
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/180989/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Chen, Jian, Yu, Chongyang, Xu, Zhongyun, He, Ruiyang , Li, Chun, Zhang, Wanfu and Wang, Ying 2025.
Prediction of wind farm wake and output power using generative adversarial network and convolutional

neural network. Physics of Fluids 37 (8) , 085255. 10.1063/5.0284856 

Publishers page: https://doi.org/10.1063/5.0284856 

Please note: 
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See 
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.



 

1 

 

Prediction of wind farm wake and output 1 

power using generative adversarial network 2 

and convolutional neural network 3 

Jian Chen*1, Chongyang Yu1, Zhongyun Xu2, Ruiyang He3, Chun Li1, Wanfu Zhang1, Ying Wang1 4 

1School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 5 

200093, PR China 6 

2Jiangnan Shipyard(Group) Co.,Ltd, Shanghai, 201913, PR China 7 

3School of Engineering, Cardiff University, Cardiff CF24 3AA, UK 8 

*Corresponding author Email: 09900589R@connect.polyu.hk 9 

Abstract 10 

Wake and output power prediction of wind turbine is critical for the wind farm layout optimization. Previous 11 

studies used analytical wake models (AWMs) and computational fluid dynamics (CFD) methods to fulfill this 12 

prediction. However, these methods either exhibit inadequate prediction accuracy or need excessive computational 13 

demands during prediction processes. Thus, a novel wind farm prediction system is established using the full-model 14 

CFD simulation and a surrogate modeling method based on convolutional neural networks (CNNs) and generative 15 

adversarial networks (GANs) to ensure the fidelity and efficiency of the prediction. By containing an incoming 16 

speed distribution generator module (Gin), a wake distribution generator model (Gw), a rotational speed prediction 17 

module (R), and a power prediction module (P), this system can predict high-dimensional incoming data, the 18 

rotational speed, power output, and 3D wake fields. The system uses the incoming wind speed (Vin) and turbulence 19 

intensity (TI) to determine the optimal placement of turbines in the wind field. The Gin, R , Gw and P module are 20 

validated through high-resolution experimental and computational data. The system is applied to a tandem wind 21 

farm and the Horns Rev 1 wind farm. The predicted data shows satisfactory agreement with high-resolution 22 

experimental and computational data, fully validating the robustness and generalization capability of the system. 23 

The proposed prediction system is of great engineering significance for optimizing wind farm layout. 24 

 25 

Keywords: Full-model CFD simulation; Convolutional neural network; Generative adversarial network; Wake 26 
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prediction; Output power 27 

1 Introduction 28 

Wind energy is widely invested due to its vast and wide reversion. To fully utilize the wind energy resources 29 

and improve the economics of wind power generation, wind turbines are usually installed together to form large 30 

wind farms [1]. The power output and wake of the wind turbine are two critical factors for wind farm design [2] and 31 

the wake significantly affects the performance of the downstream turbine [3]. Therefore, predicting the output power 32 

and wake characteristics of wind turbines is crucial for the layout optimization of wind farm and maximization of 33 

the overall power generation [4]. Reliable prediction can not only help wind farms to improve the rate of wind 34 

power consumption, but also increase the economic returns of wind farms[5]. 35 

Nowadays the dominated methods for the wind turbine wake modeling include AWMs and CFD simulation. 36 

The AWMs is widely used because of its simplicity and rapidity of calculation. Jensen model is a simple engineering 37 

wake model firstly proposed [6], which is a one-dimensional (1D) model. Jensen regards the wake of a downstream 38 

wind turbine as a turbulent wake and assumes that the radius size of the wake region expands linearly with the 39 

downstream distance, and the degree of velocity reduction depends only on the distance of the downstream region 40 

from the rotor. The effect of blade shedding vortices on the near-field flow field is neglected to simplify the model. 41 

Frandsen et al. [7] proposed another 1D model, which is similar in velocity distribution to the Jensen model, also 42 

following a "hat" distribution. The key difference is that it treats the entire cylindrical region behind the rotor as a 43 

control volume and uses momentum theory to derive the conclusions. Gao et al. [8] employed the two-dimensional 44 

(2D) model for wind farm optimization and compared its results with those of the original 1D model. They found 45 

that the 2D model provided results that were more accurate in predicting the wind farm's power generation efficiency 46 

compared to the 1D model. In addition, some researchers have suggested that the mixed installation of different 47 

types of wind turbines with different hub heights and diameters to establish non-uniform wind farms can help to 48 

increase the overall power output and reduce the cost-benefit ratio [9], and the layout optimization of non-uniform 49 

wind farms needs to consider the heights of different wind turbines. Therefore, current research is focused on 50 

establishing a three-dimensional (3D) wake model that accounts for the effect of height [10]-[13]. Gao et al [14] 51 

added the wind shear effect to the Jensen-Gaussian model to make it 3D and expressed the wind speed through an 52 

exponential function to improve the prediction accuracy in the vertical direction. However, the analytical model has 53 

obvious drawbacks because it usually lacks of accuracy. 54 

To assess wake interactions between wind turbines and capture more accurate wake characteristics, the actuator 55 

disk method (ADM) and the actuator line method (ALM) are commonly employed for CFD simulations of wind 56 
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turbine rotors. The ADM simplifies the rotor into a virtual disk, significantly reducing the mesh requirements and 57 

computational resources. Khan et al. [15] used the ADM to optimize the scheduling of a nine-turbine wind farm. 58 

Liu et al. [16] used a large eddy simulation (LES) combined with the ADM to study the positive effect of wind 59 

deflectors on the overall flow field and power enhancement of wind farms. Onal et al. [17] employed the ALM to 60 

investigate wake interactions and power production effects in a tandem wind turbine configuration, assessing the 61 

influence of turbulent incoming conditions on wake dynamics. Wang et al. [18] used the ALM to simulate the yaw 62 

operation of wind turbines and observed the asymmetric counter-rotating phenomenon in the wake of yawed 63 

turbines caused by the periodic variation of tip vortex. Steven et al. [19] compared LES using ALM and ADM and 64 

found that both methods produced reasonably accurate far-field wake data. However, the ALM exhibits sensitivity 65 

to mesh resolution and struggles to accurately resolve complex 3D wake effects, while the ADM inherently neglects 66 

blade geometric details and unsteady flow features through spatial averaging. Both approaches may underestimate 67 

the influence of localized flow separation, leading to compromised accuracy in aerodynamic load predictions. 68 

