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ABSTRACT
The chemical specificity of x-ray photoelectron spectroscopy (XPS) for the analysis of surfaces is well established. However, 
overlapping peaks and complex peak shapes can hinder routine analysis of spectra. Studies involving controlled changes 
to samples to systematically change photoelectron spectra can reveal invaluable information on peak shapes and hidden 
spectral features. This insight note is presented to educate users in embracing and utilising changes in spectra to facilitate 
spectral analysis.

1   |   Introduction

In multiuser facilities, such as that run by the authors, the level 
of experience of its users with x-ray photoelectron spectros-
copy (XPS) varies significantly. Consequently, understanding, 
yet alone interpretation, of photoelectron spectra can be diffi-
cult and has been highlighted widely in the literature [1]. Whilst 
training of the next generation of XPS specialists is required, 
the demand on the staff of a multiuser facility is significant.

The importance of understanding any XPS data from analysis 
of the whole data set, including survey spectra, should not be 
overlooked, especially as this can readily show the presence of 
contaminants or the formation of a particular species (e.g., sur-
face carbonates). Complementary to what should be standard 
protocols for data analysis, to further facilitate understanding, 
we believe that training users to appreciate studying controlled 

changes in data sets, whilst potentially instrumentally intensive, 
can save significant time in data analysis and enhance both the 
understanding and experience of users in respect of data analy-
sis, especially in the selection of suitable peak shapes for fitting. 
This insight note is aimed at both new and experienced practi-
tioners with a view to enable researchers to look for, understand 
and use to their advantage controlled changes in photoelectron 
spectra.

2   |   Methods for Obtaining Peak Shapes

Obtaining reliable peak shapes for fitting is critical in spectral 
interpretation. Whilst the fundamental and theoretical peak 
shape for photoemission peaks is Lorentzian, this is usually 
convoluted with some Gaussian form, which can generally be 
modelled using Voigt or pseudo-Voigt functions [2, 3]. However, 
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peak shapes are not always Voigt-like and complexity can be 
introduced through asymmetry [4–6], shake-up satellites [7], 
plasmons [8, 9] and multiplet splitting [10]. Below, we highlight 
methods for obtaining suitable peak shapes for analysis, to-
gether with any correlated satellite structure.

It is noted at this point that for insulating samples, the need for a 
stable charge balance at the surface is essential to avoid spectral 
artefacts.

2.1   |   Bulk Material and Standards

Collection of spectra from standard reference materials is an 
excellent way of obtaining core-level spectra and is especially 
useful for metals, which can be etched clean in situ prior to 
analysis. Figure 1 shows an example of the use of fitted spec-
tra, derived from bulk metallic and oxide samples to fit the 
relatively complex Au(4d)/Pd(3d) spectral region for a AuPd 
bimetallic catalyst. As the spectra are collected under identi-
cal system settings, these standard spectra give insights into 
peak FWHMs and any extra structure, which should be in-
cluded in any fit.

A potential downside to the collection of standard spectra is the 
history of the handling of the sample. Transition metal oxides, 
which have previously been opened, may react with the atmo-
sphere forming surface carbonates and hydroxides [11–17]. In 
such cases, whilst bulk sensitive techniques such as XRD or 
Raman may indicate a high purity material, the surface is ulti-
mately not representative of the bulk chemistry, and any derived 
line shape should be treated with some caution. It is recom-
mended that samples are opened and introduced to the spec-
trometer by means of a glove box or appropriate vacuum transfer 
vessel [18–20]. In situ heat treatment, to remove adsorbed spe-
cies, may also be useful.

2.2   |   Angle-Resolved XPS (ARXPS)

Angular data can be used to extract line shapes, using meth-
ods we will discuss in Section 2.3. Figure 2a shows the angular 
data (normal emission (0 o) up to grazing emission (60°)) for a 
partially oxidised Ti-containing alloy, together with two peak 
shapes extracted from the data. Whilst Shape 1 is reminiscent 
of metallic Ti (BE 2p3/2 = 454.0 eV), Shape 2 has features and en-
ergies consistent with TiO2 (BE 2p3/2 = 458.6 eV) but also reveals 
at least one state correlated with the TiO2, likely a Ti (II)-oxide 
based on the binding energy (BE 2p3/2 = 455.5 eV).

