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abstract

We consider the minimum weight and smallest weight minimum-size dominating set prob-

lems in vertex-weighted graphs and networks. The latter problem is a two-objective op-

timization problem, which is di�erent from the classic minimum weight dominating set

problem that requires �nding a dominating set of the smallest weight in a graph without

trying to optimize its cardinality. In other words, the objective of minimizing the size of

the dominating set in the two-objective problem can be considered as a constraint, i.e.

a particular case of �nding Pareto-optimal solutions. First, we show how to reduce the

two-objective optimization problem to the minimum weight dominating set problem by

using Integer Linear Programming formulations. Then, under di�erent assumptions, the

probabilistic method is applied to obtain upper bounds on the minimum weight domi-

nating sets in graphs. The corresponding randomized algorithms for �nding small-weight

dominating sets in graphs are described as well. Computational experiments are used to

illustrate the results for two di�erent types of random graphs.
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1. Introduction

1.1. Basic notions, notation, and motivation

We consider undirected simple vertex-weighted graphs

G = (V,E,w : V → R),

where V = V (G) = {v1, v2, ..., vn} is the set of vertices, E = E(G) = {e1, e2, ..., em} is the

set of edges of G, and w : V → R is a weight/cost function that assigns a certain weight

wi = w(vi) to each vertex vi of G, i = 1, ..., n. The neighbourhood of a vertex v in G is

denoted by N(v), i.e. N(v) = {u | vu ∈ E, u ̸= v}. Any vertex in N(v) is a neighbour of

v. The closed neighbourhood of v is denoted by N [v] = N(v) ∪ {v}. For a set of vertices

A ⊆ V ,

N(A) =
⋃
v∈A

N(v) and N [A] = N(A) ∪ A.

The degree of a vertex vi is the number of its neighbours and is denoted by di = d(vi),

i = 1, ..., n. A sequence of vertex degrees of G is denoted by d̄ = (d1, d2, ..., dn). The

minimum and maximum vertex degrees of G are denoted by δ = δ(G) and ∆ = ∆(G),

respectively.

A subset X ⊆ V (G) is called a dominating set of G if every vertex not in X is adjacent

to at least one vertex in X. The minimum cardinality of a dominating set of G is called

the domination number of G and denoted by γ(G). We denote by γw(G) the smallest

weight of a dominating set in a vertex-weighted graph G, and by γ∗w(G) the smallest

weight of a minimum-cardinality dominating set D in G. Clearly, γw(G) ≤ γ∗w(G). As an

illustration, Figure 1 shows a vertex-weighted graph K3,3, where the vertices are labelled

A,B,C,D,E, F , and the corresponding weights are shown inside of each vertex. This

graph has two (minimal by inclusion) dominating sets of cardinality 3, {A,B,C} and

{E,D, F}, and nine dominating sets of cardinality 2, {A,D}, {A,E}, {A,F}, {B,D},
{B,E}, {B,F}, {C,D}, {C,E}, and {C,F}. It is easy to see that γ(K3,3) = 2, γw(K3,3) =

3 (given by {A,B,C}), and γ∗w(K3,3) = 4 (given by {C,D}, {B,D}, and {A,D}).
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Fig. 1. Vertex-weighted graph K3,3

The total weight of a vertex-weighted graph G is

wG =
∑
vi∈V

wi.
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Also,

wmax = max
1≤i≤n

wi, wmin = min
1≤i≤n

wi, wave =
wG

n
,

so that

wmax ≥ wave ≥ wmin.

Weighted domination in graphs and networks can be used, for example, for modelling a

problem of the placement of a small number of transmitters in a communication network

such that every site in the network either has a transmitter or is connected by a direct

communication link to a site that has such a transmitter. In addition, there are some

`costs' associated with placing a transmitter in each particular location of the network

(i.e. a vertex of the corresponding graph). The minimum weight dominating set prob-

lem usually does not place any restrictions on the size of the dominating set, i.e. the

number of transmitters in this case � it only requires us to �nd a smallest weight/cost

dominating set in a vertex-weighted graph. However, the total emitted radiation in the

environment would be smaller with fewer transmitters installed. Therefore, if the weight

associated with each vertex of the graph is considered as a cost function or some nuisance

measurement parameter (e.g. a level of noise at the site of an installed transmitter), the

corresponding problem becomes a multi-criteria minimization problem, where the objec-

tive is to �nd a minimum cost smallest-cardinality dominating set in a weighted graph.

The weights of vertices in the graph can also indicate a local impact or a level of in-

�uence of placing a facility in each particular location; for example, see positive in�uence

dominating sets in social networks [17, 24]. In this case, we have a multi-criteria opti-

mization problem of �nding a smallest-cardinality dominating set X in a graph G because

of the limited availability of the resource. On the other hand, the set X needs to provide

the maximum positive level of impact on the whole network represented by G. In other

words, it is necessary to �nd a smallest-cardinality dominating set X in G such that its

total weight w(X) =
∑

vi∈X wi is maximized.

Assuming that all weights wi are non-negative and wmax > 0, the last problem can be

reduced to the corresponding minimization problem as follows. We can scale the weights

at vertices of G to the interval [0, 1], for example by dividing each of them by a positive

constant wmax, so that αwi ∈ [0, 1], where α = 1/wmax. Then, replace all original weights

wi by the values ψi = 1 − αwi. Clearly, ψi ∈ [0, 1] for i = 1, ..., n. Now, the problem of

�nding a minimum-size dominating set X of the largest possible weight w(X) =
∑

vi∈X wi

in G is equivalent to maximizing α
∑

vi∈X wi on the set of all minimum-size dominating

sets X ⊆ V (G). Assuming that γ(G) is known, this is equivalent to minimizing the

sum
∑

vi∈X ψi with an additional constraint on the cardinality of the dominating set, i.e.

|X|= γ(G), and we minimize∑
vi∈X

ψi = |X|−α
∑
vi∈X

wi = γ(G)− α
∑
vi∈X

wi,

where γ(G) and α are constants. Notice that

w(X) = wmax ·

(
γ(G)−

∑
vi∈X

ψi

)
.
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Therefore, we can focus on the minimization version of the general two-objective optimiza-

tion problem. Notice that, in the classic single-objective minimum weight dominating set

problem, vertices of weight zero and their neighbours can be removed from the graph.

For some other examples of applications of dominating sets, multiple dominating sets

in a so-called reachability graph are used in [12, 8] to optimize refuelling facility locations

in a road network. Notice that each facility location in a road network can be associated

with a certain cost, and this can be modelled by vertex-weighted reachability graphs. An

application of dominating sets to model and optimize backbone sets in wireless sensor

networks is described in [27].

1.2. Related results and complexity issues

Some recent research progress and methods for solving di�erent types of dominating set

problems can be found in [1, 3, 8, 12, 21, 27]. The problem of �nding the exact value of

γ(G) in a graph G is one of the classic NP-hard problems [15]. Moreover, the problem

is known to be APX-hard (e.g. see [23]) and not �xed parameter tractable [10]. Hence,

the problem of �nding a minimum or maximum weight smallest-cardinality dominating

set in a graph G is also NP-hard and not �xed parameter tractable in general. Therefore,

it is necessary to have e�cient and e�ective heuristic algorithms and methods for �nding

small-size and light- or heavy-weight dominating sets in graphs. Also, to estimate the

quality of a given dominating set, it is important to have good bounds for the domination

number γ(G) and for the smallest or largest weight w(D) of dominating sets D ⊆ V (G).

The following upper bounds for the domination number γ(G), which can be obtained

using the probabilistic method, are well-known:

Theorem 1.1 ([2, 20]). For any graph G,

γ(G) ≤ ln(δ + 1) + 1

δ + 1
n. (1)

Theorem 1.2 ([6, 20, 19, 22]). For any graph G with δ ≥ 1,

γ(G) ≤
(
1− δ

(1 + δ)1+1/δ

)
n. (2)

These upper bounds are known to be asymptotically sharp by using Alon's construction

(e.g. see [26]). Also, by applying the probabilistic method, these upper bounds have been

generalized for directed graphs [22] and for several other domination parameters in simple

unweighted graphs [13, 14, 27].

