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Figure 1. Our SDM-United Framework enables online simulation of personalized, physically realistic, and 3D-adaptive multi-agent
evacuation scenarios.

Abstract
Crowd evacuation simulation is critical for enhancing

public safety, and demanded for realistic virtual environ-
ments. Current mainstream evacuation models overlook
the complex human behaviors that occur during evacu-
ation, such as pedestrian collisions, interpersonal inter-
actions, and variations in behavior influenced by terrain
types or individual body shapes. This results in the fail-
ure to accurately simulate the escape of people in the real
world. In this paper, aligned with the sensory-decision-
motor (SDM) flow of the human brain, we propose a real-
time 3D crowd evacuation simulation framework that inte-
grates a 3D-adaptive SFM (Social Force Model) Decision
Mechanism and a Personalized Gait Control Motor. This
framework allows multiple agents to move in parallel and is
suitable for various scenarios, with dynamic crowd aware-
ness. Additionally, we introduce Part-level Force Visualiza-
tion to assist in evacuation analysis. Experimental results
demonstrate that our framework supports dynamic trajec-
tory planning and personalized behavior for each agent
throughout the evacuation process, and is compatible with
uneven terrain. Visually, our method generates evacuation
results that are more realistic and plausible, providing en-
hanced insights for crowd simulation. The code is available
at http://cic.tju.edu.cn/faculty/likun/projects/RESCUE.

1. Introduction

Evacuation simulations serve as valuable tools for as-

sessing the likelihood of crowding and trampling incidents,
estimating evacuation times, and supporting virtual reality
escape training. However, no existing methods can simulate
personalized and proxemics-aware 3D movements of hun-
dreds of people online. This paper aims to develop an adap-
tive multi-agent 3D evacuation simulation framework. As
shown in Figure 1, our framework, called RESCUE (cRowd
Evacuation Simulation via Controlling SDM-United char-
actErs), is capable of achieving online physically realistic
simulations performing avoidance and personalized gait.

Traditional crowd simulation methods [3, 6, 22] have ex-
plored various strategies in different scenarios. However,
due to their simplified representations, these methods fail
to integrate 3D motion with realistic behavior, resulting in
physically implausible actions. Most crowd simulation meth-
ods cannot make decisions based on scene changes and are
not designed for crowd evacuation simulation. Based on
physics engines [18], character control [4, 26, 29, 36, 37]
achieves autonomous 3D motion. However, these methods
face the lack of personalization motions and may result in
falls and collisions in densely populated scenarios. Some mo-
tion generation methods [10, 31, 32, 43] based on diffusion
models can generate diverse 3D motions, but they still face
challenges in controllability and physical realism. Neither of
these methods can directly produce realistic, personalized,
and online evacuation motions. The detailed capabilities of
the methods are summarized in Table 1.

The limitations of the existing methods are mainly due to



Table 1. Comparison with Related Methods

Related Work Traditional Crowd Sim-
ulation [3, 6, 7, 22]

Path-Guided Motion
Generation [27, 39, 43]

Path-Guided Character
Control [29, 37, 41]

Our Method

Online Path Planning Partial ✘ ✘ ✔

3D Human Models ✘ ✔ ✔ ✔

Personalized Gait ✘ ✔ ✘ ✔

Collision Visualization ✘ ✘ ✘ ✔

Uneven Terrains ✘ ✘ ✔ ✔

the significant behavioral and environmental complexities
inherent in evacuation scenarios: 1) 3D Proxemics-aware
Ability: Crowded pathways and frequent physical interac-
tions require the use of online 3D movement decision to
enable dynamic strategy adjustments, such as avoidance of
collisions and maintaining stability; 2) Personalized Gait: In-
dividuals with different attributes, such as older or disabled
persons, exhibit varying behaviors in identical situations,
adapting to the scene with different speed and performance.

