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Abstract

Image colorization is a typical ill-posed problem. Among
various colorization methods, scribble-based methods have
a unique advantage that allows users to accurately resolve
ambiguities and modify the colors of any objects to suit their
specific tastes. However, due to the time-consuming scrib-
ble drawing process, users tend to draw sparse scribbles in-
stead of dense and detailed scribbles, which makes it chal-
lenging for existing methods, especially for regions with no
immediate scribbles. Facing the above problems, this paper
proposes a novel colorization algorithm named Local and
Global Affinity Net (LGA-Net) that formulates the scribble-
based colorization task as an affinity propagation process
at both local and global levels. Instead of predicting color
values directly, our neural network learns to predict local
and global affinity relationships between pixels for a given
grayscale input, describing how colors should be propa-
gated, which are independent of the scribbles. Given reli-
able affinity relationships, the color propagation process is
formulated as a maximum a posteriori problem. Both local
and global affinities are represented using a weighted graph
and enabled by a graph Laplacian regularizer to ensure ac-
curate color propagation. Extensive experiments demon-
strate that LGA-Net produces state-of-the-art colorization
results when using sparse scribbles.

1. Introduction

Image colorization predicts color channels based on
grayscale input, which as an ill-posed problem. Since image
colorization tasks often do not have specific ‘correct’ an-
swers, a controllable colorization algorithm that can accu-
rately depict users’ aesthetic preference and/or prior knowl-
edge of the target scene is more in line with practical re-
quirements.

*Corresponding author

Existing image colorization works can be broadly di-
vided into two categories: automatic and user-guided col-
orization, which are described in detail in Section 2. Al-
though automatic colorization algorithms [14, 16, 31, 36,
46] can directly generate colorized results with remarkable
visual quality, users cannot make changes to the coloriza-
tion results based on their knowledge or individual prefer-
ence. According to the different forms of user guidance,
user-guided methods can be further divided into the fol-
lowing three sub-categories: scribbles/pixel hints based col-
orization [10, 20, 30, 43, 45] (referred to as scribble-based
methods for simplicity), example-based colorization [8, 19,
21, 22, 38], and text-driven colorization [2, 15, 35, 47].
Although example-based and text-driven methods can also
provide some control, they are not sufficiently detailed for
fine-grained control, and can often introduce some ambi-
guities w.r.t. user preference. In contrast, scribble-based
method provides intuitive, fine-grained colorization control.

Although scribble-based methods can satisfy users’ aes-
thetic preference and prior knowledge to the greatest extent,
they require user-provided detailed scribbles/pixel hints. In
real-world scenarios however, users tend to draw sparse
scribbles to reduce effort. They tend to only draw one
or a few scribbles for multiple regions with similar tex-
ture/intended color, corresponding to e.g. multiple in-
stances of the same type of objects, or one object split into
multiple image regions due to occlusion. Moreover, ex-
isting methods tend to predict a color image as output di-
rectly, given a grayscale image and scribbles/pixel hints as
input. This approach however means the network needs to
not only understand the grayscale image content and struc-
ture but also how the pixel hints should be propagated in an
entangled manner, leading to limited generality for realis-
tic sparse scribbles scenarios, even with large-scale training
data. Furthermore, as real hand-drawn scribbles are diffi-
cult to acquire, randomly choosing pixels as hints during
training further restricts existing methods in sparse scribble
scenarios, especially for distant regions with similar texture
that require accurate understanding of global relationships.



Facing the above problems, we propose a fundamentally
different approach for scribble-based colorization: instead
of predicting color images, LGA-Net learns to predict Lo-
cal and Global Affinities which are solely dependent on the
grayscale image, and irrelevant to the scribbles. This makes
learning much more effective and generalizable. Once the
affinities are predicted, we formulate scribble-based col-
orization as a maximum a posteriori problem that prop-
agates scribble colors to the rest of the image, regulated
by the affinity relationships. In contrast, existing scribble-
based methods learn to directly predict color, which may
cause conflicts between known color from training data and
user-scribbled color. Our key contributions are:

* This paper innovatively conceptualizes the image col-
orization task as a color propagation process based on
affinity relationships. Once the affinity relationships are
effectively learned, the scribbles’ colors can be appropri-
ately propagated to suitable regions.

¢ To efficiently produce high-quality colorized images that
are in line with users’ intentions, the color propagation
process is formulated as a maximum a posteriori problem
with a Laplacian prior on a weighted graph that represents
pixel affinities, which explicitly enables both local and
global affinity relationships by introducing adjacent and
global points in the graph Laplacian matrix.

» Extensive experiments demonstrate that LGA-Net trained
on a very small dataset containing only 4K images outper-
forms state-of-the-art methods even when they are trained
on more than 1M images. Our method also shows good
scalability and cross dataset generalization'.

2. Related Work

2.1. Automatic Colorization

Early effort for automatic colorization [7] applied graph
theory to maximize global image color probability, but the
method relies on handcrafted features, and thus has limited
robustness. Deep learning based methods [9, 13, 18, 44]
showed improved robustness, by exploiting large amounts
of paired grayscale and color images. Subsequently, Wu
et al. [36] integrated the generative priors of pre-trained
GANSs (Generative Adversarial Networks) into the coloriza-
tion process instead of using natural examples as most
example-based methods do. Palette [29] applies a unified
conditional diffusion model to deal with different image-to-
image tasks. UniColor [12] can handle both unconditional
and conditional tasks, with the help of hint points serving as
an intermediate unified representation. Automatic methods
can produce impressive results, but they lack the flexibility
for users to customize colors according to their preferences.

IThe source code and trained models are available at https: //

github.com/HONGJINLYUCS/LGA-Net-ICCV-2025.

