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Gut-brain nexus: Mapping multimodal links to 
neurodegeneration at biobank scale
Mohammad Shafieinouri1*†, Samantha Hong1†, Paul Suhwan Lee1†, Spencer M. Grant1†,  
Marzieh Khani1†, Anant Dadu2, Artur F. Schumacher Schuh3,4, Mary B. Makarious1,2,  
Rodrigo Sandon1, Emily Simmonds5, Hirotaka Iwaki1,2, Gracelyn Hill1,2, Cornelis Blauwendraat1,6, 
Valentina Escott-Price5,7, Yue A. Qi1, Alastair J. Noyce8, Armando Reyes-Palomares9,  
Hampton L. Leonard1,2, Malu Tansey10,11, Faraz Faghri1,2, Andrew B. Singleton12, Mike A. Nalls1,2, 
Kristin S. Levine1,2†, Sara Bandres-Ciga1*†

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are influenced by genetic and environmental factors. We 
conducted a biobank-scale study to (i) identify endocrine, nutritional, metabolic, and digestive disorders with 
potential causal or temporal associations with AD/PD risk before diagnosis; (ii) assess plasma biomarkers’ specific-
ity for AD/PD in the context of co-occurring gut related traits and disorders; and (iii) integrate multimodal datasets 
to enhance AD/PD prediction. Our findings show that several disorders were associated with increased AD/PD risk 
before diagnosis, with variation in the strength and timing of associations across conditions. Polygenic risk scores 
reveal lower genetic predisposition for AD/PD in individuals with co-occurring disorders. Moreover, the proteomic 
profile of AD/PD cases was influenced by comorbid gut-brain axis disorders. Last, our multimodal prediction mod-
els outperform single-modality paradigms in disease classification. This endeavor illuminates the interplay be-
tween factors involved in the gut-brain axis and the development of AD/PD, opening avenues for therapeutic 
targeting and early diagnosis.

INTRODUCTION
Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the two 
most common neurodegenerative disorders (1, 2) and cumulatively 
affect over 400 million individuals worldwide (3, 4). Although sub-
stantial genetic risk factors for AD and PD have been identified, 
sporadic and late-onset forms are thought to be caused by a complex 
interplay between genetic (5,  6) and environmental (7,  8) factors. 
This interplay underscores the imperative to explore a multitude of 
variables across bodily systems to comprehend their contributions 
to the etiology of AD/PD (9, 10).

Increasingly, research in neurodegeneration emphasizes the role 
of gut-brain axis health in AD and PD risk (11, 12). The gut-brain 
axis is a complex communication network that links the gastrointes-
tinal tract and the central nervous system. This bidirectional system, 
including neural pathways, hormonal signaling, and immune mech-
anisms, facilitates constant interactions between the brain, digestive, 
endocrine, metabolic systems and nutritional status. Disruptions to 

the gut-brain axis have been linked to various conditions, including 
digestive disorders (13), endocrine pathway dysfunctions (14, 15), 
nutritional deficiencies (16, 17), and metabolic traits (18).

Endocrine disorders, such as thyroid hormone imbalances, have 
been linked to AD and PD (15, 19), with conditions such as hypo-
thyroidism and subclinical hyperthyroidism being associated with 
dementia risk (20) and both hypo- and hyperthyroidism being as-
sociated with increasing PD risk (15). Metabolic disorders, particu-
larly diabetes, are also related to neurodegenerative disease (NDD) 
risk. An increased severity of diabetes is associated with a higher 
risk of PD (21, 22), and type 2 diabetes is a recognized risk factor for 
AD (23). Consequently, antidiabetic medications are being explored 
as potential treatments for AD and PD (24). In addition, nutritional 
deficiencies such as low vitamin D levels are more prevalent in pa-
tients with AD and PD (25). Digestive disorders have been observed 
to precede PD (26) or be notably associated with an increased risk for 
dementia (27). These are just a few examples of factors contributing 
to the gut-brain axis health and their influence on neurodegeneration.

Understanding the connection between disorders of the gut-brain 
axis and neurodegeneration can provide useful insights into thera-
peutic interventions, with major implications for prevention and 
disease prognosis. In this study, we conduct a large-scale biobank 
analysis to assess how disorders affecting the gut-brain axis—par-
ticularly those related to endocrine, nutritional, metabolic, and di-
gestive systems—influence the risk of AD and PD. Using data from 
the UK Biobank (UKB), Secure Anonymized Information Linkage 
(SAIL), and FinnGen, we conducted a population-scale, unbiased 
assessment that aimed to (i) investigate the association between 155 
diagnoses related to endocrine, nutritional, metabolic, and digestive 
system disorders and the subsequent risk of AD and PD before neu-
rodegenerative diagnosis, while also accounting for established ge-
netic factors known to influence the development of AD and PD; 
(ii) assess whether these risks were temporally dependent by 
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conducting time-stratified Cox regression analyses across three pre-
diagnostic intervals: 1 to 5, 5 to 10, and 10 to 15 years before AD or 
PD diagnosis; (iii) evaluate the specificity of plasma biomarkers 
associated with AD or PD with and without co-occurring conditions; 
(iv) develop interpretable, multimodal classification models; and (v) 
deploy an open-access and user-friendly web application to ensure 
reproducibility and transparency (Fig. 1).

RESULTS
A prior diagnosis of certain endocrine, nutritional, 
metabolic, and digestive system–related disorders is 
associated with increased risk for AD and PD
After implementing Cox proportional hazards models to examine 
the associations between 155 diagnoses related to endocrine, nutri-
tional, metabolic, and digestive system disorders (table S1) and the 
subsequent risk for AD and PD before neurodegenerative diagnosis, 
we applied the Benjamini-Hochberg procedure to correct for mul-
tiple comparisons across 155 ICD-10 (International Classification of 
Diseases, 10th Revision) codes tested for each outcome (AD and 
PD). Full results, including both raw and false discovery rate (FDR)–
adjusted P values, are provided in tables S2 and S3. Cox propor-
tional hazards models unraveled a total of 14 ICD-10 diagnoses to 
be significantly associated with the risk of AD (table S2 and fig. S1) 
in the UKB after correction for multiple testing comparisons (dis-
covery cohort) that were also found to be significant in SAIL, FinnGen 
biobanks, or both (replication cohorts) (Table 1). A total of 13 ICD-10 
codes were found to be significant, with a hazard ratio (HR) of >1, 

suggesting that being diagnosed with these conditions increases 
the risk for AD; these include amyloidosis; disorders of lipoprotein 
metabolism and other lipidemias; gastritis and duodenitis; insulin-
dependent, noninsulin-dependent, and unspecified diabetes mellitus; 
esophagitis; other bacterial intestinal infections; other disorders of 
fluid, electrolyte, and acid-base balance; other functional intestinal 
disorders; other noninfective gastroenteritis and colitis; vitamin D 
deficiency; and volume depletion. A diagnosis of hemorrhoids and 
perianal venous thrombosis was found to have an HR of <1 for AD 
in all three datasets. This observation could potentially be due to the 
fact that a hospitalized diagnosis of hemorrhoids and perianal ve-
nous thrombosis could be an indication of other, more serious con-
ditions linked to a high mortality rate, thus explaining the protective 
observed effect (28).

Notably, our analyses indicate significant associations between 
seven disorders and the risk for PD (table S3 and fig. S2) that were 
replicated in either SAIL or FinnGen biobanks (Table 2). A total of 
four ICD-10 codes had an HR of >1 including dyspepsia, insulin-
dependent and noninsulin-dependent diabetes mellitus, and other 
functional intestinal disorders. For PD, diverticular disease of the 
intestine, other diseases of the intestine, and other disorders of the 
peritoneum showed an HR of <1 and were replicated in two datas-
ets. Similarly to AD, individuals diagnosed with these conditions are 
not representative of the entire population due to their potential se-
verity and differential survival rates (29–32).

In addition, we conducted a time-stratified Cox proportional 
hazards analysis to evaluate whether the timing of diagnosis for the 
ICD-10 codes under study affects HR values for AD or PD. We split 

Fig. 1. Study design. The initial phase of our study used clinical data sourced from electronic medical records alongside genetic and proteomic data obtained from the 
UKB. Quality control procedures were rigorously applied to clinical and genetic datasets, including filtering for individuals of European ancestry, exclusion of related 
samples, and extraction of 155 ICD-10 codes representing diagnoses related to digestive, endocrine, nutritional, and metabolic disorders. Proteomic data underwent 
normalization of protein expression levels as part of quality control measures. The culmination of this phase involved the application of a Cox proportional hazards 
model, examination of polygenic risk scores (PRSs), and development of a generalized linear model (GLM). These analyses collectively contributed to the construction of 
a multimodal classification predictive model for AD and PD. Phase 2 of our study entailed validating these findings using data from the SAIL and FinnGen biobanks.
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the samples from UKB into three strata: 1 to 5 years, 5 to 10 years, 
and 10 to 15 years before AD/PD diagnosis. We then reevaluated the 
HRs for AD and PD for the significant ICD-10 codes identified in 
the previous analysis (Tables 3 and 4).

Time-stratified Cox regression revealed distinct timing effects 
for several metabolic, nutritional, and gut-related conditions in rela-
tion to AD and PD. Certain diagnoses were more strongly associat-
ed with AD or PD when they were recorded at earlier time points. 
For example, noninsulin-dependent diabetes (E11) and unspecified 
diabetes (E14) were linked to greater AD risk when diagnosed 10 to 

15 years before onset [HR = 1.71, 95% confidence interval (CI) = 
1.45 to 2.03, FDR-adjusted P = 2.93 × 10−9 and HR = 3.23, 95% CI = 
2.63 to 3.96, FDR-adjusted P = 3.77 × 10−28, respectively), suggest-
ing cumulative metabolic effects. In contrast, insulin-dependent 
diabetes (E10) showed consistently elevated HRs across all time 
windows for AD: HR = 3.51 (95% CI = 2.21 to 5.58), HR = 2.60 
(95% CI = 1.61 to 4.18), and HR = 3.62 (95% CI = 2.28 to 5.76) for 
diagnoses 1 to 5, 5 to 10, and 10 to 15 years before AD, respectively 
(FDR-adjusted P = 2.61 × 10−7, 4.06 × 10−4, and 2.08 × 10−7). Simi-
larly, vitamin D deficiency (E55) was associated with AD both at 

Table 1. Replicated diagnoses in endocrine, nutritional, metabolic, and digestive systems associated with AD risk. Prior ICD-10 code, initial diagnosis of 
endocrine, metabolic, digestive system, and nutritional disorders; CI min, CI minimum; CI max, CI maximum; n pairs, number of individuals identified with both 
ICD-10 code and NDD outcome; n, number of individuals identified with ICD-10 code. This table includes ICD-10 codes that were replicated across biobanks, 
meaning that these codes showed statistically significant associations with AD in both the UKB and at least one additional cohort.

