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Silica polymorphs and zeolites are fundamental to a wide range of mineralogical and industrial
applications owing to their diverse structural characteristics and thermodynamic and mechanical stability
under varying conditions. Computational modelling has played a crucial role in understanding the
relationship between the structure and functionality of silicas and silicates, including zeolites. In this
study, we apply the MACE machine learnt interatomic potentials (MACE MP) to model the framework
energies of siliceous zeolites and examine the phase transitions of silica and silicalite polymorphs under
high-pressure conditions. MACE MP offers versatility by handling silicas with different coordination
numbers, unlike earlier and successful IPs such as Sanders potentials (M. Sanders et al., J. Chem. Soc.,
Chem. Commun., 1984, 19, 1271-1273), which are restricted to four-coordinated Si environments and
demand extensive re-parameterisation for higher coordination systems. The results reproduce the
known metastability of siliceous zeolites relative to a-quartz, with energy differences between
microporous and dense phases calculated by MACE-MP-0 medium and density functional theory (DFT)
methods closely aligning with experimental calorimetric data. The high-pressure simulations reveal
distinct compression behaviour in the quartz, coesite, and stishovite polymorphs of silica, with coesite
and stishovite showing increased stability at elevated pressures in line with experimental data. The
calculated phase transition pressures from quartz to coesite (~3.5 GPa) and coesite to stishovite
(~9 GPa) are close to experimental findings, demonstrating the reliability of MACE-mpO in modelling
the structural and energetic properties of silica polymorphs. Furthermore, we examine the behaviour of
fluoride ions motifs such as
pentacoordinated [SiO4F]™ units and central cage-bound F~ species, in agreement with prior DFT and
experimental observations. Thus, we assess and demonstrate the suitability of off-the-shelf machine-
learned foundation models, based on MACE-MP framework, for modelling silica materials of high
importance from earth sciences to electronics and catalysis.
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techniques and density functional theory (DFT) have been
widely and successfully applied to modelling both dense and

Introduction

Dense silicas and silicates are intensively studied materials
owing to their geological and industrial importance. Their
microporous counterparts, zeolites, including both alumino-
silicate and silica materials, have numerous industrial appli-
cations, including catalysis, gas adsorption, and ion exchange,
due to their highly diverse tunable chemical and struc-
tural properties." Classical interatomic potential (IP) based
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microporous silicas and silicates.>® Machine learning (ML)
techniques,””® offer new opportunities, but their viability in
modelling these materials accurately has not been explored in
detail. However, recent developments in foundational poten-
tials and advanced parameterisation techniques of ML poten-
tials have begun to address these challenges, improving their
accuracy and reliability in modelling these materials.”™*
Although there are successful specific machine learning poten-
tials (MP) for dense silica’® ™ and zeolites,""**"** in this work
we assess the suitability of the off-the-shelf MACE-MP method
to model both classes of material.*

Structure enumeration techniques have identified more
than two million possible zeolite frameworks,”*>® but only
240 zeolite frameworks have been synthesised and listed in
the international zeolite association (IZA) database.”® This
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discrepancy is often referred to as the “zeolite conundrum”.*®
As a result, ongoing research is focused on advanced synthesis
methods,®® It is well known that microporous materials are
metastable compared to their dense polymorphs,***! and some
useful correlations between the energies of siliceous zeolites
relative to a-quartz and their framework densities have already
been established.**** In addition, computational methods play
a crucial role in the discovery of new zeolite materials by
enabling the exploration and classification of both known
and hypothetical structures.””***> Hence, we have selected
the reproduction of cohesive energies of dense and several
known microporous silicas as the first test of the MACE ML
potentials.

Further, in tests of the viability of new energy landscape
methods applied to materials, an appealing problem to con-
sider is pressure-driven phase transitions. Considering dense
silicas, the high-pressure transition from quartz to coesite and
then from coesite to stishovite has long been of significant
interest in geophysics and geochemistry, and consequently, the
physical properties and stability relations of these three poly-
morphs have been extensively studied.**® Several experi-
mental investigations have aimed to determine the precise
transition boundaries between quartz and coesite, as well as
between coesite and stishovite, since accurate measurements of
these transitions can serve as important pressure standards at
high temperatures.>**° Moreover, the elastic properties of
quartz, coesite, and stishovite have also been examined using
various experimental techniques.

Among microporous materials, notably, ZSM-5 zeolites includ-
ing their purely siliceous form, silicalite, show polymorphism,
crystallizing in an orthorhombic (Pnma),** monoclinic (P21/
n11),*> and orthorhombic (P212121)* lattice undergoing low-to-
high symmetry transitions with temperature or pressure, and
here we will concentrate on the two phases of silicalite-1. Tradi-
tional IP methods have also been applied to study these phase
transformations,* which can be used as a useful guide.