Neuroscientific studies [17, 20, 35] demonstrate that hu-
mans employ a Sensory-Decision-Motor (SDM) loop [28],
integrating environmental cues through distributed neural
networks to evaluate and dynamically adjust behavior in
complex environments. In this paper, we propose an on-
line SDM-United 3D Evacuation Simulation Framework
that integrates personalized decision-making with charac-
ter control in a physics engine. This allows each agent to
perceive its surroundings and make online adjustments. To
handle congestion, we propose a 3D-Adaptive Social Force
Model for decision-making and obstacle avoidance in 3D
environments. In particular, we introduce an evasive force
that adapts to dense scenarios to avoid congestion.

To achieve behavioral diversity, we introduce a
Proxemics-aware Personalization Method with a person-
alized gait controller and an optimized SFM to generate
individualized behaviors for agents based on attributes such
as ages and physical conditions. Additionally, we introduce
Part-level Force Visualization, offering unprecedented in-
sights into contact forces. Our experiments demonstrate that
the proposed framework effectively adapts to uneven terrain,
maintains balance during collisions and crowd congestion,
and generates personalized behaviors. Although our experi-
ments have focused on evacuation scenarios, the framework
readily generalizes to a wide variety of multi-agent environ-
ments, such as autonomous driving simulations in which
dynamic vehicles and diverse pedestrians coexist. Our con-
tributions can be summarized as follows:
• We propose the first online SDM-United 3D Evacuation

Simulation Framework, with online decision-making and
physics-based motion generation. This proxemics aware
framework can be seamlessly extended to arbitrary dy-
namic environments and supports real time parallel simu-
lation of hundreds of agents.

• We propose a 3D-adaptive Social Force Model, designing
optimized forces and personalized coefficients to enable
accurate decision-making in 3D environments. This ap-
proach ensures correct guidance for the speed of agents.

• We propose a Personalized Gait Controller, enabling
agents to generate personalized motions tailored to at-
tributes such as age and physical condition. Additionally,
a Part-level Force Visualization is designed for analysis.

• We validate the framework in various evacuation scenarios,
demonstrating its ability to simulate diverse evacuation
events, including the effects of crowd density, corridor
width and terrain influence trampling incidents, as well as
crowd behaviors like collisions and falls.

2. Related Work

2.1. Crowd Simulation
Crowd simulation is a tool for analyzing and optimizing

crowd dynamics. The aim is to capture key phenomena
such as bottlenecks and panic-induced behaviors. Macro-
scopic models describe collective crowd movement using
fluid dynamics [5, 8, 11, 30], while providing detailed in-
sights through approaches. Social Force Models (SFM)
[14, 15, 34] are among the most widely used methods, treat-
ing pedestrians as Newtonian particles influenced by the
forces driving acceleration. Additional forces such as panic,
sliding friction, and body compression have been introduced
[6, 48]. However, these refinements often target specific
scenarios. With advances in computational power, Agent-
Based Models (ABM) have gained popularity [3, 7], simulat-
ing individuals as autonomous agents with unique decision-
making capabilities. Although the above-mentioned methods
attempt to simulate real-world escape, they rely on simplified
2D representations, where force feedback can only use un-
realistic surrogate computations, leading to distorted speed
outputs. Although several attempts at physically plausible
3D simulations have emerged [1, 9, 13, 46], these approaches
still fall short in integrating personalized motion control and
decision-making mechanisms. Most methods rely on generic
movement patterns that overlook individual variations and
fail to construct comprehensive strategies for handling crowd
dynamics and escape scenarios.

2.2. Character Control
The practicable controllers for physics-based character

simulation remain a challenge in animation. Initial methods
predominantly rely on carefully designed control structures,
such as finite state machines and trajectory optimization, to
achieve specific motions. These approaches demonstrate the
feasibility of simulating a wide range of behaviors, but their
reliance on task-specific engineering makes them inflexi-
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Figure 2. The detailed architecture of RESCUE. Our framework simulates the neuroscience-validated paradigm (Sensory-Decision-Motor)
to achieve a realistic and personalized crowd evacuation simulation. Specifically, our framework includes: (a) Sensory: each agent senses
observations, including the fully observable self-state, the partially observable other-state, and the environment state; (b) Decision: each
agent uses Social Force Model with personalized SFM coefficients to decide its speed in the next timestep, which is then used to compute
path condition; and (c) Motor: the path condition and personal attribute of each agent are conditioned to simulate locomotion with a
personalized gait controller. The simulation then updates the states of all agents, allowing them to be sensed by the sensory module.