Therefore, ALM and ADM are still not accurate enough. 69 

The full-model CFD simulation differs from the ALM and ADM in that real wind turbine geometry is used to 70 

build the computational domain. It can better capture the flow at the blade surface and wake development, making 71 

it widely used in advanced research9. Zhou et al. [20] investigated the effects of turbulence and wind shear on a 72 

floating offshore wind turbine using a full-model CFD method and found that turbulent winds resulted in faster 73 

wake spreading. Fu et al. [21] simulated the longitudinal rocking conditions of a model floating offshore wind 74 

turbine using an overlapping grid approach. Miao et al. [22] simulated the flow field conditions of a yawed tandem 75 

wind farm using a full-model CFD method and found that the intentional yawing of the upstream wind turbine can 76 

increase the total power output of the wind farm. Ye et al. [23] employed full-model CFD simulations to replicate 77 

the wind turbine wake results from wind tunnel experiments and investigate the influence of rotating blades on the 78 

deflection of tower wakes. It showed that full-model CFD simulation can accurately capture the complex 79 

aerodynamic characteristics, turbulence effects, blade details and turbine interactions. However, full model CFD 80 

simulation is time-consuming. The disadvantage of this can be overcome by combining full-model CFD simulation 81 

with machine learning techniques. 82 

In recent years, with the rapid development of artificial intelligence, a series of machine learning techniques 83 

have been applied to wind turbine research including Graph Neural Networks (GNN), Artificial Neural Networks 84 

(ANN), Long Short-Term Memory (LSTM), Visual Transformer (ViT), CNN. Li et al. [24] proposed a structure 85 

based on GNN combined with residual network to accurately predict the wind turbine wake flow field under 86 
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different incoming conditions and yaw angles, which is less sensitive to the transition smoothing of the data and has 87 

a more flexible framework with higher generalizability compared to the underlying network structure. Sun et al. 88 

[25] developed an ANN power model for calculating the total power of yawed wind turbine based on the ANN 89 

modeling and field data collected from Supervisory Control and Data Acquisition (SCADA) to calculate the total 90 

power of a yawing wind turbine. The model is then applied to optimize the yaw angle of the wind turbine. Zhang 91 

and Zhao [26] used LSTM to predict the reduced-dimensional dynamic wake field in the hub-height horizontal 92 

plane. The results show that the combined model is like high-fidelity numerical simulations and is effective in 93 

capturing the main features of the non-constant wind turbine wake. Li et al. [27] used the state-of-the-art 94 

Transformer model to predict the power generation of individual wind turbines in a wind farm. However, ANNs, 95 

LSTMs, and CNNs [28] are discriminative models that primarily focus on learning the mapping relationships 96 

between input and output data, without explicitly capturing the underlying physical processes governing the dataset. 97 

Consequently, these models require a substantial volume of training data to achieve satisfactory results. Previous 98 

studies have used low-precision data from AWMs, ADM or ALM as training or test data. Low accuracy data reduce 99 

the perdition ability of the machine-learning based wake models. Thus, a high-precision dataset is crucial for the 100 

machine-learning based wake models. This reliance on large and accuracy datasets significantly increases 101 

computational costs, posing a challenge for practical applications. 102 

To solve the problem of the large amount of training data required for the models, some recent studies have 103 

used GAN generators to generate part of the training data, thus significantly reducing the computational expense of 104 

CFD. Zhang and Zhao [29] proposed a deep convolutional conditional generative adversarial network (CGAN), 105 

which serves as a popular generative model for simulating the corresponding flow parameters for a non-constant 106 

wind turbine wake. The dataset used for model training is built by high-fidelity numerical simulations, and the 107 

validation results show that the predicted data are in good agreement with the high-fidelity data. Li et al. [30] 108 

integrate the Transformer module into the CGAN, use a combination of analytical and numerical data generation 109 

methods, establish a large-scale wake flow database, and employ a pre-training-fine-tuning strategy to increase the 110 

efficiency of model training and enhance the prediction performance, and use a pre-training-fine-tuning strategy to 111 

improve the model training efficiency. It is expected that GANs are going to further applied on wake flow studies 112 

in the future. However, the current research of machine learning methods in wind farm prediction still faces some 113 

limitations, which are listed below: 114 

(1) Datasets of previous studies are usually obtained from Jensen model, ALM or ADM method. However, the 115 

accuracy of the training dataset is very important for deep learning. An inaccurate dataset often leads to the 116 
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impairment of the generalization ability in model training. 117 

(2) The majority studies used low-dimensional incoming data to predict the wake and power output. It has been 118 

suggested that there are significant differences in the spatial representation of high-dimensional incoming data, 119 

which can be used to capture more precise details of the wake distribution [29]. 120 

(3) Although GAN have been predominantly employed in prior wake modeling research, CGAN architectures 121 

have the training instability due to fundamentally unidirectional mapping paradigm and potential spatial 122 

irreversibility. 123 

(4) A prediction system that can quickly and accurately predict multiple key elements in a wind farm, such as 124 

the incoming flow field, TI, wake velocity, the rotational speed of wind turbines, and the output power, is crucial 125 

for achieving the optimization of wind farm layout and the cooperative control of wind turbines within the wind 126 

farm. 127 

To improve the accuracy of the training data, we use the full-model CFD simulation results as the database. 128 

The high-precision inflow data gained from CFD is used to train a transposed convolution incoming speed 129 

distribution generator which is used to capture more accurate details of the wake distribution. The incoming speed 130 

distribution generator is trained using CGAN to obtain high-dimensional incoming data by inputting 
inV  and TI. 131 

The cycle generative adversarial network (Cycle GAN) was used to train the 3D wake models to improve the 132 

training accuracy and stability. Meanwhile, a complete wind farm prediction system with independent modules has 133 

been proposed for wind farm layout optimization. 134 

The main contributions and innovations of this paper are as follows: 135 

(1) To stabilize the model training and enhance the prediction accuracy, high-fidelity full-model CFD 136 

simulation are used to establish the database of model training. 137 

(2) The incoming speed distribution generator trained by high-precision CFD simulation data and CGAN can 138 

generate high-dimensional incoming data based on 
inV  and TI, eliminating the need for non-uniform high-139 

dimensional data from light detection and ranging (LIDAR), AWMs or CFD. 140 

(3) To improve the rationality of the model results and stabilize the training results, a modeling framework of 141 