Previously, Erhard et al.*® for instance, provided a detailed
study of phase transitions in a-quartz under dynamic compres-
sion using an MLIP and captured key pressure-induced trans-
formations, including amorphization and crystallisation into
high-pressure polymorphs such as d-NiAs-type and rosiaite-
structured silica. By benchmarking energy-volume -curves,
phase stabilities, and XRD patterns against DFT calculations,
they demonstrated that an accurate MLIP can closely reproduce
DFT-level energetics and structures up to pressures of 200 GPa.
Importantly, their study highlighted that proper DFT validation
(using modern exchange-correlation functionals like SCAN*®) is
crucial for reliable MLIP development, particularly for transi-
tions involving significant coordination changes (tetrahedral to
octahedral). Tsuchiya and Nakagawa,”” Teter et al,*® and
Dubrovinsky et al.*® further emphasised that elastic constants,
energy barriers, and strain effects must also be carefully bench-
marked against DFT to capture the true mechanical response
under pressure.

A key advantage of the MACE MP is that it is not restricted to
a particular coordination environment, whereas, as noted,
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earlier MP are often parameterised only for four-coordinated
Si environments and require re-parameterisation for five- or six-
coordinated systems.>*>?

On the phase transition from coesite to stishovite, the
silicon changes its coordination number from four to six. A
much less well-characterised but important phenomenon in
the field of microporous silicates is an increase in the coordi-
nation number from four to five in some of the high silica
framework materials synthesised following the fluoride
route.>>>* An interesting test for the performance of the new
potentials is presented by the Si oxifluoride chemistry as the
fluoride ion in open channels or pores of zeolites readily
attaches to one of the framework silicon ions but remains
stable in central regions of smaller cages, e.g., double four-
membered rings (D4R), retaining their original coordination.’”
Reproduction of this behaviour for the systems where it has
earlier been observed experimentally and/or studied with first-
principles calculations thus forms the last challenge we will
consider.’® Fluoride ions contribute significantly to the stabi-
lisation of open structures by forming bonds with silicon
atoms, resulting in five-coordinate Si centres, as analysed and
supported by *°Si and '°F NMR data.”®””

While classical interatomic potentials often incorporate
long-range interactions via explicit Lennard-Jones and Coulom-
bic terms, machine learning potentials such as MACE-MP-0 are
typically short-ranged by design. As such, their ability to
capture long-range physics, such as dispersion forces, depends
directly on whether such effects are present in the training data.
When trained on PBE + D3 data,""® which includes empirical
dispersion corrections, MACE-MP-0 shows significantly
improved performance in predicting cohesive energies com-
pared to training on dispersion-free functionals such as
R’SCAN,"** which shows the importance of including disper-
sion interactions in the training set when aiming to reproduce
properties sensitive to long-range forces.

In this study, we thus investigate the performance of MACE
a graph neural Message Passing machine learnt interatomic
potential which includes atomic cluster expansion in modelling
the framework stability of several siliceous materials in their
dense and microporous forms followed by a study of the phase
transitions of the ground state dense silica polymorph—quartz
first to coesite and then coesite to stishovite under pressure, as
well as another pressure-driven phase transition of a micro-
porous silica polymorph—silicalite-1 from monoclinic to
orthorhombic. To test further the range of applicability of the
ML potential, we apply it to the case of fluoride-modified
zeolites. MACE-MP results closely match those predicted by
DFT techniques and reported from the experiment, achieving
very good chemical accuracy.

Methodology

Machine-learned interatomic potential model: MACE

We have used the MACE architecture, ML-IP framework
designed for atomistic simulations.*®*° The MACE architecture
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is grounded in equivariant message-passing graph tensor net-
works that retain key geometrical and physical symmetries of
atomic structures, making it highly suitable for simulating
diverse materials and chemical processes.’® This model was
chosen for its accuracy in capturing the potential energy
surfaces (PES) of materials while ensuring computational effi-
ciency comparable to classical force fields. MACE builds on the
atomic cluster expansion (ACE) approach,® employing higher
body-order equivariant features. In this implementation, we
used a model with four-body equivariant features and two
layers of message passing to capture complex atomic interac-
tions. The radial cutoff was set at 6 A, giving a perception field
of 12 A, with the function of interatomic distances expanded
into 10 Bessel functions,®* which was followed by a smooth
polynomial cutoff function to construct radial features that
were fed into a fully connected feed-forward neural network.

We employed the publicly available MACE-MP-0, medium,
as described by Batatia et al.>® MACE-MP-0 was trained on
the model MPtrj dataset,®® which consists of approximately
1.5 million DFT-relaxed configurations derived from ~ 150 000
unique crystal structures in the Materials Project database. The
DFT calculations were carried out using the Perdew-Burke-
Ernzerhof (PBE)®** exchange-correlation functional within the
GGA framework.