ble and time consuming to adapt to new tasks [4]. Recent
advances in deep reinforcement learning (DRL) greatly ex-
pand the capabilities of physics-based characters, enabling
them to perform diverse tasks, such as walking and running
[24, 44], and recovering from disturbances [16]. Designing
effective reward functions can produce natural motions, but
remains challenging. To address this, motion imitation meth-
ods [25, 38] gain popularity, where controllers learn from
reference data, either through direct tracking or adversarial
learning, to produce lifelike behaviors. Furthermore, hier-
archical control frameworks are proposed to combine low-
level imitation with high-level motion planning, enabling
characters to execute complex sequences of actions [29, 37].
However, existing methods struggle to generate realistic
behaviors in densely populated scenes, lack online decision-
making capabilities, and are insufficient in generating diverse
and personalized motions.

2.3. Motion Generation
Motion generation aims to synthesize realistic and varied

human motions. Recent advances in diffusion models have
significantly improved the diversity and quality of motion
synthesis [31, 32]. Key research directions include text-
driven motion generation, stylized motion synthesis [2, 50],
scene-aware motion generation [23, 40, 49], and human-
object interaction modeling [45]. Recent efforts [33, 47]
have also integrated physical constraints to enhance the real-
ism of generated motions. Trajectory-controlled [27, 39, 43]
and multi-person motion synthesis [42] have been explored.
However, challenges remain in generating long-duration,
physically plausible motions, particularly in multiperson,
contact-rich scenarios. In addition, these methods are usu-
ally time consuming and not suitable for online applications.

In conclusion, all existing methods fail to accurately sim-
ulate 3D multi-agent with personalized behaviors in densely
populated escape scenarios. Therefore, we propose the first
SDM-unified evacuation simulation framework to generate

realistic, personalized, and online 3D evacuation motions.

3. Method

3.1. Overview
The structure of our framework is shown in Figure 2.

Our goal is to simulate realistic evacuation scenarios with
diverse individuals. Given a scene mesh, an exit location
and initial positions, the framework generates a personalized
evacuation animation. Notably, it is suitable for evacuation
tasks by incorporating human-like paradigm, while ensuring
personalized decisions and motions.

In Section 3.2, we introduce our SDM-United Frame-
work, comprising the Sensory, Decision, and Motor modules.
The Sensory module provides self-awareness, partial aware-
ness of others, and exit perception. Our 3D-adaptive SFM
Mechanism (Section 3.3) enhances decision-making and
obstacle avoidance in 3D environments. Proxemics-aware
Personalization is achieved through both the Decision and
Motor modules: the Decision module, with Personalized
Optimization for SDM Coefficients (Section 3.3), computes
speeds tailored to individual attributes (Section 3.3), while
the Motor module, with the Personalized Gait Controller
(Section 3.4), generates locomotion with personalized gaits.
We also introduce the Visualization of Part-Level Forces
(Section 3.5) to aid analysis.

3.2. SDM-United Framework
The human brain follows a workflow of sensory, deci-

sion, and motor processes [28], and hence we develop our
framework. Each person in the evacuation process is ab-
stracted as an agent that operates in an online loop, where the
sensory module gathers observations, the decision module
computes speeds, and the motor module executes motions,
with updated states feeding back into the sensory module for
continuous processing and making them available for next
cycle.



