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Abstract

In this paper, we introduce graph machine learning to enhance the estimation of heating
and cooling loads in buildings, a critical factor in building energy efficiency. Traditional
methods often overlook the complex interaction between building topology and geometric
characteristics, leading to less accurate predictions. This research bridges this gap by
incorporating these elements into a graph-based machine learning framework. This study
introduces a parametric generative workflow to create a synthetic dataset, which is central
to this research. This dataset encompasses multiple building forms, each with unique
topological connections and attributes, ensuring a thorough analysis across varied building
scenarios. The research involves simulating diverse building shapes and glazing scenarios
with different window sizes and orientations. The study primarily utilizes Deep Graph
Learning (DGL) for training, with Random Forest (RF) serving as a baseline for validation.
Both DGL and RF algorithms demonstrate high performance in predicting heating and
cooling loads.

Keywords: machine learning for energy analysis; graph machine learning; deep graph
learning (DGL); building energy simulation (BES); heating and cooling loads

1. Introduction
Buildings are significant contributors to overall energy consumption. With the ad-

vancement of machine learning techniques, there is growing interest in exploring their
potential to reduce building energy use and improve the accuracy of load estimation. Com-
mon machine learning methods applied to building energy prediction include support
vector machines (SVMs) and artificial neural networks (ANNs).

Support vector machines (SVMs) are employed for predicting building energy con-
sumption with limited samples, using structural risk minimization. Zhong et al. enhanced
prediction accuracy by optimizing feature space through support vector regression [1].
Dong et al. applied SVMs to predict tropical commercial building energy consumption,
yielding small prediction errors due to a modest data pool [2]. However, SVM’s suitability
for non-linear high-dimensional patterns is offset by memory and computational demands,
posing challenges for large-scale training samples.
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Artificial neural networks (ANNs) are favored for accurate building energy consump-
tion predictions due to self-learning and robust non-linear function fitting capabilities.
Research highlights ANNs’ superiority; Wei et al. utilized a feed-forward neural network
for office building occupancy and energy forecasts, Ekici and Aksoy employed backpropa-
gation for heating energy estimations, and Rahman introduced a recurrent neural network
for extended-term power predictions [3–5]. However, shallow neural networks risk data
loss and rely on trial-and-error network topology selection, challenging the attainment of
an optimal configuration.

Traditional machine learning (ML) methods typically treat data as flat tables, where
each row is an independent example, and each column (or feature) is assumed to contribute
equally. Traditional ML typically require fixed-size input vectors and struggle with this
variability. However, many real-world problems involve elements that are interconnected
and of diverse sizes. Graph machine learning (GML) addresses this by representing data as
a graph made up of nodes (entities) and edges (relationships between entities). By learning
from both the attributes of the nodes and the way they are connected, GML can uncover
patterns that traditional ML approaches often miss, particularly in complex systems with
relational dependencies. This is particularly valuable in fields like architecture, engineering,
and construction (AEC), where the relationships between entities are just as important as
the entities themselves. Unlike traditional ML models, GML incorporates the topology of
the data, leveraging information such as node degrees, connectivity patterns, and regional
structures within the graph. This allows for a more accurate representation and analysis of
structured data which enhances the predictive performance of applications like building
energy efficiency estimations. Additionally, GML is ideal for applications with significant
variations in data size and shape, as graphs often exhibit different numbers of nodes
and edges.

This study aims to investigate the effectiveness of graph machine learning approaches
in estimating heating and cooling loads by leveraging a combination of topological and
geometric attributes. Heating and cooling loads are fundamental indicators of a building’s
energy demand for maintaining optimal indoor conditions. Precise estimation of these loads
requires a comprehensive understanding of the intricate interplay between a building’s
spatial layout (topology) and its physical attributes (geometric features).

The novelty of this study lies in applying sophisticated graph machine learning (GML)
to estimate heating and cooling loads by explicitly incorporating building topology along-
side geometry, which is an approach not explored in prior literature. We further contribute
a reproducible generative modeling workflow and conduct comparative evaluation of GML
against other ML models, such as Random Forest. This study highlights the advantages of
using GML over traditional batch simulations in predicting building heating and cooling
loads. While based on simulation-generated data, the study serves as a foundation for
developing methodologies that can later be applied to real-world data. The synthetic
dataset allows for controlled testing and model optimization, ensuring scalability for future
real-world applications.

Applying GML to building energy analysis requires a fundamental shift in how
buildings, spaces, and their components are represented. Unlike traditional data formats,
GML must meaningfully capture the building’s spatial and functional organization. The
effectiveness of GML depends on the underlying graph structure, as well as on the careful
selection and encoding of node and edge attributes such as surface area, orientation,
material properties, and usage type, all of which influence energy behavior. Designing such
representations involves deliberate abstraction and domain-specific knowledge to ensure
that both topology and geometry are accurately embedded into the graph, enabling the
model to learn relevant patterns and relationships that drive heating and cooling demands.



Buildings 2025, 15, 3256 3 of 27

To achieve the stated aim, the research pursued several objectives: firstly, we created a
parametric generative workflow closely following the precedent set by [6]. We generated an
identical number of building forms, with identical glazing ratios and orientations. We then
diversified this dataset with distinct topological connections and information. Repeating
Chou and Bui’s generative workflow ensures research reproducibility and verifies their
results under similar conditions. This was followed by conducting sensitivity analysis to
identify the optimal combination of topological, geometrical, and informational attributes
to include in the dataset. Additionally, a random search was performed to optimize
hyper-parameters. Lastly, several machine learning models were tested and compared to
determine their effectiveness. By introducing graph machine learning and validating our
results through a Random Forest model, we were able to explore the generalizability and
potential of alternative methodologies to enable a broader understanding of predictive
tools for building energy loads.

The research design for this study includes four main steps. Firstly, a sample of various
building shapes is created to ensure a diverse range of shapes. Next, different scenarios
for glazing are created by varying the size and direction of the windows as well as their
percentages for each compass direction. These scenarios are then analyzed using thermal
simulation techniques to create the dataset for ML use. Lastly, the results from the simula-
tions, such as cooling and heating load indexes, are used to train the Deep Graph Learning
(DGL) and Random Forest Algorithm (RFA) model to predict energy consumption.

The subsequent sections of this paper are structured as follows: The ensuing section
introduces the study’s context by delving into relevant literature, encompassing investiga-
tions into energy performance of buildings (EPB) and predictive methodologies. Section 3
details the research methodology employed as well as the methods employed for evalu-
ation. In Section 4, an account is provided of the building information and experimental
data obtained for this study. The modeling processes are outlined in Section 5, wherein
prediction outcomes are discussed, and a comparison of model performance is offered. The
paper concludes with reflections and an account of the contributions made by this research
in the closing section.

2. Related Work
2.1. Building Energy Simulation (BES)

Building performance simulation is a prominent and evolving field, encompassing
automated design, energy modeling, predictive control, digital twins, and demand response
solutions. These advancements hold potential for reducing CO2 emissions, enhancing
building quality and user experiences, and increasing productivity in construction and
maintenance. Building performance simulation is crucial for the architectural industry’s
future development.

Y. Pan et al. 2023 primarily discusses the research directions and status of building
energy modeling (BEM) over the past decade [7]. It also outlines future challenges, focusing
on acquiring high-quality data, efficient modeling algorithms, workflow intelligence, and
large-scale urban simulations. Researchers aim to address these challenges in various BEM
application scenarios [7].

Gonzalo 2023 compared various building energy simulation (BES) tools modeling an
office cell in Boston, USA, and Madrid, Spain, assessing heating and cooling loads on yearly,
monthly, and hourly bases [8]. It classified tools into basic online tools, general-purpose
engines (e.g., TRNSYS, IDA ICE), and special-purpose tools (e.g., EnergyPlus). The research
used cross-validation and statistical analysis to evaluate the reliability of simulations.
While yearly heating and cooling demand had minor deviations (0.1% to 5.3%), monthly
deviations ranged from 10% to 20%. However, hourly energy demand analysis showed
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significant errors (35% to 50%), highlighting the need for improved accuracy in hourly
predictions [8].

Harishn et al. 2016, highlights various modeling methodologies for building energy
systems, with a focus on methodologies that enable control strategy development [9].
Models are categorized by their approach, and available simulation programs and software
are discussed. These efforts aim to create computationally efficient models to enhance
energy conservation and efficiency in buildings [9].