The MPtrj dataset is dominated by small-unit-cell inorganic
crystals, with a significant representation of oxides, including
numerous structures containing Si-O bonding motifs. Notably,
the MACE-MP-0 paper®® presents applications involving SiO,/
water interfaces and zeolites, which strongly suggests that silica
polymorphs are well-represented in the training data.

To contextualise the performance of MACE-MP-0 on zeolitic
systems, we note that the training dataset (MPtrj) includes
approximately 145 structures containing the key elements Si,
O, Al, and H relevant to zeolites, representing ~0.01% of the
total 1.5 M configurations.

To ensure accuracy and efficiency, we selected the medium-
sized model from the MACE framework for all simulations,
which balances computational cost and fitting precision. How-
ever, for comparison, we have also used three extra models, all
in medium flavour: MACE-MP-mpa, MACE-MP-omat, and
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MACE-r’scan (see Tables 2 and 3). In addition, we added an
empirical D3 correction.’” Geometry optimisation was done
employing algorithms implemented in an atomistic simulation
environment, specifically L-BFGS and FrechetCellFilter, when
cell parameters were optimised.®’

As MACE-MP-0 is a machine-learned interatomic potential
trained entirely on DFT data from the MPtrj dataset, its
accuracy is inherently limited by the capability of the under-
lying DFT calculations, specifically those using the PBE
exchange-correlation functional. While the model can repro-
duce DFT-level energies and forces with high fidelity and
significantly reduced computational cost, it cannot exceed the
accuracy of the reference DFT data itself. Consequently, the
most appropriate comparison for evaluating the performance
of MACE-MP-0 is against PBE-based DFT calculations rather
than direct experimental measurements. Agreement with the
experiment is therefore only expected to the extent that PBE-
DFT accurately reproduces experimental observables. We have,
however, noticed an improvement in comparison to experiment
of our calculated energies and structural parameters on addi-
tion of the D3 dispersion terms to the ML force field, which has
then been pursued throughout.

In addition, classical interatomic potential (IP) calculations
were performed using GULP,°® while DFT calculations
employed both VASP®” (from Edward et al.®®) and FHI-aims,
depending on the system studied. ML-IP simulations using the
MACE model were carried out through the janus-core.”®

Gulp. Geometry optimisation and lattice dynamics calcula-
tions were performed using the general utility lattice program
(GULP).*®* The dense and framework silica structures
were studied with the space group symmetry set to P1, and
the initial fractional coordinates, cell parameters, and species
types were provided explicitly (see GitHub repository). The
atomic interactions were modelled using a core-shell
model'™* to account for the polarizability of the oxygen ions
(see Table 1).

FHI-aims. All-electron DFT calculations were performed
using the FHI-aims code® with the PBE exchange-correlation
functional. Long-range dispersion interactions were treated
using the Tkatchenko-Scheffler method based on the Hirshfeld

Table 1 Interatomic potential parameters used in GULP calculations
Interaction Parameter Value Unit Notes
Charges Si (core) +4.000 e Formal charge
O (core) +0.86902 e
O (shell) -2.86902 e
Buckingham potentials Si-O A =1283.907 ev Cutoff = 10.0 A
p =0.32052 A
C = 10.66158 ev A°
0-0 A = 22764.000 ev Cutoff = 12.0 A
p = 0.14900 A
C=27.879 ev A°
Shell model spring constant o] 74.92 evA~? Cutoff = 0.8 A
Three-body angle potential 4 0-Si-O 109.47° ¢ Si-O distance range: 0.0-1.8 A
2.09724 eV rad? 0-0 distance range: 0.0-3.2A
Optimization convergence tolerances Coordinate 1x10°8 — xtol
Gradient 1x1077 — gtol
Energy 1x 10" — ftol
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charge density partitioning scheme for the van der Waals
correction in a non-self-consistent scheme.

Scalar relativistic effects were included via the atomic
ZORA approximation. Self-consistent field (SCF) calculations
employed Gaussian smearing (width 0.01 eV), Pulay mixing
(mixing parameter 0.2), and a maximum of 500 SCF iterations.
Convergence thresholds were set to 1 x 107> eV for energy, 1 x
107° eV Bohr® for charge density, and 1 x 107° eV for
eigenvalue shifts. Full structural relaxations, including cell
shape and volume, were performed using the BFGS algorithm
with a force convergence threshold of 5 x 107* ev A™. An
intermediate-tier basis set was used for both Si and O species.

All important files used in this study are provided at (https://
github.com/Jamal-tech-git/Inputs-data-) to ensure reproducibility.

Results and discussion
Modelling framework energies

We made a comparison of our calculated cohesive energies,
using the MACE MP method with respect to a-quartz (the
ground state silica polymorph under ambient conditions), with
the data obtained here and from the literature using classical
IP,°® DFT,® and experimental calorimetric data from Navrotsky
and co-workers®"”" (see Table 2 and Fig. 1). MACE_MP_0
medium model produces remarkably close results when com-
pared to DFT (PBE + D3), especially across a wide variety of
zeolite frameworks. The results show that IP lattice energy
methods generally predict higher values than experiment,
while DFT and MACE ML-IP results are much closer, within
~1 kJ mol ! of each other.

