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Learning-Based Tube MPC for Multi-Area
Interconnected Power Systems with Wind Power

and HESS: A Set Identification Strategy
Zhuoer An, Xinghua Liu, Senior Member, IEEE, Gaoxi Xiao, Senior Member, IEEE, Meng Zhang,

Senior Member, IEEE, Zhongmei Pan, Yu Kang, Senior Member, IEEE, Nicholas Jenkins, Fellow, IEEE

Abstract—With the development of intelligent automation
technology and advancement of modernization, the degree of
interconnection between power systems is increasing. With the
main purpose of involving hybrid energy storage systems (HESS)
in optimizing system frequency, this work proposes a learning-
based tube model predictive control (MPC) for the multi-area
interconnected power systems with wind power and HESS. The
suggested method has strong adaptability due to the introduction
of a new robust constraint handled by a learning mechanism. By
identifying the uncertainty set of coupling strength of online data
in the learning stage, the optimal MPC problem is calculated
in the adaptive stage, which effectively reduces the adverse
effects of disturbances and noises in multi-area interconnected
power systems. Moreover, an input to state stability criterion
is provided to ensure the robust stability of the system with
uncertain disturbances and noises. With simulations on a four-
area interconnected power system with wind power and HESS,
the effectiveness of proposed method is discussed on an improved
IEEE 39-bus system.

Note to Practitioners—To achieve a balance between load
demand and power generation in multi-area interconnected
power systems, various load frequency controls have been widely
designed. The disturbances caused by high interconnectivity and
the noise generated by electrical equipment pose a threat to the
reliable operation of the power system. There is an urgent need
to develop appropriate strategies to resist these interferences. So
far, HESS have been widely applied in power systems with new
energy to improve key system responses, such as power system
frequency. This prompts defenders to design different types of
external controllers to optimize the frequency deviation of the
power system based on HESS. To tackle disturbances and noises
which impose serious threat to system stability, we introduce a
learning mechanism on the property of invariant sets and propose
a learning-based tube MPC strategy that identifies disturbance
invariant sets during the learning stage and calculates the optimal
output during the adaptation stage. Moreover, simulations are
presented to demonstrate that the proposed tube MPC strategy
can provide satisfactory stability performance for interconnected
power systems under disturbances and noises.
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I. INTRODUCTION

Multi-area interconnected power system can improve the
efficiency, flexibility and expansibility of the traditional power
system operation and management [1]–[3]. However, the
multi-area interconnection makes the dynamic process of the
whole power system more complicated, posing a challenge to
the stable operation of the power system. The frequency of
power system is the key index for evaluating power quality.
During periods with unbalanced power generation and load
demand caused by load changes, frequency deviation from
the rated value may occur, which greatly threatens system
stability. To track the random changes of load disturbances, it
is necessary to control the output power of the generator set in
real time. The load frequency control (LFC) therefore becomes
an important method to ensure the power supply quality and
reliable operation of the power system under a high degree of
interconnection [4]–[6].

The frequency oscillations caused by the large-scale and
complex interconnected power systems are more severe than
those often faced by the single grid [7], [8]. Many strategies
have been proposed to ameliorate the frequency stability of
multi-area power systems [9]–[11]. Li et al. [12] addressed
the LFC problem for the semi-Markov jump interconnected
power systems suffering from actuator failures and incomplete
transition rates. For multi-area power systems under the false
data injection attacks, an indirect–direct secure strategy was
proposed for the LFC problem [13]. An LFC controller
based on the T–S fuzzy model was proposed to effectively
solve the frequency problem of the interconnection line in
the interconnected power system with wind power grid [14].
To address the LFC problem in multi-area power systems
under actuator failures, an LFC control scheme was proposed
which considered the communication bandwidth constraints
and uncertainties [15].

Model predictive control (MPC) not only has the advantage
of robust control in solving system parameter uncertainty, but
also has the ability to use predictive control to handle system
constraints [16]–[18]. In [19], a robust multivariable MPC was
proposed for the solution of LFC in a multi-area power system
based on the multivariable LFC characteristic, generation rate
constraint and uncertainty. Tube MPC separates the nominal
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states from the actual states and transforms the control of
the actual system into the nominal system. Therefore, this
MPC strategy can adjust the system control performance by
designing constraint sets flexibly, and has strong robustness
in practical engineering applications. In [20], a decentralized
controller for improving the transient stability of multimachine
power systems was proposed. A thermal management system
model with uncertain parameters for the fuel cell system to
simulate unforeseeable disturbances in real systems was de-
veloped based on tube MPC in [21]. Similarly, Literature [22]
studied a frequency regulation method with MPC applied to a
renewable penetrated isolated grid in the presence of a large
number of electric vehicles. In addition, tube MPC controllers
capable of resisting the external disturbance were designed in
[23] and [24] to efficiently regulate the frequency of the power
system. However, traditional roubust MPC does not have the
parameter adaptivity and cannot update the control parameters
in real time in response to the change of environment, which
means that control performance and system stability may face
challenges in complex power systems.