A study by Subrammania et al. 2018 examines the modeling and simulation of energy
systems, a critical driver of the modern economy [10]. It proposes two categorization
methods: one based on modeling approaches (computational, mathematical, physical,
or hybrid models) and another based on fields (Process Systems Engineering—PSE and
Energy Economics—EE). By comparing variables, theoretical foundations, aggregation
levels, spatial-temporal scales, and model objectives, the differences between PSE, which
traditionally focuses on technological aspects, and EE, which considers broader economic
contexts, are highlighted. The study advocates combining these approaches for a more
comprehensive understanding of energy systems within economic and policy contexts,
illustrating its value through three application areas: optimal process design, sustainability
analysis, and handling feedback effects of innovative technologies [10].

2.2. Simplified Topology

Simplified topology in architecture refers to the use of streamlined geometric and
spatial configurations in architecture. This approach focuses on reducing complexity in the
building’s structure and layout, emphasizing efficiency, ease of construction, and clarity in
form and function. Simplified topology is often employed to achieve esthetic minimalism
and cost-effectiveness, while also considering the practical aspects of space utilization and
building performance. This strategy aligns with contemporary trends towards sustain-
ability and functional simplicity in architecture. This idea firstly introduced by Robert
Aish and Wassim Jabi which lead to the creation of a tool called Topologic [11,12]. Jabi’s
(2015, 2016) work explored non-manifold topology (NMT) for early-stage 3D modeling
in building design, aiming for compatibility with building performance simulation (BPS)
inputs without simplifying BIM-generated polyhedral models. The research involved
software and library evaluation, design criteria review, software prototype development,
and case study analysis. Findings indicate NMT’s effectiveness in representing buildings
for BPS engines, offering architects a topological design approach with early performance
insights using simple 3D models [13,14].

Chatzivasileiadi et al. (2018a) investigated three methods for energy modeling of
a standard office building test case using EnergyPlus [15]. These methods included: (a)
OpenStudio using Topologic’s NMT system, (b) OpenStudio using the SketchUp 3D mod-
eling tool and (c) through the DesignBuilder graphical interface. The Topologic NMT
pathway excelled in handling complex geometries and provided reliable results, showcas-
ing NMT’s spatial representation benefits and curved geometry idealization for energy
simulations [15].

2.3. Machine Learning for Energy Analysis
2.3.1. Convolutional Neural Network (CNN)

In 2003, Werner and Mahdavi explored the reliability of simple geometric compact-
ness indicators used in energy-related building standards. These indicators rely on the
relationship between a building’s volume and surface area to assess thermal insulation
criteria. The study uses parametric thermal simulations to investigate the accuracy of these
indicators in evaluating energy-related assessments. It examines how buildings with the
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same compactness attribute can vary in terms of enclosure transparency, orientation, and
morphology, highlighting the potential limitations of using such indicators alone [16].

Tsanas and Xifara 2012, presents a statistical machine learning framework for analyzing
the impact of eight input variables on two output variables in residential buildings: heating
load and cooling load [17]. The authors use classical and non-parametric statistical analysis
tools to evaluate the relationship between each input variable and the output variables.
They compare a linear regression approach to a non-linear non-parametric method called
Random Forests for estimating the heating and cooling loads. Simulations on 768 residential
buildings demonstrated that the framework can accurately predict the loads with low
mean absolute error deviations from ground truth values established using Ecotect. The
study supports the use of machine learning tools for estimating building parameters as
a convenient and accurate approach, if the query is similar to the data used to train the
model [17].

Chou and Bui in 2014, presented a study on estimating the energy performance of
buildings using various data mining techniques. The authors compared several models
such as support vector regression (SVR), artificial neural network (ANN), classification and
regression tree, chi-squared automatic interaction detector, general linear regression, and
ensemble inference model. The models were constructed using 768 experimental datasets
from literature, with 8 input parameters and 2 output parameters (cooling load and heating
load). The comparison results revealed that the ensemble approach (SVR + ANN) and SVR
were the most accurate models for predicting cooling load and heating load, respectively,
with mean absolute percentage errors below 4%. Additionally, the ensemble model and
SVR model outperformed previous works by achieving at least 39.0% to 65.9% lower Root
Mean Square Errors for cooling load and heating load prediction. This study highlights the
efficiency, effectiveness, and accuracy of the proposed approach in predicting cooling load
and heating load during the building design stage. The results demonstrate the feasibility
of using these techniques to facilitate early designs of energy-conserving buildings [6].

Moayedi et al. 2019, evaluates six machine learning techniques for heating load calcu-
lation in energy-efficient building design, as part of the HVAC system design process [18].
The methods include multi-layer perceptron regressor (MLPr), Lazy Locally Weighted
Learning (LLWL), Alternating Model Tree (AMT), Random Forest (RF), ElasticNet (ENet),
and Radial Basis Function Regression (RBFr). These models were assessed using statistical
indices such as RRSE, RMSE, MAE, R2, and RAE. The Random Forest (RF) model was
found to be the most effective, demonstrating superior accuracy in predicting heating loads
in energy-efficient buildings, based on its high performance in both training and testing
datasets [18].

Recently Yan et al. 2023, focused on the prediction and analysis of cooling and heating
loads in residential buildings as a measure of energy efficiency [19]. The authors used a
multi-layer perceptron neural network to predict these loads based on an experimental
dataset that considers the impact of building dimensions on energy consumption. To
optimize the training process of the neural network, various optimizers were used and
compared in terms of accuracy and authenticity. The findings highlight the excellent
performance of the adaptive chaotic gray wolf optimization method, which achieves the
highest accuracy in forecasting energy consumption. The hybrid approach combining
the multi-layer perceptron neural network and adaptive chaotic gray wolf optimization
is found to be the most effective. The optimal number of neurons in the hidden layer is
determined to be 15. The selected method achieves an R2 of 0.9123 and 0.9419 for cooling
and heating loads, respectively, as per the statistical performance indicators [19].
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Although much work has been performed in the field, no research has yet investigated
how graph machine learning approaches can accurately estimate heating and cooling loads
by leveraging a combination of topology and geometric attributes.

2.3.2. Random Forest (RF) and Decision Trees (DT)

Random Forest combines multiple decision trees to produce a more accurate and stable
prediction. In ensemble learning, multiple models are used to solve the same problem and
then aggregated to improve the overall performance. Ahmad et al. 2017 [20], described
the fundamental attributes of the Random Forest algorithm as follows: Firstly, it employs
bootstrap resampling, a technique that involves random sampling with replacement. Sec-
ondly, the algorithm utilizes random selection of features for decision-making in the model.
Lastly, it is characterized by the development of decision trees to their full depth, ensuring
a comprehensive growth of each tree in the forest [21].

The decision tree (DT) technique, widely employed in various domains for classifica-
tion and prediction [22], employs a tree-like structure to partition datasets into predefined
classes, offering categorization, description, and data generalization [19]. The ease of use
and efficient predictive capabilities with minimal computation time make the DT model
advantageous compared to other models. Although capable of handling both numeri-
cal and categorical data, DT tends to excel more with categorical data than numerical
counterparts [22]. In the context of building studies, some applications have utilized DT
techniques. Tso and Yau (2006) conducted a comparative analysis of three modeling ap-
proaches to predict average weekly electricity consumption in Hong Kong [22]. The study
revealed that DT-applicable models outperformed regression models due to their capacity
to grasp energy consumption patterns and accurately predict energy usage. In a separate
investigation a predictive model was formulated to enhance building energy efficiency
through DT utilization [23]. Employing DT techniques on a residential structure, they
forecasted energy use intensity (EUI) levels. The findings indicated that the DT method
enabled precise classification and prediction of building energy usage, thus promoting high
energy-performance buildings.

Alammar et al. 2021, introduces an innovative approach to efficiently assess solar
radiation intensity on office building envelopes using machine learning models, specifically
artificial neural network (ANN) and decision tree (DT) [24]. A generative parametric office
tower and urban context were simulated to create a synthetic dataset. The comparison of
the two machine learning models indicated that decision tree (DT) outperformed artificial
neural network (ANN) due to the mostly categorical nature of the data, aligning well with
DT algorithms [24].