Chen et al. [7] showed that the single-objective minimum weight dominating set prob-

lem is APX-hard and provided a simple greedy heuristic achieving an O(log n) approxi-

mation ratio, which is asymptotically the best possible in that case. The authors of [7]

also gave a randomized rounding heuristic for a linear relaxation of an Integer Linear

Programming (ILP) formulation of the problem. The authors in [17] used a randomized

rounding heuristic for a linear relaxation of an ILP formulation for a variation of this

problem. Notice that the minimum size dominating set problem can be considered as a
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particular case of the minimum weight dominating set problem by assigning unit weights

to all vertices of the graph. It is easy to see that the (two-objective) smallest or largest

weight minimum-size dominating set problem in vertex-weighted graphs is APX-hard as

a generalization of the minimum-size dominating set problem in simple graphs.

Also, notice that the domination number γ(G) of a graph G exhibits the asymptotic

property of having two points of concentration in random graphs [25] (and digraphs [22]).

However, the asymptotic property of a �typical" graph stated in this kind of theorems

cannot be used as a bound for the domination number γ(G) of a given graph G, it does

not help to determine the domination number exactly, and it does not provide any ideas

how to �nd the corresponding dominating sets of size γ(G) in G.

In this paper, we focus on the (two-objective) smallest or largest weight minimum-

size dominating set problem and direct applications of the probabilistic method to tackle

the related (single-objective) minimum weight dominating set problem in vertex-weighted

graphs. This allows us to analyze deterministic and several heuristic solution methods

for these two problems by considering corresponding computational results. First, in

Section 2, we consider an ILP formulation of the two-objective optimization problem and

show its connection and reduction to the single-objective minimum weight dominating set

problem. Then, probabilistic constructions, the corresponding randomized algorithms,

and upper bounds are described for the single-objective minimum weight dominating set

problem in Section 3. The new upper bounds presented in Section 3 can be considered

as a generalization of the classic upper bounds (2) and (1). To illustrate the concepts

and better analyze the results, some computational experiments with random graphs are

described in Section 4. Section 5 provides a summary of our �ndings and conclusions.

2. ILP formulation and reduction to the minimum weight

problem

For simplicity, we focus on the minimization version of the problem with all positive vertex

weights wi > 0 to �nd a minimum-size dominating set X in a vertex-weighted graph G

such that w(X) is the smallest possible. In this section, we describe how to formulate

the two-objective minimum weight smallest-cardinality dominating set problem as an ILP

problem to solve it deterministically. We also show connections with the single-objective

minimum weight dominating set problem and provide a reduction to the latter problem.

Given a graph G, the problems of �nding the exact values of γw(G) and γ∗w(G) and

corresponding optimal dominating sets X ⊆ V (G) can be formulated as ILP problems as

follows. A binary decision variable xi ∈ {0, 1} is associated with each vertex vi ∈ G to

indicate whether the vertex is in the solution set X or not, i.e. xi = 1 if and only if vi
is in the optimal dominating set X of G, otherwise xi = 0, i = 1, ..., n. Then the ILP

formulation for �nding γw(G) and a corresponding optimal dominating set is
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
minimize z(x1, x2, . . . , xn) =

n∑
i=1

wixi

subject to:
∑

vi∈N [vj ]

xi ≥ 1, j = 1, . . . , n,

xi ∈ {0, 1}, i = 1, . . . , n.

(3)

To �nd γ∗w(G) and a corresponding optimal dominating set, we can use weights wi+wG

at the vertices of G instead of wi, i = 1, 2, . . . , n, and minimize the following objective

function:

z(X) = z(x1, x2, . . . , xn) =
n∑

i=1

(wi + wG)xi = w(X) + |X|wG. (4)

Notice that, if X ′ is any dominating set such that |X ′|< |X|, then z(X ′) < z(X) in (4)

because w(X ′) ≤ wG, and wG is a constant. Thus, minimizing (4) with the constraints

of (3) gives a dominating set of minimum cardinality and, moreover, of minimum weight

among such sets. Furthermore, we can normalize the weights wi + wG in (4) by dividing

them by wG, i = 1, 2, . . . , n. This gives the following ILP formulation to �nd γ∗w(G) and

a corresponding optimal dominating set:
minimize z(x1, x2, . . . , xn) =

n∑
i=1

xi +
n∑

i=1

wi

wG

xi

subject to:
∑

vi∈N [vj ]

xi ≥ 1, j = 1, . . . , n,

xi ∈ {0, 1}, i = 1, . . . , n.

(5)

Assuming G is non-trivial and non-empty, we have 0 < wi

wG
< 1, i = 1, ..., n, and

0 <
n∑

i=1

wi

wG
xi < 1 in the objective function for any non-trivial feasible solution of problem

(5). Therefore, at optimum, z∗ = z(x∗1, x
∗
2, ..., x

∗
n), we have γ(G) =

n∑
i=1

x∗i and γ∗w(G) =

wG ·
n∑

i=1

wi

wG

x∗i =
n∑

i=1

wix
∗
i , i.e. γ

∗
w(G) = wG · (z∗ − γ(G)). Reassigning the graph vertices

weights w′
i = 1 +

wi

wG

, i = 1, ..., n, the ILP formulation (5) becomes



minimize z(x1, x2, . . . , xn) =
n∑

i=1

(
1 +

wi

wG

)
xi =

n∑
i=1

w′
ixi

subject to:
∑

vi∈N [vj ]

xi ≥ 1, j = 1, . . . , n,

xi ∈ {0, 1}, i = 1, . . . , n.

(6)

This is the single-objective optimization problem of �nding γw′(G) and the corre-

sponding minimum weight dominating set in G with respect to the vertex weights w′
i,

i = 1, ..., n. Clearly, γw′(G) = z∗ = z(x∗1, x
∗
2, ..., x

∗
n) at optimum in (5) and (6), and
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γ∗w(G) = wG · (γw′(G) − γ(G)), as above. In other words, this provides a reduction from

the two-objective problem of �nding γ∗w(G) in G to the single-objective problem of �nding

γw′(G) in G. Notice that γ(G) = ⌊γw′(G)⌋.
After solving the ILP problem (5) or (6), to �nd other Pareto-optimal solutions to the

two-objective optimisation problem, it is possible to add one constraint

n∑
i=1

xi ≥ γ(G) + k, (7)

to the formulations (5) and (6), k = 1, 2, . . . , n − γ(G) − 1, and solve the corresponding

ILP problems, one for each value of k. Checking weights of the obtained dominating

sets would provide a set of Pareto e�cient solutions to the two-objective problem for

larger dominating set sizes. These general Pareto-optimal solutions can be important in

applications, when size of the dominating set becomes less important and some priority

is supposed to be given to the set weight.

Notice that here problem (6) is a special case of the general minimum weight dominating

set problem because the new weights are restricted to be 1 < w′
i < 2, i = 1, ..., n. This may

allow us to better understand the initial problem (5) and help to �nd more e�cient solution

methods. On the other hand, for the general minimum weight dominating set problem,

we can always assume that the vertex weights belong to the interval (0, 1); for example,

we can remove zero-weight vertices and their neighbours from the graph and divide the

remaining weights by wmax+1. Also, notice that for the linear relaxation of problems (5)

and (6) with xi ∈ [0, 1], i = 1, ..., n, the objective function value z′ = z(x′1, x
′
2, ..., x

′
n) at the

linear relaxation optimum provides lower bounds on γ(G) and γw′(G), i.e. γ(G) ≥ ⌊z′⌋ and
γw′(G) ≥ z′. For γ∗w(G), more complicated lower bounds can be deduced. For instance,

if γ(G) ≤ U , where U is an upper bound, we get γ∗w(G) ≥ wG(z
′ − U), where we can

trivially take U =
∑n

i=1⌈x′i⌉. On the other hand, any feasible solution to ILP problems

(5) and (6), e.g. randomized rounding of their linear relaxation, allows us to recover the

dominating set size and its weight. Therefore, to tackle the problem of �nding γ∗w(G)

formulated in (5), one can use general tools to solve the minimum weight dominating set

problem in a graph.