2.2. Example-based Colorization

Example-based methods use user-provided reference im-
ages for guidance to offer some user control. He et al.
[11] provided recommended reference images from the Im-
ageNet dataset [28] based on semantic and luminance statis-
tics. Wang et al. [33] deployed a dual pyramid architecture
into exemplar-based colorization. Li et al. [23] bridged
the gap between input and target images by a more rea-
sonable gradient updating method. Although the above-
mentioned methods allow user involvement during the col-
orization process, users still cannot provided detailed cus-
tomization for the colorization results.

2.3. Text-driven Colorization

The work [25] firstly converted input text into a vector rep-
resentation using a bi-directional LSTM (Long Short-Term
Memory) network, which was then integrated into all in-
termediate feature maps of a basic fully-convolutional net-
work. Kim et al. [15] fused textual and image structure
features at the deepest layer of the generator. Weng et al.
[35] innovatively used the object-adjective correspondence
by utilizing a bi-affine mechanism and an attention trans-
fer module. While text-based methods offer some level of
customization, the control can still be quite limited.

2.4. Scribbles/points-based Colorization

Some scribble-based colorization methods are designed for
colorizing line arts [5, 6, 43], and not suitable for general
grayscale images. For grayscale images, pioneering work
by Levin et al. [20] achieved scribble-based colorization by
propagating scribble colors to neighboring pixels based on
intensity similarities. Luan et al. [24] presented an inter-
active system that first groups regions with similar colors
and then fine-tunes colors in such regions. These methods
rely on handcrafted formulas and have limited robustness.
Zhang et al. [45] proposed to use ground-truth colors of
randomly sampled pixels as simulated user input to train a
neural network for interactive colorization. Such hint pixels
can differ significantly from user scribbles, and the method
relies on large amounts of training data. Yun et al. [41]
enhanced the global affinity learning based on the global
receptive field and self-attention mechanism. However, ex-
isting methods poorly handle sparse scribble inputs. To ad-
dress this, our LGA-Net first predicts local and global affini-
ties from grayscale inputs, then reliably transfers user col-
ors to the entire image via these affinities, regardless of the
distance. The idea is conceptually related to edit propaga-
tion research [1, 3, 37] for image and/or video editing, al-
though these methods use handcrafted similarity measures
rather than learned affinities and address a rather different
problem. Observing how color is propagated in automatic
video colorization also shows usefulness for label-free vi-
sual tracking [32].
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3. Methodology
3.1. Colorization by Learning Affinities

Colorization in this paper is the process of inferring the
color channels based on the grayscale image (gsi) and user-
specified scribbles. Inspired by concepts from graph the-
ory, an image with N pixels can be represented by a graph
G = (V,€), where V and & are the sets of vertices and
edges in G, respectively. Each pixel 4, (i = 1,2,...,N)
in the image is represented by a vertex in V, and the con-
nection between two pixels is represented by an edge in £.
After assigning weights to £, we can get the relationship
weight matrix W, where w;; € W, (4, j) € € fori,j € V.

Based on graph theory, the scribbles’ colors can be reli-
ably propagated throughout an entire image if the precise G
corresponding to gsi can be obtained. The key point is to
obtain W in a way that is both accurate and reliable. Based
on the powerful feature extraction and representation capa-
bility of neural networks, we compute w;; € W using a
neural network CNNp, which provides a suitable represen-
tation of the original input image for color propagation.

Instead of directly predicting pairwise affinity relation-
ships between pixels, which can be highly expensive,
CNNg is formulated as a matrix-feature function Fy;:
RY s RNXH ‘which maps each grayscale pixel to an H-
dimensional feature space. Then the edge weight w;; is cal-
culated according to the following formula:

H h _ th)?2
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where f! represents the i*® element in the h*" feature map,
and o is a pre-defined parameter.

3.2. Laplacian Coloring Layer

Building upon the user-provided scribbles and the obtained
weighted graph G, we treat the color propagation process
as a maximum a posteriori problem with a Laplacian prior,
realized through the Laplacian Coloring layer (LCL) which
does not require training:

a* = argminl|y — 2|3 + o - 2" La (2)
T

where y of size NV x 1 denotes the user-provided scribbles’
colors (taking one chrominance channel for example), and
x* of size N x 1 is the color channel after propagation. The
first term in Eq.(2) is the fidelity term which minimizes the
discrepancy between y and z*. M is an N x N diagonal
matrix, in which the diagonal elements with value 1 indi-
cate the positions of scribbled points (and O otherwise). The
second term is the Laplacian regularizer of the graph corre-
sponding to gsi; « serves as a weighting term to balance the
above two terms. Given a specific W, the corresponding

degree matrix D is a diagonal matrix, in which the diago-
nal elements D;; = ZN:1 w;;. Then, the Laplacian matrix

J
of Gisdefinedas L = D — W.

3.2.1. Enhanced Local-Global Affinity Regularization

In this paper, we build a graph Laplacian matrix containing
both local and global affinities for a more accurate regu-
larizer 2T Lz. In detail, each pixel is firstly related to the
surrounding eight neighboring pixels, which enables local
level affinity. Secondly, we further choose a subset of pixels
as global pixels, which are evenly spaced in a regular grid,
with the gap between adjacent global pixels referred to as
global steps (GS). Each global pixel is connected to every
other global pixel when forming G; these are used to de-
scribe global (long-range) affinity relationships. Intuitively,
these global pixels are used as anchor points at different po-
sitions, which enables the priors for global affinities to be
explicitly added into regularizer T Lz to enhance the rep-
resentation for image structure.