In most cases, the MACE MP, e.g. mp0 results, are nearly
indistinguishable from DFT, demonstrating the accuracy and
reliability of the machine learning approach in predicting
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cohesive energies. For example, the MACE-mp0O energy for
AFI (10.5 kJ mol™") closely aligns with the DFT result
(10.0 kJ mol ). Similarly, for MFI/ZSM-5, MACE-mp0 predicts
an energy of 8.5 k] mol*, nearly identical to the DFT value of
8.3 k] mol~'. When examining more complex frameworks, such
as MEI/ZSM-18 and STT/SSZ-23, MACE-mp0 maintains strong
alignment with DFT predictions and the calorimetric data. The
MACE-mp0 and DFT energies for STT/SSZ-23 are nearly iden-
tical, both at 11.4 k] mol ", which demonstrates that the MACE-
mp0 model is particularly reliable for such structures. For MEI/
ZSM-18, the MACE-mp0 value of 13.3 k] mol " is close to the
DFT result of 13.0 k] mol ", showing a minor deviation but still
well within an acceptable range. In general, if better accuracy is
needed, one can fine-tune MACE_MP, which we will explore in
future work.

Comparing the crystal energetics, the MACE-mp0 calcula-
tion consistently outperforms those obtained from the shell
model and the IP calculations. For example, for the CHA
framework, the IP result (16.1 k] mol ') overestimates the
energy compared to both MACE-mp0 (12.9 k] mol ) and DFT
(12.2 k] mol™"), with MACE-mp0 providing a closer match to
DFT and experimental values. The same behavior is observed
for other frameworks such as MWW/ITQ-1 and BEA, where
MACE-mpO0 predictions are more aligned with DFT and experi-
mental data than IP results. The strong correlation between
MACE-mp0 and DFT demonstrates the efficiency of the MACE-
mpO method in achieving near-DFT accuracy across different
zeolite structures. The few minor discrepancies observed
between MACE-mp0 and DFT in complex structures can prob-
ably be refined with further fine-tuning of the ML model. The
overestimation of the cohesive energies of the microporous
silicas with respect to the quartz by the IP methods probably
arises from the inability of fixed charge potentials to model the
effects of small variations in the charge distribution on

Table 2 Calculated and experimental normalised zeolite cohesive energies (kJ mol™Y) per T-site with respect to a-quartz

Structure 1P DFT MACE-mp0 MACE_mpa MACE_omat Experiment
AFI 11.9 10 10.5 11.58 11.8 7.2
AST 18.1 12.7 13.8 14.5 14.8 10.9
BEA 14.4 11 11.3 12.6 12.9 9.3
CFI/CIT-5 12.7 12 12 13.2 13.6 8.8
CHA 16.1 12.2 12.9 13.7 13.7 11.4
IFR/ITQ-4 15 10.3 10.2 11.7 11.6 10
MEL/ZSM-11 10.8 9.2 9.4 10.4 10.7 8.2
MFI/ZSM-5 9.7 8.3 8.5 9.7 9.8 6.8
MWW/ITQ-1 14.4 11.2 11.2 12.3 12.3 10.4
STT/SSZ-23 14.7 11.4 11.4 12.6 12.5 9.2
EMT 20.1 13 13.3 14.3 14.4 10.5
FER 11.8 9.6 10 11.2 11.5 6.6
MEI/ZSM-18 18.9 13 13.3 14.5 14.4 13.9
Cristobalite® 34 5.1 2.5 3.2 2.8 2.64
Tridymite® 4.4 6.8 3.6 4.4 4.1 5.3
Coesite” 2.02 1.85 2.2 2.9 2.5 5.1
Stishovite® 133.8 39.5 37.9 29.9 21.2 49.4
W-Si0," 244.9 116.6 128.7 129.4 134.8 —
0-5i0," 5.2 7.3 6.6 5.3 8.4 —
Moganite® 1.1 0.3 0.3 0.7 0.5 —
Keatite” 6.5 4.5 4.04 4.5 4.6

“ The IP and DFT data for materials labeled with a are reported from our calculations whereas the rest are from ref. 68.
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Fig. 1 Comparison of calculated lattice energies for selected zeolite and silica polymorphs using IP,%8 shell model (with Sanders potentials),”? DFT,%®
MACE ML-IPs, and experimental values.>*"*”3 Lattice energies (kJ mol™?) are shown for a range of zeolitic frameworks and SiO, polymorphs, computed
using empirical interatomic potentials (IP, blue), density functional theory (DFT, orange), and three machine-learned interatomic potential models
(MACE_mpO, green; MACE_mpa, red; MACE_omat, purple). Experimental lattice energies (EXP, brown) are included where available. Structures are
arranged along the x-axis and include zeolites such as AFI, BEA, and ZSM-5, as well as silica polymorphs including a-cristobalite, a-tridymite, coesite,

stishovite, and moganite.

