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A Bioinspired Deep Learning Framework for
Saliency-Based Image Quality Assessment

Huasheng Wang™, Yueran Ma", Hongchen Tan", Xiaochang Liu", Ying Chen", Senior Member, IEEE,

and Hantao Liu

Abstract—Advancements in deep learning have led to signif-
icant progress in no-reference (NR) image quality assessment
(NR-IQA) for evaluating the perceived quality of digital images
without relying on a reference. However, existing NR-IQA
models remain suboptimal in handling complex and diverse
natural images. Visual saliency constitutes a critical element
for enhancing the reliability of NR-IQA, but the optimal use
of saliency in deep learning-based NR-IQA has not heretofore
been significantly explored. In this article, we present a novel
method for integrating saliency in NR-IQA, which is motivated
by the saliency-based visual search mechanism that different
parts of the visual input are visited by the focus of attention
(FOA) in the order of decreasing saliency. By dividing saliency
into the high and low levels of FOA, we build a bioinspired
deep neural network-BioSIQNet-based on a multitask learning
(MTL) framework. The network architecture consists of two
saliency-specific tasks and one primary image quality assessment
(IQA) task. The low and high saliency (HS) are separately
encoded and integrated into the early and deeper layers of
the IQA network, respectively, analogous to the hierarchical
processing in the visual cortex of the brain that allocates low
attentional resources to process the simple patterns and high
resources to learn intricate representations. We demonstrate that
leveraging the synergy between visual attention and image quality
perception and joint learning of these interconnected visual tasks
can enhance the overall learning capabilities of the primary IQA
model. Experiments validate the effectiveness of our proposed
BioSIQNet for NR-IQA.

Index Terms—Attention, bioinspired, deep learning, image
quality assessment (IQA), saliency.

[. INTRODUCTION

HE widespread use of multimedia technologies encom-
passing the Internet, social media, and smart devices has
transformed our everyday life. These technologies contribute
to an unprecedented surge in the creation of digital images.
Inevitably, the quality of images is affected by distortions
caused by acquisition, compression, transmission, and display,
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for example. To optimize modern imaging systems toward
excellent quality of visual experience, it is critical to have
highly reliable image quality assessment (IQA) models in
place that can automatically evaluate image quality as per-
ceived by human viewers [1], [2], [3].

IQA models can be classified into full-reference (FR) [4],
[5], [6], reduced-reference (RR) [7], and no-reference (NR)
types [8], [9], [10], [11]. FR-IQA and RR-IQA require the IQA
to use a reference image for comparison. However, in real-
world scenarios, access to the original, undistorted reference
is often unrealistic. This has led the research attention to shift
to the NR-IQA methods, which aim to automatically evaluate
the quality of an image without relying on a reference image.
The challenge in NR-IQA lies in developing algorithms that
can faithfully emulate human perception of image quality.
Recently, deep learning using convolutional neural networks
(CNNs) has significantly improved the performance of NR-
IQA [8], [12], [13], [14], [15]. Many deep learning techniques
have been applied to learn complex representations directly
from images and distortions, leading to enhanced robustness
and generalization capabilities of NR-IQA. The innovative
NR-IQA model can be applied in automated systems to enable
real-time assessment of images captured by cameras, drones,
and other devices, supporting industries like autonomous
driving and robotics. Additionally, it can enhance content gen-
eration in media and entertainment by evaluating the quality
of produced visuals.

Visual saliency that reflects the relative importance of dif-
ferent image regions has been proven to be a crucial element
in shaping the perception of image quality [16], [17]. The
underlying hypothesis is that certain regions of an image
attract more attention from viewers than other regions; hence,
these salient regions contribute more toward overall image
quality. In deep learning-based NR-IQA, attempts have been
made to integrate saliency information into a CNN architec-
ture. For example, the SGDNet model [18] is trained with
the addition of saliency information to predict image qual-
ity. Unfortunately, existing saliency-based NR-IQA methods
exhibit two notable limitations: 1) the saliency information is
often generated offline using an off-the-shelf saliency model
without supervision in learning the overall model; and 2)
the fusion of saliency and IQA is treated in a superficial
manner without explicit biologically plausible evidence. The
primate visual system employs “serial processing based on
an explicit 2-D map that encodes the saliency objects in
the visual environment — competition among neurons in this
map gives rise to a single winning location that corresponds



to the most salient object, which constitutes the next target
[i.e., winner-take-all (WTA) scheme]. Inhibiting this location
automatically allows the system to attend to the next most
salient location [i.e., inhibition-of-return (IOR) scheme] [19].”
This mechanism can be simulated by explicitly decomposing
the focus of attention (FOA) into distinct high and low
levels of saliency, reflecting the progression of dynamical
shifts of FOA in the early visual cortical architectures. This
decomposition aligns with the WTA and IOR schemes, which
iteratively guide attentional transitions in the primate visual
system. By structuring saliency representation in this manner,
we can better capture the sequential allocation of attention for
improving the performance of IQA models.

We hereby propose a computer implementation of the key
organizational principles (i.e., WTA and IOR) of the atten-
tional selection scheme based on the cortical visual hierarchy.
The aim is to integrate the hierarchical saliency represen-
tation into a deep learning-based computational architecture
for IQA. We address the problem of how the biologically
plausible attentional selection mechanism-the FOA selects
attended image locations in order of decreasing saliency—can
be incorporated in IQA algorithms to enhance their per-
formance. To this end, we build a bioinspired deep neural
network—BioSIQNet-based on a multitask learning (MTL)
framework, enabling the integration of hierarchical saliency
information in a serial fashion to IQA. We implement an
intuitively simple saliency decomposition method in which
a threshold is applied to generate two new saliency maps
with one representing strong intensity responses and one
representing weakly activated locations, as shown in Fig. 1.
The BioSIQNet learns to predict the hierarchical saliency
representation (i.e., high and low levels of FOA), using dis-
criminative saliency feature expression to facilitate the primary
IQA task. The contributions of the work are as follows.