Alammar et al. 2023, explores the use of a decision tree (DT) model as an alternative
and efficient method to predict hourly cooling loads for adaptive façades in comparison
to traditional building performance simulation (BPS) [25]. Using generative parametric
modeling and synthetic datasets, the DT model demonstrated high accuracy in estimating
cooling loads within seconds. The findings suggest that decision tree surrogate models
can be valuable tools for researchers and designers in assessing adaptive façade designs,
offering substantial time savings and computational efficiency [25].

3. Graph Theory and Applications of Graph Convolutional Neural
Networks (DGCNN)

Graph theory is a powerful tool for describing and analyzing connections between
objects. In graph theory, relationships are represented and studied using graphs, which
originate in mathematics but also extend into other fields. Graph theory facilitates the
representation and analysis of connections between two objects in a versatile and com-
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prehensive manner. Using this approach, objects are represented as nodes (or vertices) in
a graph, with edges illustrating the relationships between them. The edge’s properties,
like its weight and direction, shed light on the connection’s strength and nature, whether
it is unidirectional or reciprocal. When these objects are part of a larger network, graph
theory becomes even more crucial. It helps in understanding how changes in one node
affect another, using concepts such as network flow, connectivity, and pathfinding. Beyond
representing direct links, graph theory is adept at modeling complex relationships, includ-
ing indirect interactions, dependencies, and hierarchical structures. Its ability to provide a
visual and intuitive representation makes it easier to comprehend and communicate the
intricacies of these connections. The application of graph theory extends across various
fields, from computer science, where it is used for network and data structure analysis, to
biology for studying ecosystems or neural networks, and to sociology for analyzing social
networks. This broad applicability underscores its significance as a tool for understanding
and interpreting complex structures.

In 2020, Jabi and Alymani introduced a novel approach to urban and architectural
classification, replacing 2D images with topological graphs for machine learning [26]. The
following year, Alymani and Jabi extended this idea, utilizing architectural topological mod-
els integrated with graph machine learning to analyze building-ground interactions [27].
They presented a case study illustrating these relationships, offering guidelines for creat-
ing a 3D synthetic architectural database. Their subsequent paper detailed a workflow
using deep graph convolutional neural networks to classify 3D architectural prototypes
based on topological graphs, yielding precise outcomes for designers selecting optimal
building-ground interactions. The study emphasizes the efficacy of non-manifold topology
for accurate graph-level prediction [28].

4. Methodology
This research employs a systematic approach to explore the integration of building

energy analysis with advanced machine learning techniques, focusing on graph-based
methods for predicting heating and cooling loads in buildings. The topological models
were constructed using a combination of geometric parameters and energy simulation
software, including EnergyPlus (24.1.0). These tools were employed to simulate building
energy consumption under various scenarios, enabling the generation of a dataset that
reflects different topologies and physical characteristics. The topological structure of the
building is embedded within the dataset through the representation of nodes and edges,
where nodes represent building elements (rooms, walls, apertures), and edges denote
their spatial relationships. The graph’s connectivity captures how these elements interact
thermally, influencing energy consumption.

4.1. Methodology Structure

The methodology is structured into several key phases; each designed to build upon
the previous step and collectively contribute to achieving the research objectives (see
Figure 1).

Phase 1: Building Topology: involves the creation of 12 distinct building topologies
with two key tasks. First, Specifying Utility Functions, where notable features for each
building topology are defined, including the orientation of faces (North, South, East, West),
critical for assessing sun exposure and energy efficiency. Second, Exporting Building
Models, where two versions of each model are produced: one with glazing percentage,
incorporating specified percentages of glazing (window area) for natural light and thermal
performance considerations, and another without glazing percentage for comparative
analysis of glazing’s impact on building performance and esthetics. It is important to note
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here that the building generator creates two parallel representations of buildings. The
first representation is a simple single-zone model, which Topologic calls a Cell, while the
second representation is a multi-zone cellular form which Topologic calls a CellComplex.
This phase is fundamental for establishing a diverse range of building designs for subse-
quent analysis and development. Moreover, the 12 building forms represent a range of
topological and geometric complexities, selected to cover diverse scenarios in building
energy performance. Additionally, the 12 building forms closely follow the precedent set
by [6], to replicate the process of data creation and compare this methodology and results
with theirs.

Figure 1. Methodological Structure into Several Key Phases.

To check the accuracy of the 3D building models created in Phase 1 within a user
interface, a script was developed to enable their interactive display and exploration. This is
important for verifying the models and conducting in-depth analysis and visualization of
their design features (see Figure 2).

Phase 2: Energy Simulation: In this phase, energy simulations are run for both Cells
and CellComplexes. For each type of model, simulations are first conducted for cooling
loads, followed by simulations for heating loads.

Phase 3: Preprocessing DGL Dataset: This phase imports all the cooling and heating
datasets for both the Cell and CellComplex versions of the building models. It then
automatically generates dual graphs (see Figure 3), labels them, and saves the graph
datasets in CSV format (see Table 1). A dual graph is a graph where each vertex represents
an element of the original model, and edges connect vertices whose corresponding elements
in the original graph share a boundary or a relationship. The datasets for both heating and
cooling loads are organized into three Excel files as follows:

1. Graphs: This Excel file includes the graph labels (its cooling or heating load) along
with its number of nodes/vertices.
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2. Edges: This Excel file includes the edges that represent the relationships between
nodes. It includes source and destination indices into the list of nodes/vertices.

3. Nodes: This Excel file includes the nodes/vertices that represent the components in
the building model (space, wall, ceiling, floor, aperture, etc.) along with each node’s
categorical label (see Figure 3 below) and its X, Y, Z coordinates (for visualization
purposes only).

 

 

Figure 2. Building Explorer User Interface showing 3D models of generated building topologies with
glazing variations for energy simulation input. Models include glazing percentages of 10%, 25%, and
40% across four orientations.

Phase 4: ML Regression modeling and testing: In this phase, several machine learning
models, including Deep Graph Learning (DGL) and Random Forest Algorithm (RFA), are
rigorously assessed and compared. This comparison aims to ascertain their effectiveness
in accurately predicting energy consumption in buildings. A random search approach is
utilized to optimize the hyperparameters, enhancing the robustness and accuracy of the
machine learning models employed later in the research. In this study different metrics
are used to understand a model’s predictive accuracy and to compare the performance
of different models. Each metric provides a distinct perspective on the accuracy and
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reliability of a model’s predictions: RMSE (Root Mean Square Error): Measures the average
magnitude of the errors. Lower values indicate better performance. MAE (Mean Absolute
Error): Reflects the average absolute errors. Like RMSE, lower values are preferred. MAPE
(Mean Absolute Percentage Error): Expressed as a percentage, the MAPE indicates the
size of the error in relation to the actual values. Higher values usually indicate poorer
performance. MSE (Mean Squared Error): Similarly to RMSE but uses the square of the
error, emphasizing larger errors more.

 

Figure 3. User interface “dual graphs”.

Table 1. The total number of graph node labels was 33 labels.

Types Labels Types Labels Types Labels Types Labels Types Labels
Room 0 Aperture N XS 7 Aperture W XS 13 Aperture S XS 19 Aperture S XS 25
Wall
N 1 Aperture N S 8 Aperture W S 14 Aperture S S 20 Aperture S S 26

Wall
W 2 Aperture N M 9 Aperture W M 15 Aperture S M 21 Aperture S M 27

Wall S 3 Aperture N L 10 Aperture W L 16 Aperture S L 22 Aperture S L 28
Wall E 4 Aperture N XL 11 Aperture W XL 17 Aperture S XL 23 Aperture S XL 29
Floor 5 Aperture N XXL 12 Aperture W XL 18 Aperture S XL 24 Aperture S XL 30
Roof 6 Partitions 31

Slabs 32

R (Correlation coefficient): Indicates the strength and direction of a linear relationship
between predicted and actual values. Values range from −1 to 1, with values closer to
1 indicating a strong positive relationship. R2 (R-squared): Represents the proportion of
the variance for the dependent variable that is explained by the independent variables. It
ranges from 0 to 1, with higher values indicating a better fit of the model to the data. RAE
(Relative Absolute Error): is a normalized measure of the total absolute error. Lower values
suggest better model performance, which is consistent with the RMSE and MAE trends.