Table 3 Calculated and experimental cohesive energies (in kJ mol™?) for selected zeolites. Values are reported for two MACE-MP models, MACE-r2scan
and MACE-mp0O, both with (w) and without (w/o) dispersion effect. DFT-calculated values and experimental measurements are also shown for

comparison

Zeolite MACE-r2scan (w/disp) MACE-r2scan (w/o disp) MACE-mp0 (w/disp) MACE-mp0 (w/o disp) DFT EXP
AFI 14.23 1.49 10.5 —-0.71 10.0 7.2
AST 17.22 2.12 13.8 0.35 12.7 10.9
BEA 15.28 2.28 11.3 0.05 11.0 9.3
CHA 16.29 1.08 12.9 —0.58 12.2 11.4
Cristobalite 7.42 —0.09 2.5 —3.28 5.1 2.64

changing from a dense to a microporous structure, as discussed
by Stacey et al.,”” although we should note that the IP techni-
ques correctly reproduce trends and also model crystal struc-
tures accurately.

To assess the role of dispersion interactions in machine
learning interatomic potentials, we tested another MACE model
trained on r*SCAN'" reference data and compared its perfor-
mance against the previously established MACE-mp0 model.
Both models were evaluated with and without the inclusion of
dispersion corrections, implemented in analogy to the D3''?
approach commonly employed in DFT. Across a representative
set of zeolite structures, as shown in Table 3, the inclusion of
dispersion consistently improved agreement with both DFT
and experimental lattice energies. Notably, the MACE-mp0
model with dispersion showed the closest correspondence to
experimental values, highlighting the significance of long-
range interactions in stabilising extended framework materials.
In contrast, the r*SCAN-based model tended to overestimate
lattice energies when dispersion was included and highly
underestimated the relative energies without dispersion, sug-
gesting that higher-level reference data do not necessarily lead
to better performance without appropriate treatment of non-
local effects.

While machine-learned interatomic potentials can closely
reproduce the reference DFT data they are trained on, their

This journal is © the Owner Societies 2025

absolute accuracy is ultimately bounded by the accuracy
of the underlying DFT method, which is evident in the
cohesive energy values reported in Tables 2 and 3, where even
the best-performing models show systematic small deviations
from experimental data. Such discrepancies are small docu-
mented in the literature and often arise from a combination of
factors, including the limitations of the DFT exchange—-correla-
tion functional, neglect of temperature effects in the simula-
tions, and experimental uncertainties in
measurements.”*””

calorimetric

Modelling phase transition energies

Next, we compute the change in energy AE of formation
between quartz and cristobalite, which is a key thermodynamic
property, essential for understanding the phase transformation
of silica, as shown in Table 4. The MACE-mp0 computed value

Table 4 Enthalpy of formation changes between quartz and cristobalite

Temperature Enthalpy change

(K) (k] mol™") Ref.

298 2.64 76

970 1.88 73

— 2.50 This work
(MACE-mp0)

Phys. Chem. Chem. Phys.



Paper

of AE, 2.5 k] mol ™", falls within the experimental range of 1.88
to 2.64 k] mol™'; Kracek’® measured a value of 0.63 kcal mol™*
(2.64 k] mol ") at room temperature, while Holm”* reported
0.45 kcal mol™" (1.88 kJ mol ') at 970 K. Although, we have
found strong agreement between MACE-mpO results and
empirical findings; we believe, the MACE-mp0 prediction for
a-cristobalite to lie closer to the experimental value than the
DFT result, is coincidental and does not imply that the MACE-
MP-0 MLIP exceeds the accuracy of its DFT training reference.

High-pressure phase transitions and structural response

A major challenge to any modelling techniques when applied to
silica and silicates is to predict the response of the materials to
pressure, which we explore in this section.

Lattice parameters and angle as a function of pressure in
SiO, polymorphs. Silica can exist in a variety of crystalline
forms, including o- and B-quartz, o- and B-tridymite, o- and
B-cristobalite, coesite, keatite, and stishovite.””5° Except for
stishovite, these polymorphs consist of corner sharing SiO,
tetrahedra with minimal bond length and angle distortion.®"
Under high pressures, silica polymorphs undergo structural
transitions.®*®® Stishovite, with a rutile structure, has silicon
octahedrally coordinated by six oxygen atoms.** Denser phases
with high density, low compressibility, and high elastic mod-
ulus are suggested at even higher pressures.