1) We propose a first-of-its-kind IQA method that emulates
and incorporates the hierarchical saliency-based atten-
tional selection mechanism. An end-to-end saliency-
based NR-IQA model is built, where three tasks,
including two auxiliary saliency prediction tasks and
one primary IQA task, are simultaneously trained with
their respective ground-truth labels. The learned visual
representations across tasks are jointly optimized to
improve the overall performance of the model.

2) A novel bioinspired fusion scheme is proposed to inte-
grate the low and high saliency (HS) to the early
and deeper layers of the IQA network, respectively,
simulating the cortical visual hierarchy that allocates
low processing resources to deal with simple patterns
and high processing resources to handle abstract and
complex information.

3) Extensive experiments are conducted to demonstrate
the superior performance of the proposed bioinspired
saliency-based IQA architecture based on deep learning.
This provides insights into computational modeling of
early vision mechanisms in visual tasks.

II. RELATED WORK
A. NR Image Quality Assessment

Traditional NR-IQA methods are based on calculating hand-
crafted features including natural scene statistics (NSS) [20],

[21], pixel-based features [22], and artifact-specific features
[23], [24]. NSS-based approaches assume that different distor-
tion types in natural images have inherent statistical properties;
for example, these statistical models [24], [25] were used to
extract quality-related features using locally normalized coef-
ficients. Some NR-IQA methods extract pixel-based features
directly from the pixel intensities of an image. For instance,
the codebook approaches [26], [27] were utilized to derive
features from local image patches. The work in [28] combined
the features of the semantic obviousness of an image and
its local characteristic features to boost the performance of
the NR-IQA. The performance of these methods, however,
varies depending on the characteristics of images, specific
distortion types present in the images, and application con-
texts. In recent years, deep learning-based methods using
CNN have been proven powerful in automatically learning
relevant features for IQA. Particularly, the CNN architecture
using an MTL framework can learn multiple and diverse
quality-related features, leading to robust performance for NR-
IQA [18], [29], [30]. The principle of MTL is that multiple
related tasks are simultaneously learned to leverage shared
features and representations amongst tasks to improve the
overall performance. In implementing the MTL framework,
IQA is regarded as the primary task, and other related tasks
are considered auxiliary tasks. For example, in [31], NR-IQA
is divided into two closely related subtasks with one task to
classify the type of distortions and one task to predict the
image quality score, and two subtasks being jointly learned.
To compress the model parameters, this NR-IQA does not
allow interactions between the two subtasks. In [32], an MTL-
based model is proposed to increase the connection between
image quality estimation and distortion identification. The IQA
model in [11] adopts semantic information as the auxiliary task
to enhance the primary image quality prediction task. The
challenges for these methods lie in identifying perceptually
relevant auxiliary tasks for IQA and obtaining reliable ground-
truth labels for both the auxiliary and IQA tasks. Recently, an
NR-IQA framework [11] that leverages vision-language corre-
spondence within a multitask learning paradigm was proposed,
and the method in [33] trains multimodal models to align with
text-defined quality levels. However, both approaches continue
to face challenges in reliably capturing the subtle, continuous
spectrum of human perceptual judgments.

B. Saliency Prediction

Various computational models have been produced for
saliency prediction. Earlier research focused on using visual
features such as color, intensity, and orientation [34] or some
heuristic saliency priors [35] to predict a saliency map. Due
to the lack of higher level semantics of salient objects,
these methods are rather limited in handling complex natural
scenes. Recently, deep learning techniques have been applied
in saliency prediction, leading to significant improvements
in model performance. The ensembles of Deep Networks
(DNs) [36] used shallow CNNs to detect visual saliency. After
that, many deep learning-based saliency prediction models
have emerged and achieved remarkable success. The model
in [37] applied AlexNet [38] and VGGNet [39] on pre-trained
networks to extract relevant features for saliency prediction. In
[40], GoogleNet was applied for saliency feature extraction.



Fig. 1. Illustration of saliency decomposition method—a threshold is applied
to a saliency map to generate two new saliency maps with one representing
strong intensity responses and one representing weakly activated locations.
The first column shows an image, the second column illustrates its HSM, and
the third column represents the LS map.

It was found in [41] that VGGNet is more effective than
AlexNet and GoogleNet for saliency prediction. Deep Visual
Attention (DVA) [42] used three VGGNet-based decoders
to generate multiscale feature representations for saliency
detection. Besides, MSI-Net [43] employed VGGNet as the
backbone in conjunction with a skip architecture to extract
multiscale features, which are combined by Atrous spatial
pyramid pooling. To simulate explicit properties of the human
attention mechanism, a Long Short-Term Memory (LSTM)
module was integrated into a saliency prediction model [44].

C. Datasets of Ground Truth: CUID-CUDAS

To achieve a highly reliable saliency-based NR-IQA, apart
from the above-mentioned challenges for the design of a
deep learning-based architecture inspired by the biological
vision system, one of the bottlenecks is obtaining datasets of
reliable ground-truth labels. The IQA literature lacks holistic
datasets that represent a fully controlled psychophysical study
that derives both eye-tracking data and IQA ratings for the
same set of visual stimuli. A recent contribution [45], [46]
created a first-of-its-kind dataset—CUID-CUDAS-that contains
both image quality ratings and saliency data for a set of 600
images of varying degrees of perceived quality. Rigorous psy-
chophysical experimentation was conducted to collect reliable
human behavioral responses with eliminated subject biases. In
the CUID-CUDAS dataset, each image is associated with an
IQA Ilabel/score representing the image quality as perceived by
an average human and a saliency label/map representing the
ground-truth stimulus-driven visual attention. In this article,
the CUID-CUDAS dataset is used to train the proposed
NR-IQA model.