3.2.2. Singular Matrix and Solution Ambiguity

Eq.(2) gives a formulation for scribble color propagation,
and can be rewritten in the matrix form:

(M +aLl)x* = My 3)
In practice, depending on the scribbles drawn and the affin-
ity weights, the matrix M + oL may be degenerate, result-
ing in the linear system not having a unique solution. To ad-
dress such ambiguities, a weak regularization constraint on
adjacent pixels is introduced with a small balancing weight
¢, which enforces adjacent pixels to have similar colors.
This extends Eq. (2) to the following:

x* = argmin|ly — 2|3 +a-2TLae + ¢ - 2T Logiz (4)
x

2* = (M +aL+ ¢L.g) ' My (5)

where L,q; is an N x N matrix that serves as the newly
added adjacency constraint term, which is 1 for adjacent
pixels and O otherwise. ¢ is set to an appropriate value,
which is sufficient to stabilize the linear system while mini-
mizing its impact on the final solution as much as possible.
Since the new coefficient matrix A* = M + oL + ¢L,q;
is non-singular, there is a closed-form solution, as shown in
Eq. (4) and Eq. (5).

3.2.3. Sparse Tensor Optimization

The coefficient matrix A* is of size N x N, which
would have significant memory/computation demands dur-
ing training if treated as a dense tensor. Thus, all operations
of LCL are conducted using sparse tensors. Especially, the
calculation of (M + oL + ¢L,4) " My using dense ten-
sors is prohibitively expensive due to the immense GPU
resources required. To overcome this, LGA-Net utilizes a
CPU-based method [17] to solve this sparse linear system,
which significantly reduces the memory and time required.
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Figure 1. Overview and detailed structure of LGA-Net

3.3. Network architecture

As shown in Fig. 1a, the luminance channel Y is firstly fed
into CNNF to obtain the rich high-dimensional feature rep-
resentation, which is beneficial for predicting more accu-
rate affinity weights w;;. «, as a key weight to balance
the fidelity term and the regularization term, is also learn-
able, and predicted by a separate light-weight neural net-
work CNN,, as shown in Fig. lc; L,g; is a fixed matrix
that enforces a weak connection between each pixel and
its neighbors; ¢ is a fixed weight for L,q;. LGA-Net first
builds a Laplacian matrix L reflecting the structural infor-
mation of the input image based on the output of CNNF, and
then solves a large sparse linear equation system A*z = b
according to the given Laplacian prior, o, ¢ and Lg;.

CNNE as shown in Fig. 1b, consists of the basic feature
extraction sub-network BFEnet and the Non-local block
(NLB) [34]. BFEnet is composed of only seven convolu-
tional layers, which reduces computational complexity, en-
hances efficient gradient propagation and training conver-
gence. Further, richer high-dimensional features are intro-
duced by embedding NLB after BFEnet, which improves
the capability of LGA-Net to perceive image structure.

3.3.1. Loss function

Let 7 denote the ground truth domain, C denote the col-
orized domain, and D; denote the training dataset. For a
training example d € Dy, T and C? refer to the ground
truth color image and the colorized result by LGA-Net.
Firstly the simple but efficient Least Absolute Deviations
L is applied to enable a pixel-wise difference judgment:

1 (T7,¢) leTd cill (6)
where ¢ is used as the pixel index.

Secondly, we apply the Laplacian pyramid loss Liqp [4]
to perform multi-resolution analysis between 7 and C:
= S

Liap (T,CY) = —Lrehl @

Colorized UV

where L?(-) means the p-th level of the Laplacian pyramid
feature of the input.

Finally, for smoother results, we introduce total varia-
tion loss L1y to explicitly constrain C in terms of spatial
variation:

Lrv(CY) = > led —cdlz @)
i=1,2,...,N;jENbr(i)

where Nbr(i) defines the neighbor pixels of i. The total
loss is a weighted sum of these terms:

L= (Ly(T%C

deDy

+ >\lap£1(7- Cd) + >\TV»CTV(C )) )
©)

where \jqp, and Ary are balancing weights.
4. Evaluation

In this section, the implementation details are described
in detail in Section 4.1. Then, we compare LGA-Net with
the state-of-the-art scribble-based colorization methods in
Section 4.2. The visualization of affinities relationships is
shown in Section 4.3, enabling a more intuitive understand-
ing of LGA-Net. The ablation study for each key compo-
nent is presented in Section 4.4.

4.1. Implementation Details

LGA-Net is implemented based on PyTorch, where the
training and testing phases of all experiments presented in
this paper are conducted on an NVIDIA Tesla P100 GPU.
@, serving as the pre-defined weight of L4, is configured
as 1078, Alap and A7y are set to 1.5 and 25, respectively.
The Adam optimizer is used, where the learning rate is set
to 1074, 51 = 0.5, B2 = 0.999. LGA-Net training process
is performed at 128 x 128 scale, with the Y-channel resized
to this size before input and the colorized results bilinearly
up-sampled for the final output. This is sufficient in prac-
tice, as lower chrominance resolution is often unnoticeable.
In addition, LGA-Net can be trained to handle larger im-
ages. For 128 x 128, 256 x 256, and 512 x 512, peak GPU
memory usage is 3.05GB, 8.36GB, and 22.70GB respec-
tively, so the space complexity is sublinear w.r.t. the num-
ber of pixels. The training time per epoch is 2.3h, 12.5h, and
75h respectively, which is slightly higher than linear w.r.t.
the number of pixels. The reason behind this is that the
CPU-based method [17] mentioned in Section 3.2.3 is ap-
plied to solve the large sparse system. Although the current
CPU-based sparse solver is quite slow, it ensures LGA-Net
is memory efficient and has good scalability compared with
GPU-based dense solvers.