3. Probabilistic constructions, upper bounds, and randomized

heuristics

In this section, we focus on the minimum weight dominating set problem, i.e. �nding

upper bounds for γw(G) in a graph G, analytically and algorithmically. Notice that, in

view of the problem reduction from Section 2, the problems of �nding γ(G) and γ∗w(G) in

G can be considered as particular cases of this more general problem.

3.1. Using the probabilistic method for upper bounds

In the case of optimization of dominating sets in vertex-weighted graphs, it is reasonable

to consider some vertex degrees, e.g. the minimum, mean, or median vertex degree of

the graph [27, 12], and vertex weights as key parameters that in�uence the likelihood of
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inclusion of a vertex into an optimal dominating set with respect to its size and weight.

For example, suppose we deal with the maximization version of the problem searching for

a reasonably small-size dominating set X of the maximum total weight w(X) in a graph

G. Then, it is plausible that a vertex of high degree and heavy weight is more likely to

be included into X than a vertex of lower degree and light weight. We will use this and

similar assumptions in our applications of the probabilistic method and the corresponding

randomized algorithms and techniques.

As above, we assume positive weights wi > 0 for all vertices in a given vertex-weighted

graph G, i = 1, 2, ..., n, and try to �nd a dominating set X in G such that w(X) is

the smallest possible. First, we generalize the probabilistic approach that was used to

obtain the classic upper bounds of Theorems 1.1 and 1.2 for the domination number. As

mentioned above, for this kind of optimization problem, the probability pi of a vertex vi
to be in a �close-to-optimal" dominating set (small/large weight and small size) should

depend on the vertex weight wi and take into consideration vertex degrees in the graph.

Suppose this probability is represented as a function pi = f(d̄, wi). Since we focus on

the total weight minimization problem of a small-size dominating set X in G, we may

assume that the probability of a vertex vi to be in X depends on vertex degrees d̄ and is

reciprocally proportional to the vertex weight wi. In other words, pi can be computed by

an expression of the form

pi = p · x
wi

, (8)

where p is a coe�cient depending on vertex degrees in G and x is a coe�cient depending

on vertex weights in G such that

0 ≤ p · x
wi

≤ 1 for all i = 1, . . . , n.

In some situations, we may estimate the probabilities pi to be the same and not de-

pendent on weights, i = 1, . . . , n. For example, we can assume that the weights do not

vary too much among the vertices, that is, the ratio wmax/wmin is reasonably close to 1.

Then, the probability pi for each vertex vi ∈ G to be in the dominating set X does not

depend on weights. Indeed, substituting x = wave in the expression (8) above, we obtain

pi = pwave/wi. Now, wi ≈ wave implies pi ≈ p for every i = 1, ..., n. In the proof of the

following upper bound, which is reminiscent of the classic bound for γ(G) in (1.2), we

assume equal probabilities pi = p when applying the probabilistic method.

Theorem 3.1. For any graph G with δ ≥ 1,

γw(G) ≤

(
1− δ

(1 + δ)1+1/δ

)
wG.

Proof. Let A be a set formed by an independent choice of vertices of G, where each

vertex is selected with probability p. Denote by B the set of vertices that are not in A

and do not have a neighbour in A: B = V (G) − N [A]. Consider the set D = A ∪ B.
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Clearly, D is a dominating set in G. The expected weight of such a set D is

E[w(D)] = E[w(A)] + E[w(B)]

=
n∑

i=1

wi · P[vi ∈ A] +
n∑

i=1

wi · P[vi ∈ B]

=
n∑

i=1

wi · p+
n∑

i=1

wi · (1− p)di+1

=
n∑

i=1

wi ·
(
p+ (1− p)di+1

)
≤

n∑
i=1

wi ·
(
p+ (1− p)δ+1

)
= wG ·

(
p+ (1− p)δ+1

)
.

Minimizing the function ψ(p) = wG ·
(
p+ (1− p)δ+1

)
, we obtain

p = 1− 1

(δ + 1)1/δ
.

Therefore,

E[w(D)] ≤

(
1− δ

(δ + 1)1+1/δ

)
wG.

Since the expectation is an average value, there exists a particular dominating set satis-

fying the bound, as required.

An analogue of Theorem 1.1 for γw(G) easily follows from this proof:

Corollary 3.2. For any graph G,

γw(G) ≤
ln(δ + 1) + 1

.δ + 1
wG.

Notice that the probability p = 1− 1
(δ+1)1/δ

used in the probabilistic construction of The-

orem 3.1 is the same as in the probabilistic construction used in the proof of Theorem 1.2

(e.g., see [14]). Therefore, in this particular case, the corresponding randomized heuristic

described below in Algorithm 1 tends to obtain small-size dominating sets satisfying the

bound of Theorem 1.2 at the same time.

Now suppose that x = wmax in the expression (8), i.e.

pi = p · wmax

wi

for i = 1, . . . , n.

Because 0 ≤ p · wmax

wi
≤ 1, we obtain

p ≤ wi

wmax

for i = 1, . . . , n.
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Hence, p ≤ wmin/wmax, which is the third assumption in the following theorem. The

second assumption in the statement of Theorem 3.3, wmax/wave ≤ δ + 1, is needed to

guarantee that pi ≥ 0.

Theorem 3.3. Let G be a graph such that δ ≥ 1, k = wmax/wave ≤ δ + 1, and p =

1−
(

k
δ+1

)1/δ ≤ wmin/wmax.

Then

γw(G) ≤ npwmax +
n∑

i=1

wi (1− p)di+1 ≤
(
1− δk1/δ

(δ + 1)1+1/δ

)
kwG.

Proof. Let A be a set formed by an independent choice of vertices of G, where each

vertex vi is selected with some probability

pi = p · wmax

wi

, 0 ≤ pi ≤ 1, i = 1, 2, . . . , n.

Similar to the proof of Theorem 3.1, denote by B the set of vertices that are not in A

and do not have a neighbour in A, i.e. B = V (G)−N [A]. Consider the set D = A ∪ B.
Clearly, D is a dominating set in G. The expected weight of D is

E[w(D)] = E[w(A)] + E[w(B)]

=
n∑

i=1

wi · P[vi ∈ A] +
n∑

i=1

wi · P[vi ∈ B]

=
n∑

i=1

wi

(
p · wmax

wi

)
+

n∑
i=1

wi

∏
vj∈N [vi]

(
1− p · wmax

wj

)

≤
n∑

i=1

pwmax +
n∑

i=1

wi

∏
vj∈N [vi]

(
1− p · wmax

wmax

)

= npwmax +
n∑

i=1

wi (1− p)di+1

≤ (nwmax)p+
n∑

i=1

wi (1− p)δ+1

= (nwmax)p+ (1− p)δ+1wG. (9)

Now, the value of p is obtained by minimizing the function ξ(p) = (nwmax)p+(1− p)δ+1wG

with respect to p:

p = 1−
(

nwmax

(δ + 1)wG

)1/δ

= 1−
(

nwmax

(δ + 1)nwave

)1/δ

= 1−
(

k

δ + 1

)1/δ

.

Notice that the assumption k = wmax

wave
≤ δ + 1 guarantees that 0 ≤ p ≤ 1, but we

additionally need to assume p ≤ wmin

wmax
to guarantee 0 ≤ pi ≤ 1 for any i = 1, ..., n.

We already know that

γw(G) ≤ E[w(D)] ≤ npwmax +
n∑

i=1

wi (1− p)di+1 .
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Also,

E[w(D)] ≤ pnwmax + wG(1− p)δ+1

= pnwave ·
wmax

wave

+ wG(1− p)δ+1

= pwGk + wG

(
k

δ + 1

)1+1/δ

=

(
p+

k1/δ

(δ + 1)1+1/δ

)
kwG

=

(
1−

(
k

δ + 1

)1/δ

+
k1/δ

(δ + 1)1+1/δ

)
kwG

=

(
1− δk1/δ

(δ + 1)1+1/δ

)
kwG,

as required.