III. METHODOLOGY
A. BioSIQNet: Overall Architecture

Our goal is to predict the quality score of an input image,
incorporating hierarchical saliency information to emulate key
organizational principles of the attentional selection mecha-
nism. The schematic overview of the proposed architecture of
BioSIQNet is shown in Fig. 2, in which an input image is
denoted as I € R>*W>3 with H and W being the height and

width. It should be noted that our model is designed as a con-
ceptual framework to demonstrate the biologically plausible
mechanism of hierarchical saliency integration; we deliber-
ately keep the choice of encoder backbone flexible depending
on specific applications. For example, popular options include
VGGNet, ResNet, and Vision Transformer (ViT). In the base-
line framework, we use VGGNet as the encoder backbone for
extracting features from the input image (note the impact of
different encoder backbones will be discussed in detail in Sec-
tion IV-D). Generally, an encoder backbone network contains
a series of convolutional layers, with early layers for capturing
simple patterns, and deeper layers for capturing more complex
representations. Let T By, T Bj,, and T By, represent the module
for low saliency (LS) prediction, image quality prediction, and
HS prediction, respectively. For TB;; and T By, the last three
fully connected layers of the VGGNet were replaced with an
independent decoder, i.e., D, for TBj; and Dy, for T By, to
achieve the intended task. The biologically plausible fusion
scheme is implemented by merging the feature representations
of TBj, and TBy, into TBj, to generate saliency-enhanced
feature representations for the IQA task. Let Fi; and Fy .
denote the feature maps generated by the third pooling layer
in T By, and T B;,, respectively. We set two parameters a and
[ that can be derived to assist in obtaining the fused feature
map F, combining F, and Fj, .

F = aF s+ BFi .. (D

Similarly, we fuse the deeper feature maps Fps and Fj; 4 of
T By, and T B;; with derivable y and o to generate F

F = 7F11s + O—Fiq_d- (2)

The parameters a, B, v, and o are trainable scalars that
dynamically control the fusion of feature maps in different
stages of hierarchical saliency integration. These parameters
are automatically updated via backpropagation during train-
ing to minimize the overall loss function, ensuring that the
model learns an optimal combination of saliency-enhanced
feature representations. The adaptive nature of these param-
eters enables the IQA branch to selectively absorb low-level
Fs and high-level Fj; saliency information to complement its
feature representations Fj; . and Fi; 4.

Unlike existing saliency-based IQA methods such as
SGDNet [18] that generate an off-the-shelf saliency map
offline by a saliency model and use it as the spatial attention
mask for weighting IQA features, the proposed architecture
aims to learn saliency and IQA simultaneously and directly
fuse learned representations of both tasks. In our feature fusion
strategy, the low saliency representation is merged into the
early feature map of the IQA network, facilitating learning
the basic patterns related to IQA; and the HS representation
is combined with the deeper feature map of the IQA network,
supporting learning complex semantics for the IQA task.
By doing so, hierarchical levels of saliency information are
systematically integrated into the IQA network to generate a
saliency-based image quality score.

In order to adapt the pre-trained network to the saliency pre-
diction task, similar to previous approaches [41], we remove
all the fully connected layers in T Bj; and T By, for the feature
extraction phase. All encoders of T By, TBy,, and TB;, are
each pre-trained on ImageNet, gaining general representations
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Fig. 2. Schematic overview of the proposed architecture of BioSIQNet, incorporating hierarchical saliency information to emulate key organizational principles
of the attentional selection mechanism. T'Bys, T Bjg, and T By represent the module for low saliency prediction, image quality prediction, and HS prediction,
respectively. T Bjs and T By focus on extracting low and HS-related features. 7' B;; aims to generate saliency-enhanced image quality predictions by integrating
features from both the low- and high-saliency pathways. BioSIQNet is trained end-to-end, where the hierarchical saliency fusion mechanism is embedded

within the architecture.

of images which are transferred to learn a target task. We
employ two decoders to respectively predict low and HS maps
(HSMs) as the outputs of TB;; and T B;; networks, being S;
and S;,. The detailed information on the specific decoders is
described in Section III-B. In addition, these three specific
tasks, being low saliency prediction, HS prediction and IQA
are constrained by loss functions, which will be described in
detail in Section III-C.

B. Decoding Mechanisms

To enhance the adaptability of the IQA decoder to various
backbone encoder selections, we devise two distinct decoding
options, i.e., transformer-tailored and CNN-tailored, as illus-
trated in Fig. 3. It should be noted that each pixel in the deep
feature map is derived from various patches of the input image,
and each patch uniquely influences the perception of over-
all image quality. To effectively leverage these deep feature
maps, we propose an adaptive multilayer perceptron (MLP)
regression module for generating IQA scores, ensuring that the
extracted features from different encoder architectures (CNN-
based or transformer-based) are optimally mapped to the
quality prediction space, i.e., the CNN-tailored decoder lever-
ages spatial feature hierarchies, while the transformer-tailored
decoder maintains compatibility with tokenized feature repre-
sentations. Given an input feature map to the MLP module FA,q
with C channels, for the transformer-tailored decoding option,
it passes through two linear projection branches. One branch
computes the probability for each pixel in the feature map,
while the other branch calculates the corresponding attention
map. The quality score S is obtained through a weighted

summation
sOw

S =3

3

Transformer-tailored

] w
°
g >
an
X
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S
[} E
o<
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CNN-tailored

Fig. 3. Tllustration of the adaptive MLP regression module for generating
1QA scores.

where s of dimensions 28 x 28 x C represents the probability
map, w of dimensions 28 x 28 x C represents the correspond-
ing attention map, and © denotes the element-wise Hadamard
product that preserves the dimensionality of the channels. For
the CNN-tailored decoding option, we only employ ReLU and
fully connected layers, and the output parameters of the last
fully connected layer are set to 1 for predicting the quality
score S.