Cycle GAN is proposed. This system can achieve backward prediction from the incoming flow field to the wake 142 

flow field, it can also realize the forward physical field reconstruction from the wake flow field to the incoming 143 

flow field, thus establishing a cyclic data flow architecture. 144 

(4) To achieve the optimization of the wind farm layout and the coordinated control of the wind turbines in the 145 
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wind farm quickly and accurately, an integrated system has been established using a deep learning approach 
inV146 

and TI as inputs to obtain high-dimensional incoming flow data which can be used to obtain the wind turbine 147 

rotational speed, power output, and 3D wake at different axial distances. A novel momentum compensation is used 148 

to correct the downstream turbine wake velocity, optimizing far wake recovery prediction. 149 

The rest of the paper is organized as follows: Section 2 describes the CFD simulation method, data collection 150 

method, wake field fitting method and wind farm prediction method. Thereafter, the dataset validation, the 151 

discussion of the results of the training of the model, the assessment of the performance of the wake flow fitting, 152 

and the validation of the model against the predicted values using real wind farms are given in Section 3. Finally, 153 

Section 4 summarizes the main conclusions. 154 

2 Methods 155 

2.1 CFD simulation strategies 156 

2.1.1 Geometric modeling of wind turbines 157 

The HAWT model selected for this paper is a 5 MW wind turbine developed by the National Renewable Energy 158 

Laboratory (NREL) [31]. As stated in the reference [32], the removal of tower, nacelle, and other auxiliary 159 

mechanisms from the wind turbine model has a minimal impact on the simulation results. Therefore, this paper uses 160 

the wind turbine model without the tower and nacelle to enhance computational efficiency and maintain the 161 

simulation fidelity. The main parameters of the wind turbine are presented in Table 1. 162 

Table 1 NREL 5MW wind turbine parameters 163 

Item Value 

Roto diameter (m)  126  

Hub height (m) 90  

Rated wind speed (m/s)  11.4  

Roto rotational speed (RPM) 12.1 

Blade number 3 

2.1.2 Mesh and boundary conditions 164 

As shown in Fig. 1, the computational domain of the wind farm is divided into two parts: a rotating domain 165 

and a stationary domain. The stationary domain is a rectangular body with dimension of 4D (x) × 3D (y) ×18D (z), 166 

where D is the turbine rotor diameter. The wind turbine is located within the cylindrical rotating domain. The hub 167 

center of wind turbine positioned at 2D from both the left and right interfaces of rotating domain. The blockage 168 
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ratio for this configuration is 6.5% to ensure the full flow development[32]. The center of the rotating domain is 3D 169 

from the inlet to allow the full development of the inlet flow. A steady-state 3D RANS simulation is performed 170 

using an implicit solver, and the SIMPLE algorithm employed for the pressure-velocity coupling. The discretization 171 

scheme uses the second-order upwind scheme. The inlet is set as a velocity inlet with velocity (V) range from 5 m/s 172 

to 11.4 m/s, and the inlet TI ranges from 5% to 25%. Table 2 indicates the selection of rotational speed of the wind 173 

turbine rotor for different ranges of 
inV , the rotational speed (n) of the rotating domain is adjusted according to 174 

wind speeds shown in Table 2. The outlet boundary condition sets as a pressure outlet with an outlet pressure of 0 175 

Pa. The left and right surfaces are symmetry boundaries. The surfaces between the rotating and stationary domains 176 

are set as interface boundaries to fulfill the sliding mesh method. 177 

 178 

Fig. 1. Fluid domain mesh model  179 

Table 2 Velocity and corresponding rotational speed  180 

V(m/s) [5, 6) [6, 7) [7, 8) [8, 9) [9, 10) [10, 11) [11,11.4) 

Rotational 

speed (RPM) 
7.4 8.0 8.6 9.2 10.3 11.4 12.1 
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R level 1 2 3 4 5 6 7 

 181 

Since grid density affects the accuracy of CFD calculation results, inaccurate CFD data can impact the precision 182 

of the model. Therefore, it is necessary to study grid independence. Under rated wind speed and rated rotational 183 

speed conditions, an independence analysis was conducted on the total number of grids in the model, with the results 184 

shown in the Fig. 2. The grid independence verification indicates that coarse wind turbine blade grids result in 185 

underestimated predicted power. When the total number exceeds 10 million, the numerical values tend to stabilize, 186 

with errors around 2%. 187 

 188 

Fig. 2. Grid independence verification 189 

The quality of the mesh used in the computational domain is of great importance to the accuracy of the CFD 190 

simulation results. The geometric model of the wind turbine, constructed using SolidWorks, is imported into ICEM 191 

to generate the structured meshing. The mesh is refined in wind turbine downstream region to capture the wake 192 

features. To ensure the y+ value is equal to 1, 20 boundary layers meshes are added on the wind turbine blades with 193 

the first layer height is 8×10-5 m and the growth rate of 1.2. The number of meshes in the rotational domain and 194 

whole computational domain is 7.26 million and 10.88 million, respectively. 195 

2.2 Training and testing data collection method 196 

The training and testing data for deep learning model are gained from the full-model CFD simulation including 197 

incoming speed, wake velocity, wake TI, and output power of the wind turbine. Fig. 3 shows the sampling points 198 

for the training and testing data. For incoming speed, the sampling points are located at the 0.1D position in front 199 

of the wind turbine. Since the wind turbine rotor exhibits a rotationally symmetric pattern, this paper used three 200 

lines C1, C2, C3 separated by 120° to represent the incoming data. 13 sampling points are set for each line. For 201 

wake distribution, starting from 3D, 13 slices are taken with interval of 1D along the z-direction. Two crossed lines 202 
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is selected in each slice for data sampling. Each line has 17 sampling points. 13 sampling points are located in the 203 

wind turbine region, and 4 sampling point are outside of the wind turbine region. Each sampling point collects 204 

instantaneous velocity value at every time step. The instantaneous velocity U   can be calculated by Eq (1), 205 

respectively: 206 

1

1 N

i

i

U U
N 

                                         (1) 207 

Where 𝑈௜ is the instantaneous wind velocity magnitude at the 𝑖 time step, N is the total number of time step. 208 