Sensory. Each agent perceives its self-state sself , the
partially observable other-state sother, and the environment
state senvir. At time t, sselfi,t includes the agent’s position,
speed, and its humanoid state hi,t. The other-state sotheri,t

contains other agents’ root positions relative to the agent, and
the environment state senviri,t . The form of hi,t and senviri,t

follows [29].
Decision. The Social Force Model (SFM) [14, 15] models

pedestrian behavior, including panic and crowd dynamics.
We propose a 3D-adaptive SFM Decision Mechanism to
compute the desired speed ṽi,t+1. The key points of the es-
cape path are found via A* search [12], and we use the SFM
to drive each agent toward the key points while avoiding
collisions, resulting in the computation of the agent’s speed
ṽi,t+1. SFM coefficients are optimized based on individual
attributes to enable personalized decisions.

Motor. We use Pacer [29] for path-following, which
computes the motion ai,t based on the speed ṽi,t+1. This
motion is non-personalized, so a Personality Gait Controller
assigns a personalized gait based on attributes. The resulting
motion is simulated in the physics engine and then sensed in
by each agent for continuous processing.

3.3. 3D-adaptive SFM Decision Mechanism
In 3D simulations, interaction dynamics differs from 2D

point-based models due to physics engine integration. While
3D collision handling prevents interpenetration, human-to-
human interactions require substantial adaptation—agents in
3D may stumble or fall under congestion that would merely
slow movement in 2D models. Effective navigation requires
detouring behavior rather than waiting or collision. To ad-
dress these challenges, we introduce personalized SFM co-
efficient optimization and evasive forces specifically for 3D
environments. Our decision process transforms agent i’s ob-
servations (position, speed, and nearby agents) into desired
speed ṽi,t+1 ∈ R3 for the next timestep.

Base Forces. Our implementation enhances the basic
social force model [14] with two essential components. The
driving force guides agents efficiently toward destinations
by first employing A* pathfinding [12] to generate optimal
routes, then calculating acceleration based on the discrep-
ancy between desired and current speeds, smoothed by a
relaxation parameter. The complementary repulsive force
maintains safe inter-agent distances through exponential re-
pulsion that intensifies as proximity increases, with magni-
tude controlled by repulsion coefficient, spatial decay, and
interaction radius parameters.

Evasive Force. We propose the evasive force to evade
the front agents stopping or falling due to collisions. By
computing perpendicular directions to the desired path, the
agent can detour efficiently. The force is calculated by con-
sidering a 45° sector in front of the agent, representing the
perceived area. The evasive force F evasive is defined as:

F evasive = A sgn
(
oi ·pi

)
pi , (1)

where A is a binary mask that equals 1 when there is an
obstacle in front of the agent and there is available space to
the side, and 0 otherwise. pi is the perpendicular vector to
the desired direction, and oi represents the average position
of nearby agents. This improvement aligns the SFM with
the requirements of 3D simulations.

Personalized Optimization for SDM Coefficients.
In crowd evacuation simulations, it seems not reasonable
to use uniform social force coefficients, as individuals have
varying escape abilities based on their attributes. Personal-
ized coefficients better reflect these differences. Moreover,
factors, for example friction in the physics engine, can cause
individuals to move more slowly than the intended speed.
To compensate for these, we adjust the target speed setting
to achieve the desired speed in simulation. Specifically, vreal
is the empirically obtained real-world escape speed from
literature (see Supplementary), vsim is the simulated speed,
and vsetting is the speed input to the engine. We run agents
of different attributes on a straight path in the physics en-
gine and optimize vsetting so that vsim approximates vreal. We
categorize agents into five groups, i.e. the young, middle-
aged, elderly, patients, and disabled1. Through this process,
we determine personalized coefficients with an accuracy of
0.005 m/s for use in simulation. The algorithm details are
presented in the Supplementary Materials.

Final Decision. The final desired speed ṽi,t+1 is deter-
mined by combining the forces:

ṽi,t+1 = vi +∆t
(
F drive + F repulsive + F evasive

)
, (2)

where ∆t is the timestep size, and vi is the current speed
of agent i. This framework ensures a smooth, collision-free,
and efficient movement toward the destination.

