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Optimal String Sanitization Against
Strategic Attackers
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Solon P. Pissis, and Grigorios Loukides, Senior Member, IEEE

Abstract—Strings (sequences of elements) are often dissem-
inated to support applications, e.g., in bioinformatics, web
analysis, and transportation. Unfortunately, this may expose
sensitive patterns that model confidential knowledge. Conceal-
ing the occurrences of sensitive patterns in a string (e.g.,
by deleting some elements) while minimizing the associated
quality loss has been the objective of several string sanitization
methods. However, real-world attackers are likely to possess
background knowledge about the string, e.g., an individual’s
genome sequence is almost identical to a reference genome
sequence. In addition, it is good security practice to assume
that the attacker will know the algorithm that has been used
to sanitize the string (Kerckhoffs’ principle). Yet, all existing
methods fail to protect strings against such attackers, risking
privacy breaches in critical applications.

In our work, we consider for the first time how to defend
against strategic attackers who possess such knowledge. To
achieve this, we propose a novel framework to sanitize a string
by probabilistically replacing carefully selected patterns. As
part of this framework, we design three mathematical program-
ming algorithms which compute the optimal replacement prob-
abilities under different objectives and constraints, offering
different privacy gain / quality loss tradeoffs. Qur algorithms
protect against strategic attackers using new concepts and
measures, protect sensitive patterns of any length, and can
construct one or more optimally sanitized strings that can be
used in applications such as frequent pattern mining.

Our experiments using five real-world datasets from dif-
ferent domains show that all our algorithms are substantially
more effective than a natural baseline (e.g., they offer up to 2
times more privacy when they are configured to incur the same
quality loss, and up to 3 times lower quality loss when they
are configured to offer the same privacy). They also show that
two “hybrid” algorithms that we propose, based on combining
elements of the above algorithms, inherit the advantages of
their constituent algorithms. These results, coupled with the
generality of our approach, make our algorithms practical and
beneficial for deployment.

Index Terms—Data sanitization, strings, sensitive patterns.

I. INTRODUCTION

LARGE number of applications ranging from bioin-
formatics to web analytics and transportation feature
strings defined as sequences of elements, called letters,
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over an alphabet. For example, in bioinformatics, a DNA
sequence can be modeled as a string with each letter of the
alphabet {A, T,C,G} representing a DNA base [1], [2]; in
web analytics, a user’s browsing history can be modeled as
a string with each letter representing a visited webpage [3],
[4]; and in transportation, a user’s location profile can be
modeled as a string with each letter representing a visited
location [5]—[7]].

In all these applications, the strings may contain sensitive
(confidential) information. For example, in bioinformatics,
some parts of a DNA sequence are linked to diseases [1]; in
web analytics, some parts of a user’s browsing history may
correspond to webpages revealing political beliefs or mem-
bership of certain minority groups [8]]; and in transportation,
some parts of a user’s location profile may correspond to
locations such as health clinics or temples that are associated
with health issues or religious beliefs [9]].

Protecting sensitive information in strings is therefore
necessary to preserve privacy. This is the goal of string
sanitization [10]-[17], which aims to protect a given set
of sensitive patterns modeling the sensitive information by
concealing them from the string. To conceal the sensitive
patterns, existing string sanitization methods reduce their
frequency in the sanitized string (e.g., to zero [10]-[13])
by deleting [[14], [16], [17] or permuting [15]] some letters
from the sensitive patterns, or replacing them with carefully
selected nonsensitive patterns [10]-[14]. At the same time,
string sanitization methods [11], [12]], [14], [15] aim to
preserve the set of nonsensitive T-frequent patterns (i.e.,
nonsensitive patterns that have frequency at least 7 before
sanitization should have frequency at least 7 after sanitiza-
tion).

Motivation. An important limitation of all existing string
sanitization methods is that they assume attackers who pos-
sess no background knowledge about the input string W or
about the algorithm used to sanitize W. They assume that an
attacker knows only the sanitized string Z produced from W,
the alphabet 3 of W, and the set S of sensitive patterns [10]-
[12]. The attacker then succeeds if they can learn that any
sensitive pattern occurs in W. Similar assumptions are made
by sanitization methods for many other data types (e.g., the
methods in [18[]-[20] for transaction data, and the method
in [16] for trajectory data).