Leveraging ImageNet’s semantic diversity, we create the
training dataset D, containing 4K images by selecting 4 im-
ages from each category. For testing purposes, D;,anual
contains 200 color images randomly chosen from the Ima-
geNet test dataset, with the authors creating sparse scribbles
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Figure 2. Qualitative comparison with state-of-the-art methods in Section 4.2.1. This figure shows four different examples (top two from
Dinanual and bottom two from Dgyt0. The first two columns show the ground truth and the applied scribbles, while the following columns
separately display: Levin [20]; Z4K and iC4K (Zhang [45] and iColoriT [41] trained on D;); Z1M, iC1M and UCIM (official pre-trained

models on ImageNet for Zhang et al. [45], iColoriT [41] and UniColor [12]); our LGA-Net.

for each to simulate user-provided inputs. While D,,4nuai
only comprises 200 examples due to the labor-intensive
process of manually creating scribbles, leveraging AutoSS
(a new automatic scribble generation algorithm described
in the supplementary material), we further create D0
by randomly selecting 3K images from the Place365 test
dataset and generating sparse scribbles accordingly.

4.2. Compared with Representative Methods

Diffusion-based colorization methods are becoming pop-
ular but existing diffusion-based methods often use text
prompts rather than scribbles to guide colorization. More-
over,: [39] lacks a mechanism to map scribbles or points
to latent space, making direct comparison in scribble-
based tasks unfeasible. The methods [40, 42] have not
released any official code. Thus, LGA-Net is compared
with the following four scribble-based methods: Levin et
al. [20], Zhang et al. [45], UniColor[12] and iColoriT[41].
Zhang [45] and iColoriT [41] trained under D, are abbrevi-
ated as Z4K and iC4K. The official pre-trained models on
the ImageNet of Zhang[45], UniColor[12] and iColoriT[41]
are abbreviated as Z1M, UCIM and iC1M separately. Due
to the lack of official training instruction, we do not com-
pare UniColor under D;.

Regarding [26], no official code release makes direct
comparison infeasible. Despite a seemingly similar col-
orization equation, LGA-Net differs fundamentally. The
method can auto-generate diverse colorizations and accept
user constraints. As a tougher task, it needs two-stage train-
ing with color images as input and relies on strong priors

(e.g., “pixels with similar intensities should have similar
colorizations”) to regularize the problem. In contrast, LGA-
Net applies pre-learned affinities to achieve scribble-based
colorization. Taking only grayscale images, our method
shows strong generalizability: our 4K-trained model out-
performs other methods trained on 1.3M images and works
well on datasets beyond the training set (Section 4.2). [26]
is trained on larger datasets, excelling on specific-content
ones (e.g., faces). Its binary-term approach is costly, and
shown images have low resolution. Conversely, LGA-Net
with sparse matrices has better scalability (Section 4.1).

In order to obtain more reliable comparison, the follow-
ing content includes qualitative analysis (Figs. 2, 3, and 4),
quantitative analysis (Tables 1 —2), and user study (Fig. 5).
More examples including different scenarios are shown in
the supplementary material.

(a) GT (c)ZIM (d) LGA-Net

(b) Hint

Figure 3. Poor Z1M result under sparse scribbles.
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Figure 4. iC1M comparison under different point sparsity levels.

Table 1. Quantitative analysis under D,y qnuqi in Section 4.2.2

Dmanwa  MSE]  PSNRT MS-SSIMT  LPIPS,
200 cases x1072 dB x1072 x 1072
Levin 441 21.48 91.69 16.50
74K 5.81 19.72 83.43 25.16
iC4K 4.49 21.32 85.22 21.41
ZIM 3.65 23.19 90.77 12.14
iCIM 1.53 25.92 90.34 12.43
UCIM 2.13 25.36 93.62 7.90
LGA-Net  1.42 26.07 92.78 10.49

Table 2. Quantitative analysis under Dg.+0 in Section 4.2.2
Dauto MSE|, PSNRT MS-SSIMt LPIPS,

3000 cases x 1072 dB x1072 x1072
Levin 1.11 29.52 95.73 10.65
74K 242 25.12 91.53 16.26
iC4K 2.96 25.08 91.83 15.70
ZIM 1.16 28.47 95.30 9.74
iCIM 1.08 28.75 94.84 10.42
UCIM 0.95 29.15 95.79 8.11
LGA-Net 0.90 29.89 95.73 9.62

4.2.1. Qualitative Analysis

Levin’s results shown in the 3rd column of Fig. 2, are ac-
ceptable for local regions based on provided color scribbles.
But Levin struggles to propagate color to distant regions
with similar texture since it lacks a mechanism for learn-
ing global affinities, hindering remote color propagation.

In Fig. 2, the 4th and 5th columns show Z4K and iC4K
results. Despite strictly following official training guid-
ances on D, both models fail to generate stable outputs
across local and remote regions due to the dataset’s limited
size. This limited size of D; hinders Zhang and iColoriT,
which require extensive training data, and even iC4K utiliz-
ing Transformers fails to compensate adequately.

In Fig. 2, the 6th, 7th, and 8th columns show Z1M,
iC1M, and UCIM results. Unlike Z4K and iC4K trained
under limited cases, these models leverage the power of

= Levin

= 74K

iC4K

ZIM

=iCIM

=UCIM

=LGA

Figure 5. The user study’s statistical results

(a) Gray (b) Hint (c) LGA (d) Local (e) Local (63)

(Left) (Down) Global
Figure 6. Visualization of local and global affinities in Section 4.3.
For local affinity, the heatmaps show the affinity for each pixel
with its neighbor in the specific direction. For global affinity, each
local map indicates the affinity of the highlighted position (in red)
and other global points.