3.4. Personalized Gait Control

We propose a Personalized Gait Controller that generates
personalized escape gaits by transforming unpersonalized
actions to personalized actions based on agent attributes.
This section corresponds to the Motor process in Section
3.2. Pacer [29], a robust physics-based controller, serves as
our backbone for path-following. Its policy πPACER tracks
2D trajectories τi,t, sampled based on the desired speed.
Given the state S (agent’s position, humanoid state, and
environment state), the action ai,t is computed by πPACER.

People with different attributes have different gaits. We
correspond these gaits to a finite number of personaliza-
tion styles in the 100style dataset [19]. This converter is a
diffusion-based generative model, taking personalized gait
labels, characterless action frames, and randomly sampled
Gaussian noise as inputs, and outputs personalized action

1This classification is solely for scientific purposes, with no intention to
offend or make assumptions based on age or disability.



frames given to the characterless action frames correspond-
ing to the personalized gait labels. This requires the charac-
terless action frames as inputs and the personalized action
frames as ground-truths during training should be matched.

Gait Frame Matching. Inspired by [21], a gait cycle
can be fundamentally divided into 8 events [21]. We only
use 4 events which are Initial Contact, Mid Stance, Oppo-
site Initial Contact and Feet Adjacent. By calculating the
distance between the two ankles, the image can be obtained
similar to the sine-cosine function. The four gait events align
with two consecutive cycles of the ankle distance waveform,
corresponding to the peak, trough, peak, and trough, respec-
tively. To ensure gait connectivity for gait frame matching,
we assign gait values for all gait frames. We identify the
keyframes of four events based on the above pattern and
assign gait values of 0, 0.3, 0.5, and 0.75, while linearly
interpolating the non-keyframes between them. We match
personalized gait frames (excluding neutral style data in
100STYLE [19]) and non-personalized gait frames (neutral
style data in 100TYLE [19]) which have the same gait val-
ues as data pairs. The algorithm details are presented in the
Supplementary Materials. When forming multiple candidate
data frames, we select the two frames with the closest joint
angles to match. During training, we also perform data aug-
mentation by randomly assigning the same rotation to the
root joints of the data pair.
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Figure 3. Personalized Gait Converter.

Network of Personalized Gait Converter. We use the
CAMDM network [2] as the backbone to implement the non-
personalized action frame ai,t to personalized action frame
ãi,t, see Figure 3. This network is a probability diffusion
model. At each denoising step, the model takes as input
a noisy motion sample at

i,t, diffusion step t, along with
personalized gait label c, then learns to predict the original
clean ã0

i,t (see Figure 3):
a0 = G(at, t; c). (3)

The gait converter only involves single frame action conver-
sion, and we use MSE loss Lsamp and 3D joint position loss

Lpos. λsamp and λpos are hyperparameters that control the
weights of Lsamp and Lpos in the total loss function:

L = λsampLsamp + λposLpos. (4)

Lower body movement is affected by terrain, and upper
body movement is more flexible [41]. Hence, in the simula-
tion of the physics engine, we replace the upper body actions
of non-personalized action frames ai,t with the upper body
actions of personalized action frames ãi,t. The simulation
of actions in the physics engine can be sensed by the sensory
process for the decision and motor in the next timestep.

3.5. Visualization of Part-Level Forces
Each physical agent consists of 24 distinct body parts.

Each body part contributes to the overall motion of the phys-
ical character. The interactions between these characters, as
well as their contact with the environment, generate forces
that drive their movements. In evacuation scenarios, assess-
ing the forces acting on each individual is crucial for miti-
gating potential hazards in crowded situations. We integrate
force sensors into each body part of the characters, which are
capable of recording the magnitude of contact forces exerted
at every timestep. To visualize the forces acting on part-level,
we design a color-based mapping approach. Specifically, a
gradient is employed, with lighter colors indicating lower
forces and darker colors representing higher forces.

To validate the effectiveness of our force visualization
method, we conduct part-level collision simulations under
various scenarios. Some examples are shown in Figure 4.

Figure 4. Visualization of forces under multiple collisions.