4.2. Graph Learning Model Formulation and Assumptions

The Graph Neural Network (GNN) employed in this study is based on the GraphSAGE
architecture, where information is propagated through a message-passing framework. For
each node v ∈ V, the hidden feature representation at layer k is computed by aggregating
information from its neighborhood N(v) as (1):

hv(k) = σ(W(k) · AGGREGATE({hv(k − 1)} ∪ {hu(k − 1) : ∀u ∈ N(v)})) (1)

where
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• hv(0) represents the initial input features of node v (e.g., surface area, orientation,
adjacency count).

• W(k) is the trainable weight matrix at the k-the layer.
• σ denotes the non-linear activation function (ReLU in this case).
• The aggregation function used is mean pooling (AvgPooling).

After K layers of message passing, a graph-level representation hG is derived using
global mean pooling over all node embeddings (2):

hG =| V | 1v ∈ V ∑ hv(K) (2)

This global embedding hG is then passed through a fully connected regression layer
to predict the continuous target variables—heating load and cooling load.

5. Experimental Case Study
5.1. Description of Building Information and Data Creation

Following the procedures and rules set by [6], an elementary cube with dimensions of
3.5 m × 3.5 m × 3.5 m was used as the starting point to create a total of 12 distinct building
forms (see Figure 4). Each building form consisted of 18 individual elements and were
generated through the employment of Topologic within the Jupyter notebook platform.
Notably, despite the buildings having varying surface areas and dimensions, they all shared
a uniform volume of 771.75 m3. Two datasets were generated, each with 769 buildings. The
first dataset corresponds to a single space in the building referred to as ‘Cell’ (see Figure 4).
The second dataset consists of 18 cellular spaces in the building, collectively known as the
‘CellComplex’ (see Figures 5 and 6).

   

Figure 4. CSV format of the cooling and heating datasets for both the Cell and CellComplex versions.

To achieve variation in enclosure transparency, variability was introduced to the
amount and distribution of glazing across the enclosure walls and compass directions.
Three levels of glazing area were considered, which are 10%, 25%, and 40% of the gross floor
area. Additionally, the glazing area was distributed in five separate ways (see Table 2 and
Figure 7). Furthermore, each of the 12 shapes was rotated in four directions at 90-degree
intervals, resulting in the orientations north, east, south, and west. These orientations were
included as variables in the simulation experiments. In total, 720 variations were generated
by combining the 12 base shapes with 3 glazing area options, 5 glazing distribution patterns,
and 4 orientations [6,16].
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Figure 5. Single space in the building referred to as ‘Cell’.

  

  

Figure 6. 18 spaces in the building, collectively known as the ‘Cell Complex’.

   

   

Figure 7. Three levels of glazing area were considered, which are 10%, 25%, and 40% of the gross
floor area.
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Table 2. Key Inputs and Parameters.

Category Parameter Value/Description
Building Features Glazing Percentage 10%, 25%, 40%

Orientation North, East, South, West
Shape Variants 12 parametric geometries (Cell, CellComplex)
Node Attributes Surface area, room type, aperture count, orientation
Edge Types Adjacency (Room-Room, Room-Aperture)

GML Parameters GNN Layers 3 (SAGEConv layers), 3 (GINConv layers), 3 (Classic layers)
Hidden Layer Widths 32, 32, 32–64, 64, 64–128, 128, 128
Pooling Method AvgPooling, MaxPooling
Learning Rate 0.01, 0.001, 0.0001, 0.00001
Loss Function MSE, RMSE, MAE, MAPE, MAPE, RAE, R, R2

Epochs 80
Random Forest Number of Trees 90

Criterion MSE (regression)
Bootstrap Enabled
Max Depth Auto

Simulation Setup Software Used DesignBuilder + EnergyPlus
Climate Data Athens, Greece (TMY)
Internal Gains Uniform default occupancy schedule
Wall/Window U-Values Fixed per ASHRAE baseline

5.2. Energy Simulation Setting

The materials chosen for all 18 elements are consistent across all types of buildings.
This selection was based on the most current and widely used materials in the construction
industry, as well as their lowest U-value. The U-values for each building characteristic are
as follows: walls (1.780), floors (0.860), roofs (0.500), windows (2.260).

To remain consistent with the precedent paper by [6], the simulation assumes that
the buildings are situated in Athens, Greece, and are designated for residential use with a
maximum of seven occupants engaged in sedentary activity (70 W). The internal design
conditions were established as follows: a clothing level of 0.6 clo, humidity levels at 60%,
air speed at 0.30 m/s, and lighting levels at 300 Lux. The internal heat gains were specified
as 5 W/m2 for sensible heat and 2 W/m2 for latent heat, while the infiltration rate was set
at 0.5 for the air change rate, with a wind sensitivity of 0.25 air changes per hour. Regarding
thermal properties, a mixed mode with 95% efficiency was employed, with a thermostat
range of 19–24 ◦C. The heating/cooling system was operated for 15–20 h on weekdays
and 10–20 h on weekends [6,16,17]. To generate a total of 1538 data points, consisting of
769 Cells and 769 CellComplexes, the simulation was executed twice: once for generating
cell datasets and once for creating CellComplexes.

In this comprehensive study, the energy simulation process was meticulously executed
multiple times to cater to different datasets, each representing unique scenarios in building
energy management. The initial phase of the simulation focused on the cooling dataset
for a single building unit, referred to as the ‘Cell.’ This step was crucial in understanding
how several factors influenced the cooling requirements of a standard building module.
The simulation was then repeated for the same cell, but this time concentrating on the
heating dataset. This dual approach allowed for a holistic analysis of the building’s energy
needs, encompassing both heating and cooling aspects under similar conditions, thereby
providing a balanced view of the energy dynamics within a single cell.

Following the detailed examination of the individual cell, the study expanded its
scope to more complex structures, named ‘CellComplex’ These complexes represent a more
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intricate architectural arrangement, simulating a real-world scenario where spaces in a
building are not isolated but part of a larger system.

6. Experimental Results
To comprehensively evaluate the predictive performance of the GML models, four key

metrics were reported: Pearson’s correlation coefficient (R), coefficient of determination
(R2), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE). While R2 is math-
ematically the square of R in simple linear regression, their interpretation differs in the
context of non-linear and graph-based models. R provides a measure of the strength and
direction of the linear relationship between predicted and actual values, while R2 quantifies
the proportion of variance in the dependent variable explained by the model. Including
both metrics allows for a nuanced assessment of model performance. Similarly, although
RMSE is the square root of MSE, both are reported to provide insight into error magnitude
in squared units and interpretable units, respectively. This dual reporting facilitates compa-
rability with other studies and supports both statistical rigor and practical understanding.

6.1. Optimizing the Hyperparameters

Initially, the entire dataset was segmented into training, validation, and testing sets.
For the cooling dataset, the 767 graphs were allocated as follows: 70% for training, 10% for
validation, and 20% for testing. A similar distribution was applied to the heating dataset.

As detailed below, hidden layer width, the learning rate, convolutional layer type and
pooling layer, the number of epochs, and the batch size hyperparameters were varied to im-
prove performance. The training and validation data used for tuning the hyperparameters
were 630 graphs (70%).

6.1.1. Hidden Layer Width

The three experiments (No. 1, No. 2, and No. 3) compare the performance of a
neural network with different hidden layer widths (see Table 3). The convolutional layer
type (GINConv) and the pooling method (MaxPooling) are constant across these three
experiments, and the performance is measured by the Root Mean Square Error (RMSE).
The learning rate and cross-validation type are also consistent, suggesting that the variation
in RMSE is due to the change in hidden layer width. Experiment No. 1: The hidden
layers widths are set to 128, 128, 128. RMSE scores range from 0.9417 to 2.1524, with the
best performance under the “CellComplex/heating” condition with an RMSE of 0.9417.
Furthermore, experiment No. 2: The hidden layers widths are set to 64, 64, 64. RMSE scores
range from 0.7524 to 2.1656, with the best performance under the “Cell/heating” condition
with an RMSE of 0.7524. While experiment No. 3: The hidden layers widths are set to 32,
32, 32. RMSE scores range from 0.9291 to 2.0224, with the best performance under the “
CellComplex/heating” condition with an RMSE of 0.9291. Comparing the RMSE scores, the
best-performing model in terms of the lowest RMSE is Experiment No. 2, which has hidden
layers widths of 64, 64, 64. This configuration achieved the lowest RMSE of 0.7524 in the
“Cell/heating” condition, suggesting that this middle ground in terms of hidden layers
widths offers a better balance between model complexity and predictive performance, at
least in this specific scenario. A wider hidden layer width does not automatically lead
to better performance, as seen with the 128-width layers that did not perform as well as
the 64-width layers. The 32-width layers also did not outperform the 64-width layers,
indicating that too small a layer width might not capture enough complexity to model the
data effectively. For this set of experiments and under these specific conditions, the neural
network with a hidden layer width configuration of 64, 64, 64 appears to be the optimal
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choice among the ones assessed. Therefore, in subsequent experiments, 64-width layers
were used to continue improving the accuracy of the results.