Prior ICD-10 
code

Prior ICD-10 code 
description

Dataset HR CI min CI max P n pairs n FDR-
corrected P

E85  Amyloidosis  FinnGen  3.98  1.20  13.27  2.44 × 10−2﻿  17  448  3.65 × 10−2﻿

 UKB  2.71  1.46  5.04  1.65 × 10−3﻿  10  191  1.07 × 10−2﻿

E78 Disorders of 
lipoprotein 

metabolism and 
other lipidemias

 FinnGen  5.71  4.76  6.85  1.55 × 10−78﻿  2522  43,195  1.46 × 10−76﻿

 UKB  1.21  1.13  1.29  4.49 × 10−8﻿  1422  65,137  4.54 × 10−7﻿

 K29  Gastritis and 
duodenitis

 FinnGen  2.40  1.53  3.77  1.35 × 10−4﻿  416  8187  3.06 × 10−4﻿

 UKB  1.20  1.10  1.31  4.53 × 10−5﻿  625  32,770  3.17 × 10−4﻿

 K64 Hemorrhoids and 
perianal venous 

thrombosis

 SAIL  0.37  0.27  0.51  6.83 × 10−10﻿  39  11,389  8.64 × 10−9﻿

 UKB  0.78  0.69  0.88  4.25 × 10−5﻿  291  26,538  3.17 × 10−4﻿

E10 Insulin- dependent 
diabetes mellitus

 FinnGen  2.46  1.63  3.70  1.60 × 10−5﻿  272  9507  4.22 × 10−5﻿

 SAIL  1.78  1.48  2.13  4.29 × 10−10﻿  118  6668  5.68 × 10−9﻿

 UKB  2.98  2.40  3.70  6.03 × 10−23﻿  84  2034  2.74 × 10−21﻿

E11 Noninsulin-
dependent 

diabetes mellitus

 FinnGen  4.02  3.28  4.92  2.54 × 10−41﻿  2641  42,593  8.54 × 10−40﻿

 SAIL  1.27  1.19  1.35  3.77 × 10−14﻿  1052  72,913  8.43 × 10−13﻿

 UKB  1.52  1.39  1.67  2.22 × 10−19﻿  558  21,278  6.72 × 10−18﻿

 K20 Esophagitis  FinnGen  4.23  2.20  8.13  1.58 × 10−5﻿  77  1657  4.16 × 10−5﻿

 UKB  1.23  1.07  1.41  4.42 × 10−3﻿  208  10,362  2.24 × 10−2﻿

 A04  Other bacterial 
intestinal infections

 FinnGen  2.56  1.22  5.37  1.27 × 10−2﻿  255  6415  2.01 × 10−2﻿

 SAIL  1.37  1.14  1.65  6.29 × 10−4﻿  117  6202  2.95 × 10−3﻿

 UKB  1.38  1.12  1.70  2.56 × 10−3﻿  91  4349  1.55 × 10−2﻿

E87  Other disorders of 
fluid, electrolyte, 

and acid- base 
balance

 FinnGen  10.04  7.24  13.93  2.11 × 10−43﻿  600  10,529  8.07 × 10−42﻿

 UKB  1.55  1.38  1.73  1.39 × 10−14﻿  350  12,397  2.54 × 10−13﻿

 K59  Other functional 
intestinal disorders

 FinnGen  4.37  3.30  5.80  1.02 × 10−24﻿  886  17,930  1.51 × 10−23﻿

 SAIL  1.19  1.09  1.29  9.59 × 10−5﻿  529  29,639  5.47 × 10−4﻿

 UKB  1.54  1.39  1.70  1.99 × 10−17﻿  445  17,716  4.52 × 10−16﻿

 K52  Other noninfective 
gastroenteritis and 

colitis

 FinnGen  2.53  1.40  4.57  2.15 × 10−3﻿  300  8828  3.98 × 10−3﻿

 SAIL  1.36  1.22  1.50  4.97 × 10−9﻿  373  23,128  5.56 × 10−8﻿

 UKB  1.38  1.23  1.56  6.06 × 10−8﻿  303  15,524  5.52 × 10−7﻿

E14  Unspecified 
diabetes mellitus

 SAIL  1.49  1.19  1.88  6.05 × 10−4﻿  73  4470  2.89 × 10−3﻿

 UKB  1.81  1.62  2.02  1.77 × 10−26﻿  362  11,666  1.62 × 10−24﻿

E55 Vitamin D 
deficiency

 FinnGen  13.48  4.76  38.22  9.94 × 10−7﻿  26  482  3.16 × 10−6﻿

 UKB  1.90  1.55  2.33  7.76 × 10−10﻿  95  2637  8.82 × 10−9﻿

E86 Volume depletion  FinnGen  10.65  4.09  27.71  1.24 × 10−6﻿  161  2913  3.88 × 10−6﻿

 UKB  1.77  1.52  2.08  8.97 × 10−13﻿  164  5323  1.17 × 10−11﻿
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1 to 5 years and across the full observation window, with HR = 2.11 
(95% CI = 1.62 to 2.76) and HR = 1.90 (95% CI = 1.55 to 2.33), re-
spectively (FDR-adjusted P = 1.07 × 10−7 and 8.82 × 10−9).

For PD, noninsulin-dependent diabetes (E11) and unspecified 
diabetes (E14) showed elevated HRs across all intervals. E14 dem-
onstrated particularly strong and stable HRs = 2.08, 3.98, and 3.02 
for diagnoses at 1 to 5, 5 to 10, and 10 to 15 years, respectively (FDR-
adjusted P = 4.46 × 10−3, 1.61 × 10−16, and 1.05 × 10−21). E11 was 
also associated with increased PD risk at 1 to 5 and 5 to 10 years: 
HR = 1.39 and 1.45 (FDR-adjusted P = 4.46 × 10−3 and 1.5 × 10−4). 
Insulin-dependent diabetes (E10) showed the strongest association 
when diagnosed 5 to 10 years before PD (HR = 3.41, FDR-adjusted 
P = 3.33 × 10−7), with a slightly lower but still significant effect at 10 
to 15 years (HR = 2.83, FDR-adjusted P = 1.17 × 10−4) and 1 to 5 years 
(HR = 2.10, FDR-adjusted P = 4.09 × 10−2). Deficiency of other B 
group vitamins (E53) also showed the highest risk when diagnosed 1 
to 5 years before PD (HR = 2.21, FDR-adjusted P = 1.95 × 10−4). In 
addition, Table 3 shows that an earlier diagnosis of other disorders 
of fluid, electrolyte, and acid-base balance (E87) was associated with 
increased AD risk, while Table 4 shows that dyspepsia (K30) con-
ferred a strong risk at all intervals before PD diagnosis. Although 
not all gut-brain axis–related conditions showed greater risk when 
diagnosed earlier, the direction of association (i.e., elevated HR) was 
generally consistent across time windows for significant ICD-10 
codes. These findings underscore the importance of diagnosis tim-
ing in neurodegenerative risk modeling and suggest that both early-life 
exposures and recent comorbidities contribute to disease vulnerability.

To assess whether the associations between ICD-10 diagnoses 
and AD were influenced by the competing risk of death, we con-
ducted a Fine-Gray subdistribution hazard analysis for ICD-10 
codes. Among the 16 replicated ICD-10 codes from Table 1, the di-
rection of association remained consistent between Cox and Fine-
Gray models. For example, E14 (unspecified diabetes) showed an 
HR of 1.71 in the Cox model (95% CI = 1.52 to 1.94, FDR-adjusted 
P = 3.56 × 10−16) and an HR of 1.45 in the Fine-Gray model (95% 

CI = 1.26 to 1.66, FDR-adjusted P = 2.1 × 10−6), indicating consis-
tent effect direction and statistical significance. However, a few diag-
noses such as E85 (amyloidosis; Fine-Gray HR =  2.26, 95% CI = 
1.17 to 4.33, FDR-adjusted P = 7.67 × 10−2), E22 (hyperfunction of 
pituitary gland; Fine-Gray HR = 1.57, 95% CI = 0.89 to 2.78, FDR-
adjusted P = 3.23 × 10−1), and K92 (other diseases of digestive sys-
tem; Fine-Gray HR =  1.07, 95% CI = 0.92 to 1.23, FDR-adjusted 
P = 5.91 × 10−1) lost significance in the Fine-Gray model despite 
being significant in the Cox model, suggesting that competing mor-
tality may modestly bias Cox estimates for certain conditions. Full 
results are provided in tables S4 and S5.

Similarly, we performed Fine-Gray models for PD across ICD-10 
codes that were previously significant in the Cox regression (Ta-
ble 2). In all cases, the direction of effect remained consistent be-
tween models. For example, E10 (insulin-dependent diabetes) 
showed strong associations with PD in both Cox (HR = 2.69, 95% 
CI = 2.10 to 3.43, FDR-adjusted P = 9.78 × 10−14) and Fine-Gray 
(HR = 2.41, 95% CI = 1.84 to 3.17, FDR-adjusted P = 2.3 × 10−8) 
analyses, both with an FDR of <0.001. However, the code K74 (fi-
brosis and cirrhosis of the liver; Fine-Gray HR = 1.31, 95% CI = 
0.86 to 1.99, FDR-adjusted P = 5.22 × 10−1) no longer met the FDR 
threshold in Fine-Gray models, indicating potential attenuation of 
effect when accounting for death as a competing risk. Full results are 
provided in tables S4 and S5.

Survival analysis indicates increased AD and PD incidence in 
individuals with significant diagnosis of endocrine, 
nutritional, metabolic, and digestive 
system–related disorders
Using UKB data, we conducted survival analyses to explore the 
probabilities of an AD and PD diagnosis at a certain time interval. 
To illustrate differences in the probability of developing AD or PD 
based on specific ICD-10 codes, we used Kaplan-Meier plots. The 
Kaplan-Meier curves demonstrate the impact of specific ICD-10 
code diagnosis on the likelihood of developing these NDDs. 