To make the multi-area interconnected power system more
intelligent while ensuring the safety and reliability of power
transmission, the frequency modulation strategy with learning
awareness is worth considering. In [25], an LFC strategy
based on learning MPC was proposed for multi-microgrids
in the vehicle networks. In [26], the policy learning problem
was proposed for the nonlinear MPC with system constraints,
where the nonlinear MPC policy was learned offline. Tang
et al. [27] investigated an adaptive MPC strategy for LFC of
hybrid power system. However, most adaptive strategies still
only consider a single interference after significantly increas-
ing complexity, which cannot achieve satisfactory frequency
regulation performance.

In multi-area interconnected power systems, hybrid energy
storage systems (HESS) is mainly responsible for generating
and absorbing active power from the power systems to smooth
out fluctuations in system frequency. In view of the negative
effects of random fluctuations of wind power on the power
grid, literature [28] proposed a wind power filtering method
to appropriately adjust the HESS size using a wavelet capacity
allocation algorithm. In [29], a model on peak load shifting
was proposed for a power system with energy storage device
and wind power based on the situation awareness theory.
Moreover, a dynamic and unified power management method
was designed in [30] for a wind-photovoltaic powered low-
voltage direct current microgrid equipped with an actively
configured HESS unit. Currently, HESS is more applied in
the electric vehicles, auxiliary new energy power generation
systems, photovoltaic power generation systems and other
fields [31]–[33].

In this work, our goal is to design a learning-based tube
MPC strategy to ensure the stability of interconnected power
systems under disturbance and noise. Based on the uncertain
interference data learned from each region, the proposed
controller coordinates HESS by updating the invariant set
and control signal to quickly restore the system frequency to
the expected value. The main contribution of this work are
highlighted as

1) To reduce the adverse effects of new energy participating
in the LFC problem in multi-area power systems, a four-
area interconnection structure with HESS is constructed
to improve the frequency regulation capability.

2) Unlike previous studies [34]–[36], the proposed strategy
calculates the optimal predicted state and input in the
adaptive stage by identifying the uncertainty set of the
coupling strength of the state during the learning stage,
improving system robustness and ensuring its frequency
stability under disturbance and noise.

3) By constructing updateable invariant sets, a reliable
condition for multi-area power systems with wind power
and HESS under the learning-based tube MPC method
to be stable is derived, and its excellence is demonstrated
through simulations.

The work is constructed as follows. Section II introduces
the wind power system, model of LFC, tube control strategy
and the proposed learning-based tube MPC strategy. Section
III discusses the details of the learning and adaptation stages
of the proposed strategy, and derives the stability conditions
for applying this strategy to participate in the LFC problem
in multi-area interconnected power systems under disturbances
and noises conditions. Section IV discusses the power systems
performance of the proposed method through simulations. In
the end, section V concludes our work.

Notation. ⊕ represents the Minkowski sum and is defined by
A⊕B ≜ {a+ b | a ∈ A, b ∈ B}. ⊖ represents the Minkowski
difference and is defined A⊖B ≜ {a | a⊕B ⊆ A}. Moreover,
we use [·] j and | · |j to represent the diagonal element in the
j-th row of a matrix and the summation of the absolute values
of the entries in the j-th row of a matrix, respectively.

II. PRELIMINARY WORK

Fig. 1. Structure of four-area power system with wind power and HESS.

This work takes a four-area interconnected power system
as a case study to explore the frequency regulation problem
of multi-area interconnected systems with wind power and
HESS, where power transmission between areas is based on
tie lines. Figure 1 illustrates the structure of the considered
power system, where each area includes a generator seystem,
a user load, a wind power system representing new energy,
and a HESS.
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A. Wind Power System
The wind power generator can be described by a few

parameters. Below we introduce these parameters and discuss
on the relations between them. The relation between output
power Pwpi of the windmill and some of its main parameters
can be presented as

Pwpi =
Cwi(λ, β)V

3
wiρAwi

2
(1)

where Vwi is the wind speed, ρ and Awi are the air density
and rotor cross-section, respectively, Cwi(λ, β) is defined as
the power coefficient, λ = Rϖ/Vwi is the tip speed ratio, β
is the pitch angle, R is radius of a windmill, ϖ is the speed
of rotor angular.

Due to the fact that the inertia of the wind turbine is much
greater than that of the generator when connected to it, the
transient process of the generator is ignored, and the output
power of wind power can be described as

Pwi =
−3V 2

P ∂(1 + ∂)R2

(R2 − ∂R1)
2
+ (∂X1 + ∂X2)

2 (2)

where VP is the phase voltage, ∂ = (ϖ0 −ϖ)/ϖ0 is the slip
of generator, R1 and R2 are the stator resistance and rotor
resistance, and X1 and X2 are the stator reactance and rotor
reactance, respectively.

B. Model of Load Frequency Control
The major objective of the LFC problem in a multi-area

power system is to ensure that the frequency deviation of each
control area tends to zero, and its modified model is shown in
Fig. 2. LFC of the four-area power system takes area control
error (ACE) as feedback variable to ensure the aforementioned
objective. The ACE of the Area-i is

ACEi = ∆Ptie,i +
βi

TRi

∆fi (3)

where ∆Ptie,i is the interchanged power of tie-line, ∆fi is
the frequency deviation, βi is the frequency deviation setting,
and TRi is the speed regulation gain.