ImageNet to handle color propagation. However, ZIM, as
an image-to-image colorization approach, lacks robustness
for long-range propagation due to implicit affinity storage
in network parameters. In addition, Fig. 3 highlights chal-
lenges with sparse scribbles only in the sky (upper left and
lower right) and grass (upper half), where LGA-Net prop-
erly extends colors to regions without scribbles, while Z1M
relies on prior knowledge, leading to inaccuracies in distant
regions without scribbles.

The self-attention mechanism allows iC1M to learn the
global affinities. However, using a light-weight pixel shuf-
fling operation to speed up processing, especially with high
upsampling ratios, leads to significant artifacts when dense
scribble hints are provided. Fig. 4 demonstrates iC1M’s
generation results under varying levels of hint sparsity, re-
vealing increased artifact occurrence and prominence with
denser hints. This highlights the limitations of iColoriT [41]
in handling scribbles and dense pixel hint inputs.

UniColor leverages Transformer and VQGAN to im-
prove final performance. However, unlike LGA-Net, which
directly enables local and global affinities, UCIM struggles
with remote color propagation due to lack of explicit global
affinity learning, even with the large ImageNet dataset.

Fig. 2’s 9th column displays LGA-Net’s results, offer-
ing proper colors for both short and long-range propagation,
even with the much smaller 4K training set. This is due to
explicitly enabling local and global affinities and faithful
color propagation process.

4.2.2. Quantitative Analysis

Four evaluation metrics (mean squared error (MSE), peak
signal-to-noise ratio (PSNR), Multi-scale Structural Simi-



larity index measure (MS-SSIM), and the learned percep-

tual image patch similarity (LPIPS)) are applied to reflect

the colorization quality. MS-SSIM is applied instead of

SSIM since [27] shows that MS-SSIM is the most consis-

tent metric with human judgment. Quantitative analyses on

Dimanual and Dy, are separately presented in Tables | and

2. Key conclusions drawn from the experiments are:

* Lacking global affinity capture, Levin [20] performs
worse than LGA-Net on both test datasets, especially the
57.29% increase in LPIPS on D,anual-

e 74K and iC4K exhibit the worst performance, highlight-
ing Zhang [45] and iColoriT’s [41] reliance on large
datasets. iC4K slightly outperforms Z4K due to the
Transformer’s enhanced affinity learning.

e Z1M and iCIM consistently underperform compared to
LGA-Net across all metrics. Z1M’s implicit affinity rep-
resentation hampers remote color propagation, with an
average LPIPS increase of 8.49% and PSNR drop of 2.15
dB. Although iC1M benefits from the Transformer, it still
struggles with artifacts from scribbles and dense hints.

e UCIM trained on 1.3M cases roughly matches LGA-Net
trained on 4K cases, highlighting that LGA-Net reduces
the need for extensive data and simplifies training by re-
defining the coloring task and explicitly incorporating lo-
cal and global affinities.

¢ LGA-Net outperforms others in MSE and PSNR, and
ranks second in LPIPS and MS-SSIM with minimal dif-
ferences. The explicit affinity learning enables stable col-
orization, as confirmed by qualitative analysis.

4.2.3. User Study

A user study shown in Fig. 5 is conducted for more convinc-
ing evaluation. The total area covered by the colors rep-
resents 100%. Larger areas indicate stronger competitive-
ness of the corresponding methods. We randomly selected
15 test examples from both D, 4nuai and Dy, forming a
total of 30 questions. Each question presents participants
with results from seven methods, displayed in random or-
der. Participants were asked to select the option they be-
lieved achieved the best coloring quality. 1500 votes from
50 participants were finally collected.

LGA-Net obtains the most votes (44.6%), which fur-
ther demonstrates the superiority of LGA-Net in the sparse-
scribbles-based colorization scenario. Levin which lacks
sufficient ability to face remote color propagation, receives
the least 5.2% votes. Z4K and iC4K cannot securely gen-
erate acceptable colorization results, which only receives
5.9% and 5.3% of the votes, respectively. iC1M and Z1M
receives 10.4% and 7.3% of the votes, respectively, mainly
attributing to the powerful training dataset. This big dis-
parity with LGA-Net arises primarily from the lack of
an explicit affinity learning mechanism. With the help
of Transformer and VQGAN, UCIM achieves the perfor-
mance closest to LGA-Net among all the comparison meth-

Figure 7. Ablation study results in Section 4.4.1.

ods, albeit with a significant 23.3% gap still present.
4.3. Affinity Visualization

Fig. 6 clearly illustrates the roles of local and global affini-
ties in LGA-Net through heatmaps, providing intuitive in-
sights into the model’s operational principles. The 4th and
5th columns depict the heatmaps of local affinities corre-
sponding to the left and bottom directions, showing that
LGA-Net can accurately reflect image structures from these
local directions. LGA-Net employs a total of eight distinct
directions of local affinities, jointly ensuring the stability of
local color propagation. The 6th column uses heatmaps to
show affinities between sampled points (red boxes) and all
global points (blue boxes), where high-value global affini-
ties digitize accurate numerical representations of distant
similar-textured regions, assisting LGA-Net in a more com-
prehensive understanding of image structures.