4. Experimental Results
4.1. Comparison Methods

Since there is no personalized 3D evacuation simulation
method, we compare our approach with three related meth-
ods: Social Force Model [14, 15], OmniControl [43] and
MaskedMimic [37]. Among the methods considered, only
the Social Force Model [14, 15] is originally designed for
crowd simulation, while OmniControl [43] is a motion gen-
eration method and MaskedMimic [37] is a character control
method. We adapt OmniControl [43] and MaskedMimic [37]
to accomplish the crowd evacuation task as well for a fair
comparison. The implementation details are as follows. For
all compared methods, we first use A* [12] to find waypoints
to the exit, and then: (1) Social Force Model [14, 15] – The
individual agents of the Social Force Model utilize strategies



Figure 5. Qualitative comparison.

to reach each waypoint step by step. (2) OmniControl [43]
– We calculate the path and interpolate the path points into
dense trajectories, which serve as root joint conditions for
generating escape motions. (3) MaskedMimic [37] – We
compute the escape trajectory, and the path-following task is
employed to control the character’s escape actions.

Table 2. Quantitative comparision.

Method Average Success Rate Average Fallen Count

OmniControl 0.48 —
MaskedMimic 0.60 18.55
Ours 0.84 12.26

4.2. Quantitative Comparison

To validate the performance of our framework in evacu-
ation tasks, we compare it with OmniControl and Masked-
Mimic across four scenes. We evaluate the average escape
success rate and the average number of falls for 50 agents
over 1000 frames per scene, with each scene run 10 times.
Due to the OmniControl not having physical realism, it does
not produce falls, so the fallen Count is not calculated. As
shown in Table 2, our method outperforms OmniControl
and MaskedMimic in all scenes, with higher success rates
and fewer falls. The OmniControl has insufficient control-
lability for long-distance movements, resulting in agents
deviating from trajectories and stopping prematurely. Com-

pared to MaskMinic, in our method, agents demonstrate
better pathfinding, mutual avoidance, and balance abilities.
4.3. Qualitative Comparison

To validate the superiority of our proposed framework,
we use the above-mentioned three methods for compari-
son. Figure 5 shows the evacuation processes and evacua-
tion motions executed by the three comparison models and
our framework on two classic evacuation scenarios and one
large-scale scenario. The Social Force Model is a 2D ap-
proach that can only depict the positional changes of people
during evacuation, and it cannot represent 3D human move-
ment. It assumes that individuals will always reach their
desired position when making decisions, which make the
simulation distorted. OmniControl fails to correctly gener-
ate long-distance trajectory-constrained actions, leading to
motion distortion, trajectory confusion, and premature stop-
ping. MaskedMimic, due to the lack of a collision avoidance
mechanism, may cause collisions during linear movement,
leading to crowd accumulation. Furthermore, the actions
of all agents tend to be similar, failing to reflect individ-
ual variations. There is also no noticeable distinction in
speed personalization among any of the three methods. Our
approach achieves more rational evacuation processes and
simulates personalized evacuation motions tailored to indi-
viduals with different attributes. More details can be found
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Figure 6. Ablation study results.
in demo video and supplementary document.

We also conduct a user study to evaluate our method,
along with OmniControl and MaskedMimic, in terms of
the plausibility of the evacuation process, the realism and
personalization of evacuation motions, and the effectiveness
of visualization part-level forces. For more details, please
refer to the supplementary document.
4.4. Ablation Study

Qualitative comparison. In qualitative comparison, we
compare the pipeline of our framework after removing the
3D-adaptive SFM Decision Mechanism, the Personalizing
Gait Control Motor, and both components together, which
degrades into the PACER[29] baseline. For all methods, we
first find waypoints. Figure 6 shows that, when it comes
to excluding 3D adaptive SFM while keeping personalized
gait control, the generated the agents fail to avoid each other,
leading to collisions and crowd accumulation. As a result,
some agents are unable to escape, and their escape speeds are
nearly identical. This indicates that the 3DA-SFM Decision
Mechanism effectively prevents potential collisions as much
as possible and offers more rational escape processes tai-
lored to individual attributes. Moreover, although removing
the Personalized Gait Control Module allows most agents
to fully escape, their gaits and movements become similar.

