kjj′(s), takes the form

Ginin−1 =Minin−1 exp

{
ξin−1ξin−1K11(0) + ηin−1ηin−1K22(0)

+ 2ξinξin−1K11(1) + 2ηinηin−1K22(1)

+ 2(ξinηin−1 + ηinξin−1)K12(1)

}
.

(3.3.28)

The matrix Ginin−1 contains products of elements which contribute to the memory

kernel and generates the L-shaped regions in Fig. 3.3, highlighted by thick dashed

lines. Then Eq. (3.3.26) can be compactly written in a 3 × 3 matrix form in the

|1⟩, |2⟩, |C⟩ basis as

P̂ (t) =


P11 P12 P1C

P21 P22 P2C

PC1 PC2 PCC

 =


eK11(0) 0 0

0 eK22(0) 0

0 0 1

 ĜN−1M̂ , (3.3.29)

where Ĝ is given by

Ĝ =


M11e

K11(0)+2K11(1) M12e
K22(0)+2K12(1) M1C

M21e
K11(0)+2K12(1) M22e

K22(0)+2K12(1) M2C

MC1e
K11(0) MC2e

K22(0) MCC

 , (3.3.30)

and M̂ is de�ned in Eq.3.3.3. In Eq. (3.3.29), the e�ect of successively applying Ĝ

is to propagate the system forward in time with each application. With reference

to the example in Fig. 3.3, that would be generated by N = 5 time steps, and

therefore Ĝ is applied successively 4 times to propagate the system, with the

single cumulant element contribution at the end of the propagation appearing as

an exponential factor outside of the summation in Eq. (3.3.26) and the diagonal

matrix in Eq. (3.3.29).
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Figure 3.4: A portion of the time grid showing the cumulant elements involved
in a calculation up to an observation time tobs including s = 2 at most. This
contains only the self interaction (yellow squares), the nearest (blue squares) and
next-nearest neighbour interactions (red squares).

3.3.4 The L-neighbour (LN) approach

The LN approach is used to describe the temporal correlations between all con-

sidered steps within the memory kernel, rather than only the L = 1 case in the

NN regime. The cumulant elements Kjj′(s), with s = |n−m| increasing up to its

maximum value, L, are found recursively from Eq.(3.3.22).

We �rst de�ne a quantity F
(n)
iL...i1

which is generated via the recursive relation

F
(n+1)
iL...i1

=
∑

l=1,2,C

GiL...i1lF
(n)
iL−1...i1l

, (3.3.31)

using F
(1)
iL...i1

= Mi1k as the initial value, where k is the excitation mode and M̂

describes the evolution without phonon interactions, given by Eq. (3.3.3). This is

because after excitation in channel k at t = 0, one further time step introduces

index i1, and beyond this the phonon interactions through G must be taken into
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account.

The tensor G is known as a propagator and is given by

GiL...i1l =Mi1le
Kll(0)+2Ki1l

(1)+2Ki2l
(2)+···+2KiLl(L) . (3.3.32)

It can be written explicitly in terms of Kjj′(s) as

GiL...i1l = Mi1l exp {ξlξlK11(0) + ηlηlK22(0)

+2ξi1ξlK11(1) + 2ηi1ηlK22(1) + 2(ξi1ηl + ηi1ξl)K12(1)

+ . . .

+2ξiLξlK11(L) + 2ηiLηlK22(L) + 2(ξiLηl + ηiLξl)K12(L)}, (3.3.33)

with each element of the tensor corresponding to a particular realisation of the

system. The matrix Ĝ given by Eq. (3.3.30) is the simplest, L = 1 form of the

more general in�uence tensor G containing the information required to propagate

the system by a single time step. It includes the path segments connecting the

current time interval with the L nearest intervals and to itself which are shown

by the L shaped dashed black outlines in Fig. 3.4. The linear polarisation is then

given by

Pjk(t) = eξ
2
jK11(0)+η2jK22(0)F

(N)
C...Cj , (3.3.34)

where j is the measurement mode. The indices being placed in the cavity (C) state

have the result of removing the excess contributions from the G tensor falling out-

side of the observation time tobs (see Fig. 3.4), as being in the cavity state reduces

the cumulant at the required times steps to zero. Equation (3.3.34) provides an

asymptotically exact solution for the linear polarisation. This method can be

generalised to other elements of the density matrix, such as the FWM polarisa-

tions [44] and the populations [79].

49



CHAPTER 3. PATH-INTEGRAL BASED APPROACH: COMBINING THE
JC AND IB MODELS

3.3.5 Independent phonon baths

The case of independent phonon baths can be considered as a simpli�cation to the

previous system, where the relevant modi�cations to the system Hamiltonian are

applied to the HIB term,

HIB = Hph,1 +Hph,2 + d†1d1V1 + d†2d2V2 , (3.3.35)

which now describes the interaction of each exciton with its own independent

phonon bath as well as the phonon energies, given by

V1 =
∑
q

λq,1(bq,1 + b†−q,1) , V2 =
∑
q

λq,2(bq,2 + b†−q,2) , (3.3.36)

and

Hph,1 =
∑
q

ωq,1b
†
q,1bq,1 , Hph,2 =

∑
q

ωq,2b
†
q,2bq,2 , (3.3.37)

respectively. Initially this may seem like a complication due to the extra terms,

however the cumulant Kinim in Eq. (3.3.13) is non-vanishing only when in = im,

i.e. the phonon autocorrelation functions for the cross terms vanish,

⟨T Ṽ1(τ1)Ṽ2(τ2)⟩ = ⟨T Ṽ2(τ1)Ṽ1(τ2)⟩ = 0 . (3.3.38)

This is because the phonon creation (annihilation) operators b†q,1 (bq,1) within V1

commute with those (b†q,2 and bq,2) in V2. The result is that the cumulant contains

only Kjj′ terms for j = j′, giving

Kinim(s) =

ξ
2
inK11(s) + η2inK22(s) in = im

0 in ̸= im .

(3.3.39)

The relevant modi�cation of the �nal expression for the linear polarisation is within

the G tensor given by Eq. (3.3.33), which now takes an explicit form

GiL...i1l = Mi1l exp{ξilξilK11(0) + ηilηilK22(0) + 2ξi1ξilK11(1) + 2ηi1ηilK22(1) + . . .

· · ·+ 2ξiLξilK11(L) + 2ηiLηilK22(L)} , (3.3.40)
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and is clearly di�erent from and simpler than Eq. (3.3.33). The linear polarisation

in this case is calculated using exactly the same Eq. (3.3.31) and Eq. (3.3.34) but

with the modi�ed propagator Eq. (3.3.40).

3.4 Summary

This chapter has detailed how the path-integral approach can be used to com-

bine the JC and IB models leading to tensor-multiplication schemes. Focusing on

a particular path-integral approach, the Trotter decomposition with linked clus-

ter expansion technique [43], the necessary generalisations for multi-QD systems

have been made. This provides an asymptotically exact calculation for the linear

polarisation when the QDs are coupled to the same phonon bath, or interacting

with independent baths. The propagator G, a key tensor in this technique, is the

highest-rank tensor and encapsulates all possible evolutionary paths of the system

over a �nite memory time. The number of time points within this memory time

is denoted as the number of neighbours, L. Notably, increasing L enhances the

accuracy of the results but comes at the cost of exponentially increasing storage

demands, as it requires tracking a correspondingly larger number of possible paths.

This approach is the basis for all calculations provided in the following chapter.
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Chapter 4

Control of decoherence

4.1 Introduction

This chapter demonstrates a reduction, or even a complete elimination, of the

ZPL dephasing in a system of two QD qubits coupled to each other directly or

via an optical cavity and interacting with a bath of acoustic phonons. We show

that, while the interaction of the hybridised qubits with a shared environment

usually causes dephasing of qubit states, the coherent properties of the bath can

help to reduce this decoherence. To do this, we use the Trotter's decomposition

with linked cluster expansion technique described in the previous chapter, pro-

viding an asymptotically exact solution for the dynamics of spatially separated

QD systems. The full calculations are compared with Fermi's golden rule (FGR),

showing a remarkable agreement. Although there is a purely diagonal electron-

phonon coupling, which typically produces no ZPL broadening, the full calculation

reveals ZPL broadening understood in terms phonon-assisted transitions between

the hybridised qubit states of the coupled QD system. It is shown that the ZPL

broadening is reduced at speci�c inter-dot distances in a system of two QD qubits,

which are coupled either directly or via an optical cavity and interact with a 3D

bath of acoustic phonons. This suppression results from the collective coupling of
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the QD qubits to shared phonon modes [49], enabled by the coherent properties

of the bath. In particular, when the QD separation is an integer multiple of the

phonon wavelength, provided it is within the phonon coherence length, there is a

reduction in the decoherence. A near-vanishing dephasing rate, which can be re-

ferred to as a 1D regime, can be achieved by utilising strong QD-QD, or QD-cavity

coupling strengths, paired with QD anisotropy. We quantify the QD separations

at which the 1D-like regime persists before transitioning to the expected 3D be-

haviour.

For illustration, two cases are considered: Case A, where the qubits are directly

coupled with strength g but do not interact with the cavity (g1 = g2 = 0); and Case

B, where the qubits have no direct coupling (g = 0) but interact indirectly through

the cavity, mediated by g1 and g2. To elucidate the e�ect of the shared environ-

ment on system coherence and its dependence on the inter-qubit distance d = |d|,

we assume that the coupling constants g1, g2, and g are distance independent. In a

realistic system, Case A would typically exhibit a distance-dependent interaction

between the QDs, such as dipolar Förster or tunnel coupling. However, we adopt a

distance-independent coupling here as a simpli�ed model to aid in understanding

the more complex scenario in Case B. In Case B, the cavity mediates the interac-

tion between the QDs, providing a more practical way to maintain strong coupling

independent of their separation. We also choose without loss of generality that the

�rst QD is instantaneously excited (e.g. by an ultrashort optical pulse), creating

an excitonic polarisation with Pjk(0) = δjkδk1.

4.2 Directly coupled QD qubits

4.2.1 Linear polarisation and dephasing rates

In Case A, the time evolution of P11(t) for a system of two dipolar-coupled (g =

0.5meV) identical isotropic QDs of con�nement length l = 5.6 nm separated by

the center-to-center distance d = 5 nm, is shown in Fig. 4.1(a) by a blue dotted

line, exhibiting decay and oscillations.
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Figure 4.1: (a) Linear optical polarisation P11(t) (blue dots) and its complex bi-
exponential �t (red lines) for dipolar coupled (g = 0.5meV) anisotropic QD qubits
(left inset) at zero detuning in a 3D bath, separated by the distance d = 5 nm,
with excitation and measurement in QD 1. Right inset: energy level diagram for
the hybridised qubit states, with real phonon-assisted transitions (red and blue
arrows). (b,c) Dephasing rates Γ± of the hybridised states |±⟩ as a function of d,
calculated exactly (solid lines) and via FGR (dashed lines) for (b) isotropic QDs
with a con�nement length of l = 5.6 nm and (c) anisotropic QDs with l = 7.5 nm
across and l⊥ = 2.5 nm along the separation (see AppendixH.1 and AppendixH.2
for details of isotropic and anisotropic QD models, respectively). The rates for
independent phonon baths are shown by thin dashed lines. All calculations were
performed using L = 50 neighbours. The phonon bath is at T = 20K and the rest
of the QD parameters can be found in Table 2.1.

The behaviour in Fig. 4.1(a) is qualitatively explained by the energy level diagram

in the right inset, showing hybridised states |±⟩ = (|1⟩± |2⟩)/
√
2 of the two-qubit

coupled system at zero detuning (Ω1 = Ω2), where |1⟩ and |2⟩ are the individual

QD excited states. The energy levels are separated by the Rabi splitting 2g de-
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termining the beat frequency in |P11(t)| which physically expresses the quantum

information exchange between the qubits. The temporal decay of the linear po-

larisation expresses the decoherence in this two-qubit system as a consequence of

the interaction of the qubits with the bath. For these QD qubits, the decoherence

is due to phonon-assisted transitions between the hybridised states.

With this picture in mind, we have applied to the long-time dynamics of P11(t) a

biexponential �t of the form

Pfit
11(t) =

∑
j

Cje
−iωjt , (4.2.1)

extracting the complex amplitudes Cj, energies Re ωj, and dephasing rates Γj =

− Im ωj of the phonon-dressed hybridised states. The �t, applied after the phonon-

memory cut-o� (introduced in Appendix I by analysing the cumulant functions and

shown in Fig. 4.1(a) by the vertical dashed green line), demonstrates a remarkable

agreement with the full calculation with a relative error below 10−10. At earlier

times the deviation is due to the formation of a polaron cloud around the optically

excited QD, which is responsible for non-Markovian dephasing and the BB [13,

43, 44]. The dephasing rates Γj extracted from the �t as functions of the QD

separation d are shown by solid lines in Fig. 4.1(b) for isotropic and in Fig. 4.1(c)

for anisotropic QDs. They are the dephasing rates of the states |±⟩, denoted by

Γ±, and can be understood as being due to phonon-assisted transitions between

the states. At short distances we observe a dramatic increase of the dephasing

rates from zero at zero distance (which cannot be practically realised due to the

�nite extension of the QDs), followed by an oscillatory behavior at larger distances.

Importantly, the minima of these dephasing rates are lower than the independent

baths rates (thin horizontal lines) due to collective coupling of the QD qubits to

the same phonon modes, provided that the distance between the QDs is less than

the phonon coherence length.
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4.2.2 Phonon-assisted transitions between hybridised qubit

states

To understand the dependence on the distance between the qubits, we introduce

the fermionic operators

p†± = D∓d
†
1 ±D±d

†
2 , (4.2.2)

creating excitations of the hybridised QD qubit states

|±⟩ = D∓|1⟩ ±D±|2⟩ , (4.2.3)

where

D± =
√

(1±∆/R)/2 , (4.2.4)

with

∆ = Ω2 − Ω1 and R =
√

∆2 + 4g2 (4.2.5)

being, respectively, the detuning and the Rabi splitting. In the absence of the bath,

these operators diagonalise the system Hamiltonian Eq. (3.2.2) (in the absence of

the cavity) exactly:

H0 = Ω+p
†
+p+ + Ω−p

†
−p− , (4.2.6)

where

Ω± =
Ω1 + Ω2 ±R

2
(4.2.7)

are the energies of the hybridised states |±⟩.

Now applying this canonical transformation to the total Hamiltonian Eq. (3.2.1)

we obtain

H = (Ω+ + V+)p
†
+p+ + (Ω− + V−)p

†
−p− + V (p†+p− + p†−p+) +Hph , (4.2.8)

where V± = D2
∓V1 + D2

±V2 and V = D+D−(V1 − V2). The major outcome of

this transformation is that the formerly diagonal interaction with the bath HIB,

given by Eq. (3.2.3), now develops the o�-diagonal elements V (p†+p−+p
†
−p+) which
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enable phonon-assisted transitions between the hybridised qubit states, |+⟩ ↔ |−⟩.

Speci�cally, p†+p− facilitates a transition from |−⟩ to |+⟩ (e.g., phonon absorption)

and p†−p+ facilitates a transition from |+⟩ to |−⟩ (e.g., phonon emission). Using

the bath interactions explicitly from from Eq. (3.2.4), V can be expressed as:

V = D+D−(V1 − V2) = D+D−
∑
q

(λq,1 − λq,2)(bq + b†−q) (4.2.9)

To evaluate the transition rates between initial and �nal states, corresponding to

the hybridised states, we employ FGR, which for a perturbation H ′ is given by:

Γ = 2π
∑
i,f

| ⟨f |H ′ |i⟩ |2δ(Ef − Ei). (4.2.10)

H ′ = V (p†+p−+p
†
−p+) = D+D−

∑
q′

(λq′,1−λq′,2)(bq′+b†−q′)(p
†
+p−+p

†
−p+). (4.2.11)

The initial and �nal states involve both the hybridised qubit states |±⟩, given

by Eq. (4.2.3) and the phonon bath states. Considering only the case of phonon

absorption, where the system transitions from the lower state |−⟩ to the upper

state |+⟩, we de�ne the initial state |i⟩ = |−, nq⟩ and �nal state |f⟩ = |+, nq − 1⟩,

where nq is the de�nite number of phonons in mode q. All other phonon modes

are in �xed number states, not a�ecting this single-mode transition.

The relevant term for absorption in Eq. (4.2.11) is V p†+p−:

V p†+p− = D+D−
∑
q

(λq,1 − λq,2)(bq + b†−q)p
†
+p−, (4.2.12)

thus, the matrix element in Eq. (4.2.10) is given by:

⟨f |V p†+p− |i⟩ = D+D−
∑
q'

(λq′,1 − λq′,2) ⟨+, nq − 1| (bq′ + b†−q′)p
†
+p− |−, nq⟩ .