For TBy; and T By, the input image is initially downscaled
by the encoder network by a factor of 32. To obtain a saliency
map of the same size as the input, a 2-scale upsampling is
performed five times on the feature maps in the decoder,
employing nearest-neighbor interpolation. Before each upsam-
pling layer, a convolutional layer and a ReLU activation layer
are applied to adjust the channel dimensions of the feature
maps.

C. Loss Functions

Due to the advances in saliency prediction methods using
deep learning [46], [47], many loss functions have been
investigated and proven effective. In this article, we employ
a linear combination of three saliency evaluation metrics
as a loss function to predict the saliency map, including
Kullback-Leibler Divergence (KLD), Linear Pearson’s Cor-
relation Coefficient (CC), and Similarity (SIM). The loss
function leverages their complementary properties in evaluat-
ing saliency maps. This approach aligns with prior work [46],
[47] in saliency prediction, where these metrics are widely
used for both evaluation and optimization. KLD measures the
divergence between predicted and ground-truth saliency distri-
butions, ensuring probabilistic alignment. CC captures linear
correlation, emphasizing structural consistency. SIM quantifies
overall SIM, reinforcing global alignment. By combining
these metrics, the loss function provides a comprehensive
supervision signal, balancing distributional accuracy, structural
correlation, and perceptual SIM. Now, we first describe the
loss function for the prediction of HS. We denote y,, and yj;
as the predicted HS map and the ground truth, and i indicates
the ith pixel of yj, and yj;. The loss function is defined as

Liys Gns» Yis) = A1LKLD Whs»> Yis) + A2Lec Ohss Yis)
+ A3Lsiv Vs Yis) 4)

where A1, A, A3 are the weights of individual loss functions,

and )
Yhs;

ety hs;

Lxip ks Yhs) = Zy;?s,.log ( + e) 3)

where € is a regularization constant and set to 1 x 1073
Ccov (yhss Yy ;15)

T (Yns) 0 (Vhs)

where cov(-) represents covariance and o (-) represents stan-
dard deviation;

LSIM (tha y;n) = Z Min (yhs,»a y;;s,») . (7)

l

Lcc (yhs’ y/I;s) = (6)

In implementation, y,; and yj; are normalized so that
Y iVhs, = 2.:Vhs = 1. As the method detailed in [46], for
the visual saliency loss, A;, 4>, A3 are initially set to balance
the sublosses as they operate on different scales. Since lower
KLD (or higher CC/SIM) indicates better saliency prediction,
Ay is set positive, while Ay, A3 are negative, following prior
studies [8], [46], [47]. We then refine these weights using a
grid search approach, adjusting one weight while keeping the
others fixed to optimize validation performance [48]. After this
process, the final values are set to 4, = 5, A, = -1, 43 = —1.

Similarly, we denote y;; and ¥} as the predicted low saliency
map (LSM) and the ground truth. The loss function for
predicting LSM is defined as

Lls (yls’ ﬁx) = /llLKLD (ylss )ﬁx)
+ AaLce (Vis» Yis) + A3Lsim G Vis) — (8)

where A;, 4>, A3 are set the same values as (4).

Finally, we denote y;, and ), as the predicted image quality
score and the ground truth. We utilize the L, loss function to
constrain the prediction of image quality. Consequently, the
overall loss function for the model is defined as

Liotal = L (yhs, )’2;) + Ly (ylxa y?s) + Ly (yiq, )’?q) . )

IV. EXPERIMENT

A. Datasets and Experimental Protocols

As already mentioned in Section II-C, the CUID-CUDAS
dataset is the only holistic dataset available in the literature
that provides reliable ground-truth labels of both saliency
and IQA for the same set of stimuli. Therefore, we use
the CUID-CUDAS dataset to derive the proposed BioSIQNet
model and validate its effectiveness. First, we conduct an
ablation study (EXPI) to verify the significance of the pro-
posed saliency integration scheme. Second, we perform a
comparative study (EXP2) to analyse the performance of our
proposed BioSIQNet model in comparison with the state-of-
the-art (SOTA) NR-IQA models. In addition, to demonstrate
the generalization capability of our BioSIQNet model, we
perform a series of experiments (EXP3) on widely recognized
IQA datasets, including LIVE [49], CSIQ [50], TID2013
[51], and KADID-10K [52]. Note, these datasets only contain
ground-truth IQA labels without saliency maps. To implement
BioSIQNet, we use a SOTA saliency model [47] to generate
saliency maps, serving as proxies for ground truth to supervise
the training process.

These experiments represent two distinct validation sce-
narios for BioSIQNet. EXPI and EXP2 use the full CUID-
CUDAS dataset (IQA + eye-tracking) to assess the impact
of the proposed saliency integration strategy. A CNN-based
feature extractor is chosen as an interpretable “baseline”
to isolate the true contribution of the proposed framework.
This scenario aims to demonstrate the gain that comes
from the saliency integration rather than the backbone.
EXP3 uses existing datasets (IQA only) to evaluate the
adaptability and superiority of the BioSIQNet framework.
Transformer-based backbone is used with the attempt to
combine a powerful backbone with our saliency integration
method to achieve SOTA performance on public IQA datasets.
This scenario aims to demonstrate the combined gain that
comes from both the saliency integration and a powerful
backbone.