For the wind turbine power output is calculated using the Eq (2): 209 

2

60
P M n  

                                       (2) 210 

Where M is the sum of the torque generated by the three blades, n is the rotational speed of wind turbine. 211 

The turbulence model selected for this paper is the SST k-ω model. Reference [33][34] has confirmed that the 212 

SST k-ω model has high accuracy in wind turbine simulation results. The k is the turbulent kinetic energy. Thus, the 213 

k data can be obtained directly from the CFD simulation. The sampling of TI and k values is similar to the wake 214 

velocity, and the average TI is calculated using Eq. (3). 215 

            
6

3 hub

k
TI

U
                                               (3) 216 

Where 
hubU  is the wind velocity at hub height. 217 

 218 

Fig. 3. Sampling point arrangements for incoming and wake data 219 
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2.3 Elliptical fitting method for wake velocity distribution  220 

This paper fits the asymmetric wake velocity distribution using an elliptical 3D Gaussian model at a cylindrical 221 

coordinate system. Velocity data are obtained from four azimuthal monitoring points (up+，up-，uv+，uv-). The azimuths 222 

of these four monitoring points differ by 90°at each radial location to construct elliptical velocity distribution shown 223 

in Fig. 4. And their velocity values are exactly the long and short axes of the elliptical velocity profile. Since the 224 

velocity distribution is asymmetric at the vertical slice which is perpendicular to z axis, four elliptical velocity 225 

distribution at four quadrants are gained separately and form a whole wake velocity distribution. Eq (4) is the 226 

description of this elliptical fitting method which takes up and uv as input. 227 

     
   2 2 2 2

, ,
, ,

, cos , sin

p v

v p

u r z u r z
u r z

u r z u r z


 



                 (4) 228 

 229 

Fig. 4. Schematic of radial annular wake fitting 230 

2.4 Wind farm prediction methods based on CNN and GAN 231 

As shown in Fig. 5, the wind farm prediction system method proposed in this paper consists of four principal 232 

modules, which are the inG  , the wG  , the R, and the P. The inG   is used to generate the high-dimensional 233 

incoming speed distribution of the wind turbine using the incoming flow conditions (
inV  and TI). The high-234 

dimensional incoming speed distribution is then inputted to P module, R module and wG  module to predict the 235 

power, rotational speed the wake distribution of wind turbine. The incoming condition of the downstream wind 236 

turbine can be gained from the wake distribution of upstream wind turbine when the location of the downstream 237 

turbine is determined in the wake region. This process is repeated until the power output and rotational speed values 238 

of the last turbine in the wind farm are calculated. 239 
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 240 

Fig. 5. Wind farm prediction system method 241 

2.4.1 Incoming speed distribution generator module and model training framework 242 

The inG  is developed to gain high-dimensional incoming data. This module is primarily constructed using a 243 

transposed convolution method. It consists of four network layers using the 
inV   and TI as input. The fully 244 

connected layer expands it into five neurons. Subsequently, the transposed convolution layer is employed to 245 

construct the feature map, and the batch normalization layer (BN) is used to normalize feature map. The convolution 246 

layer is used to reproduce the flow field features. The kernel size, padding, stride and receptive field are illustrated 247 

in Fig. 6 for of the convolution layer. 248 

 249 

Fig. 6. inG structure  250 

The CGAN structure is suitable for the surrogate modeling of parametrized fluid flows, as the unique 251 

correspondence between the flow parameter and the flow field can be established [29]. Therefore, the inG  is trained 252 

using the CGAN structure to establish a mapping between the incoming flow conditions and the high-dimensional 253 

incoming data. The CGAN structure is shown in Fig. 7. Speed distribution module ( inD ) is used as a discriminator 254 

and inG   is used as a generator. In addition, the matchmaker network ( 1

inG
  ) is added to the model for joint 255 
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objective training, and the role of 1

inG
  is to generate the predicted incoming conditions which are compared to 256 

the real incoming conditions. The incoming flow conditions are input to the inG   to generate predicted high-257 

dimensional incoming data. The predicted high-dimensional incoming data and the real incoming flow conditions 258 

are input to the inD  to determine true and false data. Meanwhile, 1

inG


 reproduce the predicted incoming data 259 

generated by the inG  to the prediction incoming flow conditions. The prediction incoming flow conditions are 260 

compared with real incoming flow conditions to determine true and false data. The errors of both inD  and 1

inG
261 

are used to train the inG . The inG  training, the inD  training and 1

inG
  training are carried out alternatively until 262 

the inD  can produce realistic flow data that is not distinguishable from the real flow data obtained by the high-263 

fidelity simulations. 264 

 265 

Fig. 7. CGAN training system 266 

The structure of the inD  and 1

inG
  in the CGAN model is shown in Fig. 8. The inD  structure inputs the 267 

incoming speed distribution to the CNN-B network to obtain eight outputs. The incoming flow conditions are 268 

combined with the eight outputs into a fully connected layer, and the final output is J which respects true and false 269 

data . The 1

inG
  structure inputs the incoming speed distribution and outputs incoming flow conditions. The 1

inG
  270 

structure is an inverse derivation model, so it is suitable for direct backpropagation (BP) training. The model is pre-271 

trained separately before the GAN network undergoes learning. 272 
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(a) Structure of inD  (b) Structure of 
1

inG


 

Fig. 8. Structure of inD  and 
1

inG


 273 

To better evaluate the training results of the Gin, this paper introduces a criterion: the average absolute error 274 

function ( 1_L loss ) to monitor the accuracy of the model. As shown in equation (5), the error function is defined 275 

as the average of the absolute value of the difference between a set of predicted value and the corresponding true 276 

value. 277 

1

1
1_

n

i i

i

L loss x x
N 

                                 (5) 278 

where N is the sample number, ix  is the predicted value, ix
 is the simulation data. 279 

2.4.2 The wake distribution generator model and model training framework 280 

The Fig. 9 shows the wake prediction sub-model wG  network architecture. It integrates 13 wake velocity 281 

sub-networks (3D-15D) and a central point velocity network. Sub-3D network represents the wake velocity 282 

distribution at the position 3D downstream of wind turbine. Sub-3D network resolves velocity distributions at 32 283 

monitoring nodes within two crossed lines excluding the central point. The advantage of this axial view is that it 284 

avoids the loss of model accuracy caused by axial segmentation along the z-axis as described in the 285 

reference[35].The central point velocity network is derived independently by a CNN-B module, which processes 286 

upstream flow field features and TI, and then generates axial velocity vectors via two fully connected hidden layers. 287 