(4.2.13)

Noting that p†+p− |−⟩ = |+⟩, and b†−q raises the phonon number, which is not

desired for absorption, and also the phonon destruction operator has the following
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e�ect: bq |nq⟩ =
√
nq |nq − 1⟩. Thus,

D+D−
∑
q′

(λq′,1 − λq′,2) ⟨+, nq − 1| bq′p†+p− |−, nq⟩ = D+D−(λq,1 − λq,2)
√
nq,

(4.2.14)

since the summation over q′ gives only a nonzero result when q′ = q. Furthermore,

the summation
∑

i,f in Eq. (4.2.10) only occurs between a single initial and �nal

hybridised state, as there are only two hybridised states. By considering only

single-phonon interactions, the energy conservation requires ωq = E+ − E−, and

noting that the energy di�erence E+ − E− is the Rabi splitting, as de�ned in

Eq.4.2.5, the transition rate for phonon absorption is given by:

Γ−,nq = 2πnq|D+D−(λq,1 − λq,2)|2δ(ωq −R). (4.2.15)

However, we must properly introduce the thermal average by summing over all

possible initial phonon numbers, weighted by their thermal probabilities:

Γ−,q =
∞∑

nq=0

P (nq)Γ−,nq , (4.2.16)

where P (nq) is the thermal probability of having nq phonons in mode q: P (nq) =

e−βωqnq

Z
, with Z =

∑∞
n=0 e

−βℏωqn = 1
1−e−βℏωq being the partition function. For each

mode q, the thermal average gives:

Γ−,q = 2π|D+D−(λq,1 − λq,2)|2δ(ωq −R)
∞∑

nq=0

P (nq)nq . (4.2.17)

Since
∑∞

nq=0 P (nq)nq = N(ωq), we �nd

Γ−,q = 2πN(ωq)|D+D−(λq,1 − λq,2)|2δ(ωq −R). (4.2.18)

A further sum over q appears because any mode q that satis�es the energy con-

servation condition ωq = R can contribute to the transition. Therefore, the total
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transition rate sums over all possible modes, giving

Γ− =
∑
q

Γ−,q = 2π
∑
q

N(ωq)|D+D−(λq,1 − λq,2)|2δ(ωq −R). (4.2.19)

The same procedure can be applied for the case of phonon emission, which gives:

Γ+ = 2π
∑
q

(N(ωq) + 1)|D+D−(λq,1 − λq,2)|2δ(ωq −R). (4.2.20)

This leads us to the transition rates [43, 46]:

Γ− = N(R) Γph , Γ+ = (N(R) + 1) Γph , (4.2.21)

which we call the dephasing rates of the lower and upper hybridised states, re-

spectively. Here, Γph is given by:

Γph = π
∑
q

|D+D− (λq,1 − λq,2)|2 δ(vsq −R) , (4.2.22)

which uses the linear phonon dispersion ωq = vsq. A factor of 1/2 has further

been added to account for the fact that FGR calculates the rate of real transitions

changing the population, which is double the corresponding dephasing rate seen

in the polarisation. The rate Γph is evaluated in Appendix J.1, providing for an

isotropic model of the QDs the explicit analytical result:

Γph = Γ0

(
1− sin(Rd/vs)

Rd/vs

)
, (4.2.23)

where Γ0 = D2
+D

2
−R

3(Dc −Dv)
2/(2πρmv

5
s)e

−l2R2/v2s . The corresponding FGR cal-

culation for an anisotropic model of the QDs is provided in Appendix J.1.2.

The FGR dephasing rates Eq. (4.2.23) are shown in Fig. 4.1(b) as dashed lines,

reproducing the main features of the exact calculation, but showing discrepancies

(within 5%) due to multi-phonon processes not present in FGR. The single-phonon

transitions dominate at short distances as it is clear from the excellent agreement

59



CHAPTER 4. CONTROL OF DECOHERENCE

between the two results.

When higher-order phonon interactions are considered (e.g. cubic interactions in

Ref.38), there is a �nite phonon coherence time, and thus a �nite coherence length.

While our model does not take into account anything leading to �nite coherence

lengths, we can distinguish two regimes: 1) The dot separation is less than the

phonon coherence length, and thus the QDs can experience the same coherent

phonon �eld and the collective coupling to the bath leads to the oscillations in our

plots. 2) The independent bath calculation is similar to when the QD separation

is larger than the coherence length, in which case the QDs do not interact with

the same phonon �eld. Thus, the initial quadratic growth with distance, the

oscillations, and the reduction of Γ± at certain distances, seen in Fig. 4.1(b), are

all caused by the coherent properties of the phonon bath. According to Eq. (4.2.8),

the phonon-assisted coupling between the hybridised qubit states is given by V1−V2
which is proportional to 1−eiq·d for identical QDs (see Eq. (3.2.5)) and is vanishing

at q ·d = 2πn, where n is an integer. This does not lead to a vanishing dephasing

though, apart from d = 0, owing to the 3D nature of the phonon momentum q of

the bath modes. However, as we show in Appendix J.1, in a 1D model of phonons

with the same dispersion and same coupling, the dephasing rate Eq. (4.2.23) would

modify to just

Γph = Γ0

( vs
Rl

)2
sin2

(
Rd

2vs

)
, (4.2.24)

strictly vanishing at Rd/vs = 2πn for all n.

4.2.3 Physical interpretation of decoherence reduction

To understand the vanishing dephasing rate phenomenon in 1D, let us take the

two-qubit state just before the event of phonon emission or absorption as a super-

position α|1⟩+β|2⟩ with some complex amplitudes α and β. Since the qubits are in

a hybridised state, they coherently emit or absorb the same phonon. This changes

their phases (which is the source of pure dephasing) by φ1 and φ2, respectively, so

that the two-qubit wave function becomes αeiφ1|1⟩+βeiφ2|2⟩, with φ2−φ1 = ±qd,

according to Eq. (3.2.5) and energy conservation requiring R = vsq. However, if
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the separation d between the qubits is such that the phase di�erence is a multiple

of 2π, i.e. Rd/vs = 2πn for an integer n, the resulting wave function only ac-

quires a common phase factor eiφ1 , which is not changing the state since there is

no relative phase di�erence between qubit states. In other words, in order for the

transition to occur between the initial and �nal states [e.g. between |+⟩ and |−⟩,

see the inset in Fig. 4.1(a)], which would result in a phonon-induced dephasing,

a change of the two-qubit state is required, meaning that the interaction with a

phonon must induce a relative phase shift, i.e. Rd/vs ̸= 2πn.

Early papers revealed similar oscillatory behavior of the transition rates with dis-

tance in systems of spatially separated tunnel coupled QDs [49, 86]. However, these

are calculated approximately and are based on o�-diagonal coupling between elec-

tronic states within the same QD, which is known to lead to long-time decoherence

[37]. Ref.87 showed spatial correlations strongly in�uenced the quantum coherent

transfer of excitations between biomolecular chromophores, however the model is

using distance-independent dipolar coupling and does not reveal oscillations in the

dephasing rates. When considering more realistic couplings which decrease rapidly

with distance, e.g. Förster coupled QDs in [82], or the tunnel coupling in [88], the

oscillations disappear. There are also further studies which look at the distance

dependence of exciton and spin QD qubits that reveal no oscillations with distance

[89]. This is the motivation for introducing a cavity, so that long-distance strong

coupling can be maintained.

Note that in the case of e.g. nanowire-based QDs [56] or QDs in carbon nanotubes

[90, 91], the phonon dispersion and coupling are altered when the dimensionality

is reduced from a bulk system. Several branches of phonon modes arise due to

the reduced dimensionality and phonon quantisation which are not present in 3D

systems. This leads to changes in the phonon dispersion and coupling matrix

elements, and ultimately, the phonon spectral density Jjj′(ω). As a result, there

is a �nite zero-phonon linewidth which is not observed in QDs coupled to bulk

phonons, where the linewidth remains zero in the ideal case. Here, the ideal
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case corresponds to the condition qd = 2πn, for which no broadening of the ZPL

is observed, due to the phonon interactions not facilitating a change of state,

making the system e�ectively equivalent to the independent boson model [54] in

which there is no ZPL broadening.

4.2.4 Anisotropic QD qubits

For 3D phonons and isotropic QDs, the dephasing is absent only at d = 0 and

according to Eq. (4.2.23) and Fig. 4.1(b) has minima around Rd/vs = 2πn + π/2

(n = 1, 2, . . . ). The π/2 phase shift compared to the 1D case and non-vanishing

dephasing at the minima are due to phonons of energy R that are absorbed or

emitted at di�erent angles θ to the QD separation vector d (Fig. 3.1), resulting

in a variation of their phase di�erence φ2 − φ1 between the QDs. However, the

reduction of decoherence is enhanced in anisotropic QDs, playing the role of direc-

tional phonon emitters or absorbers [92]. In fact, in oblate QDs separated along

their short axis (Fig. 4.1(c)), directional coupling of phonons along the short axis

e�ectively makes the system 1D under certain conditions.

Notably, in earlier studies, e.g. Ref.49 and Ref.86, the in�uence of the 3D bath is

not obvious because the models are using a very strong anisotropy. Consequently,

the studies are in a 1D-like regime, with little insight into the transition between

1D and 3D regimes. A follow-up work of Ref.49 discussed the loss of the 1D-

regime by changing the e�ective mass in their system [93], which is reducing the

con�nement length in the in-plane parabolic con�ning potentials for electrons.

Similarly, models with spherical QDs or weaker anisotropy yield �nite dephasing

rates across all separations, as seen from our calculation in Fig. 4.1, re�ecting the

in�uence of the 3D bath.

The dephasing rates for anisotropic QDs, calculated via FGR in Appendix J.1.2
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have a compact analytical expression

Γph =
D2

+D
2
−(Dc −Dv)

2

2πρmv5s
R3e−q2l2⊥

[
F

(
0, q
√
l2⊥ − l2

)
−F

(
d

2
√
l2⊥ − l2

, q
√
l2⊥ − l2

)]
,

(4.2.25)

which is expressed in terms of the Faddeeva function. The properties of the Fad-

deeva function can be found in AppendixH.3. Eq.4.2.25 reproduces the main

features of the exact calculation (with a relative di�erence below 7%), as seen in

Fig. 4.1(c). In this case l ≫ l⊥, where l and l⊥ are, respectively, the in-plane and

perpendicular (along d) exciton localisation lengths, so that for d ≪ 2l2q, where

q = R/vs, the dephasing rates vanish at qd = 2πn, as it is clear from Eq. (H.30)

in AppendixH.3. If additionally ql ≫ 1, meaning that the relevant phonon wave-

length is small enough to create a directional emission, the FGR dephasing rates

reduce to Eq. (4.2.24). Under these conditions, the 3D system behaves as a 1D sys-

tem, however, as the dot separation is increased, the 3D nature gradually returns.

Furthermore, the 1D regime can be extended by increasing the anisotropy or in-

creasing the energy R of the dominant phonon modes which couple to the system.

In fact, the analogy with pure 1D phonons becomes striking for stronger coupled
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Figure 4.2: As Fig. 4.1(c) but for g = 2meV and FGR only (solid lines). Inset:
Amplitude of the oscillations in the dephasing rates versus distance.

QDs (g = 2meV) as shown in Fig. 4.2, where the shorter phonon wavelength in-

volved in transitions provides fast oscillations versus d, allowing for minima at
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short distances with near-vanishing dephasing. With such coupling strengths, the

aforementioned condition ql ≫ 1 is met, having a value ql = 10. The scaling

of the oscillation amplitude with distance, given in the inset, demonstrates the

quasi-1D behaviour (shown by constant amplitude) for d ≪ 2l2q ≈ 148 nm. This

is consistent with the �rst few minima in the main plot having visually very small

dephasing rates before gradually returning to the 3D regime as the dot separation

increases. For this directional emission of phonons, the phonon Rayleigh length,

given by dR = l2q/2 ≈ 37 nm, estimates how far the phonons can propagate as

a focused beam, maintaining 1D-like behavior. Beyond this distance, the system

gradually transitions back to 3D. For 1D behavior to persist, the condition on the

qubit separation then becomes d ≪ 4dR, where dR serves as a reasonable upper

limit for ensuring the system remains in the 1D regime.

4.3 Cavity-mediated coupled QD qubits

In Case B, considering QDs indirectly coupled via a cavity, the dephasing is also

controlled by collective coupling to the shared bath, though in a more complex

scenario. For zero detuning (Ω1 = Ω2 = ΩC) and equal QD-cavity couplings

(g1 = g2 = ḡ) with no direct coupling (g = 0), the resulting three coupled states,

|+,±⟩ = (|1⟩+ |2⟩)/2± |C⟩/
√
2 and |−⟩ = (|1⟩ − |2⟩)/

√
2 require a triexponential

�t of P11(t) to extract the dephasing rates Γj = − Im ωj, which are shown in

Fig. 4.3 across a range of distances, see AppendixK for details of the �t.

We observe oscillations versus distance d, di�erent from those of directly coupled

QDs (Fig. 4.1) since there are two periods contributing to the dephasing rates Γ+,±

of the states |+,±⟩. This is due to the involvement of transitions at two distinct

frequencies, as seen in the right inset, with one twice the other (the general case

of a non-zero detuning with three di�erent frequencies involved is considered in

Appendix J.2). Since the dephasing rate Γ− of the state |−⟩ involves transitions

to the two other levels with equal Rabi splitting and thus the interacting phonons

have almost the same energy, only one period is observed in the oscillations of
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Figure 4.3: Dephasing rates Γ+,± and Γ− of the hybridised states as a function of
d. Calculated exactly (solid lines) and via FGR (dashed lines) for cavity-mediated
coupled anisotropic qubits in a 3D bath (left inset) with interaction strength g1 =
g2 = ḡ = 0.5meV, no direct coupling (g = 0) and zero detuning. The dephasing
rates for independent phonon baths are shown by thin dashed lines. Right inset:
Energy level diagram for the hybridised qubit-cavity states |+,±⟩ = (|1⟩+|2⟩)/2±
|C⟩/

√
2 and |−⟩ = (|1⟩− |2⟩)/

√
2, with real phonon-assisted transitions (red, blue

and green arrows). The calculation was performed using L = 36 neighbours. The
phonon bath is at T = 20K and the other parameters are as in Fig. 4.1(c).

Γ−, analogous to Case A, with vanishing dephasing rate at d = 0. In general,

Γ+,+ (consisting of two downwards transitions) will always be greater than Γ+,−

(two upwards transitions), simply because of spontaneous phonon emission. Fur-

thermore, whether Γ− or Γ+,+ is the largest on average depends on the coupling

strength chosen. If the Rabi splitting (
√
2ḡ) for the transitions contributing to Γ−

is closer to the peak in the phonon spectral density than the energy (2
√
2ḡ) of the

distant-level transitions included in Γ+,−, then Γ− is the largest dephasing rate.

Due to the nature of the hybridised QD-cavity states, the exciton-phonon ma-

trix elements contributing to FGR are now proportional to V1 ± V2, with + (−)

corresponding to the transitions between distant (neighbouring) levels, see Ap-

pendix J.2 for details. Since transitions between distant levels contribute to Γ+,±

and thus involve V1+V2, there is a non-vanishing contribution even at d = 0. This

is because the states involved in such transitions both have a cavity contribution,
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and as cavity does not couple to phonons, the reduction of the dephasing rate to

zero is not observed. However, these transition have typically lower impact on

decoherence due to the larger phonon energy involved, as discussed in more detail

in Appendix J.2.