The state space model of the power system in Area-i is{
ẋi = Aixi +Biui + wi + di
yi = Cixi

(4)

where xi =
[
∆fi ∆Pmi

∆Pvi ∆Ptie,i

∫
yi

]T is
the state variable for the Area-i, ui = Pci is the input
variable, and yi = ACEi is the output variable. wi and di are
disturbances and noises. The physical significance of system
parameters are given in Table I. Ai, Bi and Ci represent the
appropriate matrices for power systems.

Ai =



−Di

Tmi

1
Tmj

0 −1
Tmi

0

0 −1
Tdi

1
Tdi

0 0
−1

TRi
Tgi

0 −1
Tgi

0 0∑N
j=1,j ̸=i 2πTij 0 0 0 0

βi 0 0 1 0

 ,

Bi =
[
0 0 − 1

Tgi
0 0

]T
,

Ci =

[
βi 0 0 1 0
0 0 0 0 1

]T

TABLE I
PARAMETER METRICS

Parameters Physical significance

∆Pvi deviation of turbine valve position

∆Pmi deviation of generator mechanical power

∆Pdi load disturbance

∆Pwi the wind power deviation

∆fi frequency deviation

Pci the power delivered by HESS to control area

Tmi time constant of power system

Tdi time constant of generator

Tgi time constant of governor

Tij interconnection constant between the areas

Di equivalent damping coefficient of generator

The LFC model of the multi-area power systems can be
described as{

xi(t+ 1) = Aixi(t) +Biui(t) + wi(t) + di(t)
yi(t) = Cixi(t)

(5)

where the disturbances wi(t) =
∑

j∈N−
i
aij(t)Ejxj(t) ∈ Wi,

and the noise vector di(t) is assumed to be located in a known
set Di = {di(t) : Ξidi(t) ≤ 1} which includes the origin
in its interior. aij(t) is the coupling strength that satisfies
0 ≤ amin

ij (t) ≤ aij(t) ≤ amax
ij (t), where the bounds amin

ij (t)
and amax

ij (t) are known. xi(t) ∈ Xi and ui(t) ∈ Ui are state
constraints and control constraints, respectively.

Remark 1. The interconnected systems with the uncertain
coupling (5) are suitable for large-scale complex systems,
including microgrids and power systems. In this work, di(t) is
the noise caused by electrical equipment in the power system,
which is a disturbance term different from wi(t).

Remark 2. A four-area interconnected system expands the
physical coverage and node density of the grid through
additional interconnections, forming a more robust tie-line
network. In this work, our interconnected structure enhances
frequency regulation through multi-area coordination and
multi-technology synergy. Compared with the traditional four-
area structure, its core improvement lies in strengthening
power support and inertial response through redundant inter-
connection, and adopting HESS to achieve full-time frequency
support to improve system frequency stability.

C. Tube MPC strategy

Within the tube MPC framework, the actual system’s state
path consistently stays within an invariant set that is centered
around the nominal system’s state path, as shown in Fig. 3.
Consequently, as the nominal system converges towards the
origin, the actual system is similarly restricted to a vicinity
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Fig. 2. Structure of Area-i in interconnected power systems.

close to the origin, which ensures the asymptotic stability of
the actual control system.

Fig. 3. Conceptual diagram of tube control strategy.

The nominal system can be defined as

x̄i(t+ 1) = Aix̄i(t) +Biūi(t) (6)

where x̄i(t) ∈ X̄i, ūi(t) ∈ Ūi.
To reduce the impact of disturbances and lead the nominal

states to be closer to the actual states, the system control law
ui(t) = ūi(t)+Ki(xi(t)− x̄i(t)) is designed, where feedback
control gain Ki is chosen such that AKi = Ai + BiKi is
stable. In addition, to better illustrate the relationship between
the actual states and the nominal states under constraints, we
introduce the error dynamics as

ei(t+ 1) = AKiei(t) + wi(t) + di(t) (7)

where ei(t) = xi(t)− x̄i(t).
A better setting of constraint of errors can lead to stronger

control effects. To facilitate the subsequent design of the tube
MPC method, we deal with state and control constraints based
on the properties of robust invariant set (RIS), which is defined
as follows.

Definition 1. [24] A set Zi is robustly positively invariant
under xi(t + 1) = Axi(t) + Bui(t), ui(t) = Kixi(t), and
xi(t) ∈ Xi, ui(t) ∈ Ui, if xi(t+ 1) ∈ Xk, xi(t) ∈ Xi, ui(t) ∈
Ui for all xi(t) ∈ Xk.