Note that the bounds of Theorem 3.3 are not necessarily better than the bound of

Theorem 3.1. However, the heuristic based on the proof technique of Theorem 3.3 usually

produces better results. This is because of the assumptions for Theorem 3.3. In the proof

of Theorem 3.1, the di�erences in the vertex weights are ignored when trying to select

vertices for the initial set A. In contrast, in the proof of Theorem 3.3, the probability of

a vertex to be in the initial set A is assumed to be reciprocally proportional to its weight,

which better re�ects the situation with distribution of vertex weights. This and other

points are illustrated later in Section 4.

Now, assume that the probability of a vertex vi to be in the initial set A inversely

depends on its weight wi, i = 1, 2, ..., n. More precisely, the probability is computed by

an expression of the form

pi = p ·
(
1− wi

α

)
, (10)

where α is a coe�cient dependent on some weights in G, and

0 ≤ p
(
1− wi

α

)
≤ 1 for all i = 1, . . . , n.

If we set α = wmin + wmax, the next statement follows.

Theorem 3.4. Let G be a graph such that δ ≥ 1, z = wmax/wmin ≤ δ + 1, and q =

1−
(

z
δ+1

)1/δ
. Then

γw(G) ≤ qzwG +
n∑

i=1

wi (1− q)di+1 ≤
(
1− δz1/δ

(δ + 1)1+1/δ

)
zwG.

Proof. Let us denote by A a set formed by an independent choice of vertices of G, where

each vertex vi is selected with some probability

pi = p
(
1− wi

α

)
, 0 ≤ pi ≤ 1, i = 1, 2, . . . , n.
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Similar to the proof of Theorem 3.1, we construct the set B = V (G) − N [A] and the

dominating set D = A ∪B. Taking into account that

wmin

α
≤ 1− wi

α
≤ wmax

α
,

we obtain for the expected weight of D:

E[w(D)] = E[w(A)] + E[w(B)]

=
n∑

i=1

wi · P[vi ∈ A] +
n∑

i=1

wi · P[vi ∈ B]

=
n∑

i=1

wi p
(
1− wi

α

)
+

n∑
i=1

wi

∏
vj∈N [vi]

(
1− p

(
1− wj

α

))
≤

n∑
i=1

wi p ·
wmax

α
+

n∑
i=1

wi

∏
vj∈N [vi]

(
1− p · wmin

α

)
=

n∑
i=1

wi p ·
wmax

α
+

n∑
i=1

wi

(
1− p · wmin

α

)di+1

=
pzwG

z + 1
+

n∑
i=1

wi

(
1− p

z + 1

)di+1

.

If we denote q = p/(z + 1), then

E[w(D)] ≤ qzwG +
n∑

i=1

wi (1− q)di+1

≤ qzwG +
n∑

i=1

wi (1− q)δ+1

=
(
qz + (1− q)δ+1

)
wG.

It is easy to see that the last expression is minimized at

q = 1−
(

z

δ + 1

)1/δ

.

Notice that to guarantee that 0 ≤ pi ≤ 1 for all i = 1, 2, ..., n, we need to require

q = 1 −
(

z
δ+1

)1/δ ≤ wmin/wmax = 1
z
(q ≥ 0 is guaranteed by z ≤ δ + 1). However, it is

possible to see that the inequality 1−
(

z
δ+1

)1/δ ≤ 1
z
is equivalent to(

1− 1

z

)δ

≤ z

δ + 1
,

which holds for any z, 1 ≤ z ≤ δ+1, δ ≥ 1. This is because the function f(z) = z1+1/δ

(δ+1)1/δ
−

z+1 is non-negative for all z ∈ [1, δ+1] (it is non-negative at each endpoint of the interval

and at the critical point on the interval). Then, since naturally z = wmax/wmin ≥ 1, the

condition z ≤ δ + 1 is enough to have 0 ≤ pi ≤ 1 for all i = 1, ..., n. Thus, we have

E[w(D)] ≤
(
1− δz1/δ

(δ + 1)1+1/δ

)
zwG,
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as required.

The second and third conditions for vertex weights in Theorem 3.3 can be rewritten as(
1− wmin

wmax

)δ

· (δ + 1) ≤ k =
wmax

wave

≤ δ + 1,

and the corresponding vertex weights conditions in Theorem 3.4 are

1 ≤ z =
wmax

wmin

≤ δ + 1.

Clearly, there are problem instances where the conditions of Theorem 3.3 are satis�ed,

but the conditions of Theorem 3.4 are not satis�ed, e.g. when k = wmax

wave
is close to

δ + 1, but z = wmax

wmin
> δ + 1. On the other hand, some problem instances satisfy the

conditions of Theorem 3.4, but not the conditions of Theorem 3.3, e.g. when z = wmax

wmin

and k = wmax

wave
are close enough to 1, but k = wmax

wave
<
(
1− wmin

wmax

)δ
· (δ + 1). More

precisely, a graph with δ = 9, a su�ciently large number of vertices, and vertex weights

distributed uniformly from wmin = 1 to wmax = 10 will have wave = 5.5 and will satisfy

the conditions of Theorem 3.4, but not those of Theorem 3.3. Thus, both theorems and

the two corresponding probabilistic constructions are meaningful.

3.2. Randomized heuristics

Theorems 3.1, 3.3, and 3.4 provide respectively optimized probabilities

pi =1− 1

(δ + 1)1/δ
,

pi =

(
1−

(
wmax

(δ + 1)wave

)1/δ
)

· wmax

wi

, and

pi =

(
1−

(
wmax

(δ + 1)wmin

)1/δ
)

·
(
1 +

wmax − wi

wmin

)
, i = 1, 2, . . . , n,

for corresponding randomized heuristics to �nd reasonably good solutions (by weight) to

the weight-based problems quickly. The heuristics are described in Algorithm 1 below.

Note that the probability p used in the proof of Theorem 3.1 is the same as in the

probabilistic construction for the proof of Theorem 1.2 and the corresponding randomized

algorithm. Therefore, this probability provides certain optimality in �nding small-size

dominating sets at the same time.



74 dijkstra et al.

Algorithm 1: Randomized small-weight dominating set

Input: A vertex-weighted graph G.

Output: A small-weight dominating set D′ of G.

/* Form an initial subset A ⊆ V (G) */ Compute the probability pi for each

vertex vi ∈ V , i = 1, . . . , n;

1 Initialize set A = ∅;
2 foreach vi ∈ V (G) do

3 With probability pi, decide whether vi ∈ A;

/* Greedy heuristic to extend A to a dominating set D */ foreach

v ∈ V (G) \ A do

4 Compute pc(v) = |N [v] \
⋃

x∈AN [x]|;
5 while

⋃
x∈AN [x] ̸= V (G) do

6 Select a vertex u ∈ U = argmaxv∈V (G)\A pc(v);

7 Put A = A ∪ {u};
8 Update the values of pc(v);

9 Put D = A;

/* D is a dominating set of G */

/* Finding a minimal-by-inclusion dominating set D′ ⊆ D */ Order the

vertices vi ∈ D, i = 1, . . . , |D|, so that i ≤ j ⇐⇒ |N(vi) \D|≤ |N(vj) \D|;
10 Put D′ := D;

11 foreach vertex vi ∈ D do

12 if D′ \ {vi} is a dominating set of G then

13 Put D′ := D′ \ {vi};

14 return D′

After the initial set A of vertices is randomly generated in Algorithm 1, a greedy

heuristic is used to extend the initial set A recursively and to obtain a dominating set

D of G. This is done by computing and updating the potential coverage parameter

pc(v) = |N [v] \
⋃
x∈A

N [x]| for each vertex v ∈ V (G) \A and by choosing a vertex adjacent

to the largest number of vertices which are currently not dominated. Then, a minimal by

inclusion dominating set D′ is found in Algorithm 1 by using another greedy heuristic.

Notice that vertex weights are not used in the greedy strategies of the recursive vertex

addition and removal. Naturally, running Algorithm 1 several times and selecting the best

outcome usually provides better results, i.e. usage of more CPU time can be considered

as a natural heuristic improvement for Algorithm 1, if necessary.