For the CUID-CUDAS dataset, we adopt a 9:1 train-test
split, resulting in 540 images for training and 60 images for
testing. This choice ensures a sufficiently large training set to
facilitate robust model learning while preserving a represen-
tative test set for evaluation on small-scale IQA datasets [53],
[54]. For the other four IQA datasets, we follow the widely
used 8:2 train-test split, aligning with established practices in
IQA research [9], [10]. This ratio balances training efficacy



with evaluation reliability, as demonstrated in benchmark IQA
studies. For the CNN-tailored encoding and decoding option
for BioSIQNet, the input image is randomly cropped into
dimensions of 288 x 384 pixels. For the transformer-tailored
encoding and decoding option for BioSIQNet, the input image
is randomly cropped into dimensions of 224 x 224 pixels.
The ViT-B/8 [55] serves as the pre-trained model for feature
extraction, acting as the encoder. We set the patch size to 8
and the embedding dimension to 384, resulting in the channels
of FA,'q being equal to 384.

In this article, whether employing a transformer-tailored or
CNN-tailored network architecture, a fixed learning rate of
5 x 107 is applied, and it is multiplied by 0.1 for every
10 epochs. Models undergo training with a batch size of 4
for 50 epochs, using an early stopping patience of 5 epochs.
At each stop, the model that performs best is saved and
used for testing. Hyperparameters Ay, A, A3 are set to 5, -2,
—1, respectively. In addition, @,p,y,0 represent learnable
hyperparameters, initially set to a default value of 1. The
network is implemented using the PyTorch framework, and
training is conducted on a single RTX 3060 GPU. We mitigate
overfitting through dropout (introducing randomness to prevent
co-adaptation of neurons), data augmentation (expanding the
dataset with augmentation techniques, such as rotations and
translations), and transfer learning with pretrained models
(fine-tuning a backbone model pretrained on a larger dataset),
ensuring robustness without an explicit regularization term in
the loss function.

For IQA model performance evaluation, we employ three
widely used metrics, including Spearman’s rank-order CC
(SROCC), Pearson’s linear CC (PLCC), and root mean
squared error (RMSE). Both SROCC and PLCC range from 0
to 1, where a higher value indicates better performance. The
RMSE metric ranges from 0 to positive infinity. A value of 0
indicates perfect alignment between the predicted results and
the ground truth. In general, a lower RMSE value signifies
better predictive performance of the model. In our study, each
experiment was repeated 10 times with different random seeds
to account for variability due to stochastic optimization. For
each performance metric, we report the average across all runs,
ensuring the results are robust and not overly influenced by
any particular random initialization.

In addition, we conduct hypothesis testing to verify the
statistical significance of performance differences between
model variants and across different IQA models, using the
statistical methodology described in [56]. The significance
testing is performed on the test set (i.e., comprising 20%
of the entire dataset) of each IQA dataset under study. For
example, on the test set of the TID2013 dataset, each model
produces 600 data points per run, representing the residuals
between the ground-truth and predicted image quality scores.
The comparison between two models is then based on their
respective sets of residuals aggregated over all runs. When
both residual samples satisfy normality assumptions, we apply
either a paired r-test (for comparisons of model variants) or
an independent samples #-test (for comparisons of different
IQA models). In the case where normality is not satisfied, we
instead employ the nonparametric Wilcoxon signed-rank test
(for model variants) or the Mann—Whitney U test (for different
IQA models).

TABLE I

ABLATION STUDY TO VERIFY THE IMPACT OF: 1) LS INTEGRATION; 2)
HS INTEGRATION; 3) ES INTEGRATION; AND 4) HRS INTEGRATION ON
THE DEEP LEARNING-BASED NR-IQA USING THE CUID-CUDAS
DATASET. BASEIQNET REPRESENTS A BASELINE MODEL THAT
ADOPTS THE VGGNET ONLY FOR THE IQA PREDICTION
TASK. STATISTICAL SIGNIFICANCE (SIG): “*” MEANS
THE DIFFERENCE IN PERFORMANCE IS STATISTI-

CALLY SIGNIFICANT (P < 0.05 AT THE 95%
CONFIDENCE LEVEL). “-” MEANS THE DIF-

FERENCE IS NOT SIGNIFICANT

Method Variant CUID-CUDAS Sig
PLCC | SROCC | RMSE

v1: BaselQNet (baseline) 0.861 0.845 0.188

v2: BaseIQNet + LS (low) 0.883 0.875 0.158 v2 vs vl: *

v3: BaseIQNet + HS (high) 0.892 0.886 0.154 v3 vs v2: *

v4: BaselQNet + ES (entire) 0.912 0.898 0.169 v4 vs v3: *

v5: BioSIQNet (HRS) 0.926 0.920 0.138 v5 vs v4: *

B. EXPI: Ablation Study

To verify the effectiveness of the proposed bioinspired
saliency integration scheme, we conduct an ablation study to
systematically quantify the contribution of key components
of our BioSIQNet model. More specifically, we investigate
the impact of: 1) low saliency integration; 2) HS integration;
3) entire saliency (ES) integration; and 4) hierarchical saliency
(HRS) integration on the deep learning-based NR-IQA. To this
end, five IQA model variants are constructed to demonstrate
the relative added value of these key components. BaseIQNet
represents a baseline model that adopts the VGGNet only for
the IQA prediction task (i.e., the middle primary network of
Fig. 2). BaseIQNet + LS represents a model combining the
VGGNet and the low saliency module (i.e., the middle primary
network combined with the top auxiliary network of Fig. 2).
BaseIlQNet + HS represents a model combining the VGGNet
and the HS module (i.e., the middle primary network combined
with the bottom auxiliary network of Fig. 2). BaselQNet
+ ES represents a model combining the VGGNet and a
saliency integration module for predicting an entire saliency
map. To implement this, we use the middle primary network
combined with the bottom auxiliary network of Fig. 2, but
let the auxiliary network be supervised to learn the entire
saliency map (instead of learning the HS map). The results
are shown in Table I, demonstrating the superiority of utilizing
the bioinspired hierarchical saliency integration for NR-IQA.