Personalized Gait Control Motor helps to generate personal-
ized motions for agents based on their attributes. In contrast,
the complete pipeline can dynamically adjust escape routes
based on evacuation speed tailored to each agent’s human
attributes, minimizing collisions and ensuring personalized
escape gaits that reflect individual characteristics. More de-
tails can be found in the demo video and supplementary
document.

Figure 7. Boxplot of speed distributions across categories.
Speed Diversity. We conducted experiments across

six scenarios, including four small-scale scenarios with 50
agents each and two large-scale scenarios with 100 agents.
Agents were divided into five personalized groups—the
young, the middle-aged, the old, patients, and the disabled,



as well as a non-personalized group. Each category reflects
distinct attributes such as age and mobility style.

Figure 7 illustrates the speed distributions across all cate-
gories. The results reveal distinct patterns aligned with mo-
bility attributes. For instance, the young achieve the highest
median speeds and greater variability, reflecting their agility.
In contrast, the old and patients exhibit slower speeds with
narrower ranges, corresponding to their reduced mobility.
Similarly, the disabled show limited speeds due to physi-
cal constraints, while the non-personalized group displays
average speed distributions.
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Figure 8. Evacuation simulation results: (a) with the same corridor
width but different evacuation densities; (b) with the same evacua-
tion density but different corridor widths.

4.5. Illustrative Experiment
Our framework can reflect many real-life evacuation in

various scenarios. This is more helpful and meaningful for
evacuation analysis.

Analysis of Stampede Incidents. Stampede incidents
often occur in bottleneck areas. We analyze the impact of
evacuation density and corridor width on stampede occur-
rences at bottleneck locations. In a 2-meter-wide corridor,
we randomly place 120, 80, and 40 agents to simulate evac-
uation scenarios, and the results are shown in Figure 8 (a).
Under the same corridor width, the greater the number of
evacuees, the more severe the stampede. With 120 agents
in the same scenario, we test corridor widths of 2 meters, 3
meters, and 4 meters, with the results displayed in Figure 8
(b). Our results indicate that, for the same evacuation density,
narrower corridors lead to more severe trampling.

Analysis of stampede incidents shows they occur
when overcrowding leads to falls—from unstable move-
ment—with victims unable to recover, then being stepped on
or crushed. Bottlenecks worsen this: large crowds pushing
through narrow spaces heighten trampling risks, posing se-
vere hazards. See the demo video for full simulation details.

Analysis of the impact of terrain on evacuation. Our
framework can simulate the impact of various terrains on

crowd evacuation. In the same scene, we incorporate normal
ground, uneven ground, ground with discrete obstacles, and
slippery ground (with reduced friction), and test 50 individu-
als starting from the same initial position to escape from the
same room. Results are presented in Figure 9.

Figure 9 illustrates the different escape processes of in-
dividuals within the same scene, using the same number of
participants and identical initial positions, but navigating
various types of terrain. This demonstrates that terrain fac-
tors signifcantly influence motor control and further impact
perception and decision-making in subsequent steps, Ad-
ditionally, uneven and slippery surfaces are more likely to
cause individuals to fall.

(a) Normal Ground 

(c) Ground with Discrete Obstacles(c) Ground with Discrete Obstacles

(b) Uneven Ground 

(d) Slippery Ground(d) Slippery Ground(d) Slippery Ground

Figure 9. Evacuation simulations in various terrains.
5. Conclusions

We propose a crowd evacuation simulation framework
that mimics the sensory-decision-motor flow of a brain-like
intelligence, enabling personalized simulations at the indi-
vidual level. Additionally, we design part-level force visual-
ization, which enhances evacuation analysis. Our framework
is capable of simulating the personalized and diverse evacua-
tion dynamics of individuals with varying attributes through-
out the evacuation process. The escape motions produced
by our method outperform existing methods. Through this
framework, we can also validate many common phenomena
observed during evacuation scenarios, offering new insights
into crowd evacuation and public safety.
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