Table 3. Percentage of glazing facing on variation in direction.

Percentage of Glazing Facing
Variation North East South West

No glazing 0 0 0 0
Uniform 25 25 25 25

North 55 15 15 15
East 15 55 15 15

South 15 15 55 15
West 15 15 15 55

6.1.2. Learning Rate

Learning rate is related to the step size at each iteration while moving toward a
minimum of a loss function. The three experiments (No. 4, No. 5, and No. 6) compared
the impact of different learning rates on the performance of a neural network using the
GINConv convolutional layer and MaxPooling, with the performance measured by Root
Mean Square Error (RMSE) (see Table 4). Experiment No. 4: Learning rate is 0.00001. RMSE
ranges from 1.9254 to 2.3652, with the best performance in the “CellComplex/heating”
condition at an RMSE of 1.8802. However, experiment No. 5: Learning rate is 0.001. RMSE
ranges from 0.559 to 2.2171, with the best performance in the “CellComplex/heating”
condition at an RMSE of 0.559. While experiment No. 6: Learning rate is 0.01. RMSE
ranges from 0.5764 to 2.1638, with the best performance in the “cell/heating” condition at
an RMSE of 0.5764.

Based on the RMSE values, the best learning rate among those assessed is 0.001 (Exper-
iment No. 5), as it resulted in the lowest RMSE of 0.559 under the “CellComplex/cooling”
condition. A lower RMSE indicates a model that is better at predicting the target vari-
able with fewer errors, and thus it can be inferred that the learning rate of 0.001 is the
most effective for this neural network configuration and dataset. Therefore, in subsequent
experiments, we used this learning rate to continue improving the accuracy of the results.

6.1.3. Pooling Layer

The two experiments (No. 2 and No. 9) compared the performance of a neural
network with different pooling layers: MaxPooling in Experiment No. 2 and AvgPooling
in Experiment No. 9 (see Table 5). Other hyperparameters, such as learning rate, cross-
validation type, split, hidden layer width, and convolutional layer type, are held constant
across both experiments. The performance of the network is evaluated using Root Mean
Square Error (RMSE). Experiment No. 2 (MaxPooling): The RMSE values range from 0.7524
to 2.1656. The best performance in this experiment is observed under the “cell/heating”
condition with an RMSE of 0.7524. Moreover, experiment No. 9 (AvgPooling): The RMSE
values range from 0.2205 to 2.0393. The best performance in this experiment is observed
under the “CellComplex/heating” condition with an RMSE of 0.2205. Based on the RMSE
values, AvgPooling in Experiment No. 9 shows the best performance with the lowest
RMSE of 0.2205 under the “CellComplex/heating” condition, suggesting that AvgPooling
layer may be more effective for this particular network architecture and dataset. Therefore,
in subsequent experiments, we used AvgPooling to continue improving the accuracy of
the results.
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Table 4. Experiments No. 1, No. 2, and No. 3.

CellComplex Cell
Experiment Set No. 1

Cooling Heating Cooling Heating

H
yp

er
pa

ra
m

et
er

s

learning rate 0.0001 0.0001 0.0001 0.0001
cv_typ Holdout Holdout Holdout Holdout
split 0.7, 0.1, 0.2 0.7, 0.1, 0.2 0.7, 0.1, 0.2 0.7, 0.1, 0.2
hl_width 128, 128, 128 128, 128, 128 128, 128, 128 128, 128, 128
conv_layer_typ GINConv GINConv GINConv GINConv
epochs 80 80 80 80
pooling MaxPooling MaxPooling MaxPooling MaxPooling
batch_siz 1 1 1 1

R
es

ul
ts

RMSE 1.2572 0.9417 2.1524 1.3871
MAE 0.9575 0.7525 1.6902 0.7196
MAPE 1.4306 0.7808 10.6365 4.8868
MSE 1.5807 0.8869 4.6329 1.9241
R 0.8616 0.108 0.6265 0.5168
R2 0.7423 0.0117 0.3924 0.2671
RAE 0.0144 0.0078 0.1081 0.0475

CellComplex Cell
Experiment set No. 2

cooling heating cooling heating

H
yp

er
pa

ra
m

et
er

s

learning rate 0.0001 0.0001 0.0001 0.0001
cv_typ Holdout Holdout Holdout Holdout
split 0.7, 0.1, 0.2 0.7, 0.1, 0.2 0.7, 0.1, 0.2 0.7, 0.1, 0.2
hl_width 64, 64, 64 64, 64, 64 64, 64, 64 64, 64, 64
conv_layer_typ GINConv GINConv GINConv GINConv
epochs 80 80 80 80
pooling MaxPooling MaxPooling MaxPooling MaxPooling
batch_siz 1 1 1 1

R
es

ul
ts

RMSE 1.4246 1.433 2.1656 0.7524
MAE 1.058 0.6728 1.5917 0.5319
MAPE 1.5796 0.6969 9.6537 3.5263
MSE 2.0294 2.0535 4.6897 0.5661
R 0.8025 0.0797 0.6058 0.8058
R2 0.6441 0.0063 0.367 0.6493
RAE 0.0159 0.007 0.1008 0.0351

CellComplex Cell
Experiment set No. 3

cooling heating cooling heating

H
yp

er
pa

ra
m

et
er

s

learning rate 0.0001 0.0001 0.0001 0.0001
cv_typ Holdout Holdout Holdout Holdout
split 0.7, 0.1, 0.2 0.7, 0.1, 0.2 0.7, 0.1, 0.2 0.7, 0.1, 0.2
hl_width 32, 32, 32 32, 32, 32 32, 32, 32 32, 32, 32
conv_layer_typ GINConv GINConv GINConv GINConv
epochs 80 80 80 80
pooling MaxPooling MaxPooling MaxPooling MaxPooling
batch_siz 1 1 1 1

R
es

ul
ts

RMSE 1.6912 0.9291 2.0224 0.9552
MAE 1.1998 0.5768 1.5927 0.6949
MAPE 1.7882 0.5964 10.2843 4.5139
MSE 2.8603 0.8633 4.09 0.9124
R 0.7474 −0.0392 0.6034 0.6984
R2 0.5586 0.0015 0.3641 0.4878
RAE 0.0181 0.006 0.1049 0.0453
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Table 5. Experiments No. 4, No. 5, and No. 6.

CellComplex Cell
Experiment Set No. 4

Cooling Heating Cooling Heating

H
yp

er
pa

ra
m

et
er

s

learning rate 0.00001 0.00001 0.00001 0.00001
cv_typ Holdout Holdout Holdout Holdout
split 0.7, 0.1, 0.2 0.7, 0.1, 0.2 0.7, 0.1, 0.2 0.7, 0.1, 0.2
hl_width 64, 64, 64 64, 64, 64 64, 64, 64 64, 64, 64
conv_layer_typ GINConv GINConv GINConv GINConv
epochs 80 80 80 80
pooling MaxPooling MaxPooling MaxPooling MaxPooling
batch_siz 1 1 1 1

R
es

ul
ts

RMSE 1.9254 2.3213 2.3652 1.8802
MAE 1.3774 1.2154 1.8194 1.3382
MAPE 2.0865 1.2587 11.473 9.0812
MSE 3.7071 5.3882 5.594 3.5352
R 0.6371 −0.0655 0.6362 0.6272
R2 0.4059 0.004 0.4048 0.3934
RAE 0.0208 0.0126 0.1158 0.0881