The prediction of the center velocity is used to determine the 
inV  of the wind turbine at different distances (3D-288 

15D) downstream. Combining TI values to obtain the downstream turbine front 0.1D incoming speed distribution. 289 

 290 
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Fig. 9. Prediction network for wake region 291 

This paper proposes a Cycle GAN architecture for training wG  network based on basic GAN. As illustrated 292 

in Fig. 10, Cycle GAN [36] training system employs four networks, namely the wake generative network( wG ), wake 293 

discriminator network ( wD ), the wake matchmaker network( wiG ) and matchmaker discriminator network (
in_cD ). 294 

The incoming speed distribution is derived from CFD simulation data and the inG . The incoming speed distribution 295 

is inputted to the wG  for training purposes. The training target is the velocity data on the axial cross-section at a 296 

specified distance (3D-15D). The prediction of wake distribution generated by the wG   are input to the wD  297 

network to compute the G  loss and D loss. The predicted wake data are also input the wiG  to reproduce the 298 

incoming speed distribution. This process completes a data reproduce. The wiG  training and 
in_cD  training are 299 

carried out alternatively until the wiG  can produce realistic incoming speed distribution that is not distinguishable 300 

from the real flow data obtained by the high-fidelity simulations. Finally, the predicted incoming speed distribution 301 

are mapped back to the wake distribution through wG . 302 

 The 1_L loss  result is calculated as the loss between the wake distribution obtained through reproducing the 303 

wake distribution and the wake distribution generated by the wG .The loss function of the wG  in Cycle GAN is 304 

the joint loss of the w _G loss   and the 1loss   (compare predicted incoming speed distribution with training 305 

incoming speed distribution ). The loss function of the wiG  is the joint loss of the 
1 _G loss

 and the 2loss  306 

(compare predicted wake distribution with reproduced wake distribution). Each epoch will train the wG , wD , 307 

wiG , and 
in_cD  simultaneously. 308 

The wG  joint loss function and wiG  joint loss function formulas are shown below: 309 

     
1

_ l 1
2

W W BCE MSE
Loss G G oss loss                           (6)  310 

     
11

_ 2
2

Wi BCE MSE
Loss G G loss loss                          (7) 311 

Where _WG loss  and 1 _G loss are generation losses, 1loss  and 2loss  are cyclic consistency losses.  312 
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 313 

Fig. 10. Cycle GAN training system 314 

2.4.3 The rotational speed prediction module 315 

Rotational speed selection is critical to prevent blade flow separation and maximize power output, as excessive 316 

speeds induce flow separation that reduces energy capture. Rotational speed must dynamically match to incoming 317 

speeds, particularly in large-scale wind farms where spatial wind speed variations necessitate turbine-specific 318 

adjustments. Therefore, a R model is established [37]. As shown in Fig. 11, the R model consist of a CNN-B module 319 

as the primary component, with a hidden layer consisting of seven nodes corresponding to the seven speeds listed 320 

in Table 2. 321 

 322 

Fig. 11. Structure of rotational speed prediction module  323 

2.4.4 The power prediction module 324 

The inputs to the P module are the high-dimensional incoming data and TI, and the output is the power of the 325 

wind turbine. As shown in Fig. 12 (a), the incoming speed distribution are input to the CNN-B network and after 326 

deriving the 8 feature outputs of the CNN-B, the TI inputs are added to mix with it. After inputting the mixed result 327 
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into a fully connected layer (8 neurons), the predicted power result is again calculated fully connected through the 328 

nonlinear activation process of ReLU. To obtain TI data in the downstream region, it is necessary to construct a 329 

network for predicting TI. As shown in Fig. 12 (b), the input parameters of the TI prediction model are the incoming 330 

speed distribution and TI at different downstream distances, and the output is the TI in 3D-15D. 331 

  

(a) P model structure  (b) TI prediction model 

Fig. 12. P and TI structure 332 

3. Results and discussion 333 

In section 3, the performance of the proposed wind farm prediction system is evaluated and discussed. Section 334 

3.1 validates the accuracy of our CFD simulation data compared with that of experiments or LES. The training and 335 

validation of the power and rotational speed model are described in Section 3.2. Section 3.3 evaluates the training 336 

results and validation of the incoming speed distribution generation model based on CGAN. The prediction 337 

performance of the wake distribution generation model of the proposed Cycle GAN is evaluated in Section 3.4. In 338 

Section 3.5, the calculation results of two wind turbines are compared with the model prediction results, and a 339 

velocity correction for the downstream wind turbine is proposed, which makes the prediction results closer to the 340 

simulation results. In Section 3.6, Power prediction for multiple wind turbines is performed using real wind farm 341 

data validation to verify the use in wind farm applications.  342 

To further quantify prediction accuracy and the accuracy of the simulation results, the mean percentage error 343 

(MAPE) and the coefficient of determination (
2R ) are calculated to evaluate the model performance on testing 344 

datasets. The MAPE is defined as follows. 345 

1

100% n
i i

i
i

x x
MAPE

N x




                                    (8) 346 

where N is the sample number, ix  is the value or simulation data, ix  is the predicted data. 347 

2R is a statistical measurement that reflects the fit quality of a regression model. It evaluates the model capacity 348 

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
8
4
8
5
6



 

17 

 

to explain variability in the data. The equation of 
2R  is expressed as follows[38]: 349 

                             

2

2 1

2

1

( )

1

( )

n

ii

i

n

i

i

Y Y

R

Y Y








 






                                   (9) 350 

where n is the sample number, iY  is the 
thi  actual value, iY



 is the 
thi  predicted value, and Y  is the 351 

average of true value. 352 

3.1 Verification the data gained from the full-model CFD simulation 353 

It is critical importance to validate the reliability in simulating wind turbine output power, wake characteristics. 354 

To ensure the convergence and reliability of the full-model CFD data, this paper conducts simulation validation of 355 

the full-model wind turbine under the conditions of different wind speeds and rotational speeds. The power data are 356 

verified by comparing them with the actual data from the reference [31]. As shown in Fig. 13, the value of MAPE 357 

is 3.17% in the wind speed range of 5 m/s to 11.4 m/s, the simulated power results align with the overall trend. 358 