Computational experiments to illustrate and evaluate di�erent solution methods are

described in the next section. The deterministic method, which uses the ILP formula-

tions from Section 2 and a generic ILP solver, allows us to solve to the optimum problem

instances only for graphs of a few hundred vertices. Therefore, simple and quick heuris-

tic solution methods provided by the probabilistic constructions in this section become

important tools to tackle the problems for larger graphs.
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4. Experimental evaluation

As an illustration for the theoretical results of Sections 2 and 3, we have implemented and

tested the deterministic and heuristic solution methods for both problems, attempting to

�nd γw(G) and γ
∗
w(G) for random graph instances of two types. The �rst type of random

graphs is obtained by using the classic Erd®s�Rényi random graph model [16, 11]. The

other type corresponds to the random graph model used to prove asymptotic sharpness

of the upper bounds of Theorems 1.1 and 1.2 (e.g., see [26]).

All the solution methods were implemented using computer programming language

C/C++, and the experiments were conducted on a Stone desktop PC with a 3.00 GHz

Intel Core i5 processor and 16 GB of RAM, running Windows 10 Education OS, version

21H2. We used Gurobi Optimizer [18] to solve deterministically and heuristically both

problems by considering their ILP formulations described in Section 2.

The ILP reduction (6) to the single-objective optimization problem of �nding γw′(G)

from Section 2 was not used to search for heuristic randomized solutions for the two-

objective optimization problem of �nding γ∗w(G). This is because, in the reduced problem

of �nding γw′(G), the average vertex weight is w′
ave = 1 + 1/n, where n is the order

of the graph (in general, w′
i = 1 + wi

wG
, where wG =

∑n
i=1wi, so that 1 < w′

i < 2,

i = 1, ..., n). Assuming the initial weights wi are distributed uniformly, this makes all

the weights w′
i in the reduced single-objective optimization problem of �nding γw′(G)

close to 1 and not varying much among the vertices, i = 1, ..., n. Thus, the assumptions

described before Theorem 3.1 � the weights do not vary too much among the vertices,

and the probabilities do not depend on weights � are satis�ed in this case. Therefore, the

corresponding randomized algorithm can be applied to the graph with the initial vertex

weights directly. On the other hand, it is possible to see that the bounds and probabilities

in Theorems 3.3 and 3.4 are close to those in Theorem 3.1 in the case of reduction (6)

and when searching for γw′(G).

In Subsections 4.1.1 and 4.2.1, we show that the randomized heuristics arising from the

proofs of Theorems 3.3 and 3.4 are more sensitive to vertex weights in the graphs and

provide better results in comparison to the randomized heuristic given by Theorem 3.1.

In Subsections 4.1.2 and 4.2.2, we use the generic ILP solver Gurobi [18] to obtain some

deterministic results for small size graphs and heuristic results for medium size graphs.

These experiments show that the new randomized heuristics can �nd good quality initial

solutions to the problems quickly. Also, these experiments show the quality of quickly

found randomized heuristic solutions is reasonably close to the Gurobi heuristic solutions,

while Gurobi is run on the test instances for a long time (30 minutes of CPU time).

Finally, in Subsections 4.1.3 and 4.2.3, we consider large-scale graphs and show that the

new randomized heuristics clearly provide better results than Gurobi, while using less

memory and CPU time resources.

4.1. Erd®s�Rényi random graph model

For the Erd®s�Rényi model, denoted by ER(n, p), a graph G of order n ∈ N is generated

in such a way that, for each (unordered) pair of distinct vertices u and v of G, the
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corresponding edge has the same probability p ∈ [0, 1] to be included in the graph. Such

a model generates a graph whose degree distribution is a Binomial distribution with n−1

trials and probability p. In other words, given a graph order n ∈ N, n ≥ 2, and an

edge-inclusion probability p ∈ [0, 1], one starts with the empty graph on n vertices. Then

an edge uv is added to the graph with probability p (or, alternatively, not added with

probability 1 − p) independently for each pair of distinct vertices {u, v}. This results in
a graph G ∈ ER(n, p).

As a part of the experiments, Erd®s�Rényi random (unweighted) graphs on 100k ver-

tices were generated for k = 1, ..., 10, using the edge-inclusion probability p = 1/3, which

was manually determined to be the most illustrative in an ad-hoc way. (By the most

illustrative here we mean graphs with larger minimum vertex degree to have better upper

bounds, but, at the same time, to have large enough minimum cardinality dominating

sets.) Ten graphs were generated for each k, k = 1, ..., 10, one hundred graphs in to-

tal, to form the set ER(n = 100k, p = 1/3) of 100 test graphs. Then, for each graph

G ∈ ER(n = 100k, p = 1/3), k = 1, ..., 10, weights were assigned to the graph vertices

as integer numbers in the range {101, 102, ..., 200}, uniformly at random. The choice of

vertex weights from the range {101, 102, ..., 200} was motivated by the assumption that

opening a facility must have a certain minimum basic cost (100 in this case) plus a cer-

tain percentage of potential additional costs. On the other hand, this range was chosen to

increase the likelihood that G satis�es the assumptions of Theorem 3.3 in a simple way.

4.1.1. Randomized heuristics and Erd®s�Rényi graphs. The randomized heuristics based

on Algorithm 1, arising from the probabilistic constructions of Theorems 3.1, 3.3, and

3.4, were run on each of the above 100 graph instances to quickly �nd a reasonably good

solution for the minimum weight dominating set problems in G. Each of the randomized

algorithms was run twenty times on each graph instance, and the best found solution (out

of twenty) by the dominating set size and also by the dominating set weight were recorded.

The aggregated averages for ten graph instances for each order n = 100k, k = 1, ..., 10,

are presented in Table 1, together with the maximum average CPU run-times (out of

three; the average run-times are for the corresponding twenty runs of each of the three

heuristics). The corresponding average solution parameters for the best found set size

are shown in the upper subrows, and the averages for the best found solutions by the set

weight are shown in the lower subrows, for each k = 1, ..., 10.

Each of the randomized algorithms of Theorems 3.1, 3.3, and 3.4 �nds better solutions

by the set size for 73%, 68%, and 77% of all instances, respectively (corresponding dom-

inating sets may have the same cardinality). In other words, here the three randomized

algorithms show a similar performance by the dominating set size. However, the random-

ized algorithm arising from the proof of Theorem 3.1 is much less successful in �nding

the best heuristic solution by the set weight (only 20% of all instances). The randomized

algorithms arising from the proofs of Theorems 3.3 and 3.4 �nd better solutions by the set

weight for 45% and 36% of all instances, respectively, i.e. perform clearly better for this

parameter. The upper bounds of Theorems 1.2 and 3.1 were satis�ed for all the problem

instances, with the results getting closer to the upper bounds for graphs of larger order.
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Table 1. Aggregated results of running the randomized heuristics on the Erd®s�Rényi graphs

|G|,
n = 100k

Theorem 3.1 Theorem 3.3 Theorem 3.4 Max avg.

time(s)Size Wt Size Wt Size Wt

k = 1
6 897 6.1 825.5 6 835.6

0.027
6.3 885.2 6.2 824.4 6.2 833.1

k = 2
7.5 1066.9 7.4 1041 7.5 1049.8

0.062
7.8 1047.6 7.6 1011.8 7.7 1027.8

k = 3
8.6 1225.5 8.5 1140.4 8.4 1217.7

0.1
8.6 1225.5 8.7 1126.6 8.8 1185.1

k = 4
9 1293.6 9.3 1306 9.1 1308.4

0.16
9.2 1276.4 9.5 1290.3 9.5 1283.1

k = 5
9.8 1387.5 10 1346.9 9.7 1341.8

0.21
9.9 1381.4 10.1 1345.8 9.8 1340.5

k = 6
10 1433.5 10.1 1385.7 10 1403.1

0.29
10.2 1431.3 10.2 1384.1 10.5 1392.6

k = 7
10.5 1463.9 10.4 1430.7 10.7 1462.8

0.37
10.5 1463.9 10.4 1430.7 10.7 1462.8

k = 8
11 1599.7 11 1532.7 10.8 1538.9

0.45
11.1 1599.1 11.3 1524.2 11.1 1507.5

k = 9
11.1 1626.3 11.1 1591.6 11 1557

0.56
11.5 1605.1 11.6 1556.2 11.2 1531.2

k = 10
11.3 1622.6 11.4 1542 11.3 1590.2

0.64
11.4 1622 11.6 1534.6 11.6 1573.8

It is possible to see from Table 1 that, in most of the cases, the heuristic methods derived

from Theorems 3.3 and 3.4 provide better results for the two-objective optimization prob-

lem by weight and by size than that of Theorem 3.1, although both methods of Theorems

3.3 and 3.4 are designed for optimization by weight only.