To validate the proposed saliency feature fusion strategy,
we conduct an ablation study, testing different placements
of LSM and HSM across different VGG19 Blocks (from
shallower to deeper layers). The best-performing configuration
places LSM in Block 2 and HSM in Block 4, achieving the
highest PLCC (0.926) and SROCC (0.920), as detailed in
Table II. The results substantiate that our hierarchical saliency
fusion not only aligns with human perceptual mechanisms but
also empirically enhances feature representation, leading to
improved correlation with subjective IQA judgments.

C. EXP2: Comparative Study on CUID-CUDAS Dataset

We implement SOTA deep learning-based NR-IQA models
and evaluate their performance on the CUID-CUDAS dataset
under the same experimental conditions as described above
in Section IV-A. Table III shows the performance of the



TABLE IT

ABLATION STUDY TO TEST DIFFERENT PLACEMENTS OF LSM AND HSM
ACROSS DIFFERENT VGG19 BLOCKS (FROM EARLY
TO DEEPER LAYERS)

LSM placement | HSM placement | PLCC | SROCC
Block 1 Block 1 0.880 0.872
Block 1 Block 2 0.895 0.387
Block 1 Block 3 0.892 0.385
Block 1 Block 4 0.910 0.902
Block 2 Block 1 0.902 0.895
Block 2 Block 2 0915 0.908
Block 2 Block 3 0918 0911
Block 3 Block 1 0.899 0.892
Block 3 Block 2 0910 0.903
Block 3 Block 3 0.902 0.896
Block 3 Block 4 0.918 0911
Block 4 Block 1 0.893 0.386
Block 4 Block 2 0.904 0.897
Block 4 Block 3 0.912 0.905
Block 4 Block 4 0919 0.913
Block 2 Block 4 0.926 0.920

TABLE III

PERFORMANCE COMPARISON OF OUR BIOSIQNET MODEL AND THE
SOTA NR-IQA MODELS ON THE CUID-CUDAS DATASET, USING
A 9:1 TRAIN-TEST SPLIT. STATISTICAL SIGNIFICANCE (SIG): “*”
MEANS THE DIFFERENCE IN PERFORMANCE BETWEEN THE
CURRENT MODEL AND BIOSIQNET IS STATISTICALLY SIG-
NIFICANT (P < 0.05 AT THE 95% CONFIDENCE LEVEL).

“-” MEANS THE DIFFERENCE IS NOT SIGNIFICANT

Method SROCC | PLCC | RMSE | Sig
DIVINE [24] 0.757 0.776 | 0245 | *
BRISQUE [25] 0772 | 0782 | 0234 | *
WaDIQaM [57] 0.846 | 0.859 | 0.201 *
TIQA [58] 0.867 | 0.875 | 0.193 | =
MetalQA [14] 0.881 0.889 | 0.175 | *
SGDNet [18] 0.901 0905 | 0.172 | *
TReS [59] 0.904 | 0908 | 0.171 *
LIQE [11] 0.905 0910 | 0.171 *
Q-align [33] 0.905 0911 | 0.171 | =
DOR-IQA [8] 0.905 0911 | 0.171 *
MANIQA [9] 0909 | 0914 | 0.168 | *
BioSIQNet (Ours) | 0.920 | 0.926 | 0.141

SOTA NR-IQA models (including the saliency-based model
SGDNet) and our proposed BioSIQNet. It tends to suggest
the importance of saliency integration and, more critically,
the necessity of adeptly designing an integration scheme
tailored for the deep learning architecture. For example, the
performance of the saliency-based model SGDNet is compa-
rable to that of MANIQA without saliency information. This
could be attributed to the suboptimal utilization of saliency
information in SGDNet, as it is solely generated offline with-
out any supervision integrated throughout the entire network.
Our BioSIQNet outperforms both MANIQA and SGDNet,
implying that superior integration of saliency within a deep
learning architecture yields notable improvements for the IQA
prediction task.

In our proposed BioSIQNet model, the two auxiliary
saliency networks T Bj; and T By, generate respective outputs.
While these outputs are low and HSMs are not directly used,
they provide insights into how networks are learning to predict
the hierarchical saliency. To visualize the effectiveness of these

_.j—,

MOS =35

Fig. 4. Illustration of visual comparison between the ground truth of low
and HSMs and the corresponding maps generated by TB;; and T By, of the
BioSIQNet model. The first column displays the input image, the second and
third columns show the ground truth of high and LSMs (GT_hs and GT_Is),
the fourth and fifth columns represent the predicted high and LSMs (P_hs
and P 1Is).
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Fig. 5. Tllustration of the impact of the choice of saliency threshold (separating
the low and HS) on the performance (i.e., measured by PLCC) of the
BioSIQNet.

saliency networks, we show some representative outputs in
Fig. 4. The figure illustrates the visual comparison between the
ground truth of low and HSMs and the corresponding maps
generated by TBj; and T B;, of the BioSIQNet model. It can
be seen that our model can effectively learn the hierarchical
saliency information.