Table 3. Quantitative analysis under Dy, anuar in Section 4.4.2

Dmanuat  MSE|l  PSNRT MS-SSIMT  LPIPS|
200 cases x1072 dB x1072 x1072
Rep 4.81 21.89 91.10 15.38
Rap 2.24 24.40 91.02 13.89
RniB 1.55 25.82 92.56 11.19
LGA-Net  1.42 26.07 92.78 10.49

Table 4. Quantitative analysis under Dguyt0 in Section 4.4.2
Dauto MSE| PSNRfT MS-SSIMT LPIPS|

3000 cases x1072 dB x1072 x1072
Rep 2.01 28.16 95.01 11.30
Rap 1.32 28.82 95.06 11.48
RnLB 1.04 29.55 95.64 10.10
LGA-Net 0.90 29.89 95.73 9.62
4.4. Ablation Study

The role of each key element in LGA-Net is analyzed in
this section from two perspectives: qualitative analysis as
shown in Fig. 7 and quantitative analysis in Table 3 and
Table 4. Further ablation study on three different loss terms



Table 5. Quantitative analysis in different NLBs in Section 4.4.4

Dianual MSE] PSNR{T MS-SSIMT  LPIPS|
200 cases x1072 dB x 1072 x1072
Concatenation 1.55 25.77 92.56 10.93
EbGaussian 1.47 25.88 92.54 10.94
Gaussian 1.52 25.81 92.62 10.98
Dot product 1.42 26.07 92.78 10.49

and more examples including different scenarios are shown
in the supplementary material.

4.4.1. Qualitative Analysis

Fig. 7 shows results from three ablation experiments (re-
moving global points/affinities (Rgp), removing local
points/affinities (R 4p) and removing the Non-local Block
(Rnyrp)) and full LGA. The top two examples are from
Dnanual, and the bottom two are from D,,¢,. Rap (3rd
column) only keep adjacency affinities constraints, limit-
ing its ability to achieve proper remote color propagation.
R4p (4th column), which retains only global affinities,
exhibits some degree of short-range and long-range color
propagation but falls short of stably generating high-quality
colorization results. Rypp (5th column) relies solely on
the raw feature representation from BFEnet, compromis-
ing color propagation accuracy. With the help of NLB, Full
LGA-Net (6th column) incorporating both local and global
affinities achieves the best performance, demonstrating the
importance of all components for optimal performance.

4.4.2. Quantitative Analysis

Similar to Section 4.2.2, the same four metrics are applied
to evaluate the effects of different components quantita-
tively. Results on D,,,qnuar and Dyyto are shown in Table 3
and Table 4, respectively.

In Tables 3 and 4, Rgp exhibits the worst perfor-
mance across all metrics, particularly evident with a 4.18dB
decline in PSNR and 46.62% deterioration in LPIPS on
Dimanuar compared to LGA-Net. This performance gap
highlights the crucial role of global points/affinities. Com-
pared to Rgp, Rap performs better, achieving only
marginal improvements in the LPIPS evaluation under
Dranuar and the MS-SSIM evaluation under D,,;,. The
reason behind is that, in the colorization task with sparse
scribbles, the global points retained in R 4p can still learn
both local and global affinities to some extent. Ry p con-
sistently under-performs compared to LGA-Net in all eval-
uation scenarios due to the lack of richer feature represen-
tation from NLB. LGA-Net uniformly outperforms R¢p,
Rp and Ry, g across all evaluation scenarios, which fur-
ther demonstrates the essential roles of local/global affini-
ties and NLB in achieving high-quality colorization results.

12
——MSSSIm| |
—LPIPS

MSSSIM
LPIPS

105

2 15 1 s 17
Global Step

Figure 8. Ablation study involving G'S.

4.4.3. Global Step

This section examines the impact of global points spar-
sity on colorization quality by adjusting GS € [10,17],
as shown in Fig. 8. Increasing G\S enables sparser global
pixels, leading to insufficient global affinity constraints,
thereby increasing LPIPS and decreasing MS-SSIM. Con-
versely, decreasing G'S enhances global affinities but also
increases sensitivity to training data, limiting generalizabil-
ity. At GS=12, LGA-Net achieves optimal performance.

4.4.4. Different Non-Local Blocks

Four NLB types based on different affinity functions (Con-
catenation; Embedded Gaussian (EbGaussian); Gaussian;
Dot Product) are utilized and analyzed quantitatively on
Dinanual (Table 5). Overall, all NLB types enhance LGA-
Net’s ability to learn better affinities. The dot product ver-
sion achieves the best performance, due to its suitability for
weight computation relying on Euclidean geometry.

5. Conclusion

This paper proposes LGA-Net which regards the scribble-
based colorization task as an affinity propagation process.
For a given grayscale input, LGA-Net can accurately pre-
dict the pixel affinities that indicate the image structure in-
formation, regardless of the input hints or the color prop-
agation process, thus achieving better generality. User-
provided color information is propagated into the whole im-
age in the form of solving a maximum a posteriori prob-
lem with Laplacian prior under the guidance of the pre-
calculated local and global affinities. Global affinities boost
accuracy of image structure understanding but raise compu-
tational burden. Future study will further seek better affinity
formulation for efficiency.

Acknowledgments

This work was supported by the China Scholarship Coun-
cil [grant number 201806420014]. The study also bene-
fited from the ARCCA computing facilities. This work was
partially funded by Natural Science Foundation of China
(NSFC) under Grant 62472205, 62172198, Key Project
of Jiangxi Natural Science Foundation 20224ACB202008,
Key R&D Plan of Jiangxi Province (20232BBE50022)
Ganpo Talent Support Program 20232BCJ22001, and the
Engineering and Physical Sciences Research Council [No.
EP/Y028805/1].