Based on Definition 1, the following MPC problem can be
obtained as

min Ji
s.t.

xi (t)− x̄i (0 | t) ∈ Zi

x̄i (k + 1 | t) = Aix̄i (k | t) +Biūi (k | t) , k ∈ N[0,N−1]

x̄i (k | t) ∈ X̄i, k ∈ N[0,N−1]

ūi (k | t) ∈ Ūi, k ∈ N[0,N−1]

x̄i (N | t) ∈ ξX̄i, ξ ∈ (0, 1)
(8)

where Zi is an RIS with the interferences wi(t) and di(t).
ξ ∈ (0, 1) is a constraint parameter that adjusts the position
of the nominal state within the constraint set. X̄i and Ūi are
tightened constraint sets. x̄i (N | t) ∈ ξX̄i represents that the
system can reach an invariant set of terminals that satisfy state
and input constraints.

Remark 3. In this work, we treat the coupling term as
an interference with the conservative properties, which leads
to a decentralized optimal control problem rather than a
distributed optimal control problem. However, for systems with
fast dynamics, decentralized optimal control problems require
less communication.

Remark 4. Accurate models for the new subsystems can
be determined before they are integrated, but the coupling
strength of their interaction with the network can only be
assessed during online operation after their connection.

D. Learning-based tube MPC strategy

The learning stage of learning uncertainty and adaptation
stage of calculating the optimal control action at each moment
constitute the proposed learning-based tube MPC method. In
this work, we assume that each subsystem can interact with
its neighbors at each moment and neighbors only need to
communicate once at each moment during the learning stage.
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In the learning stage, our goal is to minimize the size of the
uncertainty set Wi by learning the bounds amin

ij (t) and amax
ij (t)

of the aij(t) as more data is gathered online. Therefore, the
set Wi is updated based on aij(t), and determining a smaller
upper bounds can help accelerate its size reduction. In the
adaptation stage, our goal is to adjust MPC in a timely manner
based on the learned Wi. In addition, the calculation of local
optimal control inputs based on updated Wi also needs to be
considered. Moreover, the adapted MPC ingredients contain
RIS Zi, control gain Ki, state constraint set X̄i and input
constraint set Ūi. The subsequent learning strategy design for
identifying sets is mainly based on these ingredients.

The required constraints for updating are

X̄i(t)⊕Zi(t) ⊆ Xi (9)

Ūi(t)⊕Ki(t)Zi(t) ⊆ Ui (10)

To maintain the convexity of the optimal problem during
the adaptation stage, additional constraints are incorporated to
ensure satisfying the aforementioned conditions.

Remark 5. The designed MPC ingredients and uncertainty
sets are functions of the time because these ingredients are
updated at the moment t according to the learned uncertainty
sets Wi(t), which are functions of coupling strengths amin

ij (t)
and amax

ij (t) at that time.

III. MAIN RESULTS

A. Learning-based tube MPC method design

This section introduces the proposed tube MPC method
by exploring the identification of set members for uncertain
sets in online learning during the learning stage. Following
this, we derive the constraints that are incorporated into each
subsystem’s local online optimal control problem during the
adaptation stage. Hence, our goal is to optimize and constrain
the proposed tube MPC method based on the learning stage
and adaptation stage.

Firstly, we define the learning stage to ensure that the
uncertainty set Wi(t) can be learned in real-time as more
online data is obtained. Obviously, this set is influenced by
uncertain boundaries and can be more accurately represented
by refining these boundaries.

Assuming that at the moment t-1, the bounds of uncertain
parameters aij(t) are amin

ij (t−1) and amax
ij (t−1), respectively.

To enhance these bounds’ estimates at the moment t− 1, the
feasible parameter set with inequality for each aij(t) is

Fijaij(t) ≤ fij(t− 1) (11)

where subvectors fij(t−1) =
[
amax
ij (t− 1) − amin

ij (t− 1)
]T

,
matrices Fij =

[
1 −1

]T
.

By defining θi that includes the entire uncertain data to be
learned for the subsystem, we have

Fiθi ≤ fi(t− 1) (12)

where Fi is a block diagonal matrix with Fij , fi is a vector
vertically concatenating fij .

Then, by defining εi(t − 1) to be a matrix horizontally
concatenating vectors Ejxj(t− 1), Ωi(t− 1) = −Ξiεi(t− 1)
and ωi(t−1) = 1+ΞiAixi(t−1)+ΞiBiui(t−1)−Ξixi(t),
we can construct the parameter set such as

Θi = {θi : Ωi(t− 1)θi ≤ ωi(t− 1)} (13)

Obviously, these bounds that determine the control strength
are updated with the calculation of each optimization problem.
To obtain the optimal control trajectory during the adaptation
stage, the lower and upper limits of aij(t) are designed as

−amin
ij (t) = min eTij(t)θi, a

max
ij (t) = max eTij(t)θi

s.t.
[

Fi

Ωi(t− 1)

]
θi ≤

[
fi(t− 1)
ωi(t− 1)

]
(14)

where eij(t) is a unit vector.
In this work, the uncertainty set Wi(t) in (5) is learned by

solving the problem (14) that identifies uncertain parameter
boundaries, which are communicated through data between
neighbors during the adaptation stage.