The behaviour of a-quartz, under high-pressure conditions,
has been the focus of numerous experimental investig-
ations.®*>*® To examine the role of high pressure on the
structural changes of three main room-temperature ground-
state phases of SiO,, we conducted MACE-mp0 simulation and
observed that as pressure increases, all three phases of
SiO,—quartz, coesite, and stishovite—show a decrease in their
lattice parameters,”” though the extent and nature of the
compression vary based on their crystal structures (Fig. 2).
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Quartz exhibits significant compression along all axes as can
be seen in Fig. 2a. This behaviour is consistent with the trigonal
symmetry of quartz, where the atomic arrangement along the c-
axis is more compressible.®® Despite the reduction in lattice
dimensions, the crystallographic angles remain constant, with
o and f at 90° and y at 120°. In coesite, a high-pressure
polymorph of quartz,®® the compression proceeds relatively
uniformly along all three lattice directions, with a slightly
greater reduction along the g-axis (Fig. 2b). We have rescaled
the lattice parameters of the supercell to reflect the unit cell
dimensions, allowing direct comparison with experimental
data.®>°° At ambient pressure, the calculated lattice parameter
values of coesite are in close agreement with experiment (a ~
713 A, b ~ 12.37 A, and ¢ &~ 7.17 [i). The monoclinic § angle,
which is not constrained by symmetry, decreases modestly with
pressure (up to 20 GPa), from just above 120° to just below 118°,
matching the trend observed in experiment.®*>*° Coesite under-
goes a phase transition beyond ~20 GPa, forming coesite-II,
followed by further transitions at higher pressures to coesite-III,
and eventually to coesite-IV and coesite-V, which exhibit
complex structures with tetra-, penta-, and hexa-coordinated
silicon atoms.’" Stishovite, the densest and highest-pressure
polymorph of SiO,, behaves differently. The compression in
stishovite is somewhat anisotropic, with the lattice parameters
a, b and c-axis remaining relatively stable,”® which indicates
that stishovite’s tetragonal structure resists compression along
all axes, likely due to the tight atomic packing. Like quartz and
coesite, the angles in stishovite (¢, ff, and y) remain constant at
90°, preserving the tetragonal symmetry under pressure
(Fig. 2c).

Moreover, to compare the compressional behaviour of
quartz and stishovite, we analysed the evolution of their c/a
ratios as a function of pressure. As shown in Fig. 3, the c/a ratio
of quartz increases steadily with pressure, reflecting anisotropic
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compression of the crystal lattice, where the c-axis becomes
relatively less compressible than the a-axis. In contrast, stisho-
vite exhibits a nearly constant c¢/a ratio (~1.274) across the
entire pressure range studied, indicating a nearly perfect iso-
tropic compression response, highlighting a fundamental dif-
ference in the structural rigidity and deformation mechanisms
between the two polymorphs of SiO,.

Lattice parameters and angle as a function of pressure in
silicalite polymorphs. The pressure dependence of lattice para-
meters and angles for the orthorhombic and monoclinic
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phases of silicalite is examined next. In the orthorhombic
phase (Fig. 4a), the lattice parameters a, b, and ¢ exhibit a
smooth and gradual decrease with increasing pressure, char-
acteristic of uniform compression. This consistent reduction in
lattice dimensions reflects the structural stability of the orthor-
hombic phase across the entire pressure range, with no evident
anomalies. The cell angles remain constant at 90°, indicating
the preservation of orthorhombic symmetry throughout the
compression process.

In the monoclinic phase of silicalite-1, the § angle increases
smoothly from 90.65° at ambient pressure to 91.15° at 1.3 GPa,
indicating increasing monoclinic distortion (Fig. 4b). At
approximately 1.4 GPa, a sharp transition occurs, with f drop-
ping to 90.0°, accompanied by discontinuities in the lattice
parameters, which suggests a pressure-induced transition to a
more symmetric, or less distorted structure. Upon decompres-
sion, the lattice parameters retrace their original values
smoothly; however, the f angle remains constant at 90.0°,
without returning to its original higher value.

This aligns well with the experimental data reported by
Mario et al.,”® who found that the monoclinic angle « remained
unchanged under pressure, indicating no clear tendency
toward a transition to the orthorhombic form. We infer that
while the orthorhombic phase remains structurally stable
under compression, the monoclinic phase undergoes a signifi-
cant structural transformation near 1.5 GPa. The pressure-
induced change in the f angle in the monoclinic phase
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Fig. 4 Change of the unit cell lattice parameters and angles as a function of pressure (up to 3 GPa) for two different polymorphs of silicalite:

(a) orthorhombic, and (b) monoclinic.
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suggests a reversible phase transition, possibly involving a shift
toward a more stable symmetric structure at higher pressures.

Volume as a function of pressure in SiO, polymorphs. Next,
we study the variation in volume as a function of pressure for
all three dense ground-state SiO, polymorphs: quartz, coesite,
and stishovite. Fig. 5 illustrates the calculated variation in
volume per formula unit with increasing pressure for the three
polymorphs. Each of these polymorphs displays distinct beha-
viour under compression, reflective of their differing crystal
structures and stability ranges.