 359 

Fig. 13. Verification of wind turbine power output 360 

The velocity distributions obtained from the full-model simulation were compared with high-precision LES 361 

and experimental date [39][40] for validation, as shown in Fig. 13.The 3D-15D wake flow field downstream of the 362 

wind turbine was monitored at rated wind speed and rotational speed. For vertical cross-section distribution in the 363 

near wake region, the MAPE values is 8.36% and 9.13% for the 3D and 6D, respectively. The wakes velocity is 364 

larger near the center, and the wake velocity is smaller on both sides of the rotor blade tip. This simulation result is 365 

in accordance with the data gained by the LES. As the flow develops, the downstream high velocity and low velocity 366 

wake mix, the “W” shape distribution is transfer to smooth velocity distribution. In the far wake (10D), the wake 367 

distribution is the smooth velocity distribution due to the full development of the flow field. The MAPE values is 368 

6.26% smaller than the near wake region. For horizontal cross-section distribution, the MAPE values is 8.28% and 369 

6.17% for the 3D and 5D, respectively. As the flow develops, the downstream high velocity and low velocity wake 370 

mix, the “W” shape distribution is transfer to “U” shape distribution. For average central point velocity of the wind 371 
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turbine, the MAPE value is 2.54%. It can be observed that as the flow develops, the central velocity begins to 372 

recover gradually A comprehensive comparison indicates that the simulated velocity distribution in this paper is 373 

reliable and has reference value.  374 

 375 

(a) Vertical cross-section velocity distribution along x direction 376 

 377 

(b) Hub height radial velocity distribution along y direction  378 

 379 

(c) Average central point velocity of the wind turbine 380 

Fig. 14. Validation of simulated flow field 381 
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3.2 Validation of the power and rotational speed prediction models 382 

Fig. 15 shows the number of occurrences of different R level. The actual R level of 2, 4, 6, and 7 are misjudged 383 

at a higher level of RPM. It can be analyzed that all the misclassified data are generated by the 
inV  near the RPM 384 

shift junction in Table 2. This prediction error may be caused by insufficiently dense data in the RPM transform 385 

junction. The interval between these 
inV  needs to be minimized to avoid model impact. 386 

 387 

Fig. 15. Number of occurrences of different R level predictions  388 

For the training and validation of the P model is shown in Fig. 16. The overall model prediction data fit the 389 

actual data better, and the statistical index 
2R  of the prediction data in both the training and test sets exceeds 0.99, 390 

which indicates that the model fits the CFD monitoring data well and has good prediction accuracy. 391 

 392 

Fig. 16. Scatter plot of P model prediction distribution 393 

3.3 Validation of incoming speed distribution generator model based CGAN 394 

The changing values of the loss function during the training process of the in
G  network is shown in Fig. 17. 395 

The change of _G loss  and _D loss  function is negatively correlated, showing the trend of this and the other. 396 

Observing the trend of 1_L loss , the in
D  network at the beginning stage has a higher discrimination rate for the 397 
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crude data generated by the inG   network, which leads to a more difficult training of the inG   network at the 398 

beginning. After more than 500 Epochs, the G   loss is smaller than the D   loss, currently, and the 1_L loss  399 

begins to decline steadily, and stops after learning 4000 Epochs for the training set, and the trained parameters are 400 

selected to construct the inG . 401 

 402 

Fig. 17. CGAN training process 403 

Fig. 18 shows the errors for each data point in the prediction results of the in
G  for the test set. The results 404 

show that the distribution of prediction errors for the points on all three lines C1, C2, C3 are around 3%. This results 405 

confirm the modeling accuracy of the inG . 406 

 407 

Fig. 18. Incoming speed error 408 

3.4 Adversarial training of Cycle GAN-Based wake generation models with validation 409 

3.4.1 Cycle GAN network training 410 

A Cycle GAN structure comprises six loss functions, which are used to train the four networks simultaneously. 411 
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Among these loss  functions, the 1_ lL oss  result of wG  is of important indicators, as it reflects the degree of 412 

matching between the wake flow and its corresponding incoming flow. The training process for each Sub-network 413 

within the Cycle GAN structure is illustrated in Fig. 19. The performance of the cross-section velocity Sub-networks 414 

(3D-15D) varies in response to the training cycle. It can be observed that the loss function of the Sub-3D in the near 415 

wake flow region exhibits greater fluctuations, while the training efficiency of the sub-network model in the far 416 

wake flow region improves with increasing distance. After 3000 epochs, there has been no significant decline in the 417 

1_ lL oss  value, thus the sub-network model parameters have largely stabilized. At this moment, the model 418 

parameters are chosen to predict the velocity of the wake field. 419 

 420 

Fig. 19. Cycle GAN training process 421 

3.4.2 Verification of wake prediction data 422 

Fig. 20 present a comparison between the predicted values and CFD simulation data of the wake velocity 423 

distribution at different distance along z-axis. The MAPE values are all below 9%. Fig. 19 (a) illustrates the wake 424 

velocity distribution in the y direction (3D to 8D), Fig. 20 (b) shows the wake velocity distribution in the x direction 425 

(3D to 10D). From Fig. 20 (a), it is evident that the predicted data do not align well with the CFD data in the range 426 

of -0.5<X/D<0.5, and the disparity is especially occurring in the range of -0.5<X/D<0, at the 3D downstream of 427 

wind turbine. The lower linear velocity in the blade root region leads to underutilization of the incoming flow energy 428 

passing through the wind turbine center area. A higher residual kinetic energy remains in the near wake, causing a 429 

relatively large velocity loss in the central wake region. In the near wake region, the low velocity wake on both 430 

sides does not sufficiently mix with the high velocity airflow in the wind turbine center area, resulting in “W” shape 431 

of velocity profile. The wake generation sub model has a lower accuracy prediction of this “W” shape of velocity 432 

profile. When downstream distance is larger than 3D, the velocity profile is “U” shape due to the mixing of the high 433 

and low speed airflow. The wake generation sub model has a higher accuracy prediction of this “U” shape of velocity 434 

profile. The variation of velocity along the x and y direction may has a certain impact on the prediction accuracy of 435 
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wake generation sub model. However, since downstream wind turbines are usually located in the far wake region 436 

of upstream wind turbines in the wind farm layout, the near wake prediction accuracy has less impact on the 437 

optimization of wind turbine layout. 438 

 439 

(a) Hub height radial velocity distribution along y direction 440 

 441 

(b) Vertical cross-section velocity distribution along x direction 442 

Fig. 20. Comparison of wake prediction results 443 

Fig. 21. Predicted velocity distribution compares the prediction results of the Jensen-Gaussian analytical wake model 444 