Remark 6. The goal of this stage is to find the maximum and
minimum values of the parameters within the feasible sets.
Based on (12) and (13), −amin

ij (t) ≤ aij(t) ≤ amax
ij (t) for all

t ≥ 0 if −amin
ij (t) and amax

ij (t) are calculated by (14) and
−amin

ij (0) ≤ aij(0) ≤ amax
ij (0). Therefore, it is guaranteed

that −amin
ij (t) ≥ −amin

ij (t − 1) since −amin
ij (t) is obtained

by minimizing the whole possible values satisfying aij(t) ≥
−amin

ij (t−1). Similarly, based on considerations of the upper
bounds, we can derive that Wi(t) ⊆ Wi(t−1) for all t, which
indicates that there is no risk of having an expanding size of
the uncertainty set Wi(t).

Secondly, we define the adaptation stage with the objective
of solving online optimal control problems based on the
learned set Wi(t). To adjust MPC online and ensure that robust
constraints are met, (9) and (10) should be satisfied.

Based on Definition 1, we can obtain that set Zi(t) is a
robustly invariant within the considered uncertainty sets and
dynamics by assuming that Zi(t) =

{
ei : e

T
i Ziei ≤ α2

i (t)
}

if ∥ei(t+ 1)∥2Zi
≤ α2

i (t) for all ei satisfying ∥ei∥2Zi
≤ α2

i (t),∥∥wij(t)− amax
ij (t)

∥∥ ≤ amax2

ij (t) and ∥di(t)∥2Ξi
≤ 1. We define

tightened state and control sets as X̄i(t) = {x̄i : Gix̄i ≤ gi(t)}
and Ūi(t) = {ūi : Hixi ≤ hi(t)}, respectively. αi(t), gi(t) and
hi(t) are viewed as decision variables in the proposed strategy
to update the MPC ingredients.

Assuming that G
(j)
i and H

(j)
i are the j-th row of the

matrices Gi and Hi, respectively. The Minkowski sum of X̄i(t)
and Z̄i(t) is involved in set Xi if for all j ∈ {1, . . . , qi}, we
can deduce that G

(j)
i (x̄ei + x̄si) ≤ 1 for all x̄ei such that

∥x̄ei∥
2
Zi

≤ α2
i (t) and for all x̄si such that Gix̄si ≤ gi(t),

respectively. The above analysis is to ensure that all states
in the state constraint set can always maintain finite offset
through Z̄i(t).

For further analysis, defining αi(t)si = x̄ei and gi(t)ri =
x̄si yields

G
(j)
i αi(t)si +G

(j)
i gi(t)ri ≤ 1 (15)
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where sTi Zisi ≤ 1, Giri ≤ 1 and j ∈ {1, . . . , qi}.
Based on S-lemma [37], this condition is given by[

µij(t)Zi −0.5G
(j)T

i αi(t)
∗ 1− µij(t)− gi(t)

]
≥ 0 (16)

where µij(t) > 0 for all j ∈ {1, . . . , qi}.
Inspired by [38], we assume Mi(t) and λij(t) > 0 such that

Mi(t) ≤ λij(t)κ
−1
i (κi = Ki(t)αi(t)Z

−1
i αi(t)K

T
i (t)) for all

j ∈ {1, . . . , pi}. The Minkowski sum of Ūi(t) and Ki(t)Z̄i(t)
is involved in set Ui if for all j ∈ {1, . . . , pi}, so there are
H

(j)
i (ūei + ūsi) ≤ 1 for all ūei such that ∥ūei∥

2
κ−1
i

≤ α2
i (t)

and for all ūsi such that Hiūsi ≤ hi(t), respectively.
By defining si = ūei and hi(t)ri = ūsi , we have

H
(j)
i si +H

(j)
i hi(t)ri ≤ 1 (17)

where sTi κ
−1
i si ≤ 1, Hiri ≤ 1 and j ∈ {1, . . . , pi}.

Based on Schur Complement and S-lemma, this condition
is given by [

M−1
i (t) Ki(t)

Tαi(t)
∗ λij(t)Zi

]
≥ 0,

[
M−1

i (t) 0.5M−1
i (t)H

(j)T

i

∗ 1− λij(t)− hi(t)

]
≥ 0

(18)

Furthermore, the new MPC problem can be obtained as

min Ji
s.t.

xi (t)− x̄i (0 | t) ∈ Zi(t)
x̄i (k + 1 | t) = Aix̄i (k | t) +Biūi (k | t) , k ∈ N[0,N−1]

x̄i (k | t) ∈ X̄i(t), k ∈ N[0,N−1]

ūi (k | t) ∈ Ūi(t), k ∈ N[0,N−1]

x̄i (N | t) ∈ ξX̄i(t), ξ ∈ (0, 1)
(16), µij(t) ≥ 0, j ∈ {1, . . . , qi}
(18), λij(t) > 0, j ∈ {1, . . . , pi}

(19)

The decision variables are x̄i(k | t), ūi(k | t), αi(t), gi(t),
hi(t), µij(t) for all j ∈ {1, . . . , qi} and λij(t) for all j ∈
{1, . . . , pi}, which are used to update the nominal state and
invariant set. To ensure robust constraint satisfaction, (19) is
solved based on (8) and ui(t) = ūi(t) +Ki(xi(t)− x̄i(t)).