Table 2. Replicated diagnoses in endocrine, nutritional, metabolic, and digestive systems associated with PD risk. This table includes ICD-10 codes that 
were replicated across biobanks, meaning that these codes showed statistically significant associations with PD in both the UKB and at least one additional 
cohort.

Prior ICD-10 
code

Prior ICD-10 code 
description

Dataset HR CI min CI max P n pairs n FDR-
corrected P

 K57 Diverticular disease of 
intestine

 SAIL  0.75  0.69  0.81  1.74 × 10−11﻿  555  70,198  2.82 × 10−10﻿

 UKB  0.70  0.63  0.77  6.17 × 10−12﻿  422  39,568  1.37 × 10−10﻿

 K30 Dyspepsia  FinnGen  2.72  1.96  3.76  1.95 × 10−9﻿  86  9680  1.21 × 10−8﻿

 UKB  1.31  1.12  1.53  8.35 × 10−4﻿  164  10,647  7.44 × 10−3﻿

E10 Insulin- dependent 
diabetes mellitus

 SAIL  1.59  1.31  1.93  3.36 × 10−6﻿  101  6668  2.48 × 10−5﻿

 UKB  2.69  2.10  3.43  2.20 × 10−15﻿  66  2016  9.78 × 10−14﻿

E11 Noninsulin- dependent 
diabetes mellitus

 FinnGen  2.04  1.75  2.39  2.06 × 10−19﻿  421  42,593  3.38 × 10−18﻿

 UKB  1.30  1.17  1.44  1.61 × 10−6﻿  406  21,127  2.37 × 10−5﻿

 K63  Other diseases of intestine  SAIL  0.84  0.73  0.97  1.51 × 10−2﻿  205  25,877  4.71 × 10−2﻿

 UKB  0.71  0.62  0.82  1.74 × 10−6﻿  212  21,069  2.37 × 10−5﻿

 K66  Other disorders of 
peritoneum

 SAIL  0.70  0.53  0.93  1.32 × 10−2﻿  48  7406  4.21 × 10−2﻿

 UKB  0.64  0.47  0.88  5.25 × 10−3﻿  41  5183  3.89 × 10−2﻿

 K59  Other functional intestinal 
disorders

 FinnGen  3.19  2.46  4.14  2.02 × 10−18﻿  178  17,930  3.02 × 10−17﻿

 UKB  1.50  1.34  1.68  3.74 × 10−12﻿  333  17,605  1.11 × 10−10﻿
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Table 3. Time-stratified Cox regression model for AD. ICD-10 code, initial diagnosis of endocrine, metabolic, digestive system, and nutritional disorders; 
ICD-10 diagnosis range, number of years from the initial diagnosis of endocrine, metabolic, digestive system, and nutritional disorders (ICD-10 code) to the 
occurrence of NDD outcome. This table includes all ICD-10 codes that were significant in the UKB, regardless of replication status. This analysis is stratified by 
time before diagnosis, allowing us to assess whether the timing of a diagnosis influences its HR for AD.

ICD-10 code ICD-10 code description ICD-10 
diagnosis 

range

HR CI min CI max P n pairs n FDR-
corrected P

 A04  Other bacterial intestinal infections 1–5  2.83  1.85  4.35  1.94 × 10−6﻿  21  473  4.09 × 10−6﻿

All  1.38  1.12  1.70  2.56 × 10−3﻿  91  4349  1.55 × 10−2﻿

E10 Insulin- dependent diabetes 
mellitus

1–5  3.51  2.21  5.58  1.10 × 10−7﻿  18  356  2.61 × 10−7﻿

5–10  2.60  1.61  4.18  8.72 × 10−5﻿  17  436  4.06 × 10−4﻿

10–15  3.62  2.28  5.76  5.19 × 10−8﻿  18  348  2.08 × 10−7﻿

All  2.98  2.40  3.70  6.03 × 10−23﻿  84  2034  2.74 × 10−21﻿

E11 Noninsulin- dependent diabetes 
mellitus

1–5  1.32  1.09  1.59  5.02 × 10−3﻿  110  4954  6.82 × 10−3﻿

5–10  1.38  1.17  1.63  1.13 × 10−4﻿  149  5987  4.06 × 10−4﻿

10–15  1.71  1.45  2.03  5.50 × 10−10﻿  139  4390  2.93 × 10−9﻿

All  1.52  1.39  1.67  2.22 × 10−19﻿  558  21,278  6.72 × 10−18﻿

E14  Unspecified diabetes mellitus 1–5  1.81  1.15  2.84  9.93 × 10−3﻿  19  687  1.26 × 10−2﻿

5–10  2.06  1.38  3.08  4.23 × 10−4﻿  24  909  1.27 × 10−3﻿

10–15  3.23  2.63  3.96  2.35 × 10−29﻿  95  2005  3.77 × 10−28﻿

All  1.81  1.62  2.02  1.77 × 10−26﻿  362  11,666  1.62 × 10−24﻿

E16  Other disorders of pancreatic 
internal secretion

1–5  3.84  2.69  5.47  9.77 × 10−14﻿  31  407  1.67 × 10−12﻿

10–15  2.81  1.46  5.40  1.98 × 10−3﻿  9  201  6.33 × 10−3﻿

All  2.31  1.84  2.90  4.39 × 10−13﻿  77  1838  6.66 × 10−12﻿

E53 Deficiency of other B group 
vitamins

1–5  2.22  1.59  3.09  2.81 × 10−6﻿  35  759  5.35 × 10−6﻿

All  1.67  1.32  2.12  1.75 × 10−5﻿  71  2152  1.45 × 10−4﻿

E55 Vitamin D deficiency 1–5  2.11  1.62  2.76  3.94 × 10−8﻿  55  1291  1.07 × 10−7﻿

All  1.90  1.55  2.33  7.76 × 10−10﻿  95  2637  8.82 × 10−9﻿

E66  Obesity 5–10  0.76  0.61  0.95  1.72 × 10−2﻿  78  7362  3.86 × 10−2﻿

10–15  0.61  0.45  0.84  2.67 × 10−3﻿  38  4451  7.12 × 10−3﻿

All  0.85  0.76  0.965  5.18 × 10−3﻿  323  26,729  2.48 × 10−2﻿

E78 Disorders of lipoprotein metabolism 
and other lipidemias

5–10  1.57  1.38  1.79  3.30 × 10−12﻿  255  9808  2.97 × 10−11﻿

10–15  1.72  1.54  1.91  1.19 × 10−23﻿  388  13,238  7.12 × 10−3﻿

All  1.21  1.13  1.29  4.49 × 10−8﻿  1,422  65,137  4.54 × 10−7﻿

E85  Amyloidosis All  2.71  1.46  5.04  1.65 × 10−3﻿  10  191  1.07 × 10−2﻿

E86 Volume depletion 1–5  1.96  1.55  2.48  2.15 × 10−8﻿  71  1820  6.80 × 10−8﻿

All  1.77  1.52  2.08  8.97 × 10−13﻿  164  5323  1.17 × 10−11﻿

E87  Other disorders of fluid, electrolyte, 
and acid- base balance

1–5  1.67  1.42  1.96  6.21 × 10−10﻿  154  4454  2.36 × 10−9﻿

All  1.55  1.38  1.73  1.39 × 10−14﻿  350  12,397  2.54 × 10−13﻿

 K20 Esophagitis 1–5  2.59  2.01  3.34  1.76 × 10−13﻿  61  1552  1.67 × 10−12﻿

All  1.23  1.07  1.41  4.42 × 10−3﻿  208  10,362  2.24 × 10−2﻿

 K29  Gastritis and duodenitis 1–5  1.65  1.41  1.93  3.90 × 10−10﻿  163  6395  1.85 × 10−9﻿

All  1.20  1.10  1.31  4.53 × 10−5﻿  625  32,770  3.17 × 10−4﻿

 K52  Other noninfective gastroenteritis 
and colitis

1–5  1.66  1.27  2.18  2.48 × 10−4﻿  53  2311  3.63 × 10−4﻿

5–10  2.91  2.37  3.57  1.97 × 10−24﻿  94  2292  3.55 × 10−23﻿

All  1.38  1.23  1.56  6.06 × 10−8﻿  303  15,524  5.52 × 10−7﻿

 K59  Other functional intestinal disorders 1–5  1.70  1.45  2.00  1.18 × 10−10﻿  154  4877  7.46 × 10−10﻿

5–10  1.48  1.21  1.80  1.09 × 10−4﻿  102  3775  4.06 × 10−4﻿

All  1.54  1.39  1.70  1.99 × 10−17﻿  445  17,716  4.52 × 10−16﻿

 K64 Hemorrhoids and perianal venous 
thrombosis

1–5  0.60  0.46  0.78  1.51 × 10−4﻿  55  6399  2.40 × 10−4﻿

5–10  0.67  0.51  0.90  7.14 × 10−3﻿  47  5081  1.84 × 10−2﻿

All  0.78  0.69  0.88  4.25 × 10−5﻿  291  26,538  3.17 × 10−4﻿

(Continued)



Shafieinouri et al., Sci. Adv. 11, eadu2937 (2025)     27 August 2025

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

6 of 19

Notably, individuals with the significantly associated ICD-10 code 
diagnoses previously described exhibited a higher incidence of AD 
and PD. For example, individuals diagnosed with “disorders of min-
eral metabolism” (ICD-10 code E83) are more likely to be diagnosed 
with AD than those without this ICD-10 code, after 17.5 years of ini-
tial diagnosis. Similarly, for PD, a diagnosis of “deficiency of other B 
vitamin groups” (ICD-10 code E53) suggests a higher probability of 
being diagnosed with PD after 17.5 years. Other significant comorbid 
diagnoses can be found in figs. S1 and S2 for AD and PD, respec-
tively. The absolute difference in survival percentages at the end of 
17.5 years is shown in tables S6 and S7 for AD and PD, respectively.

The absolute difference in percentage at the end of the Kaplan-
Meier analyses for significant ICD-10 codes is shown in tables S6 
and S7. For instance, all three types of diabetes mellitus diagnoses 
(“insulin-dependent diabetes mellitus,” “noninsulin-dependent dia-
betes mellitus,” and “unspecified diabetes mellitus” with ICD-10 
codes E10, E11, and E14, respectively) are shown to have a signifi-
cant difference in survival probabilities in both AD and PD, corrobo-
rating previous findings that diabetes is a risk for neurodegeneration 
(33, 34). These known associations served as internal validation for 
the robustness of our analytic approach. We found that there were 
an additional 14 significant ICD-10 codes that decreased survival 
probability for AD and 4 additional significant ICD-10 codes that 
decreased survival probability for PD.