However, attackers often possess background knowledge
about the occurrence of certain patterns in W and about the
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sanitization algorithm, which may allow them to break the
privacy that string sanitization algorithms offer. Knowledge
about such patterns in W can often be obtained from
external data sources [21]]. For example, a person’s DNA
sequence is about 99.6% identical to a reference human
genome sequence [22]]. Thus, when W is a human DNA
sequence, the reference sequence, denoted by the string
‘R, may allow an attacker to estimate the probability with
which a pattern occurs in W as the probability that the
pattern occurs in R. Also, string sanitization algorithms are
detailed in published works. Thus, it is reasonable to assume
that an attacker knows how these algorithms work, as is
standard (Kerckhoffs’ principle [23]]) in security research.
We illustrate this limitation of existing methods using the
algorithm of [[11] as an example.

Example 1. Consider the DNA sequence W below and the
set of sensitive patterns S = {ACA, CAC} which are also
highlighted in W. The algorithm of [|l1|] is applied to W
to produce the string Z below. The algorithm replaces a
sensitive pattern s of length |s| with a concatenation of three
strings: The leftmost |s| — 1 letters of the sensitive pattern,
a single letter from the alphabet (chosen in a specific way
based on a knapsack-like algorithm; see [|[1|] for details),
and the rightmost |s| — 1 letters of the sensitive pattern. In
this example, the sensitive pattern s =ACA of length |s| = 3
is replaced by ACCCA, which is the concatenation of AC
(leftmost 2 letters of ACA), C (single letter), CA (rightmost
2 letters of ACA). Similarly, CAC is replaced with CAAAC.

i‘O 12 3 45 6 7 8 9 1011 12 13 14 15 16 17
WiT ACAGAATAGTCATCT
Z|T A CCCAGAATAGT CAAACT

Consider a strategic attacker who uses a reference se-
quence R to learn that only the strings ACA and A (under-
lined in W above) can occur right after T and right before G,
each with probability 0.5. Thus, when the attacker observes
the substring ACCCA spanning positions 1-5 of Z, right after
T (position 0) and right before G (position 6), they know
that ACCCA must occur in Z as a result of sanitization.
The attacker also knows that the algorithm of [11]] was
used to produce Z, and thus they can infer that ACCCA
has been created by sanitizing ACA. Therefore, the attacker
infers that the sensitive pattern ACA occurs at position 1
of W. Similarly, they infer that the sensitive pattern CAC
occurs at position 10 of W.

Contributions. To address the above limitation, we consider
attackers who possess background knowledge in addition to
the knowledge assumed by existing methods. Specifically,
these attackers know (I) the probability that each substring
occurs in certain parts of W and (II) the sanitization algo-
rithm used to construct Z, and they will try to use their
knowledge to minimize privacy. We refer to such attackers
as strategic, in line with the works of [21]], [24], [25]], which
however are applied in a different setting and have a different
goal (see Section |lI| for details).

We also propose an algorithmic framework that replaces
each sensitive pattern with another string with some proba-

bility. The probabilities are computed by any of the optimal
algorithms we propose. These algorithms offer different
tradeoffs between the privacy gain and the quality loss
caused by the replacements. The novelty of our algorithms
lies in that they: (I) protect from strategic attackers using
new concepts and measures, (II) protect sensitive patterns
of any length, (IIl) provide immediate guarantees of opti-
mality and exploit efficient solvers, as they are based on
mathematical programming, and (IV) can construct multiple
optimal sanitized strings.

Our specific contributions are as follows.

1. We propose an algorithmic framework to protect sensi-
tive patterns against a strategic attacker. First, we construct
the attacker’s background knowledge. This involves comput-
ing the probability that a pattern occurs in a certain part
of W efficiently using a pattern matching algorithm and
text indexing. It also involves selecting similar patterns to
a sensitive pattern as its potential replacements to reduce
quality loss. Second, we compute the optimal probability
of replacing each pattern with another pattern, subject to
quality loss or privacy gain criteria, using our algorithms, to
be described later. Third, we construct the sanitized string
Z based on the probabilities computed by the second step.