According to ui(t) = ūi(t)+Ki(xi(t)− x̄i(t)) and (5), we
can obtain that

x∗
i (t+ 1) =Aix

∗
i (t) +Biū

∗
i (t) +BiK

∗
i (t) (x

∗
i (t)− x̄∗

i (t))

+AgEix
∗
i (t) + di(t)

(20)

where Ag is the adjacency matrix and ∗ is the optimal solution.
Then, by defining e∗i (t) = x∗

i (t)− x̄∗
i (t) we have

e∗i (t+ 1) = A∗
Ki(t)e

∗
i (t) + δi(t) (21)

where δi(t) = di(t)− x̄∗
i (t+ 1) +Aix̄

∗
i (t) +Biū

∗
i (t).

Remark 7. In this work, the design based on the minimum
disturbance upper limit can ensure robust constraints in the
worst-case scenario of interconnected power systems and
avoid major accidents [38]–[40]. Compared to the strategies

that rely on real-time disturbance estimation [41], [42], our
controller has lower online computational complexity when
the disturbance upper bound is known, making it suitable for
operating conditions with limited computing resources.

B. Stability Analysis

Lemma 1. [24] System ẋ = f(x, u) is input-to-state, if there
exists 0 ∈ K∞, γ ∈ K∞ and L > 0, then the following
inequality holds

∥x(t)∥ ≤ 0(∥x(0)∥, k) + Lγ(∥u∥∞)

The stability of the power system depends on whether it
maintains its rated frequency under disturbances and noises.
The following theorem ensures the stability of power systems.

Theorem 1. Let di(t) = 0 in (20) and define diagonal positive
definite matrices Γi and Wi with ρ > 0, then the strict
passivity of the noise-free system of all subsystems implies
the asymptotic stability of the noise-free system of the overall
system if(

[Γi(t)]j − ρ
)
αi(t) ≥ |Φmax

i |j αi(t) + |Ψmax
i |j αi(t),

[Wi(t)]j αi(t) ≤ αi(t)/ |Υmax
i |j

(22)

Proof. For the noise-free system, we define the output vector
ỹi(t) = Cixi(t) +Wiwi(t) and ỹi(t) ∈ CiXi(t) ⊕WiWi(t).
Based on [24], the strict passivity of each subsystem leads to
∥xi(t+ 1)∥2Pi

− ∥xi(t)∥2Pi
≤ ỹTi (t)wi(t)− ∥xi(t)∥2Γi(t).

Define a Lyapunov function Vi(xi(t)) = ∥xi(t)∥
2
Pi

. Then,
all the above discussions can be summarized as

V (x(t+ 1))− V (x(t)) ≤ ỹT (t)w(t)− ∥x(t)∥Γ(t) (23)

To satisfy the asymptotic stability, we have the inequality
ỹT (t)w(t)− ∥x(t)∥Γ(t) < 0 which can be rewritten as

∥x(t)∥2Γ(t)− CTWgC − CTAT
g WAgC ≥ ρ∥x(t)∥2 (24)

where Wg is the degree matrix.
Based on the Schur Complement, we can obtain that[

Γ(t)− CTWgC − ρIn CTAT
g

∗ W−1

]
≥ 0 (25)

To replace the uncertain parameters Ag and Wg with their
upper bounds, we construct Amax

g (t) and Wmax
g (t). Similarly,

we construct Φmax
g (t), Ψmax

g (t) and Υmax
g (t) based on the

definitions of Φ = CTWgC, Ψ = CTAT
g and Υ = AgC

to replace uncertain parameters in Φ, Ψ and Υ with their
upper bounds. By using diagonal dominance [40], (25) can
be transformed into (22).

This completes the proof.

Remark 8. Note that the resulting inequalities are functions
of the uncertain parameters. More conservative inequalities
can be obtained by replacing the uncertain parameters with
their upper bounds, leading to (22).

Theorem 2. The closed-loop system (21) is input-to-state
stable with respect to δi(t) if the MPC scheme (19) is executed.
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Proof. For the disturbance-free system, based on system (21)
and a Lyapunov function Vi(e

∗
i (t)) = ∥e∗i (t)∥

2
Pi

, we have

△Vi ≤− (γi − ϵi) ∥e∗i (t)∥
2
Pi

− ϵi ∥e∗i (t)∥
2
Pi

+ ∥δi(t)∥2Pi

+ 2∥δi(t)∥Pi

∥∥A∗
Ki

(t)e∗i (t)
∥∥
Pi

(26)

where △Vi = Vi

(
A∗

Ki
(t)e∗i (t) + δi(t)

)
− Vi (e

∗
i (t)) and 0 <

ϵi < γi.
To ensure △Vi < 0, it can be obtained that

ϵi ∥e∗i (t)∥
2
Pi

≥ ∥δi(t)∥2Pi
+ 2 ∥δi(t)∥Pi

∥∥A∗
Ki

(t)e∗i (t)
∥∥
Pi

(27)

Furthermore, by considering
∥∥A∗

Ki
(t)e∗i (t)

∥∥
Pi

< ∥e∗i (t)∥Pi
,

we can deduce that

ϵi ∥e∗i (t)∥
2 − λmax(Pi)δ

2
max − 2λmax(Pi)δmax ∥e∗i (t)∥ ≥ 0

(28)

where λmax(Pi) is the maximum eigenvalue of Pi, δmax is the
maximum norm of δi(t).