4.4 Summary

This chapter has used the asymptotically exact solution developed in the previous

chapter to study the linear optical response of a system of two coupled qubits

interacting with a shared bath, using semiconductor quantum dots coupled to 3D

acoustic phonons as illustration. From this, the dephasing rates across a range

of distances are extracted and studied. Although only diagonal exciton-phonon

coupling is considered, which typically produces no ZPL broadening, the full cal-

culation reveals ZPL broadening understood in terms phonon-assisted transitions

between the hybridised qubit states. A reduction of the ZPL dephasing is demon-

strated by controlling the distance between the qubits in relation to the wavelength

of the interacting bath modes, showing a remarkable agreement with FGR calcu-

lations. This e�ect is due to all qubits coupling to the same phonon mode, a

consequence of the coherent properties of the bath. It is shown that for a 1D

bath, decoherence can be eliminated entirely, a case which can also be approached

for anisotropic qubits in a 3D bath. We considered a system with a cavity such

that the cavity mediates the interaction between the QDs, providing a practical

way to achieve coupling which is maintained for large qubit separations.
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Chapter 5

Optimisation of path-integral

tensor-multiplication schemes in

open quantum systems

5.1 Introduction

Path-integral techniques are a powerful tool used in open quantum systems to

provide an exact solution for the non-Markovian dynamics, as seen in the last

chapter. However, the exponential tensor scaling with the number of neighbours

within the memory time of these techniques limits the applicability when dealing

with systems of long memory times. This is because as the memory time increases,

more neighbours must be added to maintain accuracy, however, this may not be

achievable due to storage and computational limitations. To clarify, as the memory

time increases, the number of correlations, or equivalently the number of time steps

contained within the memory kernel must be increased to maintain accuracy. If

there are too few correlations considered, the dynamics will not be well resolved,

leading to a lack of accuracy.
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CHAPTER 5. OPTIMISATION OF PATH-INTEGRAL
TENSOR-MULTIPLICATION SCHEMES IN OPEN QUANTUM SYSTEMS

In this chapter, an optimisation scheme is developed which reduces the tensor

sizes by remapping them to matrices and utilising singular value decomposition

(SVD) to �lter out contributions, reducing storage requirements and computa-

tional time. More speci�cally, the time steps considered in the memory time

(neighbours) are split across two separate matrices. This approach dramatically

reduces both computational time and memory usage of the traditional tensor-

multiplication schemes. For reference, to achieve the new level of accuracy using

the original method detailed in Chapter 3, it would require over 50 million GB

of RAM. Additionally, the approach in this chapter enables the usage of an ex-

trapolation scheme which approximates the exact (L → ∞) long-time dynamics.

Furthermore, in cases where calculations are already well converged using the

original tensor-multiplication scheme, the optimisation provides substantial time

savings, often improving computational time by up to two orders of magnitude.

As a demonstration, we apply it to the Trotter decomposition with linked cluster

expansion technique presented in Chapter 3, and use it to investigate a quantum

dot micro-cavity system at larger coupling strengths than previously achieved.

Secondly, we also show the necessity of the optimisation when the memory time is

very long�speci�cally in spatially extended systems coupled to a common envi-

ronment, such as the coupled qubit systems studied in Chapter 4. Physically, the

long memory times are due to the shared bath, where phonons may travel between

the QDs and the larger the dot separation, the larger the memory time.

This optimisation, which remaps and splits the tensor into two matrices, is a

simple and natural stepping stone to a more sophisticated and advanced version

of optimisation which has now been developed at the time of writing this thesis.

The new version represents the tensor as an arbitrary number of matrices (limited

by memory), where each matrix can contain a similar number of neighbours as

the optimisation described in this chapter, providing a signi�cant increase in the

maximum number of neighbours achievable. It should be noted, however, that the

downside of this technique compared to other modern approaches is that it scales

poorly with system size, i.e. the number of reduced density matrix elements.
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5.2 Systems and Hamiltonians

Presently, this optimisation, as well as the developed Trotter's decomposition with

linked cluster expansion technique, can be applied to systems consisting of any

number of TLSs that are directly coupled and interact with an environment, either

a shared one or independent environments. Additionally, they may interact with

an arbitrary number of microcavities.

The general form of Hamiltonian that is treatable is

H = H0 +HIB +HB, (5.2.1)

where H0 describes both the coupling between the TLSs and the TLS-cavity cou-

plings, and is given by

H0 =
∑
ij

Hijd
†
idj +

∑
k

ΩC,ka
†
kak +

∑
jk

gjk

(
d†jak + a†kdj

)
, (5.2.2)

where Hij are the matrix elements of the coupled TLSs, with the diagonal elements

(Hjj) corresponding to the excitation energy of the TLS at site j, while the o�-

diagonal elements (Hij, for i ̸= j) describe the direct coupling between TLSs at

sites i and j. The operator d†j creates an excitation in the two-level system at site

j, and a photon in a cavity mode k has energy ΩC,k and is created by the operator

a†k. Finally, the TLS at site j is coupled to a cavity mode k with strength gjk. In

general, there can be multiple baths of 3D bosons, described by

HB =
∑
l

∑
q

ωq,lb
†
q,lbq,l, (5.2.3)

where b†q,l creates an excitation in the bath l with wave vector q. The TLS-bath

interaction is given by Hint:

Hint =
∑
j

d†jdj
∑
l

∑
q

λq,jl(bq,l + b†−q,l), (5.2.4)
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where λq,jl describes the interaction strength of the TLS at site j with bath mode

q in bath l. Eq. (5.2.4) can be used to describe the scenario where multiple TLSs

are coupled to the same bath, or coupled to their own independent baths. The

diagonal TLS-bath coupling is needed for an exact calculation using linked clus-

ter expansion, however recently it was also shown that the path-integral based

approaches can also be e�ciently used for non-diagonal coupling [78].

This general spin-boson model can be reduced to describe many physical systems

by choosing the number of TLSs and turning on/o� speci�c coupling terms, such as

energy transport in biological systems [94, 95], qubits in microwave resonators [96,

97], quantum dots interacting with a micromechanical resonator [98], and spin-

qubit systems [99].

The speci�c implementation of the TLSs considered in this chapter are semicon-

ductor QDs which are coupled to an environment modeled as a bath of acoustic

phonons, consistent with the earlier chapters. Although the general Hamiltonian

detailed above describes the range of problems this optimisation can treat, we

reduce the Hamiltonian to two cases for illustration. Case C: A QD-cavity system

coupled to a bath of acoustic phonons detailed in [43], and Case B (previously

studied in Chapter 4): a QD-QD-cavity system coupled to the same phonon bath.

For ease of reference, the Hamiltonians for each case are provided here. The

Hamiltonian in Case C is:

H = H0 +HIB , (5.2.5)

where H0 describes the coupling between the QD and the cavity, and HIB is a

generalised IB model Hamiltonian describing the coupling of the QD to the envi-

ronment. H0 takes the form

H0 = ΩXd
†d+ ΩCa

†a+ g(d†a+ a†d) , (5.2.6)

where d† is the fermionic exciton creation operator in the QD, a† is the cavity

photon creation operator, ΩX (ΩC) is the exciton (cavity photon) energy, g is
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the coupling strengths between the QD and cavity. The IB model Hamiltonian

describes the interaction of the QD exciton with an acoustic-phonon bath,

HIB = Hph + d†dV , (5.2.7)

where

Hph =
∑
q

ωqb
†
qbq and V =

∑
q

λq(bq + b†−q) (5.2.8)

are, respectively, the free phonon bath Hamiltonian and the QD coupling to the

bath, where b†q is the bosonic creation operator of a bulk phonon mode with the

momentum q and frequency ωq (denoting q = |q|). The coupling of the exciton in

the QD to the phonon mode q is given by the matrix element λq,j, which depends

on the material parameters, exciton wave function, and position of the QD. Their

explicit form for isotropic QDs is provided in AppendixH.

The explicit Hamiltonian for Case B is:

H = H0 +HIB , (5.2.9)

where H0 describes the coupling between the qubits and the cavity, and HIB is

a generalised IB model Hamiltonian describing the coupling of the qubits to the

shared environment. For the system of two remote QDs coupled to an optical

cavity, H0 takes the form

H0 = Ω1d
†
1d1 + Ω2d

†
2d2 + ΩCa

†a+ g1(d
†
1a+ a†d1) + g2(d

†
2a+ a†d2) , (5.2.10)

where d†j is the fermionic exciton creation operator in QD j (j = 1, 2), a† is the

cavity photon creation operator, Ωj (ΩC) is the exciton (cavity photon) energy, and

gj is the coupling strengths between the exciton in QD j and the cavity photon.

The IB model Hamiltonian describes the interaction of the QD excitons with a

shared acoustic-phonon bath,

HIB = Hph + d†1d1V1 + d†2d2V2 , (5.2.11)
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G :

F :

Figure 5.1: Diagrams showing the path segments contained within G (blue) and
F (red) for L = 4. The propagator G contains path segments connecting the
index i1 to itself and to all other considered neighbours, in. Each link is weighted
appropriately and is zero if there is no interaction, forming a memory kernel. The
full in�uence functional F represents the information about the state of the system
and contains all possible path segments.

where

Hph =
∑
q

ωqb
†
qbq and Vj =

∑
q

λq,j(bq + b†−q) , (5.2.12)

The coupling of the exciton in a QD at site j to the phonon mode q is given by the

matrix element λq,j, which depends on the material parameters and exciton wave

function, and for multiple QDs in the same phonon bath, the position of the QD.

Their explicit form for isotropic QDs is provided in AppendixH. Importantly,

Case B, which describes a pair identical coupled QDs in a shared environment

separated by a distance vector d, the matrix elements satisfy an important relation

for identical QDs:

λq,2 = eiq·dλq,1 , (5.2.13)

which is the source of long memory times, as discussed in Chapter 4. Physically, the

long memory times are due to the shared bath, where phonons may travel between

the QDs. So, the memory time can be as long as the phonon coherence time, and

the larger the dot separation, the larger the memory time, which manifests itself

as a delay in the bath correlation functions (see Fig. I.2 in Appendix I).

5.3 Path-integral approach

This section contains some information already provided and derived in more detail

within Chapter 3, however some more insight and subtleties are provided alongside

the partially repeated information.
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For illustration we consider the linear polarisation as a simple quantum correlator

to investigate. However any element of the density matrix, and other quantum

correlators may be considered, such as the FWM polarisation [44] or populations,

which has already been done in [79]. The tensor multiplication scheme used in

[43�45, 79] and detailed in Chapter 3 is represented by (relabelling the indices for

clarity):

F
(s+1)
piL...i2

=
J∑
i1

GpiL...i1F
(s)
iL...i1

, (5.3.1)

where G is known as the propagator and F (s) is the full in�uence functional, and

Fig. 5.1 shows the path segments contained in the tensors. The role of G is to

propagate the system forward in time, taking the tensor F (s) to F (s+1), where F

contains all correlations contained within the memory time. F captures how past

states in�uence the present dynamics, incorporating non-Markovian e�ects. The

number of correlations, or time steps, included in the F tensor is also referred

to as the number of neighbours, L, with Fig. 5.1 depicting 4 neighbours. Each

index in the tensor can have J possible values, for example, in a QD-QD-cavity

system, Case B, J = 0, 1, 2, where 1 or 2 corresponds to the excitonic channel in

QD 1 or 2, respectively, and 0 represents the cavity channel. At any time step n

within the memory kernel, the excitation can transfer between these components,

meaning that in evolves dynamically as the system oscillates between QD 1, QD 2,

and the cavity. In Fig. 5.1, G shows a speci�c case of two-time correlations. This

is a consequence of the assumption that the system-bath coupling is bilinear, in

which case all higher-order correlation functions can be expressed in terms of the

two-time correlations and G is given by

Gp...i1 =Mi2i1e
Ki1i1

(0)+2Ki2i1
(1)+2Ki3i1

(2)+···+2Kpi1
(L), (5.3.2)

where M̂ is de�ned in Eq. (3.3.3), and K denotes a cumulant arising from the ap-

plication of linked cluster expansion and de�ned in Eq. (3.3.19), with full details

contained in Chapter 3. Note that the cumulants contain two indices, inim, de-

scribing the two-time correlations between two time points tn and tm. Finally, the
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linear polarisation is given by Eq.(3.3.34), but rewritten here for convenience:

Pjk(t) = eKjj(0)F
(N)
0...0j . (5.3.3)

The subscripts 0 . . . 0 represent the indices can be placed into the cavity channel

at the given time steps, but more generally this can be any channel uncoupled

to phonons, such as the absolute ground state of the system. As the number

of time steps within the memory kernel increases (increasing neighbours), the

tensors in Eq. (5.3.1) grow exponentially in size. The exponential growth limits the

number of correlations that can be considered, due to computational limitations.

As a consequence there are problems in achieving convergence for the following

scenarios: 1) When the system has long phonon memory times, 2) when there is a

large number of channels J , or 3) in strong coupling regimes where the dynamics

exhibit rapid oscillations.

5.4 Optimisation scheme

As a simple example, we demonstrate the optimisation scheme in Case C: The

linear polarisation in a QD-cavity system. Already studied using a full tensor-

multiplication scheme in [43], this system requires two basis states (J = 0, 1) such

that in = 0 (1) indicates the system is in the cavity (exciton) state at time step n.

We write the equations for a general number of neighbours, i.e. the LN approach,

but the �gures will use only 4 neighbours (L = 4) as a simpler example to ease

understanding.

The core principle of the optimisation scheme focuses on mapping the tensors in

Eq. (5.3.1), in particular the full in�uence functional F and the propagator G, into

two matrices and then performing an SVD at each time step to truncate the size

by �ltering out contributions below a desired threshold value. Let us consider the

�rst time step, after excitation in channel k at t = 0. Since it is only the �rst

time step, the full in�uence functional tensor can be populated by only Mi1k, and

then mapped to a matrix Fnm. The full in�uence functional is populated by only
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two values of Mi1k: M0k or M1k. This is because after excitation in channel k at

t = 0, one further time step introduces index i1, which has two possible paths of

evolution, i1 = 0 and i1 = 1. Typically in other methods, such as Ref.32, there

is a growth phase in the early times, where each new time step introduces a new

index to the tensor, up until the full memory kernel has been formed. Beyond

this point, the tensor has a �xed number of indices, however, here we begin with

the full rank tensor as a placeholder for subsequent propagation. The in�uence

functional tensor, populated with the initial dynamics and remapped into a matrix

is:

F
(1)
iL...i1

=Mi1k = Fnm, (5.4.1)

Fig. 5.2 depicts the L = 4 in�uence functional F remapped to a matrix Fnm.

In Fnm, the columns take into consideration the possible values of the indices

(iL
2
. . . i1), and the rows add (iL . . . iL

2
+1) The linear polarisation in the QD-cavity

Figure 5.2: The tensor F
(1)
i4i3i2i1

mapped onto a matrix Fnm, the columns corre-
spond to the possible values of (i2, i1) and the rows (i4, i3).

system only has the possible index options in = 0 or 1, for the L/2 indices as-

sociated with each of the two matrices. Therefore we generate all possible index

con�gurations by enumerating all tuples (iL
2
, . . . , i1), where each index in indepen-

dently takes values 0 or 1. This results in 2L/2 possible con�gurations to take into

account. Each con�guration represents a possible path of the system as it evolves

over the time steps. For L = 4, the con�gurations for each pair of indices (i2, i1)

and (i4, i3) are simply {00,01,10,11}. Thus, the dimensions of the mapped matrix

Fnm are nmax,mmax = 2L/2, in general. However, Fnm contains the same number

of elements as the original tensor F , and therefore presently provides no memory
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storage reduction. To remedy this, in order to avoid constructing large tensors in

the �rst instance, Fnm can be analytically expressed in SVD form. In general, this

is always possible to do, and is given by:

Fnm = Un0 Λ0 V0m, (5.4.2)

with Un0 = 1, Λ0 = 1 and V0m = Mi1k. Fig. 5.3 shows the matrix Fnm in SVD

form. This reduces the total number of elements from 2L to ≈ 2(L/2)+1, having a

signi�cant impact at larger L, approximately doubling the amount of neighbours

achievable. As the matrix has now been represented in SVD form, we de�ne a

column vector U which takes into account the indices (iL . . . iL
2
+1) and the row

vector, V , taking into account indices (iL
2
. . . i1).

Figure 5.3: The matrix Fnm in Fig. 5.2, expressed in SVD form.

For further time steps, the exciton-phonon coupling has to be considered, which is

taken in to account via the propagator G in Eq. (5.3.1). G is successively applied

to propagate the system forward in time, summing over the �rst index, i1, as seen

in Eq. (5.3.1).

Although the propagator Eq. (5.3.2) is in the form of a tensor, the two-time cor-

relations can be expressed as 2× 2 matrices in the following way

Q
(r)
ir+1 i1

= exp
{
2Kir+1 i1(r)

}
for 1 < r ≤ L

Q
(1)
i2 i1

=Mi2i1 exp {Ki1i1(0)} exp {2Ki2i1(1)} , (5.4.3)

where the superscript denotes the time step di�erence between any index (not
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including i1) in the memory kernel and i1, i.e. the time step di�erence between

the indices within each pair correlation. For example, considering the indices i3

and i1, the correlations are between time points t3 and t1 in the memory kernel,

thus the Q matrix describing these correlations are given by the matrix Q
(2)
i3i1

. The

recursive relation Eq. (5.3.1), can then be re-expressed as

F
(s=2)
p iL...i2

=
∑
i1=0,1

Q
(L)
p i1
Q

(L−1)
iLi1

. . . Q
(2)
i3i1
Q

(1)
i2i1

Fnm. (5.4.4)

The product of the Q matrices must be applied to the appropriate elements of

Fnm, with a summation over index i1. Since each vector in Fig. 5.3 correspond to

speci�c indices, only Q matrices which consider pair correlations between those

indices should be applied to that vector. In other words, the propagator matrix

Qi2,i1 is applied to the right vector, and matrices Qi3,i1 and Qi4,i1 applied to the

left vector. Note that each Q matrix describes the correlations between any index

in the kernel and i1, but the left vector does not contain any information about i1,

therefore modi�cations must be made to account for this before the summation

over i1 can be performed. Similarly, in the left and right vectors, there is no

information about the value of index p in the propagator G. Firstly, in an attempt

to perform the summation over i1, we begin by separating Fnm into i1 = 0 and

i1 = 1 components,

F (i1=0)
nm′ =

∑
k Unk ΛkV

(i1=0)
km′

F (i1=1)
nm′ =

∑
k Unk ΛkV

(i1=1)
km′ , (5.4.5)

where Fnm = F (i1=0)
nm′ if i1 = 0 and Fnm = F (i1=1)

nm′ if i1 = 1, with m′
max = mmax/2.