Genetic susceptibility for AD and PD is higher in isolated 
cases compared to those with co-occurring endocrine, 
nutritional, metabolic, and digestive disorders
We calculated polygenic risk scores (PRSs) using the genome-wide 
association study (GWAS) summary statistics for AD and PD from 
the only repository with genetics data available (UKB) (see Materi-
als and Methods for further details). A total of 22 of 23 variants 
[Kunkle et al. (35)] were present among AD cases and controls from 
the UKB data, while all the 90 variants [Nalls et al. (36)] were found 
to be imputed among PD cases and controls. Assessments of the ac-
curacy of PRS in AD and PD versus ICD-10 codes were reported in 
tables S8 to S10. We also compared the distribution of PRS in indi-
viduals diagnosed only with AD or PD versus those having concur-
rent AD/PD and any ICD-10 code diagnosis under study (figs. S3 
and S4). The genetic susceptibility for AD and PD was adjusted for 
APOE status in AD (by assigning “0,” “1,” or “2” based on the num-
ber of e4 copies present) and LRRK2 and GBA1 status in PD (by as-
signing “0” or “1” based on carrier status of each respective variant). 
Notably, some significant ICD-10 codes associated with AD included 
those pertaining to diabetes mellitus; other disorders of fluid, elec-
trolyte, and acid-base balance; and obesity. Similarly, there were 

significant associations between PD and diabetes mellitus, disorders 
of the peritoneum, and vitamin B group deficiencies. A comprehen-
sive summary of these results is shown in figs. S5 to S8.

For all significant associations (P < 0.05), a lower average PRS 
was observed in individuals with co-occurring AD and another 
condition compared to individuals with only AD. For instance, in 
patients with AD and gastrointestinal disorders (K59), our analysis 
showed a lower PRS in the AD + ICD-10 group compared to indi-
viduals with only AD, both before and after adjusting by APOE 
(β  =  −0.37  ±  0.07, P  =  1.33 × 10−7 when including APOE and 
β = −0.11 ± 0.06, P = 4.97 × 10−2 when excluding APOE) (fig. S7, 
P.1 and P.2). A similar trend was observed in individuals with AD 
and obesity (E66), where the AD + ICD-10 group showed a lower 
PRS, with β = −0.37 ± 0.08 and P = 1.20 × 10−5 when including 
APOE (fig. S7, J.1). Another significant association was observed in 
individuals with AD and esophagitis (K20), where the AD + ICD-10 
group had a lower PRS, with β = −0.24 ± 0.10 and P = 1.78 × 10−2 
when including APOE and β = −0.17 ± 0.08 and P = 3.38 × 10−2 
when excluding APOE (fig. S7, K.1 and K.2). Gastritis and duodeni-
tis (K29) were also significantly associated with lower PRS in the AD + 
ICD-10 group (β = −0.18 ± 0.06, P = 4.70 × 10−3) (fig. S7, F.1). In-
dividuals with AD and type 2 diabetes (E11) exhibited lower PRS, 
with β = −0.24 ± 0.07 and P = 2.54 × 10−4 when including APOE 
and β = −0.13 ± 0.05 and P = 1.20 × 10−2 when excluding APOE 
(fig. S7, I.1 and I.2).

A similar pattern of lower PRS was observed in individuals with 
co-occurring PD and another condition compared to individuals with 
only PD. For instance, patients with PD and gastrointestinal disorders 
(K59) exhibited a lower PRS compared to those with only PD (β = 
−0.16 ± 0.06, P = 1.24 × 10−2) (fig. S8H). In addition, patients with PD 
and deficiency of other B group vitamins (E53) had a lower PRS, with 
β = −0.32 ± 0.15 and P = 3.08 × 10−2 (fig. S8J). Furthermore, individu-
als with PD and insulin-dependent diabetes (E10) had a lower PRS, 
with β = −0.32 ± 0.14 and P = 2.46 × 10−2 (fig. S8L). Similarly, indi-
viduals with PD and noninsulin-dependent diabetes (E11) had a lower 
PRS, with β = −0.17 ± 0.06 and P = 3.95 × 10−3 (fig. S8F).

No evidence of synergistic interaction between polygenic 
risk scores and ICD-10 diagnoses in AD and PD outcomes
We did not identify significant synergistic interaction terms exhibit-
ing an odds ratio (OR) of >1 at a nominal P < 0.05 in either AD (see 
tables S11 and S12) or PD (see table S13). These results suggest that 
the co-occurrence of endocrine, nutritional, metabolic, or digestive 
system–related disorders with elevated genetic risk does not pro-
duce a synergistic effect on AD or PD risk beyond the additive con-
tribution of each factor alone.

 (Continued)

ICD-10 code ICD-10 code description ICD-10 
diagnosis 

range

HR CI min CI max P n pairs n FDR-
corrected P

 K66  Other disorders of peritoneum 1–5  0.55  0.33  0.92  2.21 × 10−2﻿  15  1821  2.62 × 10−2﻿

All  0.66  0.50  0.87  3.21 × 10−3﻿  52  5194  1.83 × 10−2﻿

 K92  Other diseases of digestive system 1–5  1.58  1.26  1.97  5.77 × 10−5﻿  80  3246  9.96 × 10−5﻿

All  1.19  1.04  1.36  1.06 × 10−2﻿  234  13,270  4.82 × 10−2﻿
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The proteomic profile of individuals diagnosed with AD and 
PD is influenced by co-occurring endocrine, nutritional, 
metabolic, and digestive system conditions
We accessed Olink, which encompasses data from 52,705 individu-
als from the UKB (at the time of data access) and a total of 1463 
proteins (see Materials and Methods for further details). Our analysis 
showed 22 proteomic biomarkers with notable differences in AD 
cases versus controls, alongside 156 proteins exhibiting significant 
distinctions in PD cases compared to controls after controlling for 
multiple comparisons (tables S14 and S15, respectively). We delved 
deeper into the levels of proteomic biomarkers, applying a t test to 

juxtapose average levels between standalone cases of AD/PD and 
cases co-occurring with specific ICD-10 codes. After implementing 
FDR corrections, we found significant differences in proteomic bio-
marker levels in individuals with only AD/PD compared to individu-
als with AD/PD and co-occurring ICD-10 conditions. Specifically, 
we identified 37 biomarkers displaying increased levels in AD cases 
with co-occurring ICD-10 diagnoses when compared to AD cases 
without additional ICD-10 diagnoses (Table 5). Using the same ap-
proach for PD, we identified five biomarkers with elevated levels 
when other ICD-10 diagnoses were present (Table 6). These findings 
hint at distinct associations between specific biomarkers and AD/PD, 

Table 4. Time-stratified Cox regression model for PD. This table includes all ICD-10 codes that were significant in the UKB, regardless of replication status. This 
analysis is stratified by time before diagnosis, allowing us to assess whether the timing of a diagnosis influences its HR for PD.

ICD-10 code ICD-10 code description ICD-10 
diagnosis 

range

HR CI min CI max P n pairs n FDR-
corrected P

E10 Insulin- dependent 
diabetes mellitus

1–5  2.10  1.09  4.04  2.63 × 10−2﻿  9  347  4.09 × 10−2﻿

5–10  3.41  2.19  5.29  4.76 × 10−8﻿  20  439  3.33 × 10−7﻿

10–15  2.83  1.60  4.98  3.30 × 10−4﻿  12  342  1.17 × 10−4﻿

All  2.69  2.10  3.43  2.20 × 10−15﻿  66  2016  9.78 × 10−14﻿

E11 Noninsulin- dependent 
diabetes mellitus

1–5  1.39  1.13  1.70  1.72 × 10−3﻿  96  4940  4.46 × 10−3﻿

5–10  1.45  1.21  1.73  4.29 × 10−5﻿  129  5968  1.50 × 10−4﻿

All  1.30  1.17  1.44  1.61 × 10−6﻿  406  21,127  2.37 × 10−5﻿

E14  Unspecified diabetes 
mellitus

1–5  2.08  1.31  3.31  1.91 × 10−3﻿  18  686  4.46 × 10−3﻿

5–10  3.98  2.90  5.46  1.15 × 10−17﻿  39  924  1.61 × 10−16﻿

10–15  3.02  2.42  3.77  1.17 × 10−22﻿  81  1991  1.05 × 10−21﻿

All  1.71  1.52  1.94  4.00 × 10−18﻿  292  11,596  3.56 × 10−16﻿

E16  Other disorders of 
pancreatic internal 

secretion

1–5  2.81  1.77  4.47  1.25 × 10−5﻿  18  394  5.82 × 10−5﻿

All  1.95  1.48  2.57  1.86 × 10−6﻿  52  1813  2.37 × 10−5﻿

E53 Deficiency of other B group 
vitamins

1–5  2.21  1.50  3.26  5.57 × 10−5﻿  26  750  1.95 × 10−4﻿

All  1.76  1.35  2.30  3.54 × 10−5﻿  55  2136  3.50 × 10−4﻿

 K30 Dyspepsia 1–5  3.18  2.14  4.71  8.63 × 10−9  25  702  6.04 × 10−8﻿

5–10  1.53  1.15  2.05  4.07 × 10−3﻿  46  2676  1.14 × 10−2﻿

10–15  1.52  1.14  2.03  4.42 × 10−3﻿  47  2687  7.96 × 10−3﻿

All  1.31  1.12  1.53  8.35 × 10−4﻿  164  10,647  7.44 × 10−3﻿

 K57 Diverticular disease of 
intestine

5–10  0.67  0.56  0.81  3.16 × 10−5﻿  114  11,811  1.48 × 10−4﻿

10–15  0.69  0.55  0.86  1.07 × 10−3﻿  80  7319  2.40 × 10−3﻿

All  0.70  0.63  0.77  6.17 × 10−12﻿  422  39,568  1.37 × 10−10﻿

 K59  Other functional intestinal 
disorders

1–5  1.81  1.51  2.16  1.26 × 10−10﻿  124  4847  1.77 × 10−9﻿

5–10  1.34  1.05  1.69  1.68 × 10−2﻿  70  3744  2.94 × 10−2﻿

All  1.50  1.34  1.68  3.74 × 10−12﻿  333  17,605  1.11 × 10−10﻿

 K63  Other diseases of intestine 5–10  0.70  0.55  0.90  4.94 × 10−3﻿  66  6731  1.15 × 10−2﻿

10–15  0.57  0.42  0.78  3.89 × 10−4﻿  40  4362  1.17 × 10−3﻿

All  0.71  0.62  0.82  1.74 × 10−6﻿  212  21,069  2.37 × 10−5﻿

 K64 Hemorrhoids and perianal 
venous thrombosis

1–5  0.69  0.53  0.90  7.35 × 10−3﻿  53  6397  1.29 × 10−2﻿

5–10  0.68  0.49  0.93  1.58 × 10−2﻿  39  5073  2.94 × 10−2﻿

All  0.74  0.65  0.85  1.26 × 10−5﻿  237  26,484  1.40 × 10−4﻿

 K66  Other disorders of 
peritoneum

1–5  0.40  0.21  0.77  6.15 × 10−3﻿  9  1815  1.23 × 10−2﻿

All  0.64  0.47  0.88  5.25 × 10−3﻿  41  5183  3.89 × 10−2﻿

 K74  Fibrosis and cirrhosis of liver 5–10  2.30  1.10  4.83  2.78 × 10−2﻿  7  290  4.32 × 10−2﻿

All  1.69  1.15  2.49  7.72 × 10−3﻿  26  1337  4.91 × 10−2﻿
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while others may be influenced by concurrent comorbidities—an 
important consideration when developing multimodal models. No-
tably, we identified well-established biomarkers of AD and PD, such 
as amyloid-β42 and α-synuclein, which served as a positive control 
to validate the reliability of our approach.