4.1.2. Using a generic ILP solver on Erd®s�Rényi graphs. For each weighted graph G ∈
ER(n = 100k, p = 1/3), k = 1, ..., 10, considered above, we made an attempt to �nd

exact deterministic solutions to the problems of computing γ∗w(G) and γw(G) by using the

ILP formulations described in Section 2 and Gurobi. This was successful in a reasonable

amount of CPU time at most 30 min (1,800 sec) only for k = 1, 2, when computing γ∗w(G),

and for k = 1, 2, 3, when computing γw(G). For the larger (medium) size graphs, i.e. for

k ≥ 3, when computing γ∗w(G), and for k ≥ 4, when computing γw(G), Gurobi was run

for 30 min (1,800 sec CPU time) as a heuristic solver in the hope the results would be

close to the optimum. The best possible solution (BPS) of the ILP formulation in 1,800

sec CPU time was recorded. Also, the Gurobi's initial heuristic solutions (IHS) were

recorded to compare to the quick best randomized heuristic solutions from Section 4.1.1.

The aggregated results are presented in Table 2 and 3 (the exact optimal solution results

are shaded).
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Table 2. Aggregated results of running the generic ILP solver on the Erd®s�Rényi graphs for γ∗
w(G)

|G|,
n = 100k

Best randomized for γ∗
w(G) ILP for γ∗

w(G)

size wt
CPU

time (s)

IHS

size

IHS CPU

time (s)

BPS

size

BPS

wt

BPS CPU

time (s)

k = 1 6 835.6 0.027 7.9 0 5 620.4 1.33

k = 2 7.4 1,041 0.061 9.6 0.025 6 699.3 494.34

k = 3 8.4 1,217.7 0.1 10.5 0.084 6.8 800.4 1,800

k = 4 9 1,293.6 0.16 10.7 0.19 7 887.6 1,800

k = 5 9.7 1,341.8 0.21 11.1 0.35 7.8 933.9 1,800

k = 6 10 1,403.1 0.28 11.8 0.74 8 957.4 1,800

k = 7 10.4 1,430.7 0.36 12 1.14 8 1,017.4 1,800

k = 8 10.8 1,538.9 0.45 12.6 1.63 8.8 1,053.1 1,800

k = 9 11 1,557 0.54 12.6 2.26 9 1,076.6 1,800

k = 10 11.3 1,590.2 0.64 13 3.004 9 1,127.4 1,800

Table 3. Aggregated results of running the generic ILP solver on the Erd®s�Rényi graphs for γw(G)

|G|,
n = 100k

Best randomized for γw(G) ILP for γw(G)

wt size
CPU

time (s)

IHS

wt

IHS CPU

time (s)

BPS

wt

BPS

size

BPS CPU

time (s)

k = 1 824.4 6.2 0.027 1,205.5 0 616 5.1 0.4

k = 2 1,011.8 7.6 0.061 1,432.5 0.022 699.3 6 30.42

k = 3 1,126.6 8.7 0.1 1,600.6 0.081 762.1 7 646.74

k = 4 1,276.4 9.2 0.16 1,550.3 0.2 818.1 7.4 1,800

k = 5 1,340.5 9.8 0.21 1,651 0.39 859.7 8 1,800

k = 6 1,384.1 10.2 0.28 1,771.2 0.91 910.6 8.2 1,800

k = 7 1,430.7 10.4 0.36 1,827.6 1.37 931.6 8.9 1,800

k = 8 1,507.5 11.1 0.45 1,990.9 1.55 955.3 9 1,800

k = 9 1,531.2 11.2 0.54 1,851.4 2.04 972.6 9 1,800

k = 10 1,534.6 11.6 0.64 1,954.7 2.92 1,003.5 9.4 1,800

In the deterministic computational experiments (optimal solutions), only one graph

instance was found to have a dominating set of a non-minimum size with weight lower

than γ∗w(G), i.e. with γw(G) < γ∗w(G) (see shaded cells in Tables 2 and 3). It can be

seen from these two tables that, for the medium size graphs (k ≥ 4), the new randomized

heuristics clearly provide better results and use much less CPU time than the IHS's of

Gurobi. It can also be seen that, on average, the best solutions found by the randomized

algorithms for k = 1, 2, 3 are about 34 − 48% worse by weight and, for k = 1, 2, about

20− 23% worse by size than the optimal (deterministic) solutions. In comparison to the

heuristic results for medium size graphs (k ≥ 4) obtained by Gurobi in 1,800 sec, the

very quick (less than a second) heuristic solutions by the new randomized algorithms

are about 52 − 58% worse by weight and about 22 − 30% worse by size. However, this

gap can be signi�cantly reduced and even better results can be obtained by running the

randomized algorithms for more iterations (e.g., for 1,800 sec CPU time). This is clearly

shown for large size graphs in Section 4.1.3. The average CPU times to compute exact

values of γ∗w(G) and γw(G) (for k = 1, 2, 3) using the ILP formulations and Gurobi (see
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shaded cells in Tables 2 and 3) clearly show the considerable growth of computational

time requirements with respect to the graph order, as well as di�erences in computational

complexity for �nding γ∗w(G) and γw(G).

4.1.3. Large-scale Erd®s�Rényi graphs. Finally, we ran the three randomized algorithms

and Gurobi on two large size Erd®s�Rényi random graphs, generated as described at the

beginning of Section 4.1. In these computational experiments, each of the four solvers was

given 30 minutes (1,800 sec) of CPU time to �nd a solution to the problems corresponding

to �nding γ∗w(G) and γw(G). One graph has n = 20,000 vertices, and the other has n =

40,000 vertices. Both graphs were generated with the edge probability p = 0.1.

For the Erd®s�Rényi graph on n = 20,000 vertices, the randomized algorithms arising

from Theorems 3.1, 3.3, and 3.4 respectively used 566, 558, and 556 iterations. For

this graph, Gurobi produced lower bounds on the solutions by size, i.e. established that

γ(G) ≥ 10 (in 1,519 sec CPU time), and by weight, i.e. established that γw(G) ≥ 1,159

(in 1,452 sec CPU time). The performance pro�les of the four tested solvers on this large

graph are presented in Figure 2 and Table 4.
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Fig. 2. Performance pro�les of the solvers for the Erd®s�Rényi graph on 20,000 vertices

Table 4. Best found results for the Erd®s�Rényi graph on 20,000 veritces

Problem
Theorem 3.1 Theorem 3.3 Theorem 3.4 Gurobi

Size Wt
Time

(sec)
Size Wt

Time

(sec)
Size Wt

Time

(sec)
Size Wt

Time

(sec)

γ∗
w(G) 57 8,531 1,718 59 8,382 297 59 8,160 392 58 8,183 1,584

γw(G) 57 8,531 1,718 60 8,376 1,597 59 8,160 392 58 8,568 1,528

In general, the randomized algorithms �nd better quality solutions and much quicker

than Gurobi. When trying to �nd γ∗w(G), the randomized algorithm arising from Theo-

rem 3.1 provides the best solution by the dominating set size. This can be explained by

the same optimal probability used in Theorems 3.1 and 1.2. When searching for γw(G), all

three randomized algorithms �nd better solutions and quicker than Gurobi. In this case,

the randomized algorithm arising from Theorem 3.4 provides the best solution, which can
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be explained by its sensitivity to the vertex weights in the graph. However, notice that

Gurobi �nds a better solution by weight when searching for γ∗w(G), which is still not the

best (out of four).