With reference to Fig. 5.3, we see that the right vector Vkm contains information

about the index i1, which is the cause of Vkm = V
(i1=0)
km′ and Vkm = V

(i1=1)
km′ having

the reduced dimensionality m′. However, the left vector Unk has no dependence

on i1, and therefore has the same dimensionality in both cases for i1 = 0 or 1.

At this point, the product of Q matrices can be applied to Unk and Vkm′ . The Q

matrices which introduce correlations between indices contained within Unk, i.e.

correlations between iL . . . iL
2
+1 and i1 will be multiplied into Unk. Note that since
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U contains no information about i1, both possibilities of i1 = 0 and i1 = 1 must be

taken into account. The Q matrices which introduce correlations between indices

iL
2
. . . i2 and i1 are multiplied with Vkm′ . However, the propagator introduces

the additional index p, and we choose to apply Q
(L)
pi1

onto the Vkm′ matrix. As

there is no information about index p contained within either left or right vectors,

both possibilities of p = 0 and 1 must be taken into account, similar to the lack of

information about index i1 in the vector U(nk). We then obtain two new matrices,

Ũ
(i1=0)
nk = Q

(L−1)
iL0

. . . Q
(L
2
)

iL
2 +1

0Unk for i1 = 0

Ũ
(i1=1)
nk = Q

(L−1)
iL1

. . . Q
(L
2
)

iL
2 +1

1Unk for i1 = 1 . (5.4.6)

Similarly,

Ṽ
(i1=0,p)
km′ = Q

(L)
p0 Q

(L
2
−1)

iL
2
0 . . . Q

(1)
i20
V

(i1=0)
km′ for i1 = 0

Ṽ
(i1=1,p)
km′ = Q

(L)
p1 Q

(L
2
−1)

iL
2
1 . . . Q

(1)
i21
V

(i1=1)
km′ for i1 = 1 , (5.4.7)

with p = 0 or p = 1, due to the introduction of the new index p in Eq. (5.4.4), which

is necessary for the forward propagation of the system in time. As an example on

how to apply the Q matrices appropriately to the vector elements, consider the

propagator matrix Q
(1)
i2i1

, we can then apply the matrix element Q
(1)
00 to elements

in V
(i1=0)
km′ that correspond to iL = 0, and Q

(1)
01 to the elements corresponding to

iL = 0 in V
(i1=1)
km′ , and so on. Now, once all propagator matrices have been applied,

Figure 5.4: The tensor F
(s=2)
p iL...i2

mapped to a matrix F̃nm. The vectors from the
initial time step, Unk and Vkm, have been split through applying the Qii1 matrix
elements for i1 = 0 and i1 = 1, with V being further split through the extra index
p, with p = 0 and p = 1.
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let us denote F̃ (p)
nm representing F

(2)
p iL...i2

in Eq. (5.4.4) for any p as

F̃ (p)
nm =

∑
k

(
Ũ

(0)
nk ΛkṼ

(0,p)
km′ + Ũ

(1)
nk ΛkṼ

(1,p)
km′

)
, (5.4.8)

where the tilde notation denotes that the Q matrices have been applied, propa-

gating the system forward in time for this iteration. The new propagated matrix

F̃nm, now at step 2 (s = 2) is shown diagrammatically in Fig. 5.4. In Fig. 5.4,

U and V have been split due to the summation over i1, according to Eqs. (5.4.6)

and (5.4.7), and the Q matrices in Eq. (5.4.3) have been applied, further splitting

V due to the introduction of a new index p in the propagator. To calculate the

Figure 5.5: The tensor F
(s=2)
p iL...i2

mapped to a matrix F̃nm, as in Fig. 5.4 but here

showing Ũ as a 4 × 2 matrix with the �rst and second columns being Ũ (0) and
Ũ (1), respectively. The �rst (second) row of Ṽ consists of Ṽ (i1=0,p=0) and Ṽ (i1=0,p=1)

(Ṽ (i1=1,p=0) and Ṽ (i1=1,p=1)). The red crosses indicate which matrix elements should

be multiplied together in order to go from F
(N)
pi4i3i2

to the speci�c realisation F
(N)
0...0j

required to compute the polarisation, as in Eq. (5.3.3).

polarisation, given in Eq. (5.3.3), we take the speci�c realisation Fp...i3i2 → F0...0j,

where j is the measurement channel at any time step. Fig. 5.5 shows the ma-

trices in Fig. 5.4 more explicitly, with the red crosses indicating which elements

should be multiplied together for this speci�c realisation. This matrix multiplica-

tion is e�ectively summation over i1, as required, and the measurement channel,

j, is selected by choosing i2 = j = 0, 1. The �rst (second) row of Ṽ consists of

Ṽ (i1=0,p=0) and Ṽ (i1=0,p=1) (Ṽ (i1=1,p=0) and Ṽ (i1=1,p=1)). Note that this particular

arrangement causes the rows in Ṽ to be split with the possible values of i1, and

the i1 value being constant across the corresponding column. The consequence of
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this arrangement is that the con�guration ordering changes, since p is now vary-

ing across columns, just as i1 was in the initial vectors (see Fig. 5.3). Therefore,

the realisation F
(s=2)
0...0 (F

(s=2)
0...0 1 ) is obtained through standard matrix multiplication

with the elements in �rst row of Ũ with the column corresponding to the con�gu-

ration iL
2
. . . i2p = {0 . . . 0} ({0 . . . 10}) column in Ṽ , corresponding to the cavity

(exciton) observation channel.

In the recursion relation Eq. (5.4.4), F
(s=2)
p iL...i2

must become the new F
(s=2)
iL...i1

for the

next time step, and we must therefore remap the indices. As an example, for L = 4,

(i4, i3) → (i3, i2) becomes associated with Ũ and (i2, p) → (i1, i4) associated with

Ṽ . After each time step, we rede�ne Ũ (Ṽ ) as U (V ) without the tilde, as seen in

Fig. 5.6, which also shows the new indices that are associated with the matrices.

This indicates that we must again split the matrices due to the possibility of

i1 = 0 or i1 = 1, and the subsequent application of the Q matrix elements to

propagate the system must occur. In each successive time step, the indices will

cycle, but once the index i1 becomes associated with U (after L/2 steps), the

original index ordering has been restored but on opposite matrices. That is, for

L = 4, (i2, i1) is instead associated with U , and (i4, i3) with V . Therefore, once

this occurs, it's computationally simpler to transpose all the matrices and rede�ne,

such that U = V T and V = UT , allowing us to return to repeat the same procedure

outlined in this section. To summarise, after L/2 time steps the matrices should be

transposed in order to return the indices to their original positions, i.e. (iL/2 . . . i1)

associated with V , we call this the start of the cycle.

It is clear that through the splitting due to i1 = 0 and 1 after each time step,

the size of U matrix doubles in size relative to the previous step, and through the

splitting due to p = 0 and 1, V also doubles in size. Thus, every subsequent F

doubles in size, however this can be optimised, reducing the sizes, by performing

an SVD on the matrices. For instance, we can SVD V , as shown in Fig. 5.7, where

Λ1 which contains the signi�cant values has a smaller size due to the threshold

condition that if |λk| < ϵ then λk = 0, truncating the SVD matrices. The threshold
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Figure 5.6: The tensor F
(s=2)
iL...i1

mapped to a matrix Fnm. This is the starting point
of the next time step, the subsequent application of the Q matrices and splitting
due to i1 = 0, 1 and p = 0, 1 will be applied here to propagate the system.

Figure 5.7: SVD applied on V after the third time step, where there are now
8 rows. There is still the 4 columns since the number of con�gurations for a
given number of neighbours is �xed. By applying SVD with a threshold value,
the truncated dimension becomes x′. V1 is the new truncated V used for further
propagation.

ϵ may be changed based on the desired accuracy of the calculation, the results in

this paper use ϵ = λmax × 10−8, where λmax is the largest value contained in Λ1.

As seen in Fig. 5.7, considering for illustration V , which is initially a 1× 4 matrix

at the �rst time step, but has increased to an 8 × 4 matrix after three iterations

(for L = 4, but would be an 8 × 2L/2 in general). Then, if after applying the

threshold only x′ signi�cant values remain, A is a (8, x′) matrix, Λ1 is a (x′, x′)

matrix and V1 is a (x′, 4) matrix. Initially this appears to increase the number of

required elements, however A and Λ1 can be multiplied into U , which is a (4, 8)

matrix, and through just matrix multiplication, the size of U is truncated to a

matrix U1 of size (4, x′). Thus, the matrices of reduced dimension, V1 and U1 in

Figs.5.7 and 5.8, respectively, are used as the new V and U for the proceeding

time step. If the truncation is insu�cient after one SVD, the SVD can be applied

again onto U , which was initially only multiplied with the products from applying
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Figure 5.8: A and Λ1, which are products from performing an SVD on V , are
multiplied into U , which automatically truncates the dimensions without perform-
ing any further SVDs. U1 is the new U used for further propagation.

SVD on V , and then multiply the products from applying SVD on U back into V .

E�ectively, there is an SVD sweeping back and forth to truncate the sizes. These

truncated matrices are then used as the starting U and V for the following time

step, with the SVD procedure applied every time step to keep the matrices from

growing exponentially.

Computationally the procedure is straightforward. We start with a tensor which

has a number of indices equal to the amount of time steps within the memory

kernel (or neighbours), L. We then assign half the indices to a matrix U , and

the other half to a matrix V , where each element corresponds to a speci�c path,

or con�guration, of the indices. Due to the exponential form of the propagator,

it can be decomposed into matrices Q, de�ned in Eq. (5.4.3), which describe the

correlations between two time points. The Q matrix elements can be multiplied

into U and V , propagating the system. Then, via matrix multiplication of the

desired rows and columns, a speci�c realisation is calculated and any physical

observable can be found. The exponential scaling of the matrix sizes (doubling at

each time step) is then handled by performing an SVD on the matrices to keep

only contributions above a chosen threshold value.

5.4.1 Generalisation to J-dimensional density matrix vec-

tors

More generally for a system and correlator which can be fully described by J sys-

tem states, The dimensions of the mapped matrix, nmax and mmax, are dependent
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on the number of neighbours, L and J , i.e. nmax,mmax = JL/2. In other words,

there are more con�gurations of the indices when there are more possible system

states. They are generated by enumerating all tuples (iL
2
, . . . , i1), where each index

ik independently takes values in the �nite set {0, 1, . . . , J}. This yields (J + 1)
L
2

distinct con�gurations.

Figure 5.9: The tensor F
(s=2)
p iL...i2

mapped to a matrix F̃nm for J = 3, as in Case B

for the QD-QD-cavity system, the matrices U has been duplicated three times to
account for all possible values of i1 = 0, 1, 2, since no knowledge of i1 is contained
within U . V has been split into three blocks corresponding to the values of i1, as
the value of i1 is known for each element in V . However, each block of the split V
is then duplicated three times due to the propagation index p = 0, 1, 2.

At time step s, the tensor F
(s)
iL...i1

(where i = 0, 1, . . . J − 1) is represented by

a standard matrix Fnm, which is split into two matrices U and V . As before,

the indices are assigned to the matrices U and V , however, due to the extra

possible states of i1, the matrix Vkm is split into J matrices, Vkm → V
(i1)
km′ , each

corresponding to a speci�c i1 value. Vkm′ is a J times smaller matrix than Vkm

since the i1 values are known, as this index is associated with V . The propagation

index p also has J possible values, and each V
(i1)
km′ is duplicated to account for all

possible p values. Similarly, Unk is duplicated J times, with each corresponding to

a possible i1 value, as there is no information about index i1 contained within U .

Fig. 5.9 shows the speci�c case of J = 3, which may represent Case B, the linear

polarisation in a QD-QD-cavity system. The Q matrices de�ned in Eq. (5.4.3) are

applied into the matrix elements of V and U as before, and there is a summation

over i1, propagating the system from F (s) to F (s+1). We have then, for the �rst
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application of the Q matrices

Ũ
(i1)
nk = Q

(L−1)
iLi1

. . . Q
(L/2)
iL/2+1 i1

Unk

Ṽ
(i1,p)
km′ = Q

(L)
pi1
Q

(L
2
−1)

iL/2i1
. . . Q

(1)
i2i1
V

(i1)
km′ . (5.4.9)

Denoting the propagated full in�uence functional tensor F
(2)
piL...i2

as the mapped

matrix F̃nm, which is given by

F̃ (p)
nm =

∑
i1

∑
k

Ũ
(i1)
nk ΛkṼ

(i1,p)
km′ , (5.4.10)

as before, but with i1, p = 0, 1, . . . J − 1. For subsequent time steps the indices

associated with V and U are remapped due to F
(s+1)
piL...i2

becoming the new F
(s)
iL...i1

in the iterative procedure given by Eq. (5.3.1). As a consequence, the Q matrices

which are applied onto U and V in Eq. (5.4.9), which shows the speci�c case for

the �rst iteration, also change. In other words, the Q matrices which contain

correlations between the indices which are contained within U and V are used.

5.5 Veri�cation

Fig. 5.10 illustrates the accuracy of our optimisation scheme by calculating the

linear optical polarisation P11(t) of an isotropic QD coupled to a micro-cavity with

coupling strength g = 100µeV. We compare the results from the original full tensor

multiplication scheme [43], the optimised calculation, and the well-known TEMPO

approach [32] using the same number of neighbours, L = 26, in each case. An SVD

threshold of ϵ = 10−8 is used in the optimised and TEMPO calculations. The

inset of Fig. 5.10 demonstrates the error between the full well-converged original

calculation and the optimisation (blue) and TEMPO (green). The inset shows the

close agreement between the optimised scheme and the original full tensor method

con�rming the validity of our approach, while the comparison with TEMPO serves

as an additional point of reference. There is a large bene�t to computational time,

taking roughly 1300 seconds using the original approach, compared with only 30

seconds using the optimisation scheme, for the same number of neighbours. Note
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Figure 5.10: The linear optical polarisation, |P11(t)|, for an isotropic QD of
con�nement length l = 3.3 nm coupled to a micro-cavity with coupling strength
g = 100µeV at zero detuning, with excitation and measurement in the QD. The
calculation using the original tensor multiplication scheme [43] (shown in red) is
compared with the optimised method (blue), and TEMPO (green). All calcu-
lations use the number of neighbours L = 26, with the optimised and TEMPO
methods using an SVD threshold of ϵ = λmax × 10−8. Inset: Absolute error be-
tween the full calculation and the optimisation and TEMPO. The phonon bath
temperature is T = 50K and the rest of the parameters are found in Table 2.1.

that in Fig. 5.10, all calculations used the same number of neighbours for a direct

comparison. However, the maximum achievable neighbours in the original full

calculation for this QD-cavity system is L = 26 for a desktop PC of 16GB RAM,

whereas the optimised case has approximately L = 50.

5.6 Extrapolation

As detailed in Chapter 2, the strong coupling between the exciton and cavity forms

two polariton branches, and the oscillatory behaviour in Fig. 5.10 is explained

by the coherent exchange of energy between the polariton states. The energy

levels of the states are separated by the Rabi splitting, which determines the

beat frequency in |P11(t)|. This frequency physically represents the exchange of

quantum information between the QD and the cavity. The temporal decay of the

linear polarisation expresses the decoherence in this system as a consequence of

the interaction of the QD with the bath. This decoherence is due to phonon-
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assisted transitions between the upper (|+⟩) and lower (|−⟩) polariton states (see

the equivalent discussion regarding the hybridised states in Chapter 4).