Among the critical biomarkers identified, β-1-glycoprotein 1 
(PSG1) emerged as a particularly compelling candidate. PSG1 is 
primarily expressed during pregnancy and is known for its role in 
modulating immune responses and enhancing transforming growth 
factor–β signaling. A recent study using UKB data identified PSG1 
as one of the proteins predictive of AD risk in individuals with de-
pression, further highlighting it as an early and underexplored con-
tributor (37). Given its robust association in our model (OR = 1.19, 
95% CI = 1.11 to 1.29, FDR-adjusted P = 1.20 × 10−3), PSG1 repre-
sents a promising blood-based biomarker that may reflect immune 
modulation contributing to AD risk. In addition, integrin-αV 
showed an inverse association with PD (OR = 0.12, 95% CI = 0.081 
to 0.19, FDR-adjusted P = 5.19 × 10−20), suggesting a role for extra-
cellular matrix signaling. ADGRG2 (OR = 0.44, 95% CI = 0.34 to 
0.58, FDR-adjusted P = 2.56 × 10−7) and TNXB (OR = 0.45, 95% 
CI =  0.35 to 0.59, FDR-adjusted P =  1.57 ×  10−6) were also de-
creased and may represent notable PD-associated proteins.

Multimodal integration models based on clinical, genetic, 
and proteomic data improve accuracy to predict AD and PD 
risk versus a single paradigm
In our analysis, the combination of genetic, clinical, proteomic (con-
trolling for multiple comparisons using Bonferroni correction), and 
demographic factors (including age at recruitment and gender) ex-
hibited superior predictive performance for AD risk when com-
pared to the individual datasets, with a test area under the curve 
(AUC) of 0.90 (95% CI = 0.88 to 0.92) and a test balanced accuracy 
(BA) of 0.83 (0.80 to 0.86). Curiously, the model combining genetic, 
proteomic, and demographic features (i.e., no clinical information) 
had a very similar test AUC of 0.89 (0.87 to 0.91) and a test BA of 
0.82 (0.78 to 0.86), suggesting that the risk information captured by 

clinical features may be encompassed within the information pro-
vided by genetic, proteomic, and demographic features. The best 
classifier using only one data attribute was the model including pro-
teomic data for prediction with a test AUC of 0.87 (0.85 to 0.89) and 
a test BA of 0.79 (0.76 to 0.82). The performance of each predictive 
model is shown in Fig. 2, and the metrics are listed in table S16.

For PD, the integration of genetic, proteomic, and demographic 
factors showcased heightened predictive efficacy with a test AUC of 
0.78 (0.74 to 0.82) and a test BA of 0.70 (0.68 to 0.72). For PD, addi-
tion of the clinical data did not improve the AUC and test BA of the 
model. Clinical features do not contain sufficient useful informa-
tion, and predicting solely on clinical features performs no better 
than a random classifier, with a test AUC of 0.52 (0.49 to 0.55). The 
best classifier using only one data attribute was the model that used 
demographics data (age at recruitment, sex, and Townsend depriva-
tion index), with a test AUC of 0.77 (0.74 to 0.80) and a test BA of 
0.72 (0.68 to 0.76). The performance of each model for PD is shown 
in Fig. 3 and table S17.

Shapley additive explanations (SHAP) values provide an in-
depth analysis of machine learning (ML) classifiers by highlighting 
the top discriminating features of AD/PD compared to healthy con-
trols. The biological plausibility of the models is supported by fea-
ture importance plots, which emphasize known risk factors for AD 
and PD, such as age and PRS. Among the proteomic features, the 
neurofilament light (NFL) polypeptide emerges as a significant fac-
tor for both AD and PD, suggesting its potential as a biomarker for 
multiple forms of neurodegeneration. In AD, other top features in-
clude the glial fibrillary acidic protein (GFAP) and the growth dif-
ferentiation factor from proteomic data. From clinical features, only 
gastritis and duodenitis appear among top features (Fig. 4A). Pro-
teomic factors, including adhesion G protein–coupled receptor G2, 
integrin-αM, and interleukin receptor, help distinguish PD from con-
trols (Fig. 4B). The interactive website (https://gut-brain-nexus.
streamlit.app/) was developed as an open-access and cloud-based 
platform for researchers to investigate the top features of the ML mod-
els developed and how these may influence the AD/PD risk scores.

Table 6. Proteomic biomarker comparison in isolated PD cases versus cases with digestive, endocrine, metabolic, and nutritional conditions. 

Olink marker ICD-10 
code

ICD-10 descrip-
tion

Olink aver-
age (PD)

Olink 
average 

(PD + ICD-
10)

t statistic 
(PD + ICD-
10 versus 

PD)

n (PD) n 
(PD + ICD-

10)

P FDR-
corrected P

Collagenase 3  K30 Dyspepsia  0.04  0.23  3.28  569  36  2.08 × 10−3﻿  4.97 × 10−2﻿

 Peroxiredoxin- 1 E10 Insulin- dependent 
diabetes mellitus

 0.22 ﻿−0.43 ﻿−3.60  589  16  2.13 × 10−3﻿  4.97 × 10−2﻿

CD276 antigen E11 Noninsulin-
dependent 

diabetes mellitus

 0.08  0.23  3.38  523  102  9.29 × 10−4﻿  4.33 × 10−2﻿

E14  Unspecified 
diabetes mellitus

 0.09  0.33  3.40  569  56  1.20 × 10−3﻿  4.33 × 10−2﻿

E10 Insulin- dependent 
diabetes mellitus

 0.09  0.70  4.38  609  16  5.06 × 10−4﻿  3.64 × 10−2﻿

Interleukin- 1 
receptor- like 1

E14  Unspecified 
diabetes mellitus

 0.13  0.39  3.92  575  58  1.99 × 10−4﻿  2.87 × 10−2﻿

Neural cell 
adhesion 
molecule 1

E66  Obesity  0.13 ﻿−0.03 ﻿−3.12  550  80  2.42 × 10−3﻿  4.97 × 10−2﻿

https://gut-brain-nexus.streamlit.app/
https://gut-brain-nexus.streamlit.app/
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Fig. 2. Receiver operating characteristic curve and balanced accuracy comparison for AD. Performance evaluation of multiomics integration models using clinical, 
genetic, proteomic, and demographic data for AD.

Fig. 3. Receiver operating characteristic curve and balanced accuracy comparison for PD. Performance evaluation of multiomics integration models using clinical, 
genetic, proteomic, and demographic data for PD.
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DISCUSSION
With the rising prevalence of AD and PD, it is imperative to en-
hance our understanding of the determinants that increase the risk 
for these common NDDs and develop improved prediction models 
for early detection. Here, we have undertaken the most extensive 
biobank-scale omics study to date to assess the influence of main 
biological system disorders implicated in the gut-brain axis (includ-
ing endocrine, nutritional, metabolic, and digestive-related condi-
tions) preceding the diagnosis of AD and PD. The culmination of 
which is a multimodal classification model that combines clinical, 
genetic, and proteomic data enhancing the prediction accuracy of 
AD and PD.

In a large-scale and data-driven manner, we demonstrate that 
certain endocrine, nutritional, metabolic, and digestive system–
related traits and disorders are notably associated with an increased 
risk of AD and/or PD before diagnosis. Notably, individuals with 
noninfective gastroenteritis and colitis; esophagitis; gastritis and 
duodenitis; disorders of fluid, electrolyte, and acid-base balance; 
pancreatic internal secretion disorders; and functional intestinal 
disorders showed a higher likelihood of developing AD later in life. 
Recent literature has suggested the amplification of AD risk from 
disorders affecting the gut-brain axis, such as gastritis (38). Our re-
sults corroborate these findings and reveal additional, notable po-
tential disorders of interest for further study, with replication across 
multiple datasets. In regard to PD, substantial diagnoses associated 
with increased PD risk include functional intestinal disorders, dis-
orders of pancreatic internal secretion, and deficiency of other B 
group vitamins. The correlation between the deficiency of B group 
vitamins and PD expands upon previous studies that have looked at 
other vitamin deficiencies, such as vitamin D (25), and warrants 
more research on the impact of nutritional deficiencies on NDDs. 
Previous literature has linked individual disorders, such as func-
tional intestinal disorders (39), disorders of pancreatic internal se-
cretion (40), and deficiency of B group vitamins (41, 42), to both AD 
and PD. It is encouraging that our findings align with and further 
support these established associations. The interplay between 

multiple traits at once and their combined impact on AD/PD was 
not explored in our analysis, presenting an opportunity for future 
further investigation.

The number of patients with co-occurring amyloidosis and AD 
was low compared to other ICD-10 diagnoses analyzed. Although 
AD features amyloid-β pathology and is considered a form of local-
ized cerebral amyloidosis (43, 44), it is not classified as a subtype of 
systemic amyloidosis. The ICD-10 diagnosis of amyloidosis typi-
cally refers to systemic forms, such as light-chain or transthyretin 
amyloidosis, which affect organs such as the heart or kidneys. These 
systemic forms may occur concurrently with AD in some individu-
als. However, the low frequency of codiagnosis in our data may re-
flect underrecording, as cerebral amyloid pathology inherent to AD 
is not typically coded separately in clinical records.