[14], the ANN wake model and the CNN-GAN wake model. The ANN wake model is a line wake network trained 445 

by BP, and the CNN-GAN wake model is an axis section network model trained by Cycle GAN. For the 3D 446 

downstream of the wind turbine, the CNN-GAN wake model obtained a MAPE of 3% for the velocity prediction 447 

data versus the full model CFD simulation data at each point. the ANN wake model had a MAPE of 3.7% versus 448 

the full model CFD simulation data. This shows that the prediction accuracy of the ANN wake model is low 449 

compared to the CNN-GAN wake model. The Jensen-Gaussian model is not accurate enough compared to CNN-450 

GAN wake model and ANN wake model. This is attributable to the assumption of a steady-state Gaussian 451 

distribution, whilst vortex interactions are ignored. It leads to oversimplification in 3D. For the 10D downstream 452 

region of the wind turbine, the CNN-GAN wake model obtained a MAPE of 1.5% in the comparison of the velocity 453 

prediction data with the CFD simulation data at each point. In contrast, the ANN wake model had a MAPE of 3.4% 454 

in the comparison of the CFD simulation data. This is due to the fact that the advantage of the axial part of the GAN 455 
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network in continuous deconvolution makes the predicted data closer to the CFD simulation data. The BP linear 456 

network has the capacity to generate radial velocity gradients that are non-existent, thereby resulting in a lower level 457 

of prediction accuracy when compared to the CNN-GAN wake model. In the GAN structure, the discriminator 458 

network effectively avoids this problem. In real wind farms, downstream wind turbines are usually located in the 459 

far wake zone of upstream wind turbines, so the accuracy of data in the far wake zone is even more important. In 460 

summary, the CNN-GAN wake model has better prediction performance than the ANN wake model in the far wake 461 

region. 462 

 463 

(a) Predicted velocity distribution at 3D 464 

 465 

(b) Predicted velocity distribution at 10D 466 

Fig. 21. Predicted velocity distribution 467 
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The velocity data ( pu , pu , vu , vu ) at each radial position are substituted into Eq. (4) and fitted to 468 

obtain a continuous distribution of velocities in the radial annulus (along z-axis). Fig. 22 shows the wake velocity 469 

distributions at different axial distances (3D-8D) and radial positions (0.25D-0.5D) under different 
inV  . It is 470 

observed that there is a similarity in the velocity distributions of the wake flow, with low 
inV  corresponding to 471 

lower wake velocities. However, the characteristics of the wake velocity distributions do not change much when 472 

inV  is different. The velocity profile in the near wake region is relatively irregular, and the distribution derived from 473 

Eq. (4) simplifies some of the flow details in the near wake region. However ,the velocity distribution in the radial 474 

annulus is more regular after 5D, and the fitted predicted velocities are more in line with the original velocities 475 

distribution. 476 

 477 

Fig. 22. Results of wake model fitting 478 

3.5 Verification and correction of tandem wind turbine wake prediction 479 

To verify the prediction performance of the wake prediction model in tandem arrangement, the data obtained 480 

from CFD simulations and model predictions are compared in Fig. 23 (a) shows that the output power prediction 481 

results. The red bars represent the upstream wind turbine output power, while the blue bars indicate the downstream 482 

wind turbine output power result. The data in red color indicates the power value of the upstream wind turbine and 483 

the data in blue color indicates the output power result of the downstream wind turbine. It found that the predicted 484 

output power of the upstream wind turbine is 4.69% higher than the CFD data, while the predicted output power of 485 

downstream wind turbine is 6.07% higher than the CFD data. The reason for this error may be the large upstream 486 

TI prediction, which leads to the large power prediction of the downstream wind turbine. Fig. 23 (b) shows the 487 

predicted results of the TI and central point velocity for different axial distances (3D-14D). The red line represents 488 

the model predicted data of the central point velocity, the black line represents the CFD data of the central point 489 

velocity, the green dots represent the model predicted TI at different distances, and the blue dots represent the TI 490 
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obtained from the CFD simulations. For TI, the predicted results are slightly higher than the CFD results in the 491 

upstream region and slightly lower than the CFD results in the downstream region. For the central point velocity, it 492 

can be observed that the central velocity recovery rate of the downstream wind turbine (11D-14D) is significantly 493 

larger than the model prediction. This prediction error of the downstream central point velocity is mainly because 494 

that the decrease in the prediction of upstream central point velocity, which leads to a decrease in the downstream 495 

central point velocity. 496 

 

 

(a) Output power prediction results  

  

 

(b) Central point velocity U and TI prediction results 

Fig. 23. Tandem twin wind turbine prediction results 497 

The wG  network is constructed by the data of a single wind turbine, which does not consider the mixing 498 

effect of the mixing of high velocity flow and low velocity wake on the wake velocity recovery of the downstream 499 

wind turbine. The high velocity flow adds more momentum to the far wake region of the downstream wind turbine, 500 

resulting in faster wake recovery in the far wake region. Therefore, the momentum supplement is proposed to correct 501 

the wake velocity at the far wake region of the downstream wind turbine and the specific methods are as follows. 502 

After the incoming flow conditions of downstream wind turbine were inferred from the wG  , inG  and TI networks, 503 

the model inputs for the downstream wind turbine Sub-5D and beyond were actively adjusted. The final 
inV  inputs 504 

for these sub-networks were taken to be the average of the actual predicted results and the 
inV  of upstream wind 505 

turbine. 506 

The corrected wake distribution prediction along y direction is shown in Fig. 24 . The black line represents the 507 

downstream wind turbine CFD data, the red line represents the radial velocity distribution in the y-direction obtained 508 

when the correction 
inV  is not applied with the momentum addition method, and the blue line represents the radial 509 

velocity distribution in the y-direction obtained when the correction 
inV  is applied with the momentum addition 510 

method. The predicted velocity before correction is significantly smaller than the CFD calculation results. By 511 

correcting the 
inV , it is evident that at downstream distances of 5D and 7D, the improved prediction results can 512 

match well with the simulation results. 513 
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 514 