Using this picture, we have applied to the long-time dynamics of P11(t) a biexpo-

nential �t of the form

Pfit
11(t) =

∑
j

Cje
−iωjt , (5.6.1)

extracting the complex amplitudes Cj, energies Re ωj, and dephasing rates Γj =

− Im ωj of the phonon-dressed polariton states, as discussed in Sec.4.2. These

extracted parameters follow a power law dependence on the number of neighbours

L. Therefore, one can calculate the linear optical polarisation for a given number

of neighbours, apply a �t to the long time data, extract the �t parameters and

then apply a power-law �t to these parameters. The resulting parameters across

the range of neighbours are used to perform a power-law extrapolation, estimating

the exact value which corresponds to L = ∞.

As an example, consider the parameters corresponding to the dephasing rates,

Γ(L) extracted across a range of neighbours, where the convergence of Γ(L) to the

exact (L = ∞) value is assumed to follow a power law model, given by

Γ(L) = Γ(∞) + CL−β. (5.6.2)

Figure 5.11 shows the Γ(L) calculated values (blue crosses) in the QD-cavity sys-

tem, with the power law model applied (red curve), and the extrapolated Γ(∞)

is shown as a red dashed line. The value of Γ(∞) is estimated for the values of

Γ(L) shown in Fig. 5.11 by minimising the root mean square deviation from the

power law Eq. (5.6.2) for β = 2. Fig. 5.11 also demonstrates the necessity of the

extrapolation, since optimisation alone may not be well converged in some cases.

However, the extra data provided by the optimisation by achieving more neigh-

bours allows for an accurate usage of the extrapolation. In fact, in some systems

with very long memory times, such as in extended quantum systems, the extrapo-

86



CHAPTER 5. OPTIMISATION OF PATH-INTEGRAL
TENSOR-MULTIPLICATION SCHEMES IN OPEN QUANTUM SYSTEMS

20 40 60 80 100
136.0

136.5

137.0

137.5

138.0

power law fit
(L)

extrapolated ( )

20 40 60 80 100
neighbors, L

96.00

96.25

96.50

96.75

97.00

97.25

de
ph

as
in

g 
ra

te
, 

 (
eV

)

Figure 5.11: Power law �t applied to the Γ+(L) (Γ−(L)) values across a range of
neighbours, L, for g = 600µeV is shown in the upper (lower) �gure. The blue
crosses are the extracted Γ(L) values, the red curve is the power law model with
β = 2, and the red horizontal dashed line is the estimated value of Γ(∞). The
rest of the parameters are as in Fig. 5.10.

lation is not possible at all with the original technique and requires the data from

the optimisation scheme.

5.7 Illustrations

The optimisation and extrapolation, developed in Secs. 5.4 and 5.6 are applied

�rst in Case C, the QD-cavity system. Firstly we demonstrate the agreement,

comparing the original full tensor-multiplication scheme [43] to the optimised cal-

culation using more neighbours (greater accuracy), and subsequent extrapolation

in a regime with a moderate QD-cavity coupling strength. Then, we extend the

calculation across a range of QD-cavity coupling strengths, going beyond what

was computed in [43]. Next, we apply the optimisation and extrapolation to Case
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B, detailed in Sec. 3.2, for a QD-QD-cavity system. In this system of spatially

separated QDs, the necessity of the optimisation and extrapolation is shown when

the memory times become very long.

5.7.1 Accessing stronger coupling regimes in the QD-cavity

system

Fig. 5.12 shows the linear optical polarisation P11(t) of an isotropic QD coupled to

a micro-cavity with coupling strength g = 600µeV at zero detuning. The data is
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100
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|
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40 50

Figure 5.12: The linear optical polarisation, |P11(t)|, for an isotropic QD of
con�nement length l = 3.3 nm coupled to a micro-cavity with coupling strength
g = 600µeV at zero detuning, with excitation and measurement in the QD. The
calculation using the original multiplication scheme is shown in red (L = 26), the
optimised calculation in blue (L = 48, SVD threshold ϵ = λmax × ϵ = 10−8) and
extrapolated calculation in green. Inset: Energy level diagram for the hybridised
QD-cavity states |+⟩ = (|1⟩+ |2⟩)/

√
2 and |−⟩ = (|1⟩−|2⟩)/

√
2, with real phonon-

assisted transitions (red and blue arrows). The phonon bath parameters are as in
Fig. 5.10.

calculated with the original tensor-multiplication scheme, the optimisation and ex-

trapolation. There is good convergence of the original calculation at this coupling

strength because the time step ∆t, which decreases as the number of neighbours

increases, is small enough to resolve the dynamics of the Rabi oscillations. The

frequency of the Rabi oscillations at zero detuning is determined by the energy

splitting of 2g between the polariton states (see inset of Fig. 5.12). Therefore,
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as g increases, a smaller time step is required for an accurate calculation. The

optimisation and extrapolation thus provides access to larger coupling strengths.
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Figure 5.13: Dephasing rates Γ± of the hybridised states |±⟩ at zero detuning as
a function of the QD-cavity coupling strength g, calculated via the optimisation
scheme (L = 48, SVD threshold ϵ = λmax × ϵ = 10−8) and extrapolated (solid
lines), via FGR (dashed lines), and the most accurate calculation via the original
tensor-multiplication scheme (crosses) for isotropic QDs with a con�nement length
of l = 3.3 nm. The inset shows the extrapolation error for both extrapolated
dephasing rates. The phonon bath parameters are as in Fig. 5.10.
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Figure 5.14: As in Fig. 5.13 but with a linear scale.

Fig. 5.13 shows the dephasing rates Γ± in the QD-cavity system as a function cou-

pling strength g (see Fig. 5.13 for a linear scale). The optimised and extrapolated

data visually align with the original calculation at smaller coupling strengths,
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but show a deviation at larger values as expected. Provided that the parame-

ters extracted via the optimisation scheme follow the power law convergence, the

extrapolated values are accurate for signi�cantly larger coupling strengths than

the original approach [43]. The inset of Fig. 5.13 shows the extrapolated error for

each of the extrapolated Γ± values, where even at g = 3000µ eV the extrapolated

error (10−3) is much less than the di�erence between the extrapolated and original

calculations (10−1). It is worth noting that the discrepancy between FGR and the

full calculation at large coupling strengths is likely due to not taking into account

virtual transitions, which are signi�cant compared to real transitions at such large

coupling strengths [37, 46]. The virtual transitions can be added to the real tran-

sitions and taken into account via FGR by using the quadratic coupling model in

[37] or a combined approach [100].

5.7.2 Necessity of the optimisation in spatially extended

systems

When a spatially extended quantum system interacts with a common environment,

the memory time can become very large and its quantum dynamics is di�cult to

capture accurately. We now use Case B, a system of two spatially separated QDs

coupled to a microcavity and interacting with a shared phonon bath as illustration.

Fig. 5.15 shows the linear polarisation, |P11(t)|, for a pair of cavity-mediated

(g1 = g2 = ḡ = 500µeV) coupled isotropic QDs separated by d = 5 nm. In

this case of zero detuning (Ω1 = Ω2 = ΩC) and equal QD-cavity couplings,

there are three resulting hybridised states, |+,±⟩ = (|1⟩ + |2⟩)/2 ± |C⟩/
√
2 and

|−⟩ = (|1⟩ − |2⟩)/
√
2, as depicted in the inset (see [45] and Sec.4.3). To generate

the extrapolated data, a triexponential �t is applied to P11(t) to extract the pa-

rameters of these hybridised states. Fig. 5.15 compares the original, optimised and

extrapolated calculations, however, the separation of 5 nm is small and does not

signi�cantly increase the memory time (see Appendix I). Therefore, we observe a

similar and su�cient convergence of the original calculation as in the QD-cavity

system in the previous section. Fig. 5.16 shows the same calculation, but instead
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Figure 5.15: The linear polarisation, |P11(t)|, for cavity-mediated (g1 = g2 = ḡ =
500µeV) isotropic QDs with con�nement length l = 3.3 nm at zero detuning. The
QDs are separated by the distance d = 5 nm, with excitation and measurement
in QD 1. The calculation using the full tensor multiplication scheme is shown
in red (L = 16), the optimised calculation in blue (L = 30, SVD threshold ϵ =
λmax × 10−8) and extrapolated calculation in green. Inset: Energy level diagram
for the hybridised QD-cavity states |+,±⟩ = (|1⟩ + |2⟩)/2 ± |C⟩/

√
2 and |−⟩ =

(|1⟩− |2⟩)/
√
2, with real phonon-assisted transitions (red, blue and green arrows).

The phonon bath temperature is T = 20K and rest of the phonon bath parameters
are found in Table 2.1.
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Figure 5.16: As in Fig. 5.15 but with a QD separation of d = 45 nm.

with a separation of d = 45 nm, which displays a clear lack of convergence using

the original method. Even the calculation using the optimisation scheme is not

very well converged, showing the necessity of the extrapolation. It should be noted
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that the extracted parameters do not follow a power-law convergence across all L

values, instead, the selected L values must be su�ciently high to enter the regime

of power-law convergence. Due to this, the original technique in most regimes of

spatially extended systems cannot generate enough data within the power-law con-

vergence regime to provide an extrapolated calculation. Therefore, the optimised

calculations are required for the extrapolation.
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Figure 5.17: Dephasing rates Γ+,± and Γ− of the hybridised states as a function
of d. The extrapolation (solid lines) is compared with the original (dashed lines)
for cavity-mediated coupled identical isotropic QDs with interaction strength g1 =
g2 = ḡ = 500µeV, and zero detuning. The phonon bath temperature is T = 20K
and the rest of the parameters are found in Table 2.1.

Fig. 5.17 shows the dephasing rates Γj extracted from the �t as functions of the QD

separation d. The dephasing rates of the hybridised states |+,±⟩ = (|1⟩+ |2⟩)/2±

|C⟩/
√
2 and |−⟩ = (|1⟩ − |2⟩)/

√
2 are denoted by Γ+,± and Γ−, respectively.

As the QD separation increases, the memory time increases, and the original

calculation gradually becomes increasingly inaccurate, requiring the optimisation

and extrapolation to accurately model the system.
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5.8 Summary

In this chapter, an optimisation scheme has been developed for path-integral

tensor-multiplication schemes and it has been applied to the Trotter decompo-

sition with linked cluster expansion technique. The scheme is demonstrated by

applying it to the linear polarisation in a quantum dot-cavity system, although it

is applicable for any basis size and any density matrix element, e.g. populations.

The scheme approximately doubles the achievable number of neighbouring connec-

tions within the tensor network structure, which is signi�cant given the exponential

scaling typically associated with tensor multiplication schemes. It should be noted

that more memory-e�cient representations for the tensors exist; however, the op-

timisation developed in this thesis enables the usage of an extrapolation scheme

not available in other techniques. The increased number of neighbours paired

with extrapolation gives access to previously inaccessible regimes, o�ering better

convergence for systems with long memory times. For calculations already well

converged using traditional approaches, the optimisation scheme o�ers greatly im-

proved computational e�ciency, shortening calculation times by up to two orders

of magnitude.

93



Chapter 6

Conclusion

In Chapter 2, the theoretical framework was outlined by examining two funda-

mental models: the JC model describing QD-cavity interactions and the IB model

characterising QD-phonon interactions. The JC model revealed how strong cou-

pling between a QD and cavity leads to polariton formation with distinct energy

branches separated by the Rabi splitting, and the coherent exchange of energy

leads to Rabi oscillations. Meanwhile, the IB model introduced techniques for

incorporating phonon e�ects, highlighting the non-Markovian dynamics charac-

terised by the rapid initial decay of the linear polarisation. The important concept

of the phonon memory time was introduced, which in the IB model corresponds

to the polaron cloud formation time following an optical excitation in the QD. A

key challenge identi�ed was the combination of these exactly solvable models into

a uni�ed approach.

Chapter 3 addressed this challenge by utilising a path-integral approach to success-

fully combine the JC and IB models, resulting in a tensor-multiplication scheme.

The Trotter decomposition with linked cluster expansion technique was focused

on, and a generalisation was developed for multi-QD systems interacting with

either shared or independent phonon baths. The propagator tensor emerged as
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a central component of this technique, where each element contains a possible

evolutionary path of the system within the �nite memory time. This approach

provides asymptotically exact calculations for any element of the density matrix,

with accuracy improving as the number of neighbours increases, albeit at the cost

of exponentially growing computational demands.

In Chapter 4, the asymptotically exact solution was used to investigate linear op-

tical responses in a system of two coupled qubits interacting with a shared bath,

using semiconductor QDs coupled to 3D acoustic phonons as a practical example.

Despite only considering diagonal exciton-phonon coupling, which typically pro-

duces no ZPL broadening, the full calculation revealed ZPL broadening which is

understood in terms of phonon-assisted transitions between the hybridised qubit

states, analogous to the polariton states in the JC model. Importantly, we demon-

strated that decoherence can be reduced by controlling the inter-qubit distance

relative to the wavelength of the interacting bath modes. This e�ect is due to

all QDs coupling to the same phonon modes, which is enabled by the coherent

properties of the bath itself. Remarkably, the approximate calculation via FGR

for real phonon-assisted transitions shows excellent agreement with the full cal-

culation. For a 1D bath, we showed that decoherence can be eliminated entirely,

with similar e�ects achievable for anisotropic qubits in a three-dimensional bath.

The e�ect can be extended to multiple-qubit systems.

Finally, in Chapter 5, we developed an optimisation scheme which can be applied

to path-integral tensor-multiplication techniques, speci�cally applying it to the

Trotter decomposition with linked cluster expansion approach. This optimisation

approximately doubles the number of neighbouring connections within the tensor

network structure�a signi�cant improvement given the exponential scaling char-

acteristic of tensor multiplication schemes. This optimisation, which remaps and

splits the tensor into two matrices, is a simple and natural stepping stone to a more

sophisticated and advanced version of optimisation which has now been developed

in parallel to the writing of this thesis. The new version represents the tensor as
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an arbitrary number of matrices (limited by memory), where each matrix can con-

tain a similar number of neighbours as the optimisation described in this chapter,

providing a signi�cant increase in the maximum number of neighbours achievable.

While more memory e�cient tensor representations exist, our approach enables

an extrapolation scheme not available in other techniques. The combination of

increased neighbour connections and extrapolation provides access to previously

inaccessible regimes with improved convergence for systems with long memory

times. As a demonstration of a system that can exhibit long memory times, we

use a system of spatially separated quantum dots where increasing the separation

increases the memory time. For already well-converged calculations, our optimi-

sation scheme delivers substantial computational e�ciency, reducing calculation

time by up to two orders of magnitude.
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A Representations

A.1 Schrödinger representation

Starting with the time-dependent Schrödinger equation, the relation between the

system Hamiltonian H and the wave function ψ(t) is

i
∂

∂t
ψ(t) = Hψ(t), (A.1)

for which the general solution is

ψ(t) = e−iHtψ(0), (A.2)

where e−iHt shows the time evolution of the wave function from t = 0. In the

Schrödinger representation, the wave function is time-dependent, and the opera-

tors are time independent.

A.2 Heisenberg representation

An alternative representation is called the Heisenberg representation. In this rep-

resentation, the wave function becomes independent of time and instead the op-

erators absorb the time dependence. Consider the expectation value of a generic

operator A,

⟨ψ(t)|A |ψ(t)⟩ =
〈
e−iHtψ(0)

∣∣A ∣∣e−iHtψ(0)
〉

(A.3)

= ⟨ψ(0)| eiHtAe−iHt |ψ(0)⟩ , (A.4)

where we have extracted the explicit time dependence from the wave functions in

the Schrödinger representation. Then, we are able to de�ne an operator with the

following time dependence

A(t) = eiHtAe−iHt. (A.5)
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The time derivative of a general operator using these de�nitions is given by

d

dt
A(t) = i [H,A(t)] . (A.6)

A.3 Interaction representation

The interaction representation can be considered an intermediate case between

the Schrödinger and Heisenberg representations since both the wave function and

operators have time dependence. When the full Hamiltonian H is expressed as

H = H0 + V, (A.7)

where H0 is the unperturbed Hamiltonian and V is a perturbation, the time-

dependent Schrödinger equation is written as

H |ψS(t)⟩ = (H0 + V ) |ψS(t)⟩ = i
∂

∂t
|ψS(t)⟩ , (A.8)

where the subscript S denotes the wave function in the Schrödinger representation.