We also investigate the impact of the choice of saliency
threshold (separating the low and HS) on the performance



TABLE IV

PERFORMANCE COMPARISON OF OUR BIOSIQNET MODEL AND THE SOTA NR-IQA MODELS ON PUBLIC IQA DATASETS INCLUDING LIVE, CSIQ,
TID2013, AND KADID-10K, USING A 8:2 TRAIN-TEST SPLIT

Method LIVE CSIQ TID2013 KADID-10k
PLCC SROCC RMSE | PLCC SROCC RMSE | PLCC SROCC RMSE | PLCC SROCC RMSE
DIVINE [24] 0908  0.892 0.168 | 0.776  0.804 0234 | 0567  0.643 0279 | 0435 0413 0.284
BRISQUE [25] 0.944 0.929 0.143 0.748 0.812 0.235 0.571 0.626 0.278 0.567 0.528 0.279
ILNIQE [60] 0906  0.902 0.169 | 0.865  0.822 0.191 | 0.648  0.521 0262 | 0558  0.528 0.280
BIECON [61] 0.961 0.958 0.129 | 0823 0815 0209 | 0762  0.717 0243 | 0.648  0.623 0.262
MEON [32] 0955 0951 0.134 | 0864  0.852 0.191 | 0.824  0.808 0215 | 0.691  0.604 0.254
WaDIQaM [57] 0.955  0.960 0.134 | 0.844  0.852 0.200 | 0.855  0.835 0.189 | 0.752  0.739 0.246
DBCNN [62] 0.971 0.968 0.120 | 0959  0.946 0.131 | 0.865  0.816 0.181 | 0.856  0.851 0.188
TIQA [58] 0965  0.949 0.125 | 0.838  0.825 0203 | 0.858  0.846 0.185 | 0.855  0.850 0.189
MetalQA [14] 0.959 0.960 0.130 0.908 0.899 0.168 0.868 0.856 0.172 0.775 0.762 0.236
P2P-BM [63] 0958  0.959 0.132 | 0902  0.899 0.171 | 0.856  0.862 0.186 | 0.849  0.840 0.208
SGDNet [18] 0965  0.969 0.125 | 0903  0.883 0.171 | 0.861  0.843 0.184 - - -
HyperIQA [64] 0.966 0.962 0.124 0.942 0.923 0.145 0.858 0.840 0.188 0.845 0.852 0.219
TReS [59] 0.968 0.969 0.121 0.942 0.922 0.145 0.883 0.863 0.167 0.858 0.915 0.185
LIQE [11] 0972 0970 0.118 | 0936  0.938 0.140 | 0.883  0.863 0.167 | 0.863  0.860 0.181
Q-align [33] 0975 0977 0.110 | 0.961 0.944 0.129 | 0.893  0.891 0.158 | 0.876  0.874 0.177
DOR-IQA [8] 0978 0977 0.110 | 0.961 0.945 0.129 | 0.901 0.887 0.154 | 0.885  0.883 0.166
MANIQA [9] 0983  0.982 0.103 | 0968  0.961 0.110 | 0943 0937 0.125 | 0943 0937 0.125
BioSIQNet (Ours) | 0.985 0.983 0.101 0.974 0.969 0.103 0.956 0.949 0.112 0.948 0.943 0.118
TABLE V
. RESULTS OF STATISTICAL SIGNIFICANCE TESTING FOR THE PERFOR-
ViT Decoderl > MANCE COMPARISON OF IQA MODELS. T-L-Q-D-M DENOTES THE
n ToP-PERFORMING IQA MODELS INCLUDING TRES, LIQE, Q-
Low Saliency Map ALIGN, DOR-IQA, AND MANIQA. “*” MEANS THAT THE
DIFFERENCE IN PERFORMANCE IS STATISTICALLY SIGNIF-
ICANT (P < 0.05 AT THE 95% CONFIDENCE LEVEL). “-”
- ~ MEANS THAT THE DIFFERENCE IS NOT SIGNIFICANT
ViT I <« 'E < 'E — Quality Score
=g =g LIVE CSIQ TID2013 | KADID-10k
Input Image = = TL-Q-D-M | TL-Q-D-M | T-L-Q-D-M | T-L-Q-D-M
BioSIQNet | k-t e
ViT Decoder2 —’-
proxies for ground truth. To compensate for the potential defi-
High Saliency Map ciencies of the “generated” ground-truth saliency, we optimize
the network architecture of BioSIQNet by leveraging a more
Fig. 6. Illustration of ViT-based network architecture of BioSIQNet. The powerfu] ViT-based encoder—decoder mechanism as adopted in

encoder-decoder mechanism as adopted in MANIQA [9] is employed to
predict low and HS as well as IQA.

of the BioSIQNet. To this end, we calculate the model’s
performance (i.e., measured by PLCC) on varying threshold
selections. More specifically, we choose saliency intensity
values within the range of 70 to 150 with an increment
of 10. This range of intensity values is determined through
empirical experimentation to achieve a balance between low
and HS levels. As shown in Fig. 5, the performance of the
BioSIQNet exhibits variation with the different selections of
saliency threshold, reaching its peak at the saliency intensity
of 120. Therefore, the threshold is set to 120 in our study.

D. EXP3: Comparative Study on Public IQA Datasets

It is customary to perform a comparative analysis of IQA
models using widely recognized IQA datasets, including LIVE
[49], CSIQ [50], TID2013 [51], and KADID-10k [52]. It
should be noted that these public datasets include no ground-
truth saliency maps of stimuli as required for training our
BioSIQNet. Before being able to implement the BioSIQNet
model, one practical solution is to generate saliency maps
using an SOTA saliency model, i.e., [47], and use them as

MANIQA [9] to predict low and HS as well as IQA. Note that
both methods use Swin Transformer as the encoder backbone;
the key difference between the transformer-based BioSIQNet
and the MANIQA lies in the addition of saliency and the use
of a loss function to achieve optimized fusion of IQA and
saliency features. As depicted in Fig. 6, we simply replace
the VGGNet-based encoding and decoding structure with the
ViT-based structure that consists of three parallel networks.
Decoder 1 and Decoder 2 are utilized to progressively
decode the low saliency enhanced early IQA features and HS
enhanced deeper IQA features for the IQA prediction task.
As shown in Table IV, the proposed BioSIQNet outperforms
SOTA NR-IQA models on all IQA datasets, demonstrating
the importance of modeling hierarchical saliency in enhanc-
ing IQA prediction. The performance of all models was
evaluated by re-running their publicly available code in our
experimental environment to ensure fair comparisons under
identical settings. Note, differences in implementation details
such as data preprocessing, training procedures, or evaluation
methodologies may lead to variations in reported performance
across different studies. The results of statistical significance
testing are shown in Table V, indicating that our proposed
model is statistically significantly (P < 0.05 at the 95% con-
fidence level) better than any of the other five top-performing