According to the calculation of the roots of the function on
left side in (28), we have

∥e∗i (t)∥ ≥ υiδimax/ϵi (29)

where υi = λmax(Pi) +
√

λ2
max(Pi) + ϵiλmax(Pi).

Since △Vi < 0, the input-to-state stability of (21) can be
derived based on Lemma 1.

This completes the proof.

C. Learning-based tube MPC algorithm

Based on the learning and adaptation stages of the proposed
scheme, a robust constraint condition is derived that can
restrict the state error between the actual state and the nominal
state, thereby ensuring the stability of the actual power system.
In addition, due to its ability to learn disturbances sets, the
algorithm can effectively deal with unknown disturbances,
which makes its applicability not be limited to a single system
or structure. The proposed algorithm can be summarized as

Remark 9. By using the tail sequence [43], [44], we can
deduce that the proposed learning-based tube MPC scheme
(19) is recursively feasible.

IV. CASE STUDY

The system performance of the learning-based tube MPC
method and other control strategies in interconnected power
systems with four HESS units are compared and discussed on
an improved New England IEEE 10-generator 39-bus system,
as shown in Fig. 4.

The hybrid energy storage system primarily serves to
smoothing power fluctuations, minimizing system oscillations,
and lessening the disparity between peak and valley levels in
the power curve. As is well known, batteries have high energy
density but low power density and slow dynamic response,
while supercapacitors have high power density, fast response
speed, and long service life but low energy density. The hybrid
energy storage system composed of the two can complement

Algorithm 1: Learning-based tube MPC algorithm

1 Online part: Solve the optimization control (19).
2 while Number of iterations not reached do
3 Set t = 0 and initial states x̄i(0) = xi(0);

// Ensure ei(0) = 0 to achieve
effective feedback control.

4 for t to t+ 1 do
5 Solve the optimization control problem (19)

based on the constraints (16) and (18).
6 end

// Identify set Wi(t) to obtain
optimal nominal tracking by
learning boundary conditions

−amin
ij (t) = min eTij(t)θi, a

max
ij (t) = max eTij(t)θi

s.t.

[
Fi

Ωi(t− 1)

]
θi ≤

[
fi(t− 1)
ωi(t− 1)

]
.

7 for i = 1 to 4 do
8 Update the actual state ui(t) through control

law ui(t) = ūi(t) +Ki(xi(t)− x̄i(t)).
9 end

// Obtain the error dynamics (21)
and ensure the stability of its
by executing (19).

10 Set t = t+ 1;
11 end

Fig. 4. An improved IEEE 39-bus system with wind power and HESS units.

each other’s advantages, reduce the rated capacity of the
battery and extend its life [33]. Based on the active parallel
scheme, a HESS that integrating batteries and supercapacitors
is chosen to meet the demands for high power density supply,
and its structure is shown in Fig. 5.

Table II shows the power system parameters. To optimize
the performance of the considered system, HESS parameters
composed of batteries and supercapacitors are set and adjusted
according to (30).
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Fig. 5. Structure diagram of hybrid energy storage system.

TABLE II
POWER SYSTEM PARAMETERS

Area-i Tmi Tdi Tgi TRi βi Di

Area-1 18 0.3 0.08 2.3 0.42 2

Area-2 20 0.35 0.075 2.4 0.42 1

Area-3 22 0.35 0.075 2.45 0.42 1

Area-4 25 0.355 0.07 2.5 0.42 1

diBc

dt
= − RB

LBat
iBc − (1− q1)

Udc

LSC
+

UBat

LSC

diSC

dt
= − RS

LSC
iSC − q23

Udc

LSC
+

USC

LSC

dUdc

dt
= (1− q1)

iBc

C
+ q23

iSC

C
− i0

C

(30)

where LSC and LBat represent the high-frequency inductors
in supercapacitors and batteries, respectively. USc and UBat

represent the voltage of the supercapacitors and the batteries,
respectively. iBc is the inductor current and iSC is the current
of LSC . VBat is the capacities of batteries and VSC is the
capacities of supercapacitors. Udc is the DC bus voltage. The
PWM signal obtained by IGBT K1 operating in boost state
is described as q1, and q23 describes the control input of the
DC/DC converter.

In this work, the power systems disturbed by the load
increment of 0.25 p.u. (750 kW). Moreover, the noises of
the equipment is considered to increase the uncertainty of
external interference in the interconnected power system, and
tube MPC controllers are designed for Area-i to obtain online
boundary information of system states based on LFC model
of considered systems. In addition, PID, H∞ [34], and max-
min [35] control strategies are selected to participate in the
frequency deviation simulation of each area for case discussion
with the proposed strategy.