To �nd a solution to this equation, we introduce a new state vector ψI(t) related

to ψS(t) by

|ψS(t)⟩ = e−iH0t |ψI(t)⟩ . (A.9)

The subscript I refers to the interaction representation. Extracting the time de-

pendence of operators can be done by �nding the expectation value of an operator

A,

⟨ψS(t)|A |ψS(t)⟩ =
〈
e−iH0tψI(t)

∣∣A ∣∣e−iH0tψI(t)
〉

(A.10)

= ⟨ψI(t)| eiH0tAe−iH0t |ψI(t)⟩ , (A.11)

therefore, an operator in the interaction representation can be expressed as

Ã(t) = eiH0tAe−iH0t, (A.12)
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where the tilde denotes an operator in the interaction picture. It is clear that

the operators in the interaction representation have time-dependence governed by

the unperturbed Hamiltonian, H0. Then, substituting Eq.(A.9) into the time-

dependent Schrödinger equation (A.8), we �nd

(H0 + V )e−iH0t |ψI(t)⟩ = i
∂

∂t

(
e−iH0t |ψI(t)⟩

)
, (A.13)

and performing the partial di�erentiation gives

(H0 + V )e−iH0t |ψI(t)⟩ = H0 e
−iH0t |ψI(t)⟩+ ie−iH0t

∂

∂t
|ψI(t)⟩ , (A.14)

then cancelling the common term and multiplying eiH0t on both sides of the equa-

tion, we �nd

eiH0tV e−iH0t |ψI(t)⟩ = i
∂

∂t
|ψI(t)⟩ , (A.15)

where eiH0tV e−iH0t is de�ned as the interaction representation of an operator in

Eq.(A.12). Therefore the Schrödinger equation in the interaction representation

is given by

i
∂

∂t
|ψI(t)⟩ = Ṽ (t) |ψI(t)⟩ , (A.16)

which shows the time-dependence of the wave function in the interaction picture

is governed by the perturbation V .

B Linear optical polarisation

The derivation below is a more general case with multiple possible system exci-

tation/measurement channels and a phonon bath. In the JC model, there is no

phonon bath, simplifying the derivation. And, in the IB model the derivation is

similar, but the excitation and measurement channels are limited to |X⟩ only since

there is only one QD, rather than |k⟩ and |j⟩.
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B.1 Multiple QDs coupled to a cavity with an acoustic phonon

bath

The density matrix of the system in the fully unexcited state is given by

ρ(−∞) = |0⟩ ⟨0| ⊗ ρph, (B.1)

where the density matrix of the phonon subspace ρph is

ρph =
e−βHph

Tr{e−βHph}ph
, (B.2)

where β = 1
kBT

, and the subscript ph on the trace refers to the trace being taken

over all phonon states. Then, applying a pulsed excitation of the form

Hext(t) = Vδ(t), (B.3)

where

V = µ(c̃† + c̃), (B.4)

to the system, where c̃† (c̃) is a general creation (destruction) operator results in

the density matrix immediately after the pulsed excitation being described by the

transformation

ρ(0+) = e−i
∫∞
−∞ Hext(t′)dt′ρ(−∞)ei

∫∞
−∞ Hext(t′)dt′ = e−iVρ(−∞)eiV . (B.5)

c̃† (c̃) is given explicitly by |k⟩ ⟨0| (|0⟩ ⟨k|), where k represents the excitation chan-

nel, which can be any excitonic state 1, 2 or the cavity channel C. The subsequent

time evolution of ρ(0+) is given by the Schrödinger time evolution,

ρ(t) = e−iHtρ(0+)e
iHt. (B.6)

Substituting these into the expression for polarisation Eq.(2.1.7), we obtain:

P(t) = Tr
{
e−iHt(e−iV |0⟩ ⟨0| eiV ⊗ ρph)e

iHtc
}
, (B.7)
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where c is a general destruction operator explicitly given by |0⟩ ⟨j|, where j is

the chosen measurement channel (j = 1, 2, C), e�ectively extracting the chosen

coherence term from the full density matrix.

The exponentials e±iV can be expanded as a Taylor series, giving

P(t) = Tr
{
e−iHt

((
1− iµ(c̃† + c̃) + ...

)
|0⟩ ⟨0|

(
1 + iµ(c̃† + c̃) + ...

)
⊗ ρph

)
eiHtc

}
.

(B.8)

Writing c̃†, c̃ and c explicitly in terms of k and j and using the orthonormality

of the states and keeping only terms linear in µ, the linear polarisation can be

expressed as

P(t) = Tr
{
e−iHt(|k⟩ ⊗ ρph)e

iHpht ⟨j|
}
. (B.9)

In particular, we have used the fact that ⟨k| eiHt |0⟩ is simply zero, due to the

Hamiltonian H not having any way of causing the |0⟩ state to undergo a transition

to |k⟩ and ⟨0| eiHt |0⟩ = eiHpht.

Now evaluating this trace in a system basis |n⟩ and phonon basis |α⟩,

P(t) =
∑
n,α

⟨n| ⊗ ⟨α| (e−iHt(|k⟩ |j⟩ ⊗ ρphe
iHpht)) |n⟩ ⊗ |α⟩ , (B.10)

and using the fact that |k⟩ ⟨j|n⟩ = δj,n |k⟩, we �nd

P(t) =
∑
α

⟨j| ⊗ ⟨α| e−iHt(|k⟩ ⊗ (ρphe
iHpht |α⟩)). (B.11)

Denoting |k⟩ ⊗ |ϕ⟩ = |k⟩ ⊗ (ρphe
iHpht |α⟩), we have

P(t) =
∑
α

(⟨j| ⊗ ⟨α|)e−iHt(|k⟩ ⊗ |ϕ⟩). (B.12)

Using the rule of tensor inner products

(⟨a| ⊗ ⟨b|)X̂(|c⟩ ⊗ |d⟩) = ⟨b| (⟨a| X̂ |c⟩) |d⟩ , (B.13)
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the linear polarisation becomes

P(t) =
∑
α

⟨α| (⟨j| e−iHt |k⟩)ρpheiHpht |α⟩ , (B.14)

noting that ⟨j| e−iHt |k⟩ is actually an operator in the phonon subspace (because

it is what is remaining after contracting with the system states). Eq.B.14 is the

de�nition of a trace over the phonon Hilbert space:

P(t) = Tr
{
⟨j| e−iHt |k⟩ ρpheiHt

}
, (B.15)

and subsequently using the de�nition of the expectation value of an operator

Eq.2.1.6, the �nal expression for the linear polarisation is given by

Pjk(t) = ⟨⟨j|U(t) |k⟩⟩ph, (B.16)

with U(t) = eiHphte−iHt.

C Absorption

The absorption A(ω) is the transition rate into all states from an initial state.

Fermi's golden rule F , giving the transition rate from a single initial state |i⟩ to a

single �nal state |f⟩ is de�ned as

Fi→f (ω) = 2π| ⟨f | V |i⟩ |2δ(Ef − Ei − ω), (C.1)

where V is the pulsed excitation applied at time t = 0, given by Eq. (2.1.9). Ef(i)

is the energy of the �nal (initial) state, and the delta function enforces energy

conservation, ensuring the photon energy ω matches the energy di�erence Ef −Ei.

The absorption spectrum A(ω) is the total transition rate, summed over all possible

initial and �nal states, weighted by the probability wi of occupying the initial state
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and is given by

A(ω) =
∑
i,f

wiFi→f (ω) = 2π
∑
i,f

wi| ⟨f | V |i⟩ |2δ(Ef − Ei − ω). (C.2)

In the frequency domain, the delta function is written as

δ(Ef − Ei − ω) =
1

2π

∫ ∞

−∞
ei(Ef−Ei−ω)tdt =

1

2π

∫ ∞

−∞
ei(Ef−Ei)te−iωtdt, (C.3)

Substituting into Eq. (C.2), we get

A(ω) =
∑
i,f

∫ ∞

−∞
wi| ⟨f | V |i⟩ |2ei(Ef−Ei)te−iωtdt. (C.4)

Using | ⟨f | V |i⟩ |2 = ⟨i| V† |f⟩ ⟨f | V |i⟩, this becomes

A(ω) =
∑
i,f

wi ⟨i| V† |f⟩ ⟨f | V |i⟩
∫ ∞

−∞
ei(Ef−Ei)te−iωtdt. (C.5)

We then use eiHt |f⟩ = eiEf t |f⟩, and so:

A(ω) =
∑
i,f

wi

∫ ∞

−∞
⟨i| e−iHtV†eiHt |f⟩ ⟨f | V |i⟩ e−iωtdt. (C.6)

Inserting the identity
∑

f |f⟩ ⟨f | = 1 and expressing wi = ⟨i| ρ(−∞) |i⟩, the sum

becomes a trace:

A(ω) =

∫ ∞

−∞
dt e−iωtTr

{
ρ(−∞)e−iHtV†eiHtV

}
. (C.7)

Using the cyclic property of the trace and expanding V as in Eq. (2.1.9), we get

A(ω) =

∫ ∞

−∞
dt e−iωt

(
µTr

{
e−iHtVρ(−∞)eiHtc

}
+ µ∗Tr

{
e−iHtV†ρ(−∞)eiHtc†

})
.

(C.8)

These two terms correspond to PL(t) and P∗
L(t), respectively, as de�ned in Eq. (2.1.14).

Further neglecting the unimportant µ terms, we �nd

A(ω) =

∫ ∞

0

e−iωt[PL(t) + P∗
L(t)]dt = 2Re

[∫ ∞

0

e−iωtPL(t)dt

]
, (C.9)
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where we have used the fact that
∫∞
0
e−iωtP ∗

L(t)dt = (
∫∞
0
eiωtPL(t)dt)

∗. This results

in the �nal expression for the absorption spectrum,

A(ω) ∝ Re

[∫ ∞

0

e−iωtPL(t)dt

]
. (C.10)

It should be noted that in our expression for the linear polarisation, Eq. (2.1.14),

we omitted the prefactor of −i. If this factor were retained, Eq. (C.10) would

instead involve the imaginary part of the polarisation.

D Baker-Hausdor� lemma

The Baker-Campbell-Hausdor� (BCH) formula �nds C such that eC = eAeB for

when A and B are non-commuting operators. i.e. [A,B] = AB − BA ̸= 0. A

closely related identity, which is often a key step in proving the BCH formula, is

the Baker-Hausdor� lemma (also sometimes called the Hadamard lemma). This

lemma is particularly useful for computing expressions of the form eABe−A. It

states for operators A and B,

eABe−A = B + [A,B] +
1

2!
[A, [A,B]] +

1

3!
[A, [A, [A,B]]] + · · · . (D.1)

This is an operator identity that expands the transformed operator B as an in�nite

series of nested commutators with A. In Eq.2.3.19, we have A = iHpht, and V

consists of bq+b
†
−q. Considering a single mode q, to �nd the explicit time evolution

of bq,

b̃q(t) = eiHphtbqe
−iHpht, (D.2)

we can use the Baker-Hausdor� lemma. The �rst commutator is [A,B] = i[Hph, bq]t,

where

[Hph, bq] =
∑
q′

ωq′ [b
†
q′bq′ , bq], (D.3)

and using the commutation relations [b†q′ , bq] = −δq′,q and [bq′ , bq] = 0, we com-

pute:

[b†q′bq′ , bq] = b†q′ [bq′ , bq] + [b†q′ , bq]bq′ = −δq′,qbq′ . (D.4)
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So:

i[Hph, bq]t = −iωqbq, (D.5)

and similarly with the next commutator,

[iHpht, [iHpht, bq]] = [iHpht,−iωqbq] = (iωqt)
2bq. (D.6)

Continuing, the nth commutator is given by (−iωqt)
nbq, and the lemma becomes:

b̃q(t) = bq + (−iωqt)bq +
1

2!
(−iωqt)

2bq + . . . , (D.7)

which is a Taylor series for an exponential,

b̃q(t) = bqe
−iωqt. (D.8)

Similarly, for b†−q, the time evolution in the interaction representation is:

b̃†−q(t) = b†−qe
−iωqt. (D.9)

Therefore, the time evolution of V in the interaction representation is,

Ṽ (t) =
∑
q

λq(bqe
−iωqt + b†−qe

−iωqt). (D.10)

E The time evolution operator U(t)

The time evolution operator is de�ned to be an operator that generates the inter-

action representation wave function at a time t from the wave function at t = 0,

de�ned as (see AppendixA.3),

ψI(t) = eiH0te−iHtψS(0), (E.1)
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hence, the time evolution operator U(t) is given by

U(t) = eiH0te−iHt. (E.2)

Replacing ψI(t) in Eq.A.16 by U(t)ψI(0) gives the Schrödinger equation in terms

of U(t),
d

dt
U(t) = −iṼ (t)U(t). (E.3)

Integrating both sides from 0 to t, we �nd

U(t) = 1− i

∫ t

0

Ṽ (t1)U(t1)dt1, (E.4)

which can be solved using an iterative approach (Dyson series). Noting that

U(t = 0) = 1, U(t1) can be substituted back into itself, giving:

U(t) = 1− i

∫ t

0

Ṽ (t1) dt1 + (−i)2
∫ t

0

Ṽ (t1)

(∫ t1

0

Ṽ (t2) dt2

)
dt1 + · · · . (E.5)

Paying attention the nested integral, which runs from 0 to t1 with t1 ≤ t, we

continue this iterative process, where the next term has an extra nested integral

and the integration limits would be t3 ≤ t2. This structure of the integration

limits ensures time-ordering automatically. To convert this into a time-ordered

exponential, we need to transform these nested integrals into integrals over the

same range. This is achieved in the following way,

U(t) =
∞∑
0

(−i)n

n!

∫ t

0

dt1...

∫ t

0

dtnT Ṽ (t1)...Ṽ (tn) (E.6)

= T

{
exp

{
−i
∫ t

0

Ṽ (t1)dt1

}}
, (E.7)

where T denotes the time ordering operator, which places an arbitrary number of

operators, each acting at di�erent times into their proper order, placing the oper-

ators acting at earlier times to the right of those acting at later times. The 1/n!

factor appears because we're replacing the restricted integration domain (where

times are ordered) with the full hypercube of possible time values, and then ex-
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plicitly imposing time ordering with the time evolution operator. By considering

all possible permutations of the time variables, there is a corresponding integra-

tion region with its own time ordering. Due to the symmetry of the integrand

after applying the time ordering operator, the integral over each permutation is

the same, and there are n! total permutations. Therefore, any of these ordered

integrals equals 1/n! of the integral over the entire hypercube. In other words,

the factor 1/n! compensates for the over counting due to permutations of the time

variables, since all orderings are equivalent under the time evolution operator.

F Using linked cluster expansion in the IB model

This section shows how to use linked cluster expansion to re-express the expecta-

tion value of the time-evolution operator ⟨U(t)⟩ compactly as a cumulant in the

IB model. We start from Eq.2.3.18,

⟨U(t)⟩ =

〈
T
[
exp

(
− i

∫ t

0

dt1Ṽ (t1)
)]〉

, (F.1)

where T denotes the time ordering operator and ⟨...⟩ denotes the expectation value

taken over all phonon states. The tilde denotes the interaction representation of

V (see AppendixA.3):

Ṽ (t) = eiHphtV e−iHpht. (F.2)

To bring Eq.(F.2) into a usable form, the Baker-Hausdor� lemma (AppendixD)

is used, which allows for a more explicit form of the time dependence to be found,

resulting in

Ṽ (t) =
∑
q

λ∗qbqe
−iωqt + λqb

†
−qe

iωqt. (F.3)

Next, let us consider the perturbation series generated by expanding Eq.(F.1),

〈
T
[
exp

(
−i
∫ t

0

dt1Ṽ (t1)
)]〉

=
∞∑
n=0

(−i)n

n!

∫ t

0

dt1

∫ t

0

dt2...

∫ t

0

dtn⟨T Ṽ (t1)Ṽ (t2)...Ṽ (tn)⟩,

(F.4)
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derived in AppendixE. In Eq. (F.4), Ṽ (t) consists of phonon creation and annihila-

tion operators b†q and bq, so, within the expectation value, there must be an equal

number of phonon creation and destruction operators to give a non-zero result in

each term in the series. This condition is only possible if there is an even number

of Ṽ operators. Consider the second-order term:

− 1

2

∫ t

0

dt1

∫ t

0

dt2⟨T Ṽ (t1)Ṽ (t2)⟩

= −1

2

∫ t

0

dt1

∫ t

0

dt2
∑
q,q′

〈
T
(
λ∗qbqe

−iωqt1 + λqb
†
−qe

iωqt1
)(
λ∗q′bq′e−iωq′ t2 + λq′b†−q′e

iωq′ t2
)〉

(F.5)

which will be denoted K(t), and is the building block for all higher order terms, as

we will see. Let us consider higher order terms, such as the fourth order term of

the series in Eq.(F.4), ⟨T Ṽ (t1)Ṽ (t2)Ṽ (t3)Ṽ (t4)⟩. Wick's theorem is used to reduce

the products of operators to sums of time-ordered pairs products of the operators,

taking into account all possible combinations. Using Wick's theorem, Eq.(F.4)

becomes〈
T
[
exp

(
− i

∫ t

0

dt1Ṽ (t1)
)]〉

= 1− 1

2

∫ t

0

dt1

∫ t

0

dt2⟨T Ṽ (t1)Ṽ (t2)⟩+
1

24

∫ t

0

dt1

∫ t

0

dt2

∫ t

0

dt3

∫ t

0

dt4×(
⟨T Ṽ (t1)Ṽ (t2)⟩⟨T Ṽ (t3)Ṽ (t4)⟩+ ⟨T Ṽ (t1)Ṽ (t3)⟩⟨T Ṽ (t2)Ṽ (t4)

+ ⟨T Ṽ (t1)Ṽ (t4)⟩⟨T Ṽ (t2)Ṽ (t3)⟩

)
+ . . . . (F.6)

Let us focus on the �rst pairing in the fourth order term, ⟨T Ṽ (t1)Ṽ (t2)⟩⟨T Ṽ (t3)Ṽ (t4)⟩.