TABLE VI
CROSS-DATABASE EVALUATION PERFORMANCE COMPARISON

KADID-10k
LIVE CSIQ TID2013
PLCC SROCC | PLCC SROCC | PLCC SROCC
DOR-IQA [8] | 0.853 0.838 0.826 0.820 0.723 0.709
MANIQA [9] | 0.864 0.849 0.837 0.822 0.745 0.726
BioSIQNet 0.883 0.872 0.841 0.833 0.757 0.749

Train on

Test on

TABLE VII

COMPARISON OF ACCURACY AND EFFICIENCY OF CNN-BASED AND
TRANSFORMER-BASED BIOSIQNET ON CUID-CUDAS DATASET

Configuration | PLCC | SROCC | GPU memory | Model size
VGG19-based 0.926 0.920 7GB 548MB
ViT-based 0.932 0.925 12GB 832MB

NR-IQA, TReS [59], LIQE [11], Q-align [65], DOR-IQA [8],
and MANIQA [9] in predicting perceived image quality.

To critically evaluate the generalization capability of the
IQA models, we perform a cross-dataset evaluation. In this
experiment, we only compare our proposed BioSIQNet with
the two best-performing SOTA NR-IQA, i.e., DOR-IQA [8]
and MANIQA [9]. Each model, including our BioSIQNet, is
trained on the KADID-10k dataset (without any additional
pretraining on other datasets) and tested on the LIVE and
TID2013 datasets, respectively. The results are illustrated in
Table VI, showing the superior generalization ability of the
proposed BioSIQNet.

E. BioSIQNet Model Configurations and Feature
Visualization

In the proposed framework of BioSIQNet, we include
two distinct network encoder-decoder configurations, i.e.,
CNN-based and transformer-based. The choice of network
configuration is guided by the complexity of the IQA task. The
CNN-based configuration is efficient with spatially localized
features with lower computational overhead, but struggles with
capturing global relationships. In contrast, the transformer-
based configuration captures long-range dependencies but
requires more data for generalization, leading to higher com-
putational costs. The transformer-based BioSIQNet, including
a transformer encoder (e.g., ViT, Swin), suits complex dis-
tortions, while the CNN-based BioSIQNet, including a CNN
encoder (e.g., VGG, ResNet), is preferable for real-time appli-
cations with limited computational resources.

To fairly compare the predictive power and computational
efficiency of CNN-based versus transformer-based BioSIQNet,
we evaluate both models on the CUID-CUDAS dataset and
analyse the GPU memory consumption and model size under
the same training conditions. As shown in Table VII, both
models produce high prediction accuracy (i.e., both outperform
the SOTA IQA model, MANIQA), with ViT achieving higher
performance. However, VGG19 requires only 7GB of GPU
memory, whereas ViT consumes 12GB, making VGGI9 a
more memory-efficient choice for resource-limited environ-
ments. Additionally, VGG19’s model size is 548MB, whereas
ViT’s model size is 832MB, further demonstrating the trade-
off between computational efficiency and representational
power.

Fig. 7. Tllustration of input images, ground-truth saliency maps, and Grad-
CAM [66] heatmaps on sample images from the CUID-CUDAS dataset.

TABLE VIII

COMPARISON OF TRAINING EFFICIENCY AND MODEL
S1ZE ON THE KADID-10K DATASET

Model Time / epoch | Param count
DOR-IQA 31 mins 107.32M
MANIQA 34 mins 135.62M
BioSIQNet (ours) 38 mins 154.65M

We further analyse our model’s interpretability with Grad-
CAM [66], a widely adopted post-hoc method that generates
visual explanations for CNNs. Grad-CAM highlights the spa-
tial regions most influential in the model’s decision-making
process. As shown in Fig. 7, our model effectively identifies
regions in alignment with human visual attention, as demon-
strated by the correspondence between Grad-CAM heatmaps
and saliency maps.

FE. Computational Complexity Analysis

To further evaluate the practicality of our approach, we
conduct an analysis of computational complexity in terms
of time consumption and parameter count. We compare the
performance of our proposed BioSIQNet with two SOTA
models, DOR-IQA and MANIQA, on the KADID-10k dataset.
As shown in Table VIII, BioSIQNet incurs a modest increase
in training time and parameter scale relative to these SOTA
models. However, this increase is justified by the more sophis-
ticated design to better capture the perceptual characteristics
of image quality. In practice, this additional complexity rep-
resents a deliberate trade-off: by enhancing the modeling
of human visual attention, BioSIQNet ultimately achieves
superior prediction performance.

V. CONCLUSION

In this article, we have presented a new bioinspired,
saliency-based NR IQA (NR-IQA) framework-BioSIQNet.
The model integrates hierarchical saliency that represents
the visual search mechanism of the visual cortex of the
brain into a deep learning architecture for image quality



prediction. The proposed approach leverages the low and
high levels of the FOA, where low and HS representa-
tions are encoded separately and integrated progressively into
the primary IQA network. The saliency and IQA tasks are
jointly learned to enhance the representations for the overall
task performance. By using a best-of-its-kind dataset—CUID-
CUDAS-that includes reliable ground truth of both IQA and
saliency, the proposed BioSIQNet model demonstrates the
effectiveness of hierarchical saliency integration in NR-IQA.
We have also illustrated that our BioSIQNet model is readily
extended to various public IQA datasets, showing superior
performance in predicting perceived image quality compared
to SOTA NR-IQA models.
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