Fig. 24. Downstream velocity correction 515 

3.6 Power prediction for multiple wind turbines  516 

To examine the performance of the proposed system in wind farm applications, the power prediction of multiple 517 

wind turbines is conducted for the Horns Rev 1 wind farm [41] for real wind field data verification. The overall 518 

layout of the wind turbines is in the form of a parallelogram. The overall layout of the wind turbine array is in the 519 

form of a parallelogram, with a total of 8 groups in the east-west direction, 10 rows of wind turbines in each group, 520 

and upstream and downstream wind turbines spaced at 7 D. The validation inputs to the wind farm prediction system 521 

in this section will be consistent with the incoming wind conditions from the measured data, choosing three 522 

incoming wind directions 270° , 220° and 312°, with the ambient wind speed set to 8 m/s and TI = 7.7%. 523 

Since the wind turbine specifications in the Horns Rev 1 wind farm are different from the 5MW wind turbine 524 

used for training in this paper, the data needs to be standardized in a uniform way before proceeding to the next step 525 

of prediction. In this paper, the power curves of the wind turbines are taken as objects to be standardized, and the 526 

formulas are shown in Eq. 8. The standardized power curves of the two processed wind turbines are presented in 527 

Fig. 25. It can be observed that the two curves exhibit a high degree of fitting, and that the thrust coefficients of the 528 

two wind turbines are similar under the standardized operating conditions.  529 

,1 min,1 ,1 min,2

,1 ,2

,1 min,1 ,2 min,1

1 2P P

in in

P P

rate rate

rate, rate,

V V V V
f f

V V V V

    
                                (8) 530 
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Fig. 25. Standardized power curve 532 

Fig. 26 presents the normalized power output of the wind farm array under three distinct wind directions, 533 

comparing the prediction system developed in this paper against both field measurements from the Horns Rev 534 

offshore wind farm [42] and LES results [41]-[43]. The red line represents predicted data, the blue line represents 535 

LES data, and the black line represents actual measurement data. From the results, the wake effect of the first wind 536 

turbine causes a 30–40 % power generation loss for the second wind turbines. The power at the third wind turbine 537 

is slightly reduced compared to the second wind turbine because of the variation by the TI affecting the wake 538 

recovery rate. Starting from the second wind turbine, the combination of superimposed wake and accelerated wake 539 

recovery results in dynamic equilibrium conditions, which allow subsequent wind turbines to have the same level 540 

of power output. 541 

For the predicted power in the 270° wind direction, the red dashed line represents power results predicted by 542 

the uncorrected model. The third wind turbine of the uncorrected model has decreased to a level below 30% of the 543 

power prediction of the first wind turbine. The subsequent wake speed is already below the wind turbine's cut-in 544 

speed, which renders the downstream wind turbine unable to operate normally. For the power prediction results of 545 

the modified model, it can be seen that the power gradually stabilizes from the third wind turbine onwards, and the 546 

prediction results are close to the LES prediction. The stabilization of the trend in this wind direction may be due to 547 

the symmetrical layout of the wind turbines. It can be seen that by adjusting the downstream 
inV , the problem of 548 

excessive velocity decay in the far wake region predicted by the model and accurately predict the wind turbine 549 

power. 550 

For the predicted power in wind directions of 222° and 312°, the results for the first two turbines match the 551 

actual measurement data. However, the results for the third turbine onwards are progressively lower than the actual 552 

measurement data, although the overall trend remains consistent. This prediction error can occur due to lateral shifts 553 

in the wake diffusion path in inclined wind direction. Comparing LES data with the predicted data in 312° wind 554 

direction, the power simulation results for the second wind turbine LES are significantly smaller. The downstream 555 

power of such a tandem wind turbine is less than the power results of the downstream turbine for full-model CFD 556 

simulation[44][45], which can also be observed in LES and actuator studies [46]-[48]. This may be due to the error 557 

caused by the simplification of the ALM. 558 
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 559 

(a) 270° 560 

 

(b) 222° 

 

(c) 312° 

Fig. 26. Comparison of predicted power of real wind farms 561 

4 Conclusion 562 

To ensure the accuracy and efficiency for predicting wind turbine wake and output power, a surrogate modeling 563 

system using full-model CFD and CNN-GAN was developed in this study to establish a power prediction system 564 

for wind farms comprising multiple wind turbines. The system uses CNN models to construct prediction models for 565 

the NREL 5 MW wind turbine under different incoming conditions. The CNN models are trained using the data 566 

from a full-model CFD and the GAN frameworks. The prediction performance of the proposed model is evaluated 567 

comprehensively and following conclusions are obtained. 568 

(1) The innovative design of the CGAN-based incoming speed distribution generator can obtain the high-569 

dimensional incoming speed at the 0.1D position in front of the turbine, just by inputting the 
inV  and TI. The model 570 

solves the problem of difficulty in obtaining the flow field data in front of wind turbine. The generation speed is 571 

greatly improved compared with the traditional CFD simulation, and the error is controlled within 3%. The design 572 
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of the inG  greatly enhances the engineering applicability of the prediction system. 573 

(2) The wake prediction model is divided into several velocity distribution sub-networks with axial cross 574 

sections, and a function is fitted to the discrete data to form a 3D wake model. To address the problem of matching 575 

the wake velocity distribution with the incoming speed distribution at each cross section, a reflective projective 576 

model is developed for dual objective joint training using a cycle GAN structure. The results show that the GAN-577 

trained model produces results that are consistent with the actual physical scenario and are highly accurate in the 578 

far wake region. 579 

(3) The downstream wind turbine center speed is corrected according to the principle of momentum 580 

complementation, and the corrected system is applied to the total power prediction of wind farms. The 581 

computational results show that the power prediction of LES is basically consistent with the results calculated by 582 

the model, indicating that the model has good performance in wind farm power calculation.  The validation shows 583 

that the wind farm prediction system can greatly improve the prediction speed while ensuring the prediction 584 

accuracy, which is of great value for engineering applications. 585 

Future work may involve the study of wake prediction for wind farms in complex terrain on hillsides.  586 

Another direction is to explore the use of the developed model for optimal control design in wind farms. 587 
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