Whilst the presence of TiO2 is clear, the presence of a subox-
ide may be overlooked, despite being inferred by the increased 
asymmetry of the metallic Ti signal with increasing angle. Key 
in this data processing is not only the identification of the sec-
ond oxide but also its positioning relative to the other Ti states, 
which can aid curve-fitting and yield a greater understanding of 
the surface chemistry.

2.3   |   Controlled Oxidation and Reduction 
(REDOX)

The changes imparted on photoelectron spectra by, for example, 
oxidation, can yield valuable information in the derivation of 
peak shapes for detailed chemical state analysis where multiple 
oxidation states exist, as already noted for ARXPS data [21].

Controlled oxidation of polycrystalline and single crystal mate-
rials has long been a mainstay in surface science [22]. Oxidation 
has been achieved using dioxygen [22, 23] and nitrogen oxides 
[21, 24, 25], whilst more atomic-like oxygen sources such as 
O3 [26–28] and plasmas [29–33] can readily yield thicker oxide 
layers. Such oxidation methods are excellent as the user can 
generate spectra free of adventitious carbon contamination or 

FIGURE 1    |    Use of spectral shapes taken from bulk standards to fit a complex spectrum. Where (a) fitted spectrum using fits derived from fits (not 
shown) for metallic Au and Pd spectra (b) and (c), respectively, and (d) bulk PdO.
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FIGURE 2    |    (a) Ti(2p) ARXPS data between 0 (normal emission) and 60° (grazing emission) used to generate Shapes 1 and 2 as shown in (b). The 
two shapes have been obtained using PCA and algebraic methods as previously discussed.

FIGURE 3    |    Cu(3p) spectra for oxidation of a Cu2O single crystal, where (a) normalised overlay of selected spectra from the oxidation sequence, 
(b) the final oxidised spectrum, (c) and (d) Cu(II) and Cu(I) peak shapes derived from the oxidation sequence and (e) is a reference bulk CuO spec-
trum—note the similarities to (c), with only the background changing.
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surface hydroxyls; furthermore, they allow the experimental-
ist to follow changes in core and Auger peaks as a function of 
oxidation, which can aid chemical state determination, such as 
that required for Cu or Zn [23, 34, 35]. Oxidation using O3 can 
be achieved through the addition of a Hg-vapour lamp to the 
load-lock or ancillary chamber of a spectrometer [36]. Oxidation 
can also occur through the adsorption of residual chamber gases 
for highly reactive metals such as lanthanides [37]. Following 
changes can be made through careful spectral subtraction [21] 
or using principal component analysis (PCA) and algebraic 
methods [38, 39]; an example of this method for the oxidation of 
a Cu2O single crystal is given in Figure 3.

Similarly, reduction can be performed using a ‘hydrogen cracker’ 
to obtain atomic hydrogen [40–42], or a reaction or gas treatment 
cell (sometimes referred to as a catalysis cell) generally with, for 
safety and gas pumping efficiency, diluted H2 feeds [20, 43].

Series of spectra collected from controlled reduction through 
x-rays [44, 45] or ions [46, 47] can extract practical line shapes 
representative of pure or intermediate chemical states for 
metal oxides and polymer or organic materials [48, 49]. As 
shown in Figure  4, it is possible to extract representative 
Ce(IV) and Ce(III) oxide spectra from the controlled reduction 
of CeO2 [44]; similar methods have been used to obtain dis-
tinct Mo line shapes [39]. Where reduced (or oxidised) species 
may have different levels of conductivity, such as in the case 
of molybdenum oxides (MoO3 is an insulator, whilst MoO2 is 
conductive), then mounting such samples, so they are floated 

from the spectrometer will aid in a more uniform charge bal-
ance across the surface.

3   |   Summary

We have highlighted that performing experiments in such ways 
that impart changes in the photoelectron spectra allows a consid-
erable deal of underlying chemistry to be extracted. Such changes 
yield spectra suitable for the derivation of line shapes for fitting or 
components for PCA and related analysis. We reiterate here that al-
though peak shapes can be derived from manipulation of spectra, 
for a rigorous and informed analysis of any data, the whole data set 
should be analysed, including survey spectra. Importantly, readers 
of this insight note are encouraged to go read the given references 
and try the methods outlined therein with their own work.
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FIGURE 4    |    Ce(3d) core-level spectra of (a) Ce(IV) and Ce(III) PCA enhanced states extracted from spectra acquired during the photoreduction 
of CeO2, and (b) the equivalent bulk reference oxide spectra.
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