A. Case 1: The system response of each control area in
different control methods.

In multi-area power systems, the excessive overshoot can
result in significant frequency fluctuations, unstable system
behavior, and prolonged deviations from the desired frequency.

Conversely, the undershoot may cause the slow frequency
adjustments, impairing the system’s ability to swiftly adapt
to load variations, which can also lead to long-term frequency
deviations from the target. Therefore, it is crucial to address
the issues of overshoot and undershoot.

TABLE III
PERFORMANCE COMPARISON OF EACH AREA UNDER DIFFERENT

CONTROL STRATEGIES

Responses Index×(10−3) H∞ Max-min Proposed method

∆f1
Overshoot 0.9751 0.6648 0.2218

Undershoot -6.1517 -3.2649 −1.3516

∆f2
Overshoot 1.0371 0.7741 0.2016

Undershoot -5.8534 -2.9413 −1.0018

∆f3
Overshoot 0.8014 0.5535 0.1664

Undershoot -5.7174 -2.2287 −1.4428

∆f4
Overshoot 0.8757 0.4205 0.2698

Undershoot -4.9576 -2.5272 −1.2487

Effective methods for regulating overshoot and undershoot
are essential to ensure the safety and stability of multi-area
power systems, keeping system voltage and frequency within
safe limits. The comparison of overshoot and undershoot
of the studied system based on the proposed strategy and
other control strategies is provided in Table III. We can see
that the learning-based tube MPC method outperforms other
controllers, demonstrating excellent performance.

The comparison of the system response simulation results
of the four control methods is shown in Fig. 6, which mainly
compares the frequency deviation of Area-i. Comparative
experiments revealed that when HESS is involved in frequency
modulation under identical load disturbances, method with an
external PID controller fails to promptly address load changes.
Conversely, implementing robust external controllers for the
HESS in frequency modulation strategies results in reduced
frequency fluctuations. Our strategy can dynamically learn and
adapt to robust disturbance invariant sets, allowing it to swiftly
and effectively manage load changes. This capability ensures
that system frequency deviations remain minimal, thereby
achieving system stabilization.

Remark 10. The proposed strategy minimizes conservatism
while improving flexibility, which is suitable for multi-area
power systems with the rich data and complex disturbance
characteristics. In addition, studying disturbance invariant sets
that can accommodate more disturbances such as parameter
uncertainty is a future work.

B. Case 2: The impact of parameter changes in the proposed
strategy on regional control performance.

In this work, Zi, Ki, X̄i and Ūi are calculated at each
moment based on set Wi(t) which is a function of amin

ij and
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(a)

(b)

(c)

(d)

Fig. 6. The system response ∆fi with different control methods in Area-i.
(a) ∆f1. (b) ∆f2. (c) ∆f3. (d) ∆f4.

(a)

(b)

(c)

(d)

Fig. 7. ∆fi with different updated parameters in Area-i. (a) ∆f1. (b) ∆f2.
(c) ∆f3. (d) ∆f4.
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amax
ij at time t. Assume that the parameters a12 and a43 are

initially located between 0 and 2, while all other parameters
are initially located between 0 and 1.

The frequency response of Area-i with different parameters
of the proposed strategy are shown in Fig. 7. Obviously, the
differences in updating parameters of the proposed strategy
lead to differences in the convergence speed and fluctuation
amplitude of frequency deviation in various areas of the
power systems. This indicates that the efficiency of learning
invariant sets during learning stage is influenced by updating
parameters, which in turn changes the optimal output during
the adaptation stage. Benefiting from the robustness of the tube
control strategy, the proposed strategy can maintain excellent
stability when updating the learning parameters.

Remark 11. The size of the invariant set is directly related
to control performance. Larger invariant sets have stronger
tolerance for disturbances and higher robustness, but this
means that the optimization space of the nominal system is
compressed, which may sacrifice response speed and track-
ing accuracy. Correspondingly, small-sized invariant sets are
sensitive to disturbances and have reduced robustness, but
they allow the nominal system to optimize under tighter
constraints, potentially achieving better dynamic performance
[45]. Therefore, it is crucial to design and optimize tube
size based on actual operating conditions to balance system
performance and stability, which is also the motivation for
introducing learning mechanisms into the proposed strategy.

V. CONCLUSION

We proposed a learning-based tube MPC strategy for
multi-area interconnected power systems with wind power
and HESS. This strategy mitigated the negative impact of
disturbance and noise in the considered power systems by
identifying the uncertainty invariant sets of the online data
coupling strength during the learning stage and handling the
corresponding optimal MPC problem during the adaptation
stage. To validate the correctness of the control method, a
reliability criterion was developed to prove the applicability
of the learning-based tube MPC strategy. The benefits of our
strategy for optimizing frequency control were demonstrated
by comparing the applications of various strategies within
four-area power systems. While both disturbance and noise
interference factors have been taken into consideration, there
are still factors such as parameter uncertainty that may affect
the stability of the system. Therefore, the focus of future
work will mainly be on researching control strategies that can
handle multiple composite disturbances to achieve better load
frequency control performance in power systems.
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