Our study shows that risk of neurodegeneration persists up to 
15 years before AD/PD onset with a co-occurring diagnosis of an 
endocrine, metabolic, digestive, or nutritional disorder or trait. For 
example, having a diagnosis of other functional intestinal disorders 
results in an increased HR for both AD and PD in the periods span-
ning 1 to 5, 5 to 10, and 10 to 15 years before AD/PD diagnosis. The 
time-stratified Cox regression approach allows for variations in HR 
across different time periods, which accounts for changes in the haz-
ard over time. By splitting the samples according to time before di-
agnosis and analyzing only ICD-10 codes within specific time 
periods, the model is adjusting for the potential nonproportionality 
of hazards and is not assuming constant HRs across the entire study 
period. This approach helps control for the nonproportional haz-
ards that may arise from variations in the timing of diagnoses.

In an effort to investigate genetic distinctions and potential etio-
logical subtypes of AD and PD, we compared PRS for AD and PD in 
individuals diagnosed only with AD or PD and individuals with AD 
or PD co-occurring with other endocrine, nutritional, metabolic, 
and digestive-related disorders. Notably, our study confirmed that 
individuals diagnosed with any type of diabetes mellitus in addition 
to AD or PD are shown to have a notable different PRS than indi-
viduals with AD or PD alone, in concordance with previous studies 

Fig. 4. Feature importance plots. (A) Distribution of the top 20 features that had the most substantial effect on the AD risk estimates. Each point represents a patient and 
the amount of effect on model output for each feature depends on its SHAP value. For example, the effect of the “Demographics/age_at_recruitment” feature on model 
output is large and positive (indicating a higher risk) when the patient has high values for “Demographics/age_at_recruitment” (more red points are on the right side). 
Similarly, (B) shows the top features for PD risk estimates. dCTP, 2′-deoxycytidine 5′-triphosphate.
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showing that diabetes is a risk factor for both AD and PD (45–47). 
In addition, we observed substantial relationships in AD with other 
bacterial intestinal infections and other functional intestinal disor-
ders, as well as in PD with other functional intestinal disorders and 
other disorders of the peritoneum. Participants with either AD or 
PD and any of the notable disorders affecting the gut-brain axis 
showed lower average PRS scores. While this may suggest an inverse 
relationship between genetic risk for AD/PD and co-occurring gut-
brain disorders, we caution that this pattern may be influenced by 
collider bias, where conditioning on the presence of AD or PD could 
induce spurious associations between genetic and nongenetic risk 
factors (48, 49). Together, our findings promote the importance of 
considering both genetic and other health factors in assessing the 
overall risk of developing AD and PD.

There are several possible explanations for the notable differ-
ences observed in PRS distributions between individuals diagnosed 
solely with AD or PD and those with concurrent AD/PD and addi-
tional ICD-10 diagnoses. Differences in PRS distributions may be 
influenced by gene-gene interactions (epistasis), gene-environment 
interactions, and PRS model limitations. The PRS approach primar-
ily captures additive genetic effects but does not account for poten-
tial synergistic or antagonistic interactions between genetic variants 
that may modify disease risk. These factors collectively highlight the 
complexity of interpreting PRS distributions in individuals with 
multiple diagnoses and underscore the need for careful consider-
ation of underlying biases and confounders, even when adjusting 
for population structure using principal components (PCs).

In addition, our analysis revealed that the relationship between 
the genetic risk for AD/PD and many disorders of the endocrine, 
nutritional, metabolic, and digestive systems resulted in a combined 
impact not notably greater than the sum of their individual effects. 
These interactions are not synergistic, confirming the notion that 
known genetic risk factors included in the models under study for 
both AD and PD are independent from gastrointestinal and meta-
bolic disorders, which highlights the importance of environmental 
factors in the development of both AD and PD. While both genetic 
and systemic health disorders independently influence the risk of 
AD and PD, many disorders may not interact in a way that notably 
amplifies this risk when combined.

Our findings suggest that proteomic biomarkers, such as NFL for 
AD and PD, could be valuable diagnostic tools in identifying indi-
viduals at risk before clinical symptoms appear. The models built on 
proteomic data alone, even without clinical data, performed impres-
sively well, indicating that biological markers of disease might offer 
more direct and accurate insights into the neurodegenerative pro-
cesses of AD and PD than traditional clinical assessments alone. The 
ability to predict risk with high accuracy using these biomarkers 
highlights the potential for early detection, personalized medicine, 
and better-targeted interventions, making proteomic biomarkers es-
sential components for future multimodal models for NDDs. How-
ever, these findings suggest that while some biomarkers are distinctly 
associated with AD/PD, others may be influenced by co-occurring 
comorbidities and medications, among other influential factors—an 
important consideration when developing multimodal models.

Our analysis reveals that specific co-occurring conditions may 
influence molecular markers of PD or AD. For example, we ob-
served that peroxiredoxin 1 (PRDX1) levels were decreased in PD 
cases with a co-occurring ICD-10 code for insulin-dependent dia-
betes mellitus. This observation reflects biomarker-level differences 

that may arise because of the presence of specific co-occurring con-
ditions. While these conditions did not notably interact with genetic 
risk to affect AD or PD outcomes, they may still alter biological 
pathways relevant to disease manifestation. This highlights the im-
portance of separating disease risk from disease manifestation, as 
co-occurring conditions can affect biological changes in the disease 
without necessarily increasing the overall risk.

Through our exploration of proteomics and AD/PD risk in UKB, 
we confirmed several promising candidates for AD/PD diagnosis. 
For instance, we found that for AD, the proteomic biomarker with 
the largest impact on disease was GFAP, supporting previous litera-
ture findings that GFAP can serve as an indicator of AD pathology 
(50). However, the levels of GFAP were notably decreased in sam-
ples with AD and a co-occurring ICD-10 code for gastritis and duo-
denitis or noninsulin-dependent diabetes mellitus. For PD, in 
concordance with previous studies, we identified PRDX1 as a poten-
tial biomarker for disease (51). Again, the levels of PRDX1 were no-
tably decreased in PD cases and a coinciding ICD-10 code for 
insulin-dependent diabetes mellitus. These differences in biomarker 
levels between samples solely with AD/PD versus samples with ad-
ditional diagnoses highlight the influence of comorbidities on dis-
ease manifestation. Although longitudinal research would need to 
be conducted, our findings suggest that these biomarkers could 
serve as valuable diagnostic or prognostic tools for AD and PD, po-
tentially enhancing early detection and disease management. We 
acknowledge the limitation that the SAIL and FinnGen datasets do 
not include neither genetic nor proteomic data, preventing us from 
further validating our modeling efforts.

The inclusion of multiple features, integrating clinical data on di-
gestive, endocrine, nutritional, and metabolic disorders, genetic risk 
scores, and proteomic data in our prediction model, demonstrated 
superior performance in predicting both AD and PD compared to 
single-variable paradigms. Co-occurring diagnoses for conditions 
influencing the gut-brain axis do not seem to influence the predict-
ability of AD or PD as much as the other variables (demographic 
factors, biomarkers, and genetic status), but the fact that, for both 
AD and PD, the combination of data (clinical, genetic, proteomic, 
and demographic) produces a higher AUC for the receiver operat-
ing characteristic (ROC) curve compared to single modalities un-
derscores the value in including multiple facets of data in predictive 
models. The relatively lower contribution of clinical features may be 
partially explained by the limited granularity of diagnostic data in 
biobanks and the variability in the severity of clinical conditions, 
which can introduce heterogeneity into the models. On the basis of 
SHAP values, the most influential predictors of AD and PD risk 
were age and molecular biomarkers. “Demographics/age at recruit-
ment” was consistently the top-ranked feature in both models, 
which aligns with established knowledge that age is the strongest 
risk factor for AD and PD (52, 53). Among molecular features, sev-
en of the top 10 contributors were proteomic biomarkers, including 
GFAP and NFL—markers of astrocytic reactivity and axonal injury, 
respectively (54, 55). Genetic factors also played a notable role, with 
both PRS (z-score) and APOE ε4 copy number (in AD) positively 
associated with disease classification. In the PD model, immune-
related proteins such as interleukin-13 receptor, α1 and integrin-αM 
contributed modestly, suggesting an inflammatory component.

In contrast, clinical features showed limited contribution to 
model predictions. This may be partly explained by feature redundan-
cy, where molecular markers already capture the pathophysiological 
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signals reflected in clinical diagnoses. In addition, biobanks may 
lack comprehensive clinical data, and diagnostic labels can vary in 
specificity and severity, introducing heterogeneity that diminishes 
the utility of clinical variables in risk prediction.

A particularly intriguing finding in our study is the lack of a con-
sistent temporal pattern between the diagnosis of prior ICD-10 con-
ditions and the subsequent diagnosis of AD or PD. This observation 
does not align with the expectations of the conventional “dual-hit” 
hypothesis, which posits that a secondary insult, such as a periph-
eral infection, can initiate or accelerate neurodegenerative process-
es, particularly in PD (56, 57). For example, previous studies have 
highlighted the potential role of peripheral infections in triggering 
α-synuclein misfolding and aggregation, a hallmark of PD (58). 
However, our data indicate that the timing of the ICD-10 diagnoses, 
which were predominantly noninfectious in nature, varied in mag-
nitude across time windows, without a consistent temporal pattern 
in their association with AD or PD onset. This suggests that shared 
vulnerabilities, such as genetic predispositions or cumulative envi-
ronmental exposures, may play a more dominant role in risk of de-
veloping AD or PD than specific temporal triggers. In addition, the 
limited temporal resolution of diagnosis data in biobanks may reduce 
the sensitivity to detect more nuanced timing-dependent effects.

The absence of a clear temporal link between prior conditions 
and the onset of AD or PD calls for further investigation into the 
underlying mechanisms. It is possible that the impact of prior con-
ditions is cumulative, with the overall burden of these comorbidi-
ties—rather than their precise timing—modulating NDD risk. Future 
research should focus on detailed longitudinal studies examining 
the temporal relationship between specific infectious or inflamma-
tory exposures and the development of AD and PD. These studies, 
incorporating both clinical and biomarker data, will be critical for 
advancing our understanding of the complex interplay between 
prior conditions and the pathogenesis of NDDs.