CellComplex Cell
Experiment set No. 5

cooling heating cooling heating

H
yp

er
pa

ra
m

et
er

s

learning rate 0.001 0.001 0.001 0.001
cv_typ Holdout Holdout Holdout Holdout
split 0.7, 0.1, 0.2 0.7, 0.1, 0.2 0.7, 0.1, 0.2 0.7, 0.1, 0.2
hl_width 64, 64, 64 64, 64, 64 64, 64, 64 64, 64, 64
conv_layer_typ GINConv GINConv GINConv GINConv
epochs 80 80 80 80
pooling MaxPooling MaxPooling MaxPooling MaxPooling
batch_siz 1 1 1 1

R
es

ul
ts

RMSE 1.7719 0.559 2.2171 0.6857
MAE 1.5088 0.4506 1.5817 0.4505
MAPE 2.2898 0.4667 9.6008 2.9997
MSE 3.1397 0.3125 4.9157 0.4701
R 0.8631 0.2968 0.5787 0.8232
R2 0.745 0.0881 0.3349 0.6777
RAE 0.0228 0.0047 0.1007 0.0297

CellComplex Cell
Experiment set No. 6

cooling heating cooling heating

H
yp

er
pa

ra
m

et
er

s

learning rate 0.01 0.01 0.01 0.01
cv_typ Holdout Holdout Holdout Holdout
split 0.7, 0.1, 0.2 0.7, 0.1, 0.2 0.7, 0.1, 0.2 0.7, 0.1, 0.2
hl_width 64, 64, 64 64, 64, 64 64, 64, 64 64, 64, 64
conv_layer_typ GINConv GINConv GINConv GINConv
epochs 80 80 80 80
pooling MaxPooling MaxPooling MaxPooling MaxPooling
batch_siz 1 1 1 1

R
es

ul
ts

RMSE 2.1638 1.7054 1.8569 0.5764
MAE 1.889 1.5617 1.3772 0.4178
MAPE 2.8708 1.6199 8.3608 2.7437
MSE 4.6822 2.9082 3.448 0.3322
R 0.8536 0.0631 0.6706 0.8779
R2 0.7286 0.004 0.4497 0.7707
RAE 0.0286 0.0162 0.0876 0.0275
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6.1.4. Convolutional Layer Type

The type of convolutional layer varies across experiments with GINConv used in No.
7, SAGEConv in No. 8, and Classic in No. 9 (see Table 6). Experiment No. 7 uses “GIN-
Conv” convolutional layers. The RMSE scores range from 0.3702 to 2.1839, with the lowest
RMSE observed under the “CellComplex/heating” condition at 0.3702. Moreover, exper-
iment No. 8 uses “SAGEConv” convolutional layers. The RMSE scores here range from
0.2158 to 2.0855, with the lowest RMSE again observed under the “CellComplex/heating”
condition at 0.2158. Furthermore, experiment No. 9 uses “Classic” convolutional. The
RMSE scores range from 0.2205 to 2.0393, with the lowest RMSE observed under the “Cell-
Complex/heating” condition at 0.2205. Based on the RMSE values presented, “SAGEConv”
convolutional layers in Experiment No. 8 demonstrate the best performance with the lowest
RMSE of 0.2158, indicating it as the most accurate model under the “CellComplex/heating”
condition among the three experiments. Therefore, in subsequent experiments, we used
SAGEConv layer type to continue improving the accuracy of the results.

Table 6. Experiments No. 9.

CellComplex Cell
Experiment Set No. 9

Cooling Heating Cooling Heating

H
yp

er
pa

ra
m

et
er

s

learning rate 0.001 0.001 0.001 0.001
cv_typ Holdout Holdout Holdout Holdout
split 0.7, 0.1, 0.2 0.7, 0.1, 0.2 0.7, 0.1, 0.2 0.7, 0.1, 0.2
hl_width 64, 64, 64 64, 64, 64 64, 64, 64 64, 64, 64
conv_layer_typ Classic Classic Classic Classic
epochs 80 80 80 80
pooling AvgPooling AvgPooling AvgPooling AvgPooling
batch_siz 1 1 1 1

R
es

ul
ts

RMSE 0.8247 0.2205 2.0393 0.784
MAE 0.6756 0.1806 1.4127 0.6108
MAPE 1.0208 0.1868 8.3763 4.0768
MSE 0.6801 0.0486 4.1588 0.6147
R 0.9585 0.9367 0.659 0.8291
R2 0.9187 0.8774 0.4343 0.6874
RAE 0.0102 0.0019 0.09 0.0401

6.1.5. Cross Validation Type

The two experiments (No. 8 and No. 9) compared the performance of a neural
network with the SAGEConv convolutional layer type using different cross-validation (CV)
strategies: “Holdout” in Experiment No. 8 and “10 k_folds” in Experiment No. 9. The
performance of the neural network is measured using the Root Mean Square Error (RMSE),
with both experiments maintaining a constant learning rate of 0.001. Experiment No. 8
(Holdout CV): The RMSE values range from 0.2158 to 2.0855. The best performance is
observed under the “CellComplex/heating” condition with an RMSE of 0.2158. Moreover,
experiment No. 9 (10 k_folds CV): The RMSE values range from 0.1739 to 1.9675. The best
performance is observed under the “CellComplex/heating” condition with an RMSE of
0.1739. Based on the provided RMSE values, the “10 k_folds” cross-validation technique
used in Experiment No. 9 seems to be the better method for evaluating the neural network’s
performance, as it achieved the lowest RMSE of 0.1739 in the “CellComplex/heating”
condition. This suggests that using a k-fold cross-validation provides a more reliable
estimate of the model’s generalization to new data compared to the holdout method.
However, the drawback of using k-fold cross-validation is that it requires a more powerful
computer and additional time.
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6.1.6. Sensitivity to Hyperparameter Changes

The tuning results indicate that model performance is most sensitive to changes in
the convolutional layer type and learning rate. Switching from GINConv to SAGEConv
led to an RMSE reduction of up to 41%, especially in heating prediction tasks. Similarly,
increasing the learning rate from 0.00001 to 0.001 significantly improved convergence and
lowered RMSE values. Conversely, changes in hidden layer width had a moderate effect,
with diminishing returns beyond 64 units. The choice of pooling method (AvgPooling
vs. MaxPooling) also contributed to performance variation, especially in smaller datasets.
These findings suggest that proper selection of convolution layers and learning rate is
critical for achieving optimal GML performance in building energy prediction tasks.

6.2. Testing the Machine Learning DGL

After tuning the hyperparameters, the best performing model was saved and tested on
the test set. As mentioned above, the data was split as 70% for training, 10% for validation,
and 20% for testing. In this stage we used a 20% portion of the data to run the testing. The
DGL parameters were as follows: learning rate of 0.001, hidden layer width 64,64,64, with
AvgPooling layer, 80 epochs SAGEConv for the convolutional layer type, Holdout cross
validation type, and batch size of 1. The result of the final test was: For “CellComplex”
under “cooling,” RMSE is 0.8805. For “CellComplex” under “heating,” RMSE is 0.2158. For
“Cell” under “cooling,” RMSE is 2.0855. For “Cell” under “heating,” RMSE is 0.8238.

A comparison of actual values and predicted values was described in (Table 7). Each
row represents a single observation or test case, with the first number being the actual value
observed or measured, and the second number being the value that the model predicted
for that same case.

To analyze this:

• Closeness of Values: The predicted values are quite close to the actual values, which
suggests that the predictive model is performing relatively well.

• Consistency: The model exhibits a consistent underestimation of actual values despite
strong correlation, likely due to the asymmetric distribution of the target variable
and the use of a symmetric loss function (e.g., MSE), which biases predictions toward
the center of the distribution. Future work will explore target transformations and
alternative loss functions, such as quantile or asymmetric losses, to improve prediction
accuracy across the full value range.

• Error Measurement: To quantify the model performance, an error is calculated for
each prediction. Common methods include the absolute error (the absolute difference
between actual and predicted).

In the example above, the absolute error is calculated by subtracting the predicted
value from the actual value and taking the absolute value of the result. This is performed
for each pair of actual and predicted values.

For a more detailed analysis and observation, a Scatter Plot was generated (see
Figure 8). Most data points in the plot are relatively close to the perfect prediction line,
suggesting that the model generally achieves a satisfactory level of accuracy. This indicates
that, in most cases, the predicted values are reasonably close to the actual values.