For the Erd®s�Rényi graph on n = 40,000 veritces, the randomized algorithms arising

from Theorems 3.1, 3.3, and 3.4 respectively used 129, 132, and 132 iterations. For this

graph, Gurobi ran out of memory and was not able to produce any solution. The results

of the three randomized algorithms on this large size graph are presented in Table 5.

The randomized algorithms found the same quality solutions by the dominating set size

when trying to �nd γ∗w(G), with the randomized algorithm of Theorem 3.4 �nding a set of

this size quicker than the other two. However, the randomized algorithm of Theorem 3.1

�nds the best (out of three) dominating set by weight of the same size. When searching

for γw(G), the best (out of three) solutions is found by the randomized algorithm of

Theorem 3.4. However, this dominating set is two vertices larger than the dominating

sets found by the randomized algorithms of Theorem 3.1 and Theorem 3.3.

Table 5. Best found results for the Erd®s�Rényi graph on 40,000 veritces

Problem
Theorem 3.1 Theorem 3.3 Theorem 3.4

Size Wt
Time

(sec)
Size Wt

Time

(sec)
Size Wt

Time

(sec)

γ∗
w(G) 65 9,284 1,730 65 9,418 1,616 65 9,654 1,118

γw(G) 65 9,284 1,730 65 9,418 1,616 67 9,207 1,459

4.2. Sun graphs

Given a minimum vertex degree δ ∈ N, δ ≥ 3, we de�ne the random sun graph model,

denoted by SG(δ), following the description in [26]. Assuming we are given a complete

graphK⌊δ ln δ⌋ with the vertex set V (K⌊δ ln δ⌋), we add an independent set of δ other vertices

Oδ = {v1, v2, ..., vδ} and make each vertex vi, i = 1, 2, ..., δ, adjacent to exactly δ vertices

of the set V (K⌊δ ln δ⌋), chosen uniformly at random. The resulting graph G ∈ SG(δ) has

the vertex set V (G) = V (K⌊δ ln δ⌋)∪Oδ and m =
(⌊δ ln δ⌋

2

)
+ δ2 edges. We call this graph G

a sun graph, which is clearly a split graph on n = ⌊δ ln δ⌋+ δ vertices with δ(G) = δ.

Random (unweighted) sun graphs were generated for δ = 50k, k = 1, 2, ..., 7, ten

graphs for each k, seventy graphs in total, to form the set SG(δ = 50k). Then, for

each G ∈ SG(δ = 50k), k = 1, 2, ..., 7, weights were assigned to the vertices in the

clique V (K⌊δ ln δ⌋) as integers in the range {101, 102, ..., 200} and, to the vertices in the

independent set Oδ, as integers in the range {1, 2, ..., 100}, uniformly at random.

4.2.1. Randomized heuristics and sun graphs. Three randomized heuristics, correspond-

ing to Algorithm 1 and using the optimized probabilities of Theorems 3.1, 3.3, and 3.4,

were run on each of these seventy sun graph instances. Each of the randomized algorithms

was run twenty times on each sun graph instance, and the best found solutions (out of

twenty) by the dominating set size and also by the dominating set weight were recorded.

See the aggregated averages for ten sun graph instances for each δ = 50k, k = 1, ..., 7, re-

spectively in the upper and lower subrows of Table 6, together with the maximum average
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CPU run-times.

Table 6. Aggregated results of running the randomized heuristics on the sun graphs

Theorem 3.1 Theorem 3.3 Theorem 3.4Min degree,

δ = 50k Size Wt Size Wt Size Wt

Max avg.

time(s)

6.1 876 5.8 783.9 6 822.5
k = 1

6.3 864 5.8 783.9 6.1 812.8
0.12

9 1,279.7 8.7 1,221.6 8.5 1,164.5
k = 2

9 1,279.7 9.1 1,210.2 8.6 1,155.3
0.44

11 1,669 10.9 1,503.6 10.8 1,457
k = 3

11.3 1,645.8 11.2 1,493.6 10.9 1,456.2
1.04

12.5 1,818.3 12.3 1,671.5 12.2 1,734.6
k = 4

12.8 1,802 12.5 1,671.2 12.5 1,681.3
2.14

14 2,070.4 13.7 1,905.8 13.8 1,959
k = 5

14.3 2,048.3 14 1,872.2 14.2 1,927.4
3.11

15.1 2,211.6 15.1 2,079.3 14.9 2,143.5
k = 6

15.3 2,194.6 15.3 2,061.3 15.4 2,088.7
4.95

16 2,375 15.5 2,147.5 16 2,245.2
k = 7

16.1 2,371.7 15.6 2,145.5 16.2 2,213.1
6.62

Table 6 shows that the randomized algorithm corresponding to the probabilistic con-

struction of Theorem 3.1 performs worse on sun graphs than those corresponding to

Theorems 3.3 and 3.4. The randomized algorithms corresponding to Theorems 3.1, 3.3,

and 3.4 �nd better dominating sets by size for 52.9%, 71.4%, and 70% of all instances,

respectively, and better dominating sets by weight for 7.1%, 42.9%, and 50% of all in-

stances, respectively. The upper bounds of Theorems 1.2 and 3.1 were satis�ed for all the

problem instances. Table 6 also shows that the heuristic methods derived from Theorems

3.3 and 3.4 provide better results for the two-objective optimization problem than that of

Theorem 3.1 in all the cases, although both methods of Theorems 3.3 and 3.4 are designed

for optimization by weight only.

4.2.2. Using a generic ILP solver on sun graphs. For each weighted sun graph G ∈
SG(δ = 50k), k = 1, 2, ..., 7, we attempted to �nd exact deterministic solutions to the

problems of �nding γ∗w(G) and γw(G) by using the ILP formulation (5) from Section 2

and Gurobi. This was successful in a reasonable amount of CPU time of at most 30 min

(1,800 sec) only for k = 1, 2 (245 and 560 vertices, respectively) when computing γ∗w(G),

and for k = 1, 2, 3 (245, 560, and 901 vertices, respectively) when computing γw. In these

deterministic computational experiments, almost half of the graphs (nine out of twenty)

were found to have a dominating set of a non-minimum size with weight lower than γ∗w(G),

i.e. γw(G) < γ∗w(G) (see Tables 7 and 8). For the larger (medium) size sun graphs, i.e.

for k ≥ 3, when computing γ∗w(G), and for k ≥ 4, when computing γw(G), Gurobi was

run for 30 min (1,800 sec CPU time) as a heuristic solver. The aggregated results are

presented in Table 7 and 8 (the deterministic solution results are shaded).
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Table 7. Aggregated results of running the ILP generic solver on the sun graphs for γ∗
w(G)

Min

degree,

δ = 50k

Best randomized for γ∗
w(G) ILP for γ∗

w(G)

size wt
CPU

time (s)

IHS

size

IHS CPU

time (s)

BPS

size

BPS

wt

BPS CPU

time (s)

k = 1 5.8 783.9 0.012 50 0.026 4.5 583.1 2.78

k = 2 8.5 1,164.5 0.43 100 0.18 6 758.8 183.68

k = 3 10.8 1,457 1.03 150 0.47 7.8 947.7 1,800

k = 4 12.2 1,734.6 2.14 200 0.92 8.8 1,120 1,800

k = 5 13.7 1,905.8 3.11 250 1.57 9.9 1,169.1 1,800

k = 6 14.9 2,143.5 4.76 300 2.51 10.8 1,341.3 1,800

k = 7 15.5 2,147.5 6.6 350 3.76 11.4 1,489.2 1,800

Table 8. Aggregated results of running the ILP generic solver on the sun graphs for γw(G)

Min

degree,

δ = 50k

Best randomized for γw(G) ILP for γw(G)

wt size
CPU

time (s)

IHS

wt

IHS CPU

time (s)