Transparency and reproducibility are critical aspects of science. 
This becomes even more important for ML models due to their 
black-box nature. To facilitate this, we made two contributions: (i) 
model interpretability analysis, using SHAP values to identify the 
top features, corresponding to each modality, that can be validated 
against existing biological findings; and (ii) development of an 
open-access, cloud-based platform for researchers to explore the 
model developed in this study and investigate how different factors 
may influence classification (or, in some cases, misclassification). In 
addition, we incorporated a model perturbation analysis feature on 
our website, allowing researchers to manually adjust features and 
observe the resulting changes. These efforts enhance transparency 
and move the research community away from black-box predictors 
through interpretable modeling.

Some overall limitations of our work include the use of solely 
ICD-10 codes for diagnosis, and not other additional assays, which 
may overlook undiagnosed and misdiagnosed cases, leading to a 
potential underestimation of the true impact of these disorders on 
AD/PD risk. Across datasets, the available diagnosis codes also dif-
fer causing further limitations in comparison and validation. Be-
cause individuals with AD often present with different cognitive, 
behavioral, and pathological features, diagnosis of AD is often diffi-
cult and inconsistent (59). Although we use the ICD-10 code to filter 
for AD in this study, it is possible for AD to be interchanged with 
dementia, as diagnosing AD is a daunting challenge. The sample 
makeup across data sources can also be different. Since the UKB 

participants are volunteers who may have agreed to participate be-
fore reaching old age, the incidence of AD/PD may be different 
compared to the SAIL and FinnGen datasets. The focus on samples 
of European ancestry constrains the generalizability of our findings 
to other populations from other genetic backgrounds. Future work 
needs to be done across different ancestral backgrounds to be glob-
ally representative. In addition, the multimodal classification model 
is influenced by statistically significant differences in age between 
case and control groups for both AD (P  =  6.9 × 10−75) and PD 
(P = 3.9 × 10−52). However, feature importance plots and other as-
pects of the model highlight the contributions of various features 
independent of age.

Our study delves into the intricate interactions between clinical, 
genetic, and proteomic data, culminating in the construction of a 
comprehensive multimodal classification model. This pioneering 
endeavor aims to shed light on the nuanced interplay between vari-
ous physiological factors playing a role on the gut-brain axis and the 
development of AD and PD, offering a multifactorial systemic un-
derstanding that transcends traditional approaches. Our integrated 
approach serves as a proof of concept, aligning with the expanding 
body of evidence that underscores the intricate etiological founda-
tions of NDDs and holds promise for refining risk prediction mod-
els and devising targeted preventive strategies. Further, we have 
developed an interactive resource for the scientific community (https://
gut-brain-nexus.streamlit.app/). This, in turn, propels our endeavors 
in elucidating clinical interventions aimed at addressing these de-
bilitating conditions. As it stands, the tool is best suited for research-
ers who already have access to the required genetic data and wish to 
implement our approach to testing other hypotheses and datasets. 
This was designed to allow readers to access a large volume of results 
in a user-friendly and interactive manner, rather than to enable us-
ers to input their own data.

MATERIALS AND METHODS
This study uses data from three biobanks: the UKB, FinnGen, and 
the SAIL (see Fig. 1 for a workflow rationale of this study). For ge-
netic and proteomic modeling, we used UKB data, as it was the only 
biobank to provide access to both genetic and proteomic data.

UK Biobank
The UKB data, accessed via DNAnexus under application number 
33601, include electronic health records of 502,367 individuals, 
single-nucleotide polymorphism data of 487,279 individuals, and 
proteomic (Olink) data of 52,705 individuals (https://ukbiobank.
dnanexus.com) (accessed on May 2023). The control group for the 
UKB dataset consisted of individuals who have not been diagnosed 
with any NDD condition (table S18) and have no family history of 
an AD or PD diagnosis. Endocrine, nutritional, metabolic, and di-
gestive disorders, as well as AD and PD diagnosis, were derived 
from ICD-10 codes. The AD cohort was obtained from the G30 and 
F00 ICD-10 codes in the UKB, and the PD cohort was obtained 
from the G20 ICD-10 code. We excluded any individuals who had 
received an ICD-10 diagnosis for endocrine, nutritional, metabolic, 
and digestive disorders before 1 January 1999 to match SAIL’s re-
cords and right-censored any individuals who received an ICD-10 
diagnosis after being diagnosed with AD or PD. Furthermore, any 
ICD-10 code with fewer than five cases was excluded from the anal-
ysis. Demographic characteristics are shown in table S19. For our 
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approach, related individuals were filtered out from further analyses 
based on a kinship coefficient greater than 0.0884, and only indi-
viduals of European descent were selected for this study, based on 
field ID 22006, who self-identified as “White British” and confirmed 
through PC analysis (PCA) of the genotyping data to avoid potential 
confounding effects. We lacked a sufficient number of individuals 
with non-European ancestry to conduct a meaningful multiancestry 
assessment. After all filtering steps, our dataset included 216,047 
controls, 4473 AD cases, and 4564 PD cases.

ICD-10 codes were included in the Cox regression models only 
if at least three individuals had the condition before AD/PD onset 
and at least two experienced the outcome (AD/PD). With regard to 
the Olink proteomic data provided by UKB, we deferred to the qual-
ity control and outlier exclusion that UKB conducted before our data 
access (https://biobank.ndph.ox.ac.uk/showcase/refer.cgi?id=4658). 
Quality control and outlier detection were performed on the basis of 
PCA and interquartile range median analysis per their documenta-
tion (https://biobank.ndph.ox.ac.uk/showcase/refer.cgi?id=4658). 
None of the biomarker models among the top hits were flagged as 
potentially unreliable because of outlier participants, as assessed us-
ing Cook’s distance (threshold > 0.5). Therefore, their associations 
with AD or PD appear stable and are unlikely to be artifacts driven 
by individual influential observations.

SAIL Databank
The SAIL Databank is a virtual platform providing anonymized 
medical data of the population in Wales (60). Diagnoses in SAIL are 
sourced from the Patient Episode Database for Wales (PEDW), re-
cords from clinicians and hospital staff, the Welsh Longitudinal 
General Practitioner dataset (WLGP), records from primary care 
physicians of diagnoses, treatments, symptoms, and referrals. Demo-
graphic information such as sex, age, address, and death were ob-
tained from the Welsh Demographic Services Database and WLGP. 
Individuals with missing age or sex data and those without a Welsh 
address were excluded from further analysis.

Diagnoses were identified in the PEDW using ICD-10 codes and 
in the WLGP using National Health System (NHS) read codes 
(CVT2 and CVT3). Neurodegenerative disorders from the outpa-
tient data were excluded because of their minimal representation of 
dementia cases (only 0.1%) and the absence of reliable diagnosis 
dates. Similarly, dementia diagnoses from death records were not 
included because of inaccurate diagnosis dates. This study covered 
the period from 1 January 1999 to 31 December 2018. For inclusion, 
individuals were required to have been alive at the start of 1999 and 
to have been at least 45 years old on 1 January 1999.

FinnGen Biobank
The FinnGen study is a large-scale genomics initiative that has ana-
lyzed over 500,000 Finnish biobank samples and correlated genetic 
variation with health data to understand disease mechanisms and 
predispositions. The project is a collaboration between research or-
ganizations and biobanks within Finland and international industry 
partners (61).

FinnGen provides survival analyses across numerous clinical 
end points. The HRs are adjusted for sex and year of birth. FinnGen 
bases the calculation of these HRs on a wide array of clinical end 
points defined through data from nationwide registries, including, 
but not limited to, Statistics Finland (https://finngen.gitbook.io/
documentation/methods/endpoints). We downloaded the HRs for 

AD/PD from FinnGen’s Risteys R10 platform for AD using the G6_
AD_WIDE category matching more closely the UKB grouping than 
G6_AD (https://r10.risteys.finngen.fi/endpoints/G6_AD_WIDE) 
and for PD (https://r10.risteys.finngen.fi/endpoints/G6_PARKINSON) 
to explore the putative impact of endocrine, digestive, metabolic, 
and nutritional disorders on the risk of AD/PD before diagnosis. Not 
all ICD-10 codes used in our discovery phase in the UKB are repre-
sented in the FinnGen dataset. This discrepancy is perhaps due to 
the differences in health registries and data collection methodologies 
between the UKB and FinnGen biobanks.

Cox proportional hazards model
A Cox proportional hazards model was used to calculate the HR 
between risk for incident AD and PD and endocrine, nutritional, 
metabolic, and digestive system disorders. The disorders under 
study are represented as 155 ICD-10 codes (table S1). In this model, 
1 January 1999 was used as the cutoff date for the diagnosis of these 
conditions. Consequently, any individual diagnosed with these 
traits before 1 January 1999 was excluded from the analysis. Logis-
tic regressions and Cox proportional hazards models were adjusted 
for age, sex, the Townsend deprivation index, and five PCs to ac-
count for population stratification (precomputed in UKB only) 
(tables S20 to S31). In addition, we conducted time-stratified Cox 
proportional hazards analysis, for which cohorts were divided into 
three strata based on ICD-10 codes: 1 to 5 years, 5 to 10 years, and 
10 to 15 years before NDD diagnosis. ICD-10 diagnoses within the 
specified time periods were retained, while any ICD-10 codes out-
side of these time frames were converted to Not a Number (NaN) 
(Tables 3 and 4). In our analysis, ICD-10 codes were included in 
the Cox regression models only if at least three individuals had 
the condition before AD/PD onset and at least two experienced the 
outcome (AD/PD). We applied the Benjamini-Hochberg procedure 
for FDR correction of HRs, using the fdrcorrection function from 
the statsmodels.stats.multitest module. The FDR correction was 
applied to the P values obtained from the survival models across 
155 ICD-10 codes, allowing us to adjust for multiple comparisons 
and identify robust associations.

Fine-Gray model
To account for the competing risk of death, we fit a Fine-Gray sub-
distribution hazard model. The primary outcome in this model was 
the diagnosis of AD/PD. The competing event was death before AD/
PD diagnosis, with the date of death obtained from UKB (data field: 
p40000_i0). Individuals who neither developed AD/PD nor died 
during follow-up were censored at the end of follow-up (1 January 
2023). Follow-up started at the year of recruitment, and the end of 
follow-up was defined as the earliest of the following: the date of 
AD/PD diagnosis, date of death, or 1 January 2023. Participants 
whose AD/PD diagnosis occurred before recruitment were exclud-
ed. Duration of follow-up was calculated in years as the difference 
between start and end times. In the model, age at recruitment, sex, 
Townsend deprivation index, and genetic PC1 to PC5 (precalculat-
ed by UKB) were used as covariates. We used age at recruitment 
instead of year of birth to avoid collinearity in the model. When year 
of birth was included, the Fine and Gray model fitting failed because 
of a singular design matrix error, which was caused by collinearity 
among covariates. We excluded ICD-10 codes if fewer than three 
individuals had the diagnosis or if fewer than two individuals with 
the diagnosis developed AD/PD during follow-up. We applied the 
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FDR correction to control for multiple testing across all ICD-10 
codes. Results were considered significant at an FDR of < 0.05.