Since the integrals in Eq. (F.6) all contain the same limits, this product of pairs is

therefore identical to a product of two second-order terms, K(t)2. Therefore, all

second order and beyond terms in the series can be represented in terms of the

second-order term K(t):

〈
T
[
exp

(
− i

∫ t

0

dt1Ṽ (t1)
)]〉

= 1 +K(t) +
1

2
K2(t) + . . . = eK(t), (F.7)
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where K(t) is known as the cumulant. In fact, this cancellation of higher order

terms is a special feature of the IB model and a consequence of diagonal and

bilinear phonon coupling. Thus, the IB model is exactly solvable and the linear

optical polarisation, Eq.(2.3.17), can be compactly written as

P(t) = θ(t)e−iωX teK(t). (F.8)

G Evaluating the cumulant K(t)

The expectation value in the cumulant K(t), Eq.(2.3.21), where Ṽ (t) is de�ned in

Eq.(2.3.19), is evaluated in the following way,

⟨T Ṽ (t1)Ṽ (t2)⟩ =
∑
q,q′

〈
T
(
λ∗qbqe

−iωqt1+λqb
†
−qe

iωqt1
)(
λ∗q′bq′e−iωq′ t2+λq′b†−q′e

iωq′ t2
)〉
.

(G.1)

Then, multiplying out the brackets and considering the case where t1 > t2, we

have ∑
q

|λq|2
(
⟨bqb†q⟩e−iωq(t1−t2) + ⟨b†qbq⟩eiωq(t1−t2)

)
, (G.2)

and similarly, when t2 > t1,

∑
q

|λq|2
(
⟨bqb†q⟩e−iωq(t2−t1) + ⟨b†qbq⟩eiωq(t2−t1)

)
, (G.3)

where the orthogonality of states has been used i.e. ⟨bqbq⟩ = ⟨b†qb†q⟩ = 0 and

⟨bqb−q′⟩ = δq,−q′⟨bqb†q⟩. Combining Eq. (G.2) and Eq. (G.3), the general case is

expressed as: ∑
q

|λq|2
(
⟨bqb†q⟩e−iωq |t1−t2| + ⟨b†qbq⟩eiωq |t1−t2|

)
. (G.4)

By using the Bose commutation relation, and the fact that b†qbq is the number

operator N(ωq) for phonons, we can write,

∑
q

|λq|2
(
(1 +N(ωq))e

−iωq |t1−t2| +N(ωq)e
iωq |t1−t2|

)
, (G.5)
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where N(ω) is the Bose-distribution function de�ned in Eq.2.3.24. This results in

the cumulant, explicitly given by

K(t) = −1

2

∫ t

0

dt1

∫ t

0

dt2
∑
q

|λq|2
(
(1+N(ω))e−iωq |t1−t2|+N(ω)eiωq |t1−t2|

)
. (G.6)

Analytically performing the double integration over time gives Eq. (2.3.23).

H Exciton-phonon coupling elements and phonon

spectral density

Throughout this work, we consider semiconductor QDs as candidates for qubits,

using typical InGaAs parameters outlined in [37, 46]. At low temperatures, the

exciton-phonon interaction is primarily governed by the deformation potential cou-

pling with longitudinal acoustic phonons. Assuming that the phonon parameters

within the QDs closely resemble those of the surrounding material, and further

assuming that the acoustic phonons exhibit linear dispersion, ωq = vsq, where

q = |q| and vs is the sound velocity in the material, the exciton-phonon matrix

coupling element for an exciton in qubit j = 1, 2 is given by

λq,j =

√
qDj(q)√
2ρmvsV

, (H.1)

where ρm is the mass density of the material, V is the sample volume, and

Dj(q) =

∫
dre

∫
drh|ΨX,j(re, rh)|2

(
Dce

iq·re −Dve
iq·rh

)
(H.2)

is the coupling form-factor [37, 46], with Dc(v) being the deformation potential of

the conduction (valence) band. Assuming a factorisable form of the exciton wave

functions, ΨX,j(re, rh) = ψe,j(re)ψh,j(rh), where ψe(h),j(r) is the con�ned electron

(hole) ground state wave function in QD j, the form-factor simpli�es to

Dj(q) =

∫
dr
[
Dc|ψe,j(r)|2 −Dv|ψh,j(r)|2

]
eiq·r . (H.3)
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H.1 Isotropic QDs

Choosing spherically symmetric parabolic con�nement potentials, the ground-state

wave functions of the carriers take Gaussian form, which in the simpler case of

equal electron and hole con�nement lengths, le,j = lh,j = lj, is given by

ψj(r) =
1

π3/4l
3/2
j

exp

{
−(r− dj)

2

2l2j

}
, (H.4)

where dj is the coordinate of the center of QD j. Substituting Eq. (H.4) into

Eq. (H.3), performing the integration over the whole space and substituting the

result into Eq. (H.1), we obtain

λq,j =
√
qλ0 exp

{
−l2j q2/4

}
eiq·dj , (H.5)

where

λ0 =
Dc −Dv√
2ρmvsV

. (H.6)

Choosing the �rst QD located at the origin (d1 = 0) we �nd d2 = d, where d

is the distance vector between the QDs. Converting the summation over q to an

integration,
∑

q → V
(2π)3

∫
dq, and using spherical coordinates, the spectral density

Jjj′(ω) de�ned by Eq. (3.3.15) takes the form

Jjj′(ω) =
J0v

4
s

2

∫ ∞

0

dq q3 exp
{
−q2l2

}
δ(ω − vsq)

×
∫ π

0

dθ sin θ


1 j = j′

exp{iqd cos θ} j < j′

exp{−iqd cos θ} j > j′ ,

(H.7)

where

J0 =
(Dc −Dv)

2

4π2ρmv5s
, (H.8)

d = |d|, and l2 = (l2j + l2j′)/4 (for brevity omitting the indices j and j′ in the

new length l introduced). Note that the reason for de�ning J0 in this way, not

absorbing the other constant factors v4s/2 is because J0 is the constant factor in
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the single QD case, i.e. in [43]. Performing the integration over the polar angle θ,

we �nally �nd

Jjj′(ω) = J0 ω
3 exp

{
−ω

2l2

v2s

}
×

1 j = j′

sinc
(

ωd
vs

)
j ̸= j′ ,

(H.9)

where sinc(x) = sin(x)/x.

H.2 Anisotropic QDs

For anisotropic QDs with in-plane con�nement length lj and perpendicular con�ne-

ment length lj,⊥, the Gaussian ground-state wave functions Eq. (H.4) are modi�ed

to

ψj(x, y, z) =
1

π3/4ljl
1/2
⊥,j

exp

{
−(x− dx,j)

2 + (y − dy,j)
2

2l2j

}

× exp

{
−(z − dz,j)

2

2l2⊥,j

}
, (H.10)

where we have again taken the case of identical electron and hole localisation

lengths, le,j = lh,j = lj and l⊥,e,j = l⊥,h,j = l⊥,j, and used the components

(dx,j, dy,j, dz,j) of the vector dj. Following the same procedure as for isotropic

qubits, we obtain

λq,j =
√
qλ0 exp

{
−l2j (q2x + q2y)/4− l2⊥,jq

2
z/4
}
eiq·dj . (H.11)

The above equation is assuming that both QDs have the same anisotropy axis

(along z). Assuming further that the centers of the QDs lie on the z-axis, so that

dx,j = dy,j = 0 and dz,j = dj, we �nd in spherical coordinates

λq,j =
√
qλ0 exp

(
−q2(l2j sin2(θ) + l2⊥,j cos

2(θ))/4 + iqdj cos(θ)
)
, (H.12)
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using qx = q sin(θ) cos(ϕ), qy = q sin(θ) sin(ϕ), and qz = q cos(θ). The spectral

density is then given by

Jjj′(ω) =
J0v

4
s

2

∫ ∞

0

dq q3δ(ω − vsq)

∫ π

0

dθ sin(θ) exp
{
−q2l2 sin2(θ)− q2l2⊥ cos2(θ)

}

×


1 j = j′

exp{iqd cos(θ)} j < j′

exp{−iqd cos(θ)} j > j′ ,

(H.13)

where l2 = (l2j + l2j′)/4 and l2⊥ = (l2⊥,j + l2⊥,j′)/4. Performing the integration over

the polar angle θ, we obtain

Jjj′(ω)=J0 ω
3e−q2l2⊥ ×


F
(
0, q
√
l2⊥ − l2

)
j = j′

F

(
d

2
√

l2⊥−l2
, q
√
l2⊥ − l2

)
j ̸= j′

(H.14)

with q = ω/vs, where

F (α, β) =

√
π

4β

[
e−2iαβw(α− iβ)− e2iαβw(α + iβ)

]
, (H.15)

and w(z) is the Faddeeva function. Note that Eq. (H.14) is valid for both l⊥ > l

and l⊥ < l, and in the isotropic case l⊥ = l simpli�es to Eq. (H.9), as shown in

Sec.H.3 below.

H.3 Faddeeva function and some properties of F (α, β)

The Faddeeva function w(z) is de�ned as

w(z) =
2√
π

∫ ∞

0

e2izte−t2dt , (H.16)

for any complex number z. Physically, it has the meaning of a convolution of

Gaussian and complex Lorentzian functions. In fact, for Im z > 0, Eq. (H.16) is
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equivalent to

w(z) =
i

π

∫ ∞

−∞

e−t2

z − t
dt . (H.17)

The Faddeeva function has the properties

w(−z) = 2e−z2 − w(z) and [w(z)]∗ = w(−z∗) , (H.18)

and is linked to the error function erf(z) by

w(z) = e−z2 [1 + erf(iz)] , (H.19)

where

erf(z) =
2√
π

∫ z

0

e−t2dt . (H.20)

It can also be expressed in terms of the Dawson function D(z) as

w(z) = e−z2 +
2i√
π
D(z) (H.21)

where

D(z) =

∫ ∞

0

e−t2 sin(2zt)dt = e−z2
∫ z

0

et
2

dt . (H.22)

Clearly, all three functions, w(z), erf(iz), and D(z), are equivalent in the sense

that they can be expressed by each other. Analytically, the error function has an

advantage that it is an entire function, so that [erf(z)]∗ = erf(z∗), in addition to

being an odd function, erf(−z) = − erf(z). However, numerically, the Faddeeva

function (as well the Dawson function) is generally more accurate and stable, since

the error function erf(z) diverges at large imaginary values of z, but the Faddeeva

and Dawson functions do not.

The function F (α, β), introduced in Eq. (H.15) can also be written as

F (α, β) =
1

2

∫ 1

−1

eβ
2(1−x2)e2iαβxdx , (H.23)

115



re�ecting the integration over the polar angle in Eq. (H.13). It has the properties

F (α, β) = F (−α, β) = F (α,−β) = F ∗(α, β) , (H.24)

which are a easy to show using the de�nition Eq. (H.23), but can be obtained also

from the analytic form Eq. (H.15) and the properties of the Faddeeva function,

Eq. (H.18).

For α = 0, corresponding to d = 0 in Eq. (H.14), one has

F (0, β) =

√
π

4

w(−iβ)− w(iβ)

β
=

√
π

2
eβ

2 erf(β)

β
(H.25)

and in the limit β → 0, corresponding to isotropic dots (l⊥ = l) or zero-frequency

(q = 0),

lim
β→0

F (0, β) = 1 , (H.26)

so that Eq. (H.14) simpli�es to Eq. (H.9).

In the isotropic limit (l⊥ = l), β → 0 and α = qd/(2β) → ∞, and we obtain from

Eq. (H.15)

lim
β→0

F

(
qd

2β
, β

)
= −

√
π

4

(
eiqd − e−iqd

)
lim
β→0

1

β
w

(
qd

2β

)
= sinc (qd) , (H.27)

using

lim
z→∞

zw(z) = lim
z→∞

1√
π

∫ ∞

0

eiz
′
exp

{
− z′2

2z2

}
dz′ =

i√
π

(H.28)

with z′/z being real, as it follows from the de�nition Eq. (H.16), again, in agree-

ment with Eq. (H.9).

Let us �nally consider the limit of a strong anisotropy, l ≫ l⊥ which is used at the

end of Sec. J.1.2 below. In this limit,

α =
d

2
√
l2⊥ − l2

≈ −id
2l

and β = q
√
l2⊥ − l2 ≈ iql , (H.29)
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with 2αβ = qd. Under the condition that |α| ≪ |β| (equivalent to d ≪ 2l2q) one

can then obtain from Eq. (H.15)

F (0, β)− F (α, β) ≈ −
√
π

4iql

[
(1− eiqd)w(−ql)− (1− e−iqd)w(ql)

]
=

√
π

4iql

[
4w(ql) sin2 qd

2
− (1− eiqd)e−q2l2

]
, (H.30)

using Eq. (H.18). Clearly, this function vanishes if sin(qd/2) = 0. In the case of

ql ≫ 1 this simpli�es to just

F (0, β)− F (α, β) ≈
√
π

iql
w(ql) sin2 qd

2
≈ 1

q2l2
sin2 qd

2
, (H.31)

using the limit Eq. (H.28).

I Choosing the time step in the Trotter decompo-

sition approach

The energy separation R between the hybridised states determines the timescale

τ0 =
2π

R
, (I.1)

which is the period of the corresponding Rabi rotations. In the discretisation used

in the LN approach described in Sec. 3.3.4, this timescale should be much larger

than the time step ∆t of discretisation, ∆t ≪ τ0. In the cavity-coupled two-

qubit system, R can take three di�erent values, and the above condition should

be ful�lled for all of them. For example, at zero detuning (Ω1 = Ω2 = ΩC), the

same coupling to the cavity (g1 = g2 = ḡ), and no dipolar coupling (g = 0), the

largest energy separation is evaluated as R = 2
√
2ḡ, see the inset in Fig. 4.3. In

the case of the dipolar coupled QDs without a cavity, there are only two hybridised

states and therefore only one Rabi splitting, evaluated to R = 2g at zero detuning

(Ω1 = Ω2). At the same time, the polaron timescale τIB is given by [43]

τIB ≈
π
√
l2 + l2⊥
vs

(I.2)
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for anisotropic QDs with in-plane (l) and perpendicular (l⊥) Gaussian lengths.

The polaron timescale characterises the time to form or disperse a polaron cloud

following the creation or destruction of an exciton in a QD. The selected time step

∆t must be large enough such that for a given number of L+ 1 time steps within

the memory kernel, the resulting memory time of (L + 1)∆t is larger than τIB.

Speci�cally, the total time considered via the time steps must cover the dynamics

of the cumulant Kinim de�ned in Eq.(3.3.19), which is dependent on the cumulant

elements C11, C12, and C22, with the full temporal evolution de�ned in Eq. (3.3.20).

0 1 2 3 4 5 6 7
time (ps)
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0.10

0.08

0.06

0.04

0.02

0.00

C 1
1(

t)

IB

Figure I.1: Temporal evolution of C11(t) (blue line) and the phonon memory time
τIB (vertical red dashed line). The parameters are as in Fig. 4.1(c) resulting in
τIB = 5.39 ps.

Focusing on the cumulant element C11(t), we see from Fig. I.1 that (L+1)∆t ≥ τIB

is in fact su�cient to fully cover the dynamics due to this element C11(t). In prac-

tice, however, one should perform a convergence test for the chosen parameters,

to ensure the full memory time is taken into account. In the case of identical

QDs, C11(t) = C22(t), otherwise the larger τIB of the two QDs should be used.