However, some data points are scattered away from the perfect prediction line, high-
lighting specific instances where the model’s predictions are less accurate. These instances
suggest that, while the model performs well overall, there are certain cases or patterns that
it may not be capturing effectively.
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Table 7. Experiments (No. 7, and No. 8).

CellComplex Cell
Experiment Set No. 7

Cooling Heating Cooling Heating

H
yp

er
pa

ra
m

et
er

s

learning rate 0.001 0.001 0.001 0.001
cv_typ Holdout Holdout Holdout Holdout
split 0.7, 0.1, 0.2 0.7, 0.1, 0.2 0.7, 0.1, 0.2 0.7, 0.1, 0.2
hl_width 64, 64, 64 64, 64, 64 64, 64, 64 64, 64, 64
conv_layer_typ GINConv GINConv GINConv GINConv
epochs 80 80 80 80
pooling AvgPooling AvgPooling AvgPooling AvgPooling
batch_siz 1 1 1 1

R
es

ul
ts

RMSE 0.9526 0.3702 2.1839 0.6255
MAE 0.7201 0.3158 1.5367 0.4277
MAPE 1.0887 0.327 9.3178 2.8303
MSE 0.9075 0.1371 4.7696 0.3912
R 0.9297 0.9182 0.6845 0.8417
R2 0.8643 0.843 0.4686 0.7085
RAE 0.0109 0.0033 0.1001 0.0283

CellComplex Cell
Experiment set No. 8

cooling heating cooling heating

H
yp

er
pa

ra
m

et
er

s

learning rate 0.001 0.001 0.001 0.001
cv_typ Holdout Holdout Holdout Holdout
split 0.7, 0.1, 0.2 0.7, 0.1, 0.2 0.7, 0.1, 0.2 0.7, 0.1, 0.2
hl_width 64, 64, 64 64, 64, 64 64, 64, 64 64, 64, 64
conv_layer_typ SAGEConv SAGEConv SAGEConv SAGEConv
epochs 80 80 80 80
pooling AvgPooling AvgPooling AvgPooling AvgPooling
batch_siz 1 1 1 1

R
es

ul
ts

RMSE 0.8805 0.2158 2.0855 0.8238
MAE 0.72 0.1762 1.5363 0.6276
MAPE 1.0913 0.1825 9.561 4.14
MSE 0.7754 0.0465 4.3492 0.6786
R 0.9367 0.9455 0.6595 0.6893
R2 0.8773 0.894 0.435 0.4751
RAE 0.0109 0.0018 0.0983 0.0412

Figure 8. Scatter plot of the relationship between actual and predicted energy load values for the large
dataset. The red dashed line represents the ideal case where predicted values match actual values.
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The line graph (see Figure 9) comparing actual values to predicted values over a series
of data points. The two lines in the graph, one representing the actual values and the other
representing the predicted values, to visualize the performance of a predictive model. Both
values show similar patterns, indicating that the predicted values are following the actual
values closely. This is indicative of a model that has learned the underlying pattern in the
data well.

 

Figure 9. Comparison of actual versus predicted heating and cooling loads. The line graph shows
predicted values tracking actual simulation results over test data points. Axis labels indicate energy
load in kWh. Close alignment indicates model accuracy.

6.3. Random Forest Baseline

This section presents the experiment using RF algorithms, which serve as a baseline
model. Random Forest, an advancement of Decision Trees (DT), is employed in regression
learning for modeling heating and cooling loads. The input features for RF modeling mirror
those discussed in Section 5, having undergone pre-processing in preparation for (DGL)
modeling. The output of the model is focused on predicting heating and cooling loads.

Numerous hyperparameters play a crucial role in achieving an accurate RF model.
This experiment specifically addresses parameters such as (1) the number of trees, (2)
bootstrap, and (3) the minimal cost-complexity pruning parameter (ccp_alphas). To fine-
tune these hyperparameters, a systematic search is conducted with a k-fold cross-validation
experiment. In k-fold cross-validation, the data are divided into k folds, with (k − 1) folds
allocated to training and the remaining one to testing. The experiments are iterated k times,
ensuring that each fold is part of both training and testing sets across different iterations.

After the hyperparameter tuning, the optimal results of each experiment, as presented
in (see Tables 8 and 9), are summarized as follows:

Table 8. An example of how one might calculate the absolute errors for given data.

Actual Value Predicted Value Absolute Error
96.636 96.3291 0.3069
97.761 97.3508 0.4102
96.267 96.3119 0.0449
96.984 96.635 0.349
96.50 96.3282 0.1718

96.626 96.4564 0.1696
96.685 96.6478 0.0372
97.59 97.1392 0.4508

96.752 96.3426 0.4094
97.835 97.1421 0.6929
96.407 96.326 0.081
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Table 9. Random Forest optimal results.

CellComplex Cell
Final Optimized Results

Cooling Heating Cooling Heating

H
yp

er
pa

ra
m

et
er

s learning rate 0.001 0.001 0.001 0.001
cv_typ K-Fold K-Fold K-Fold K-Fold
n_splits 5 folds 5 folds 5 folds 5 folds
Data Split 80, 20 80, 20 80, 20 80, 20
number of
trees 80 90 70 90

bootstrap_opt Enabled Enabled Enabled Enabled
ccp_alphas 0 0 0 0

R
es

ul
ts RMSE 0.04964 0.03126 0.05650 0.03644

MAE 0.16994 0.14156 0.17528 0.14931
R2 0.98894 0.99493 0.99085 0.99423

CellComplex (cooling loads): The results are for the bootstrap option enabled, with a
total of 80 trees. The final test results were as follows: the RMSE was 0.04964, the MAE was
0.16994, and the R2 score was 0.98894.

CellComplex (heating loads): From the experiment, the optimal model had the
following hyperparameter combination: Bootstrap option enabled and a total of 90 trees.
The final test results were as follows: the RMSE was 0.03126, the MAE was 0.14156, and the
R2 score was close to one.

Cell (cooling loads): The results are for the bootstrap option enabled, with a total of
70 trees. The final test results were as follows: the RMSE was 0.05650, the MAE was 0.17528,
and the R2 score was 0.99085.

Cell (heating loads): From the experiment, the optimal model had the following
hyperparameter combination: Bootstrap option enabled and a total of 90 trees. The final
test results were as follows: the RMSE was 0.03644, the MAE was 0.14931, and the R2 score
was 0.99423.

The results demonstrated that RF algorithms exhibit high accuracy in predicting
heating and cooling loads. Furthermore, an increase in the number of trees generally aligns
with improved performance. Although the influence on performance due to enabling
or disabling the bootstrap option is not conspicuous, its absence leads to a reduction in
overall performance.

6.4. Physical Explanations of Trends and Practical Applications

The trends observed in the results can be explained by the underlying physical prin-
ciples governing building thermal performance. For example, lower RMSE values in the
heating load predictions for the CellComplex models reflect the advantage of explicitly
modeling spatial connectivity and adjacency between zones, which is critical in heat trans-
fer analysis. The higher accuracy in heating prediction compared to cooling may also
be attributed to more consistent internal gains and the envelope’s thermal resistance in
heating-dominated conditions.

The Random Forest baseline performed exceptionally well (R2 > 0.99) because of its
ability to capture non-linear relationships in the synthetic dataset, which includes structured
variations in glazing ratios (10%, 25%, 40%), orientations (north, east, south, west), and
surface areas. However, Random Forest models flatten this information and cannot directly
capture topological relationships. Graph machine learning (GML), in contrast, leverages
node and edge connectivity to maintain adjacency relationships critical for realistic energy
modeling, explaining its robust performance even when tested with cross-validation.
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From a practical perspective, these results highlight how GML can support early
design decision-making in architecture and engineering. By integrating topological data di-
rectly into the prediction model, GML enables more realistic energy consumption estimates
for novel design configurations without requiring detailed, time-consuming simulations for
every variant. This capability is essential for rapid evaluation of design alternatives, sup-
porting goals of energy-efficient design, code compliance, and smart building integration
with IoT systems for real-time energy optimization.

6.5. Comparative Analysis and Discussion of Alternative Approaches

To contextualize the benefits of graph machine learning (GML) in this study, it is
important to consider how it compares to other machine learning approaches, including
Convolutional Neural Networks (CNNs) and hybrid models. While CNNs excel in domains
with regular grid structures such as image data, their architecture is inherently limited when
applied to irregular, non-Euclidean data like building topology graphs. In building energy
modeling, the relationships between rooms, walls, floors, and apertures form complex,
non-grid-like graphs where connectivity and adjacency vary per design. GML models,
by design, can naturally incorporate these topological features through node and edge
representations, enabling them to capture thermal interactions in ways that CNNs cannot.