Starting with quartz, which exhibits the most significant
reduction in volume with increasing pressure. At ambient
conditions, quartz has the largest volume among the three
polymorphs,®*®> which decreases progressively as pressure
increases. As observed, the rate of compression is initially
rapid, indicating that quartz’s hexagonal crystal structure is
relatively flexible and can accommodate significant reductions
in atomic spacing under pressure. However, at pressures above
10 GPa, the rate of volume decrease begins to slow, suggesting
that the quartz structure becomes increasingly resistant to
further compression as it approaches its structural limits.
Coesite shows a less pronounced reduction in volume with
pressure compared to quartz.’® The decrease in volume with
pressure is more gradual, which is expected given coesite’s
formation at relatively higher pressures, where its atomic
arrangement is already more compact. Similar to quartz, coe-
site exhibits a slight reduction in the rate of compression at
higher pressures (above 10 GPa). Finally, stishovite, the densest
of the three polymorphs,’® demonstrates the least compressi-
bility under pressure, since its initial volume is significantly
lower than both quartz and coesite and also has minimal
volume reduction as pressure increases. The near-flat slope of
the volume-pressure curve for stishovite indicates that even at
20 GPa, its structure is quite stable and resistant to further
compression, which is in good agreement with in situ synchro-
tron X-ray diffraction experimental data.’”

Volume as a function of pressure in silicalite polymorphs.
We have further investigated the volume behaviour of mono-
clinic and orthorhombic silicalite polymorphs under varying
pressure, as illustrated in Fig. 6. Initially, both polymorphs
show a linear decrease in volume with increasing pressure up to
about 1.0 GPa, with the monoclinic phase displaying a slightly
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larger volume than the orthorhombic phase. Around 1.35 GPa,
the monoclinic phase undergoes a sharp volume reduction,
signalling a phase transition. After this point, the volume-
pressure behaviour of both phases converges, suggesting simi-
lar structural responses to pressure beyond the transition. This
phase transition aligns with previously reported pressure
ranges for the monoclinic to orthorhombic transformation in
silicalite, typically occurring between 1.0 and 1.5 GPa.’®®° The
orthorhombic phase, meanwhile, shows a consistent and
smooth decrease in volume, indicating its stability throughout
the pressure range.

Enthalpy as a function of pressure in dense SiO, poly-
morphs. We have calculated the enthalpy (H) as a function of
pressure for the silica polymorphs quartz, coesite, and stisho-
vite using MACE-mp0 as shown in Fig. 7 and Table 5. Our
results show distinct linear relationships between enthalpy and
pressure for each phase, which we have correlated with experi-
mental data.”® The transition from quartz to coesite in our
calculations occurs at approximately ~3 GPa, consistent with
the experimentally observed transition pressure of ~2.5 GPa.”®
Schafrinna et al.'°® identified an atomistic, diffusionless mar-
tensitic pathway for the quartz-to-coesite transition using DFT
calculations. The energy barrier (~150 meV per atom) remains
pressure-independent up to 5 GPa, and coesite formation
occurs under non-hydrostatic stress conditions at ~2 GPa,
below the equilibrium transition pressure. The coesite to
stishovite transition, which we calculate occurs at approxi-
mately ~9 GPa, in good agreement with experimental findings
(8-8.5 GPa).”® It was reported that stishovite is stable at
pressures between ~9 GPa and 50 GPa,**"*" which also aligns
well with our findings.

Enthalpy as a function of pressure in silicalite polymorphs.
As already discussed above where we focussed on the structural
data, purely siliceous silicalite shows polymorphism, crystal-
lising in an orthorhombic (Pnma),"" monoclinic (P21/n11),*?
and orthorhombic (P212121)** lattice. A monoclinic-to-
orthorhombic phase transition (MOPT) with temperature has

This journal is © the Owner Societies 2025
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Table 5 Phase transition pressures for the three main room-temperature
ground-state polymorphs of silica

Property Quartz to coesite Coesite to stishovite
Exp. pressure (GPa) 2-2.57 8-8.5,% ~9*°
Calc. pressure (GPa) ~3.5 ~9

first been observed, where the monoclinic phase is stable below
the transition temperature, and the orthorhombic phase is
stable above the transition temperature.’®> On the other hand,
the pressure-induced MOPT was also reported to take place
between 1 and 1.5 GPa at a constant room temperature,’®*°
while there is still uncertainty in the experimental literature
whether it is reversible’*'%* or not®® upon decompression. To
this end, we also predict a phase transition around 1.4 GPa, in
very good agreement with already reported data®®°°—see Fig. 8.