References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

[13]

[14]

Xiaobo An and Fabio Pellacini.
appearance-space edit propagation.
2008 papers, pages 1-9. 2008. 2
Hyojin Bahng, Seungjoo Yoo, Wonwoong Cho, David Kee-
tae Park, Ziming Wu, Xiaojuan Ma, and Jaegul Choo. Col-
oring with words: Guiding image colorization through text-
based palette generation. In European Conference on Com-
puter Vision, pages 431-447, 2018. 1

Pravin Bhat, C Lawrence Zitnick, Michael Cohen, and Brian
Curless. Gradientshop: A gradient-domain optimization
framework for image and video filtering. ACM Transactions
on Graphics (TOG), 29(2):1-14, 2010. 2

Piotr Bojanowski, Armand Joulin, David Lopez-Paz, and
Arthur Szlam. Optimizing the latent space of generative net-
works. arXiv:1707.05776,2017. 4

Yu Cao, Xianggiao Meng, PY Mok, Xueting Liu, Tong-
Yee Lee, and Ping Li. AnimeDiffusion: Anime face line
drawing colorization via diffusion models. arXiv preprint
arXiv:2303.11137,2023. 2

Hernan Carrillo, Michaél Clément, Aurélie Bugeau, and
Edgar Simo-Serra. Diffusart: Enhancing line art coloriza-
tion with conditional diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3485-3489, 2023. 2

Guillaume Charpiat, Matthias Hofmann, and Bernhard
Scholkopf. Automatic image colorization via multimodal
predictions. In European Conference on Computer Vision,
pages 126-139, 2008. 2

Shu-Yu Chen, Jia-Qi Zhang, Lin Gao, Yue He, Shihong Xia,
Min Shi, and Fang-Lue Zhang. Active colorization for car-
toon line drawings. IEEE Transactions on Visualization and
Computer Graphics, 28(2):1198-1208, 2020. 1

Aditya Deshpande, Jason Rock, and David Forsyth. Learn-
ing large-scale automatic image colorization. In IEEE In-
ternational Conference on Computer Vision, pages 567-575,
2015. 2

Zhi Dou, Ning Wang, Baopu Li, Zhihui Wang, Haojie Li, and
Bin Liu. Dual color space guided sketch colorization. IEEE
Transactions on Image Processing, 30:7292-7304, 2021. 1
Mingming He, Dongdong Chen, Jing Liao, Pedro V Sander,
and Lu Yuan. Deep exemplar-based colorization. ACM
Transactions on Graphics (TOG), 37(4):1-16, 2018. 2
Zhitong Huang, Nanxuan Zhao, and Jing Liao. UniColor: A
unified framework for multi-modal colorization with trans-
former. ACM Transactions on Graphics (TOG), 41(6):1-16,
2022. 2,5

Satoshi lizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. Let
there be color! Joint end-to-end learning of global and local
image priors for automatic image colorization with simulta-
neous classification. ACM Transactions on Graphics (ToG),
35(4):1-11, 2016. 2

Xin Jin, Zhonglan Li, Ke Liu, Dongqing Zou, Xiaodong
Li, Xingfan Zhu, Ziyin Zhou, Qilong Sun, and Qingyu Liu.
Focusing on persons: Colorizing old images learning from
modern historical movies. In ACM International Conference
on Multimedia, pages 1176-1184, 2021. 1

Appprop:  all-pairs
In ACM SIGGRAPH

[15]

(16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

Hyunsu Kim, Ho Young Jhoo, Eunhyeok Park, and Sungjoo
Yoo. Tag2Pix: Line art colorization using text tag with secat
and changing loss. In IEEE/CVF International Conference
on Computer Vision, pages 9056-9065, 2019. 1,2

Manoj Kumar, Dirk Weissenborn, and Nal Kalchbrenner.
Colorization transformer. arXiv preprint arXiv:2102.04432,
2021. 1

Floris Laporte. torch_sparse_solve: A sparse KLU solver
for PyTorch. https://pypi.org/project/torch
sparse-solve/, 2021. Accessed: 2024-07-18. 3, 4
Gustav  Larsson,  Michael Maire, and Gregory
Shakhnarovich.  Learning representations for automatic
colorization. In European Conference on Computer Vision,
pages 577-593. Springer, 2016. 2

Junsoo Lee, Eungyeup Kim, Yunsung Lee, Dongjun Kim,
Jaehyuk Chang, and Jaegul Choo. Reference-based sketch
image colorization using augmented-self reference and
dense semantic correspondence. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 5801—
5810, 2020. 1

Anat Levin, Dani Lischinski, and Yair Weiss. Colorization
using optimization. In ACM SIGGRAPH, pages 689-694.
2004. 1,2,5,7

Bo Li, Yu-Kun Lai, Matthew John, and Paul L Rosin. Au-
tomatic example-based image colorization using location-
aware cross-scale matching. IEEE Transactions on Image
Processing, 28(9):4606-4619, 2019. 1

Haoxuan Li, Bin Sheng, Ping Li, Riaz Ali, and CL Philip
Chen.  Globally and locally semantic colorization via
exemplar-based broad-GAN. [EEE Transactions on Image
Processing, 30:8526-8539, 2021. 1

Zekun Li, Zhengyang Geng, Zhao Kang, Wenyu Chen, and
Yibo Yang. Eliminating gradient conflict in reference-based
line-art colorization. In European Conference on Computer
Vision, pages 579-596. Springer, 2022. 2

Qing Luan, Fang Wen, Daniel Cohen-Or, Lin Liang, Ying-
Qing Xu, and Heung-Yeung Shum. Natural image coloriza-
tion. In Proceedings of the 18th Eurographics conference on
Rendering Techniques, pages 309-320, 2007. 2

Varun Manjunatha, Mohit lyyer, Jordan Boyd-Graber, and
Larry Davis. Learning to color from language. arXiv preprint
arXiv:1804.06026, 2018. 2