However since both QD excitons couple to the same phonons, there are extra cu-

mulant elements K12(s) which depend on the distance d separating the QDs. The

e�ect of this distance dependence is the introduction of a delay time before C12(t)

starts to change, this can be seen in the inset of Fig. I.2. Physically this delay

time is due to the time it takes a phonon to travel between the QDs, which is

approximately d/vs. For consistency, we de�ne in the calculations the delay time
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tD to be the time at which C12(t) change is equal to a half of its minimum value,

i.e. C12(tD) = C12(∞)/2. The values of tD are shown in Fig. I.2 (red curve) as

function of the interdot distance, along with its rough estimate d/vs (red dashed

line) working well at large distances.
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Figure I.2: The asymptotic value of |C12(t)| (blue line, left axis) and the delay
time tD (red line, right axis) as functions of the interdot distance d, with the
red dashed line being the estimate d/vs of the time taken for a phonon to travel
between the QDs. The inset shows the temporal evolution of B(t) at d = 20 nm,
demonstrating the delay time, decay and saturation at a minimum value. The
green vertical dashed line in the inset shows the full memory time considered. The
parameters used are the same as in Fig. I.1.

The presence of the delay time tD in the cumulant function C12(t) implies that

the time step in discretisation must be increased to cover the full memory time of

C12(t), so the condition ∆t = τIB/(L + 1) suitable for a QD-cavity system [43] is

no longer su�cient for distant coupled QDs with increasing QD separation d. We

therefore modify this condition to

∆t =
tD + τIB
L+ 1

, (I.3)

which takes the delay time into account, thus covering the memory time for all

cumulant elements. The green vertical dashed line in the inset of Fig. I.2 demon-

strates that all changes of the cumulant functions, Cij(t), are covered over the

memory time ∆t(L+ 1).
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As the memory time increases due to the increase in delay time with increasing d,

the accuracy of the calculation decreases for a given L due to the increase in time

step. As seen from the inset, C12(t) saturates at a minimum value C12(∞), and

the blue line in Fig. I.2 shows the decrease of |C12(∞)| as d increases, implying

that C12(t) → 0 as d → ∞. This means in the limit of d → ∞, the full shared

phonon bath calculation becomes equivalent to the independent bath case, which is

naturally expected, whereby the result is now independent of the distance between

the QDs and therefore ∆t = τIB/(L+ 1) is again su�cient since there is no delay

time through the K12(s) cumulant elements.

J Fermi's golden rule

J.1 Fermi's golden rule: Dipolar coupled qubits

In this appendix, we apply a unitary transformation to the full Hamiltonian

Eq. (3.2.1) of the system in Case A, considering two directly coupled QDs without

cavity. Following this transformation, we use FGR to calculate the phonon-assisted

transition rates between the hybridised QD states, as illustrated in Fig. J.1, and

consequently the dephasing rates of the linear polarisation.

(a) (b)

Figure J.1: (a) Schematic of the system for a pair of dipole-dipole coupled
anisotropic QDs separated by distance d and a phonon with the wave vector q
emitted or absorbed at an angle θ (for clarity the dipole-dipole interaction is shown
only for the left QD acting on the right QD). (b) Nonzero-detuning energy level
diagram for the hybridised states |±⟩ composed from the basis states |1⟩ and |2⟩
of isolated QDs. Red and blue arrows show phonon-assisted transitions between
the hybridised states, resulting in the line broadening Γ− and Γ+ of the lower and
upper states, respectively.

Let us consider the full Hamiltonian H = H0 + HIB, de�ned in Eqs. (3.2.2) and
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(3.2.3) with the cavity coupling g1 = g2 = 0. In the basis of pure QD states, |1⟩

and |2⟩, H0 has the following matrix form

H0 =

Ω1 g

g Ω2

 . (J.1)

This matrix can be diagonalised by a unitary transformation S†H0S = Λ, where

S = S−1 = S† =

D− D+

D+ −D−

 , (J.2)

with D± given by Eq. (4.2.4) and

Λ =

Ω+ 0

0 Ω−

 (J.3)

being a diagonal matrix of the eigenvalues Eq. (4.2.7).

Applying this transformation to the full Hamiltonian, we obtain

H̃ = S†HS =

Ω+ 0

0 Ω−

+

D− D+

D+ −D−

V1 0

0 V2

D− D+

D+ −D−

+Hph1

=

Ω+ + V+ V

V Ω− + V−

+Hph1 , (J.4)

with V± de�ned in Sec.4.2.2, and 1 is the 2 × 2 identity matrix. The main

outcome of this transformation is the o�-diagonal coupling to phonons given by

V = D+D−(V1 − V2). This coupling is responsible for the phonon-assisted transi-

tions between the hybridised states and ultimately for the long-time dephasing of

the optical polarisation.

J.1.1 Isotropic QDs

Here we evaluate the rate Γph in FGR Eq. (4.2.21) for isotropic QDs, substituting

Eq. (H.5) into Eq. (4.2.22), converting the summation over q to an integration and
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further expressing the integration in spherical coordinates, we �nd

Γph =
D2

+D
2
−(Dc −Dv)

2

8πρmvs

∫ ∞

0

dq q3e−q2l2 (J.5)

×
∫ π

0

dθ sin(θ)(2− eiqd cos θ − e−iqd cos θ)δ(vsq −R) ,

where l2 = (l21 + l22)/4 (for identical QDs l1 = l2 = l
√
2). Integrating over θ, we

obtain

Γph =
D2

+D
2
−(Dc −Dv)

2

2πρmv5s
R3e

−R2l2

v2s

[
1− sinc

(
Rd

vs

)]
. (J.6)

In the case of zero detuning, R = 2g and D+ = D− = 1/
√
2. In the limit of

d → ∞, sinc(Rd/vs) → 0, so that Γph becomes independent of d. In the limit

of d → 0, sinc(x) ≈ 1 − x2/6, leading to a d2 dependence at small distances and

vanishing dephasing rates at d = 0.

Let us note also that for a 1D phonon bath which is for example the case of a QD

embedded in a quantum wire, the latter providing a 2D quantum con�nement of

phonon modes, Eq. (4.2.22) would give instead, for the same coupling matrix ele-

ment Eqs. (H.1) and (H.2) and the linear phonon dispersion ω = vsq, the following

dependence on the Rabi splitting R and interdot distance d:

Γph ∝ Re
−R2l2⊥

v2s sin2

(
Rd

2vs

)
, (J.7)

where l⊥ is the Gaussian length of the electron and hole con�nement in the direc-

tion of the phonon propagation.

J.1.2 Anisotropic QDs

Performing a similar calculation for anisotropic QDs, we �nd, after substituting

the exciton-phonon coupling element Eq. (H.12) into Eq. (4.2.22):

Γph =
D2

+D
2
−(Dc −Dv)

2

8πρmvs

∫ ∞

0

dq q3 (J.8)

×
∫ π

0

dθ sin(θ)e−q2l2 sin2 θe−q2l2⊥ cos2 θ

×
(
2− eiqd cos θ − e−iqd cos θ

)
δ(vsq −R) ,

122



where l2 = (l21 + l
2
2)/4 and l

2
⊥ = (l2⊥,1+ l

2
⊥,2)/4 (for identical QDs l1 = l2 = l

√
2 and

l⊥,1 = l⊥,2 = l⊥
√
2). Performing the integration, we obtain

Γph =
D2

+D
2
−(Dc −Dv)

2

2πρmv5s
R3e−q2l2⊥

[
F

(
0, q
√
l2⊥ − l2

)

−F

(
d

2
√
l2⊥ − l2

, q
√
l2⊥ − l2

)]
, (J.9)

where q = R/vs and the function F (α, β) is given by Eq. (H.15).

For strongly anisotropic QDs with l ≫ l⊥, Rl/vs ≫ 1 (small phonon wavelength)

and d≪ 2l2q (|α| ≪ |β|), we �nd using Eq. (H.31)

Γph =
D2

+D
2
−(Dc −Dv)

2

2πρmv3s

R

l2
e
−R2l2⊥

v2s sin2

(
Rd

2vs

)
, (J.10)

which has the same dependence on the distance d and the Rabi splitting R as in

the model of 1D phonons Eq. (J.7).

J.2 Fermi's golden rule: Cavity-mediated coupled qubits

(a) (b)

Figure J.2: (a) Schematic of the system for a pair of anisotropic QDs separated
by distance d each interacting independently with the cavity mode and a phonon
with the wave vector q emitted or absorbed at an angle θ. (b) The g1 = g2 = ḡ
and nonzero-detuning (δ ̸= 0) energy level diagram for the hybridised states |+,±⟩
and |−⟩ composed from the basis of |1⟩, |2⟩ and |C⟩, of the isolated QDs and the
cavity with a single photon. The transitions indicated by the red, blue and green
arrows result in the line broadening (dephasing rates) of the central, upper, and
lower states, denoted by Γ−, Γ+,+, and Γ+,−, respectively.

Let us now focus on the other special case (Case B) of no direct dipolar coupling

123



of two QD qubits, i.e. g = 0, but a indirect coupling mediated by their interaction

with a common cavity mode with the coupling constants g1 and g2. Reducing

the full basis to pure QD states, |1⟩ and |2⟩, and the single-photon cavity state

|C⟩, which is su�cient for the linear polarisation, the Hamiltonian of the cavity-

mediated system takes the form

H = H0 + V1 |1⟩ ⟨1|+ V2 |2⟩ ⟨2|+Hph , (J.11)

where

H0 = Ω1 |1⟩ ⟨1|+ Ω2 |2⟩ ⟨2|+ ΩC |C⟩ ⟨C| (J.12)

+g1(|1⟩ ⟨C|+ |C⟩ ⟨1|) + g2(|2⟩ ⟨C|+ |C⟩ ⟨2|) ,

and Hph and Vi are given by Eq. (3.2.3). We apply a transformation diagonalising

H0 as S
†H0S = Λ, so the full Hamiltonian transforms to

H̃ = S†HS (J.13)

= 1Hph + S†


Ω1 0 g1

0 Ω2 g2

g1 g2 ΩC

S + S†


V1 0 0

0 V2 0

0 0 0

S ,

where 1 is the 3 × 3 identity matrix. In general, H0 is diagonalised numerically,

providing the hybridised state energy eigenvalues Λj. The transformation of the

exciton-phonon coupling generates o�-diagonal elements responsible for phonon-

assisted transition between hybridised QD-cavity states which we account for be-

low using FGR.

Focusing on the analytically solvable case of zero detuning between the QD qubit

states, Ω1 = Ω2 = Ω (e.g. for identical qubits), and the same coupling of both

qubits to the cavity, g1 = g2 = ḡ, the transformation matrix has the following
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explicit form

S =


d−

1√
2

d+

d− − 1√
2

d+
√
2d+ 0 −

√
2d−

 , (J.14)

where

d± =
1

2

√
1± δ

r
(J.15)

with

r =
√
δ2 + 8ḡ2 and δ = ΩC − Ω , (J.16)

the latter being the cavity-QD detuning. The Hamiltonian Eq. (J.11) then trans-

forms to

H̃ = S†HS = 1Hph +


Ω+ δ+r

2 + U+d
2
−

U−d−√
2

U+d+d−
U−d−√

2
Ω+ U+

2
U−d+√

2

U+d+d−
U−d+√

2
Ω+ δ−r

2 + U+d
2
+

 , (J.17)

where U± = V1±V2. By applying this transformation, we go from the |1⟩, |2⟩, |C⟩

basis to the hybridised state basis

|+,±⟩ = d∓(|1⟩+ |2⟩)±
√
2d∓ |C⟩ ,

|−⟩ = (|1⟩ − |2⟩)/
√
2 , (J.18)

analogous to that in the polariton transformation of a qubit-cavity system outlined

in [43]. Figure J.2 illustrates the level structure of the hybridised states for nonzero

detuning (δ ̸= 0) and the phonon-assisted transitions due to the o�-diagonal ele-

ments in Eq. (J.17). The rates of these transitions are estimated below via FGR,

similar to Sec. 4.2.2:

Γ↑,± = N(R)Γph,± and Γ↓,± = (N(R) + 1)Γph,± , (J.19)

respectively, for the upwards and downwards transitions, where

Γph,± = π
∑
q

|c0(λq,1 ± λq,2)|2δ(ω −R) . (J.20)
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There are six possible transitions corresponding to the six o�-diagonal matrix

elements in Eq. (J.17). N(R) is the Bose distribution function taken at the energy

R, which is the separation of the energy levels of the mixes states involved in

the transition and c0 is the corresponding factor. These energy levels are given

by Λ+,± = Ω + (δ ± r)/2 and Λ− = Ω, according to Eq. (J.17). In particular,

for |+,−⟩ ↔ |−⟩ transitions, R = (r − δ)/2 and c0 = d+/
√
2; for |−⟩ ↔ |+,+⟩

transitions, R = (r+δ)/2 and c0 = d−/
√
2; �nally, for |+,−⟩ ↔ |+,+⟩ transitions,

R = r and c0 = d+d−. Note that for the phonon-assisted transitions between the

neighbouring levels (|+,−⟩ ↔ |−⟩ and |−⟩ ↔ |+,+⟩), the exciton-phonon coupling

matrix elements λq,j contribute to Eq. (J.20) as a di�erence due to U−, thus giving

Γph,−, and for transitions between the distant levels (|+,−⟩ ↔ |+,+⟩) as a sum

due to U+, thus giving Γph,+, see Eq. (J.17).

Using the same procedure as in Appendix J.1, we evaluate the transition rates

Eq. (J.20) for identical isotropic and anisotropic QD cubits. For isotropic dots,

Eq. (J.20) yields

Γph,± =
c20(Dc −Dv)

2

2πρmv5s
R3e

−R2l2

v2s

[
1± sinc

(
Rd

vs

)]
, (J.21)

where the di�erence to Eq. (J.6) are the constant factors, the energy distance

R, and most importantly the presence of the ± sign before the sinc function,

di�erentiating the neighbouring (−) and the distant (+) level transitions. Note

that the contribution of the distant level transitions to the decoherence is typically

less signi�cant due to the factor e−R2l2/v2s in which R2 is four times larger (for zero

detuning) than for the neighbouring level transitions. Similarly, for anisotropic

QDs we �nd

Γph,± =
c20(Dc −Dv)

2

2πρmv5s
R3e−q2l2⊥

[
F

(
0, q
√
l2⊥ − l2

)

±F

(
d

4
√
l2⊥ − l2

, q
√
l2⊥ − l2

)]
(J.22)

with q = R/vs.
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Using Eq. (J.21) or Eq. (J.22) in combination with Eq. (J.19), the contribution to

the line broadening for a speci�c phonon-assisted transition can be found. The

line broadening Γ+,± and Γ− of the hybridised states is the sum of the broadening

by the two available transitions.

K Triexponential �t of the polarisation for cavity-

mediated coupled QD qubits

0 5 10 15 20 25
time (ps)

0.0

0.5

1.0

|P
11

(t)
|

d = 5nm

Figure K.1: Linear optical polarisation |P11(t)| (blue dots) and its complex tri-
exponential �t (red lines) for cavity mediated coupled anisotropic QD qubits at
zero detuning, separated by a distance d = 5 nm, with excitation and measurement
in QD 1. The parameters are as in Fig. 4.3 with ḡ = 0.5meV.

We show in Fig.K.1 the optical linear polarisation |P11(t)| for Case B in the

main text. The linear polarisation (blue dots) for cavity-coupled QD qubits again

starts from unity due to the excitation and measurement of the same QD state

and have the temporal oscillations now at three frequencies due to addition of

a cavity mode. We apply a complex triexponential �t (red curve) of the form∑
j Cje

−iωjt, extracting the complex amplitudes Cj, energies Re ωj, and dephasing

rates Γj = − Im ωj of the phonon-dressed hybridised states. The �t is applied

after the phonon-memory cut-o� (dashed green vertical line), beyond the polaron

cloud formation time. The dephasing rates are then extracted across a range of

distances, providing Fig. 4.3.
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Figure L.1: Power law �t applied to the Γ+(L) (Γ−(L)) values across a range of
neighbours, L, for d = 5 nm is shown in the upper (lower) �gure. The blue crosses
are the extracted Γ(L) values, the red curve is the power law model with β = 2,
and the red horizontal dashed line is the estimated value of Γ(∞). The parameters
are as in Fig. 4.1(b) with T = 20K.

L Extrapolation of �t parameters

As detailed in Sec. 5.6, Figs. 4.1 and 4.3 are created by calculating the linear optical

polarisation for a given number of neighbours (L), then applying a �t to the long

time data and extracting the �t parameters. The parameters corresponding to

the line broadening, Γ(L), are extracted across a range of neighbours, and the

convergence of Γ(L) to the exact (L = ∞) value is assumed to follow a power law

model, given by,

Γ(L) = Γ(∞) + CL−β. (L.1)

Fig. L.1 shows the Γ(L) calculated values (blue crosses) for directly coupled QD

qubits treated in Case A, with the power law model applied (red curve), and the

extrapolated Γ(∞) is shown as a red dashed line. The value of Γ(∞) is estimated

for the eight valued of Γ(L) shown in Fig. 5.11, by minimising the root mean square
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deviation from the power law Eq. (L.1) for β = 2.
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