In this study, we included Random Forest (RF) as a strong baseline method. RF models
are effective in capturing non-linear relationships and achieved very high accuracy (e.g.,
RMSE as low as 0.03126 for heating loads in CellComplex configurations with R2 > 0.99).
However, RF relies on flattened, tabular representations of features and does not inherently
model spatial connectivity. In contrast, GML achieves comparable accuracy (best RMSE of
0.1739 with 10-fold cross-validation) while explicitly preserving building topology. This
ability to directly encode graph structure offers significant benefits for generalizing to
diverse architectural designs.

Hybrid models that combine GML with other neural network components (e.g., se-
quence models for temporal occupancy patterns, CNN modules for façade image analysis)
represent a promising avenue for future research. While this study focused on establishing
a graph-based framework for static topological and geometric features, integrating hybrid
methods could enable richer multi-modal analysis, combining topology with sensor data,
temporal schedules, or image-based façade features.

By highlighting these differences, this comparison underscores the unique suitability
of GML for the challenge of estimating building heating and cooling loads while identifying
opportunities for expanding the framework with complementary techniques.

6.6. Feature Importance and Topological Contribution

Understanding how different topological features contribute to model predictions is
critical for interpreting graph machine learning (GML) outputs in the context of building
energy analysis. In this study, each node is labeled by type (e.g., wall, floor, aperture), and
topological features such as surface area, orientation, and adjacency counts are embedded
as node attributes. Edges represent spatial relationships, primarily room-to-room and
room-to-aperture connections. While traditional ML models such as Random Forests offer
explicit feature importance scores, explainability in GML is more complex. To assess the
influence of topological features, we adopted several strategies. First, experiments revealed
that denser graphs—those with higher node degree centrality—tended to result in better
performance, especially in heating load predictions. This suggests that thermal adjacency
relationships (captured via edges) enhance the model’s ability to learn heat transfer across
connected spaces. Second, while edges in this study were treated as unweighted, future
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extensions will consider encoding edge weights based on thermal resistance or adjacency
area to better reflect physical interactions and their impact on energy transfer.

7. Conclusions
This paper presented a novel approach in graph machine learning, aimed at improving

the estimation of heating and cooling loads in buildings, a crucial aspect of building energy
efficiency. Traditional methods in this domain often fall short in capturing the complex
relationship between a building’s topological, geometric, and physical characteristics,
leading to predictions that lack precision. This research successfully addresses this gap by
integrating these critical factors into a graph-based machine learning framework.

A significant contribution of this work is the development of a parametric generative
workflow, building upon the methodology of [6]. This workflow enabled the creation of
a synthetic dataset, which is a cornerstone of this study. This dataset is comprehensive,
encompassing various building forms with distinct topological connections and attributes.
It facilitated extensive analysis across different building scenarios, enhancing the robustness
and applicability of this finding.

This research involved simulating a wide range of building shapes and glazing scenar-
ios, incorporating variations in window sizes and orientations. The results from thermal
simulations provided a rich dataset for this machine learning analysis. We employed Deep
Graph Learning (DGL) as a primary method for training and used decision trees (DT) for
validation purposes. Both the DGL and DT algorithms showed high efficacy in predicting
heating and cooling loads, thereby making a significant contribution to the field of building
energy efficiency.

In this study, a series of experiments were conducted to optimize the hyperparameters
of a graph-based machine learning model for predicting heating and cooling loads in
buildings. The experiments involved adjusting variables such as a hidden layer width,
a learning rate, a pooling layer, a convolutional layer type, and a cross-validation type.
Notable findings include the identification of an optimal hidden layer’s widths of 64, 64, 64,
a learning rate of 0.001, the effectiveness of the AvgPooling layer, and the superiority of the
SAGEConv convolutional layer. The “10 k_folds” cross-validation method outperformed
the holdout method, providing more reliable estimates. The final model, tested on a
separate dataset, demonstrated high accuracy, with predicted values closely matching
the actual values, as evidenced by low Root Mean Square Error (RMSE) scores and a
comparison of actual versus predicted values in the test cases. This highlights the model’s
effectiveness in accurately predicting building energy needs, which illustrates the potential
of machine learning in enhancing energy efficiency in the architectural domain.

In conclusion, this study highlights the transformative potential of machine learning in
optimizing building designs for energy efficiency. By delivering more accurate predictions
of heating and cooling loads, this approach advances research at the intersection of machine
learning, architecture, and sustainability. This work establishes a framework for smarter,
energy-efficient buildings, supporting broader goals in environmental sustainability and
energy conservation.

8. Limitations and Future Work
Despite the promising results achieved through graph machine learning (GML) in

predicting building heating and cooling loads, several limitations and challenges remain.
A primary concern is the reliance on a synthetically generated dataset created through a
parametric workflow. While this ensures systematic control and reproducibility, it may not
fully capture the complex variability and nuanced characteristics of real-world buildings,
thereby limiting the model’s direct applicability without further empirical validation.



Buildings 2025, 15, 3256 25 of 27

Another challenge lies in the scalability and generalizability of the proposed method.
As the size and complexity of the dataset increase, so do the computational requirements—
particularly when using deep graph neural networks, k-fold cross-validation, and multiple
convolutional architectures. These demands may hinder large-scale deployment or applica-
tion in resource-constrained environments.

Geographic and climatic assumptions present further limitations. The simulations
are based solely on conditions in Athens, Greece, restricting generalizability to regions
with different climatic profiles. Additionally, fixed internal loads, occupant behavior, and
HVAC schedules in the simulations fail to reflect the dynamic and unpredictable nature of
real-world building operations.

The current model is also purely data-driven and does not incorporate physical laws.
This limits its interpretability and robustness under changing boundary conditions. Future
work could integrate physics-informed learning—such as embedding heat conduction
equations—through techniques like physics-informed neural networks (PINNs) or physics-
constrained GNNs. This hybrid modeling approach may enhance both predictive accuracy
and physical interpretability.

To overcome current limitations, future research will incorporate empirical datasets
from Building Information Models (BIM), laser scanning, and IoT-enabled sensor networks
to validate GML models against actual building performance. Accurate 3D digital models
capturing spatial relationships such as adjacency and connectivity will be essential. Where
such models are unavailable, 3D scanning technologies can be employed, with the data
processed via TopologicPy to generate graph representations suitable for GML analysis.

Furthermore, exploring optimization techniques—including hyperparameter tuning,
graph pruning, and integrating alternative learning methods such as reinforcement learning
or transfer learning—will help improve adaptability and scalability. This methodology
could also extend to urban-scale analysis, influencing city-wide energy strategies and
sustainable development. Finally, these insights can enrich architectural and engineering
education by emphasizing AI and ML’s growing role in sustainable design.

To further support practical design and retrofitting decisions, future work will inte-
grate explainable AI (XAI) techniques into the modeling pipeline. While graph machine
learning models are inherently less interpretable, emerging XAI methods such as GNNEx-
plainer, Integrated Gradients, and Saliency Maps offer tools to identify the most influential
nodes, features, and edge structures contributing to heating and cooling load predictions.
By quantifying the importance of input features—such as surface area, aperture count,
orientation, and topological adjacency—XAI can offer architects and engineers transpar-
ent insights into how specific design attributes affect energy outcomes. This capability
can inform envelope optimization strategies that comply with code requirements while
enhancing building performance.

Finaly graph machine learning (GML), especially with 10-fold cross-validation, re-
quires substantial computational resources. For this study, each k-fold training cycle for the
DGL model (including AvgPooling, SAGEConv layers, and 80 epochs) required approxi-
mately 12–15 min on a mid-range GPU (NVIDIA RTX 3060, 12 GB VRAM), amounting to
~1.2–1.5 h for full 10-fold validation. Random Forest (with 90 trees and bootstrap enabled)
was considerably faster, with k-fold runs taking 15–20 min on a standard CPU (Intel i7, 16
GB RAM). These resource demands underscore the need to balance model complexity with
practical training time, particularly for large-scale deployment or real-time applications in
smart building systems.
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