Safa Messaoud, David Forsyth, and Alexander G Schwing.
Structural consistency and controllability for diverse col-
orization. In European Conference on Computer Vision
(ECCV), pages 596-612, 2018. 5

Sedan Mullery and Paul F Whelan. Human vs objective
evaluation of colourisation performance. arXiv:2204.05200,
2022. 7

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. ImageNet large
scale visual recognition challenge. International Journal of
Computer Vision, 115(3):211-252, 2015. 2

Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee,
Jonathan Ho, Tim Salimans, David Fleet, and Mohammad
Norouzi. Palette: Image-to-image diffusion models. In ACM
SIGGRAPH, pages 1-10, 2022. 2


https://pypi.org/project/torch-sparse-solve/
https://pypi.org/project/torch-sparse-solve/

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

[39]

(40]

[41]

(42]

[43]

Patsorn Sangkloy, Jingwan Lu, Chen Fang, Fisher Yu, and
James Hays. Scribbler: Controlling deep image synthesis
with sketch and color. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 5400-5409, 2017. 1
Patricia Vitoria, Lara Raad, and Coloma Ballester. Chroma-
GAN: Adversarial picture colorization with semantic class
distribution. In IEEE/CVF Winter Conference on Applica-
tions of Computer Vision, pages 2445-2454, 2020. 1

Carl Vondrick, Abhinav Shrivastava, Alireza Fathi, Sergio
Guadarrama, and Kevin Murphy. Tracking emerges by col-
orizing videos. In Proceedings of the European conference
on computer vision (ECCV), pages 391-408, 2018. 2
Hanzhang Wang, Deming Zhai, Xianming Liu, Junjun Jiang,
and Wen Gao. Unsupervised deep exemplar colorization via
pyramid dual non-local attention. IEEE Transactions on Im-
age Processing, 2023. 2

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-
ing He. Non-local neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 7794-7803, 2018. 4

Shuchen Weng, Hao Wu, Zheng Chang, Jiajun Tang, Si Li,
and Boxin Shi. L-CoDe: Language-based colorization using
color-object decoupled conditions. 2022. 1, 2

Yanze Wu, Xintao Wang, Yu Li, Honglun Zhang, Xun Zhao,
and Ying Shan. Towards vivid and diverse image coloriza-
tion with generative color prior. In IEEE/CVF International
Conference on Computer Vision, pages 14377-14386, 2021.
1,2

Li Xu, Qiong Yan, and Jiaya Jia. A sparse control model
for image and video editing. ACM Transactions on Graphics
(TOG), 32(6):1-10, 2013. 2

Zhongyou Xu, Tingting Wang, Faming Fang, Yun Sheng,
and Guixu Zhang. Stylization-based architecture for fast
deep exemplar colorization. In IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 9363-9372,
2020. 1

Tao Yang, Rongyuan Wu, Peiran Ren, Xuansong Xie, and
Lei Zhang. Pixel-aware stable diffusion for realistic im-
age super-resolution and personalized stylization. In ECCV,
pages 74-91. Springer, 2025. 5

Wanyu Yang, Feifan Cai, Yang Shu, Zihao Zhang, Qi Liu,
and Youdong Ding. Colorize at will: Harnessing diffusion
prior for image colorization. /[EEE Access, 2024. 5

Jooyeol Yun, Sanghyeon Lee, Minho Park, and Jaegul Choo.
iColoriT: Towards propagating local hints to the right region
in interactive colorization by leveraging vision transformer.
In IEEE/CVF Winter Conference on Applications of Com-
puter Vision, pages 1787-1796, 2023. 2, 5,6, 7

Nir Zabari, Aharon Azulay, Alexey Gorkor, Tavi Halperin,
and Ohad Fried. Diffusing colors: Image colorization with
text guided diffusion. In SIGGRAPH Asia 2023 Conference
Papers, pages 1-11, 2023. 5

Lvmin Zhang, Chengze Li, Edgar Simo-Serra, Yi Ji, Tien-
Tsin Wong, and Chunping Liu. User-guided line art flat
filling with split filling mechanism. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 9889—
9898, 2021. 1,2

[44]

[45]

[46]

[47]

Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful
image colorization. In Proceedings of the European Confer-
ence on Computer Vision, pages 649—-666. Springer, 2016.
2

Richard Zhang, Jun-Yan Zhu, Phillip Isola, Xinyang Geng,
Angela S Lin, Tianhe Yu, and Alexei A Efros. Real-time
user-guided image colorization with learned deep priors.
ACM Transactions on Graphics, 36(4):119:1-11, 2017. 1,
2,5,7

Jiaojiao Zhao, Jungong Han, Ling Shao, and Cees GM
Snoek. Pixelated semantic colorization. International Jour-
nal of Computer Vision, 128(4):818-834, 2020. 1
Changqing Zou, Haoran Mo, Chengying Gao, Ruofei Du,
and Hongbo Fu. Language-based colorization of scene
sketches. ACM Transactions on Graphics (TOG), 38(6):1—
16,2019. 1



	Introduction
	Related Work
	Automatic Colorization
	Example-based Colorization
	Text-driven Colorization
	Scribbles/points-based Colorization

	Methodology
	Colorization by Learning Affinities
	Laplacian Coloring Layer
	Enhanced Local-Global Affinity Regularization
	Singular Matrix and Solution Ambiguity
	Sparse Tensor Optimization

	Network architecture
	Loss function


	Evaluation
	Implementation Details
	Compared with Representative Methods
	Qualitative Analysis
	Quantitative Analysis
	User Study

	blackAffinity Visualization
	Ablation Study
	Qualitative Analysis
	Quantitative Analysis
	Global Step
	Different Non-Local Blocks


	Conclusion