Survival analysis using Kaplan-Meier plots
We generated Kaplan-Meier plots for the significantly associated 
ICD-10 codes as depicted in figs. S3 and S4, respectively. At the be-
ginning of the observation period, the survival probability starts at 
1.0, indicating that all individuals diagnosed with an ICD-10 code 
are initially free from AD and PD. Over time, this probability di-
minishes as more individuals are diagnosed with AD or PD. These 
Kaplan-Meier curves describe the proportion with and without AD/
PD over the study follow-up period, stratified by exposure status for 
associated ICD-10 codes derived from the discovery phase. These 
can be interpreted as visual representations of the HR. Significant 
differences can be interpreted as nonoverlapping CIs in the images.

Time-to-event analysis was performed using the Python package 
Lifelines (version 0.29.0) for survival analysis, along with Statsmod-
els (version 0.14.4) for statistical modeling. These software tools were 
implemented in a Python environment (version 3.9).

Polygenic risk distribution for AD and PD
Risk allele loci and β values from GWAS summary statistics, specifi-
cally 23 risk predictors linked to AD risk from Kunkle et al. (35) and 
90 risk predictors associated with PD from Nalls et al. (36), were 
used to estimate PRS for AD and PD, respectively. Of the 23 predic-
tors from Kunkle et al. (35), 22 overlapped with the UKB data; all 90 
predictors from Nalls et al. (36) were available. Each risk allele was 
assigned a weight based on the magnitude of its effect in the pub-
lished studies, giving greater emphasis to alleles with higher risk es-
timates. Genetic variants were extracted for each individual from 
the UKB imputed data using the “bgenix” package (62). The extract-
ed variants were then used to compute the PRS score for each indi-
vidual using PLINK 2.0 (63). Estimated profiles were then normalized 
to z-scores using the UKB cohort without NDDs as the refer-
ence group.

To assess whether z-score differed between individuals diag-
nosed with AD or PD alone and those with both AD or PD and a 
specific ICD-10 diagnosis, we fit linear regression models with z-
score as the dependent variable. The primary independent variable 
was group membership (AD/PD + ICD-10 versus AD/PD only), 
adjusting for year of birth, sex, and the first five genetic PCs. The β 
coefficient for the group variable estimates the adjusted difference in 
mean PRS between the two clinical subgroups for each neurodegen-
erative outcome.

Statistical analysis accounting for the impact of APOE, 
LRRK2, and GBA1 risk variants
PRS analyses were adjusted for major genetic risk factors associated 
with AD and PD to determine whether observed similarities or dif-
ferences between AD/PD and the assessed ICD-10 codes could be 
attributed to pleiotropic effects. For AD, individuals homozygous 
for the “C” allele at both APOE rs429358 and rs7412 were identified 
as having two copies of the APOE-ε4 allele, coded as 2, and one copy 
of the APOE-ε4 allele coded as 1 in our regression analysis. All oth-
er configurations were coded as 0. For PD, we examined LRRK2 at 
rs76904798, where homozygous C alleles were coded as 0, and hetero-
zygous and homozygous for “T” alleles as 1. Similarly, at rs34637584 
(LRRK2 G2019S), we applied 0 for homozygous “G” alleles and 1 for 
heterozygous and homozygous “A” alleles. For GBA1, at rs35749011 

(proxy for GBA1 E326K), 0 was assigned to homozygous G alleles, 
and 1 was assigned to heterozygous and homozygous A alleles; and 
at rs76763715 (GBA1 N370S), 0 was assigned to homozygous T al-
leles, and 1 was assigned to heterozygous and homozygous C alleles.

Interaction model for genetic risk across endocrine, 
metabolic, and digestive system disorders and 
nutritional status
We aimed to understand how the interplay between genetics under-
lying AD and PD risk and a clinical diagnosis for any investigated 
ICD-10 code could eventually influence an AD or PD diagnosis. A 
generalized linear model (GLM) was used to account for more com-
plex relationships, where the impact of genetic risk for AD or PD (as 
measured by PRS) might interact differently across the diagnoses 
under study represented by ICD-10 codes. The interaction term used 
in this model was z-score * ICD-10 terms adjusted by sex, age, and 
Townsend deprivation index.

Proteomic biomarker data analyses
We aimed to explore differences in the levels of proteomic biomark-
ers associated with AD or PD between individuals with and without 
co-occurring ICD-10 code diagnoses related to endocrine, nutri-
tional, metabolic, and digestive system disorders among UKB par-
ticipants. For this purpose, we used data from the Pharma Proteome 
Project, which provides thousands of plasma protein biomarkers in 
blood samples (https://olink.com). In a cross-sectional analysis, we 
focused on baseline (instance 0) proteomic data, as it includes mea-
surements for the largest number of individuals, encompassing data 
for 52,705 individuals (at the time of data access) and a total of 1463 
proteins (table S32). These biomarkers span across cardiometabol-
ics, inflammation, neurology, and oncology markers.

We applied GLM to analyze 1463 available biomarkers on AD 
and PD risk. The regressions were adjusted for age at recruitment, 
Townsend deprivation index, sex, and five PCs. Subsequently, we 
selected FDR-corrected significant proteomic biomarkers from the 
GLM results. In addition, we compared the average levels of pro-
teomic biomarkers in isolated cases of AD/PD with cases of AD/PD 
co-occurring with selected ICD-10 codes (found to be significantly 
associated with AD or PD risk before AD/PD diagnosis). We se-
lected FDR-corrected significant proteomic biomarkers with an OR 
greater than 1 and applied a t test to compare their average levels in 
the isolated cases of AD or PD and cases co-occurring with specific 
ICD-10 codes (tables S33 and S34).

Using proteomic data from the UKB, we examined whether spe-
cific ICD-10 diagnoses associated with AD or PD were also linked 
to differences in plasma biomarker levels. As proteomic data were 
not available in SAIL or FinnGen, this analysis was limited to UKB. 
We included ICD-10 codes that were significant in UKB Cox models 
and reported only Olink biomarkers with significant FDR-corrected 
P values and OR greater than 1. In addition, the reported t tests are 
limited to results that passed FDR correction.

Multimodal classification model for clinical, genetic, and 
proteomic data on AD and PD risk
To evaluate the role of endocrine, metabolic, digestive, and nutri-
tional status–related diagnoses in predicting AD or PD status, we 
developed a multimodal classification model on a subset of the UKB 
dataset. This subset included individuals with variables encompassing 
clinical diagnosis for endocrine, metabolic, digestive, and nutritional 

https://olink.com
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status; proteomic biomarkers; demographic factors (age at recruit-
ment, sex, and Townsend deprivation index); genetic risk (z-score 
for the PRS); PCs; and APOE status for AD or LRRK2/GBA1 status 
for the PD model. The clinical diagnoses used in these models in-
clude the ICD-10 codes found to have significant HRs in UKB. We 
used an ML approach to comparing the predictive performance of 
various feature sets on AD/PD outcomes. These included genetics, 
clinical, proteomic, and demographic factors (including sex and age 
at recruitment) and combinations thereof.

Each dataset was independently analyzed using an eXtreme Gra-
dient Boosting Classifier, an ensemble learning method for classifi-
cation tasks (https://github.com/dmlc/xgboost). We conducted 
hyperparameter tuning through GridSearchCV, optimizing for the 
number of estimators, learning rate, and maximum depth. For AD 
classification, the model was optimized by tuning the hyperparam-
eters: number of estimators (2,  3,  5,  10,  15), learning rate (0.001, 
0.01, and 0.1), and max depth (3–5). For PD, the model tuned the 
parameters as follows: number of estimators (1, 3, 5, 10, 15), learn-
ing rate (0.001, 0.01, and 0.1), and max depth (2, 3, 5). These hyper-
parameters were chosen according to the sample size of the dataset; 
consequently, some of the hyperparameters were slightly more con-
servative for the PD model than for the AD model. Both models 
used nested cross-validation, optimizing based on ROC AUC. We 
used fivefold cross-validation and, within each training fold, conduct-
ed an additional fivefold cross-validation for hyperparameter tuning. 
Feature selection was performed using the least absolute shrinkage 
and selection operator as a part of the hyperparameter tuning proce-
dure. The dataset was downsampled to have an equal number of cases 
and controls and then z-scale normalized using StandardScaler to en-
sure uniformity and prevent bias due to variance in measurement scales 
before classification training.

Model performance was evaluated on the basis of ROC AUC and 
BA scores. The 95% CIs were calculated on the basis of performance 
metrics obtained from a fivefold cross-validation. We used the SHAP 
approach to assessing the impact of each feature on the ML model 
predictions (64). SHAP values are derived from game theory and 
approximate a feature’s effect on the model. SHAP enhances under-
standing by creating accurate explanations for each observation. 
The SHAP package was used to calculate and visualize these Shapley 
values seen in the figures in the manuscript and the interactive website. 
A surrogate LightGBM regression model (https://lightgbm.readthed-
ocs.io/) was trained on the risk estimates to calculate SHAP values.

Data balancing for multimodal approach
To address the class imbalance in our dataset, we selected an equal 
number of controls relative to the cases while maintaining age com-
parability. The AD dataset initially included 478 cases and 22,808 
controls, while the PD dataset included 455 cases and 19,523 con-
trols. To prepare the data for downstream classification modeling, 
we filtered the control group based on year of birth. We calculated 
the mean and SD of the cases’ birth years and selected controls 
whose birth years fell within two SDs of the mean case birth year. 
This step ensured that the age distribution of the selected controls 
matched that of the cases. Next, we randomly sampled an equal 
number of controls to match the cases from the eligible subset. This 
random sampling step reduced selection bias while maintaining an 
equal class distribution. The final balanced dataset consisted of 956 
samples for AD (478 cases and 478 controls) and 910 samples for PD 
(455 cases and 455 controls).

Supplementary Materials
The PDF file includes:
Figs. S1 to S8
Legends for tables S1 to S34

Other Supplementary Material for this manuscript includes the following:
Tables S1 to S34
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