BPS

wt

BPS

size

BPS CPU

time (s)

k = 1 783.9 5.8 0.12 7,623.5 0.031 564.9 4.9 0.9

k = 2 1,155.3 8.6 0.43 15,175.6 0.19 747.1 6.5 31.44

k = 3 1,456.2 10.9 1.03 22,540.9 0.46 859.8 8 1,381.21

k = 4 1,671.2 12.5 2.14 30,105.4 0.91 1,005.9 9.2 1,800

k = 5 1,872.2 14 3.11 37,734 1.56 1,122.5 10.2 1,800

k = 6 2,061.3 15.3 4.8 45,061.2 2.48 1,218.3 11.2 1,800

k = 7 2,145.5 15.6 6.6 52,535 3.71 1,283.3 11.9 1,800

It can be seen from Tables 7 and 8 that, for the small and medium size sun graphs,

the new randomized heuristics provide solutions of about one order of magnitude better

than the IHS's of Gurobi, but Gurobi �nds its (apparently trivial) IHS's faster. Also,

on average, the best solutions found by the randomized algorithms for k = 1, 2, 3 are

about 39 − 69% worse by weight and, for k = 1, 2, about 29 − 42% worse by size than

the optimal (deterministic) solutions. The computing time of the deterministic solution

methods (ILP) becomes prohibitively high for graphs of 1,259 and more vertices in these

experiments. In comparison to the heuristic results for medium size sun graphs (k ≥ 4)

obtained by Gurobi in 1,800 sec, the very quick (less than ten seconds) heuristic solutions

by the new randomized algorithms are about 66−69% worse by weight and about 36−39%

worse by size. Again, this gap can be signi�cantly reduced and even better results can be

obtained by running the randomized algorithms for more iterations in the same amount

of time (1,800 sec). In Section 4.2.3, we show that the randomized algorithms provide

clearly better results for large size sun graphs when run for the same amount of time as

Gurobi. The average CPU run-times to compute exact values of γ∗w(G) and γw(G) (for

k = 1, 2, 3) using the ILP formulations and Gurobi (see BPS columns in Tables 7 and 8)

clearly show the considerable growth of computational time requirements with respect to

the graph order, as well as di�erences in computational complexity for �nding γ∗w(G) and

γw(G) in sun graphs. It can be seen from Tables 2, 3, 7, and 8 that running Gurobi on the

ILP formulations of the problems is much more e�cient for the sun graphs than for the

Erd®s�Rényi graphs. This may be explained by the structure of the sun graphs, which
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are split graphs. However, both types of random graphs exhibit exponential growth in

the ILP solution time with respect to the graph order.

4.2.3. Large-scale sun graphs. Finally, we ran the three randomized algorithms and

Gurobi on two large size sun graphs, generated as described at the beginning of Sec-

tion 4.2, except that all weights were assigned to the graph vertices as integers in the

range {101, 102, ..., 200}, uniformly at random. One graph has the minimum vertex de-

gree δ = 1,250 (k = 25) and n =10,163 vertices, the other has δ = 2,500 (k = 50) and

n = 22,060 vertices. Each of the four solvers was given 30 min (1,800 sec) of CPU time

to �nd a solution to the problems corresponding to searching for γ∗w(G) and γw(G).

For the sun graph on 10,163 vertices (δ = 1,250), the randomized algorithms arising

from Theorems 3.1, 3.3, and 3.4 respectively used 125, 101, and 87 iterations. For this

graph, Gurobi was able to �nd only the initial trivial solution of 1,250 vertices (in 128

sec) and weight 189,407 (in 116 sec). No other solution was found by Gurobi in 1,800

sec. The results of the randomized algorithms are presented in Table 9 below. When

trying to �nd γ∗w(G), the randomized algorithm arising from Theorem 3.1 provides the

best solution by the dominating set size. Again, this can be explained by the same optimal

probability used in Theorems 3.1 and 1.2. When searching for γw(G), the randomized

algorithm arising from Theorem 3.4 provides the best solution, which, similarly to the

large Erd®s�Rényi graphs, can be explained by its sensitivity to the vertex weights in the

graph.

Table 9. Best found results for the sun graph on 10,163 vertices

Problem
Theorem 3.1 Theorem 3.3 Theorem 3.4

Size Wt
Time

(sec)
Size Wt

Time

(sec)
Size Wt

Time

(sec)

γ∗
w(G) 24 3,557 1,246 25 3,726 1,259 25 3,461 251

γw(G) 24 3,557 1,246 27 3,558 756 25 3,461 251

For the sun graph on 22,060 vertices (δ = 2,500), the randomized algorithms arising

from Theorems 3.1, 3.3, and 3.4 respectively used 11, 9, and 8 iterations. For this graph,

Gurobi ran out of memory and was not able to produce any solution. The results of

the randomized algorithms are described in Table 10. For this large sun graph, the best

solutions are found by the randomized algorithm arising from Theorem 3.4. While this

seems to be normal for the search by weight, the result by size illustrates the randomized

nature of the three solvers.

Table 10. Best found results for the sun graph on 22,060 vertices

Problem
Theorem 3.1 Theorem 3.3 Theorem 3.4

Size Wt
Time

(sec)
Size Wt

Time

(sec)
Size Wt

Time

(sec)

γ∗
w(G) 34 5,253 393 34 5,054 559 33 4,720 557

γw(G) 35 5,207 182 35 4,842 223 33 4,720 557
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5. Conclusions

We have considered the problems of �nding a minimum-size dominating set of the smallest

weight and of �nding a minimum weight dominating set in a vertex-weighted simple graph.

The two-objective problem is di�erent from the classic single-objective problems of �nding

a smallest cardinality dominating set or a smallest weight dominating set in a graph, but

is shown to be a particular case of one of them. Using the probabilistic method, we have

shown three generalizations of the classic upper bounds for the domination number. The

probabilistic constructions used to prove the new bounds provide randomized heuristics to

�nd quick good quality solutions for the weighted domination problems. We have shown

a connection between the problems in graphs via ILP formulations of the problems and

provided a reduction from the two-objective problem to the minimum weight dominating

set problem.

The simple and e�cient randomized heuristics presented in this paper can be used, for

example, to quickly �nd a better initial solution for the local search and other heuristics

presented in [1, 5], or to speed up deterministic algorithms that use binary search in an

interval, like the algorithm in [21]. The proposed randomized heuristics are very e�cient

in usage of computer memory and CPU time. Since the probability used in the proof of

Theorem 3.1 is the same as in the proof of Theorem 1.2, the corresponding randomized

algorithm from the framework of Algorithm 1 provides a certain optimality in �nding a

good dominating set not only by weight, but also by size. On the other hand, the compu-

tational experiments show that the randomized algorithms arising from Theorems 3.3 and

3.4 are more sensitive to the vertex weight parameters and usually provide better results

than the randomized algorithm arising from Theorems 3.1, in particular, in the case of

sun graphs of Section 4.2. Clearly, some heuristic enhancements can be used to make

Algorithm 1 more e�ective and e�cient, in particular, when forming the initial dominat-

ing set D in G and �nding the minimal (by inclusion) dominating set D′. For future

experiments and research in this direction, the random vertex-weighted graph instances

used for the (reproducible) computational experiments in this paper are made available

online [9].

The upper bound and probabilistic construction of Theorem 3.1 are reminiscent and

similar to those used in Theorem 1.2 for unweighted graphs, and the assumptions of

Theorem 3.1 require the graph weights not to vary too much among the vertices. On the

other hand, ILP reduction (6) from Section 2 guarantees that the reduced problem has

all the vertex weights close to one and not varying too much. In this case, the bounds

and probabilities of Theorems 3.3 and 3.4 turn out to be close to those of Theorem 3.1,

which makes all three of the theorems useful in the context of reduction.

As a direction for future work, it would be interesting to consider a relaxation of the

problems to �nd dominating sets whose size and/or weight are within a certain limit from

γ(G) and/or γw(G) in a graph, respectively, and a connection between γ(G) and vertex

weight parameters. Also, it would be interesting to devise other heuristic and deterministic

solution methods for the problems. In particular, it would be useful to develop some

deterministic solution algorithms, like the state-of-the-art deterministic algorithms for
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the minimum-size dominating sets [3, 4, 21]. Eventually, the upper bounds and outcomes

of the randomized algorithms presented in this paper can be used to reduce the search

space in smart exhaustive search algorithms, like backtracking and branch-and-bound, for

the minimum-weight dominating sets. Using di�erent initial solutions in the deterministic

or heuristic solvers would be a good direction of future research to extend these results.
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