Fluoride chemistry in zeolites

The role of fluoride ions (F) in zeolite synthesis is well-
established. Fluoride ions are frequently used as mineralising
agents in hydrothermal synthesis, where they aid the formation
of highly crystalline, defect-free silica frameworks.'** They play
an important role in zeolite synthesis and have been observed
forming pentacoordinated silicon units, denoted as [SiO,,F]
and also shown as SiO,F . These units exhibit a trigonal
bipyramidal geometry with Si-F bond distances of approxi-
mately 1.7 A, contributing to the overall stability of the frame-
work during synthesis processes.’”'>

In zeolite frameworks, fluoride ions are typically located
within specific cages of IFR (ITQ-4), STF (SSZ-35), and STT (SSZ-
23), as well as in double four-ring (D4R) units and larger cages

This journal is © the Owner Societies 2025
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in structures like ITH.'®® The distribution of fluoride ions is

influenced by a two-step process. In the first step, long-range
electrostatic interactions between fluoride ions and structure-
directing agents (SDA") determine the cages that will be occu-
pied. In the second step, fluoride ions form covalent bonds
with silicon atoms within these cages to create energetically
stable [Si0,,F]” units.'”'*° Both experimental and computa-
tional approaches have provided insights into the behaviour of
fluoride in zeolites. Solid-state NMR and X-ray diffraction
techniques have identified the location and bonding environ-
ment of fluoride ions. Computational studies, including defect
energy calculations, have shown that the positions of fluoride
ions within zeolite cages are strongly influenced by both their
interaction with structure directing agents (SDAs) used in
synthesis and their ability to form stable bonds with silicon,
which are consistent across several zeolite structures.””"'?

Fluoride can adopt various configurations in zeolites, as
outlined by Attfield et al,'® who identified three primary
environments for F~ jons: (i) as part of an ion pair near an
SDA, (ii) centrally located in small cages, and (iii) coordinating
with Si to form pentacoordinated SiO F units. The inclusion of
fluoride may help stabilize the D4R structure, as observed in
earlier studies by Flanigen and Patton, who first noted the
importance of F~ in promoting zeolite formation."*°

In the absence of direct experimental measurements for the
heat of adsorption or formation of F~ species in silica frameworks,
we benchmark our MACE-ML results against DFT calculations,
which have been shown to accurately reproduce experimental
structural parameters of fluoride-containing zeolites. We examined
the similar behaviour of F~ within different zeolite frameworks
using the MACE-mp0 model as shown in Fig. 9. To model the
system, NH," ions are included explicitly to balance the charge of
the F~ species. The NH," ions are typically located in adjacent cages
or channels, stabilizing F~ through electrostatic interactions. Our
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results show that F~, when located inside a D4R, consistently
positions itself at the center of the double ring (case ii) and does
not coordinate directly with any silicon atoms, which is consistent
with our earlier DFT reported data,' where fluoride ions are
described as residing in small D4R cages, far from Si atoms. Also,
the formation of pentacoordinated Si species, in which F~ coordi-
nates directly with Si, has been already reported'* showing that F~
forms part of a trigonal bipyramidal SiO,F~ unit (case iii) in zeolites
like MFI, FER and CHA, which agrees with our findings.

Summary and conclusions

We have examined the structural and thermodynamic
properties of silica polymorphs and siliceous zeolites using
the MACE-mp0 model. The MACE model, which offers near-
DFT accuracy with greater computational efficiency, was used
to predict framework energies and phase transitions in silica
polymorphs. MACE mp0 excels in modelling both zeolitic and
dense silicas, overcoming the coordination limitations of ear-
lier IPs. The MACE-mp0 results with dispersion showed excel-
lent agreement with both DFT + D3 calculations and
experimental data, particularly in predicting framework ener-
gies for various zeolite structures. In comparison to earlier IP
models, MACE-mp0 delivered more accurate results, closely
matching DFT predictions for complex frameworks including
MFI/ZSM-5, MEI/ZSM-18, and STT/SSZ-23. The model also
accurately predicted pressure driven phase transitions for silica
polymorphs, including quartz to coesite (~3 GPa) and coesite
to stishovite (~9 GPa), aligning well with experimental obser-
vations. In silicalite polymorphs, the monoclinic-to-
orthorhombic transition around 1.35 GPa was observed, which

Phys. Chem. Chem. Phys.

also corresponds well with experimental data. Structural
changes under pressure were also analysed for both silica and
silicalite polymorphs, which showed distinct compression patterns.
Furthermore, we explored fluoride ions’ role in zeolite synthesis,
highlighting their stabilising effects in double four-membered
rings and pentacoordinated SiO,F~ units, consistent with known
behaviour in zeolites. MACE-mp0 model demonstrates accuracy
and efficiency in predicting the energetics and structural response
of zeolites and silica polymorphs, and its close alignment with
experimental data and DFT predictions makes it a valuable tool in
zeolite research, evaluating new frameworks and understanding
phase transitions.
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