2. We propose three optimal algorithms based on math-
ematical programming to compute the replacement proba-
bilities, which are used to sanitize strings against strategic
attackers. They are optimal in that no algorithm can possibly
perform better against an attacker with the same strategic
background knowledge of the substring probabilities and of
the sanitization algorithm. The algorithms take as input a
context of a sensitive pattern v (i.e., a pair of strings of a
given length, one of which appears right before w and the
other appears right after «), a set U of patterns that appear in
between the strings of the context, and the attacker’s back-
ground knowledge. They output the probability of replacing
a pattern u € U with a pattern v’ € U, for every pair (u, u’),
where u and u' are not necessarily distinct.

The first algorithm is based on linear programming. It
maximizes the privacy gain achieved by selecting v’ as
a replacement averaged over all possible u’, subject to a
constraint that upper-bounds the average quality loss caused
by selecting u’ as a replacement, over all possible pairs
(u,u’). The second algorithm is based on mixed-integer
linear programming. It minimizes the average quality loss
over all possible pairs (u,u'), subject to a constraint which
lower-bounds the privacy gain achieved by replacing u with
u/, for each pair (u,u’). The third algorithm is based on
linear programming. It has the same objective function as
the second one, but enforces differential privacy [26]], a well-
known privacy principle.

Next, in Example [2] continuing from Example [T we
illustrate the privacy benefit of our algorithms compared to
existing sanitization algorithms.

Example 2 (Cont’d from Example [I). Consider the string
W and the set S of sensitive patterns from Example [I| For
the sensitive pattern ACA, we first construct the background
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knowledge from W. This involves identifying that ACA oc-
curs right after T and right before G in W with a probability
of 0.5 (since A also occurs right after T and right before G).
We then choose the two most similar patterns to ACA, namely
A and ACA itself, as potential replacements for ACA. Second,
we apply our first algorithm, which computes the probability
of replacing ACA by A as 0.9, and that of replacing ACA by
itself as 0.1. Next, based on these probabilities, we replace
the sensitive pattern ACA by A at position 1 of Z. Lastly, by
a similar process, we replace the sensitive pattern CAC by
AA at position 8 of Z. Other Z’s are also possible based on
the replacement probabilities.

t]0 1 23 45 6 7 8 910111213
WiT AC AGAATAGTCATCT
Z/T A G AATAGAAT

The strategic attacker from Example [I| learns from a
reference sequence R that only the strings ACA and A
can occur right after T and right before G, each with
probability 0.5. The attacker may notice that there are some
replacements of the sensitive pattern ACA right after T and
right before G by observing Z, because the occurrence
probabilities of A (respectively, of ACA) right after T and
right before G in Z are 1 (respectively, 0), which do not
match the probabilities of 0.5 based on their knowledge.

However, unlike in Example |1} the attacker cannot learn
the positions of the sensitive pattern ACA in W. This is
because each of the replacements of this pattern can occur
at each position right after T and right before G with the
probabilities known to the attacker. Similarly, the attacker
cannot learn the positions of CAC, as the replacements of
this pattern can occur in each position right after G and
right before T with the probabilities known to the attacker.

3. We conduct an extensive experimental study on five
real-world datasets from different domains, including bioin-
formatics, transportation, the web, and IoT [27]-[31]], using
seven quality loss and privacy measures. Since existing
sanitization algorithms are not comparable to ours (see
Section [[I)), we compare our algorithms to a natural baseline
inspired by [21]]. Our experiments show that our algorithms
outperform the baseline, offering (I) at least 45% and up to
more than 2 times higher privacy, when they are configured
to incur the same quality loss with the baseline; or (II) at
least 77% and up to more than 3 times lower quality loss,
when they are configured to offer the same privacy. We also
show that our algorithms are practical and their parameters
can be configured to trade off privacy and quality.

Finally, we design and evaluate two “hybrid” optimal
algorithms; one which adds the constraint of the second al-
gorithm in Contribution 2 to the first, and another which adds
the constraint of the third algorithm in Contribution 2 to the
second one. Both hybrid algorithms offer a better privacy-
quality tradeoff compared to the ones in Contribution 2.

Section [M] presents related work, Section [[II] our algo-
rithms, and Section our experimental evaluation. We
conclude the paper in Section [V]

II. RELATED WORK

There are two main directions in privacy-preserving data
publishing: data sanitization and anonymization. In the fol-
lowing, we discuss data sanitization approaches and refer to
Section I of the Supplemental Material for a discussion of
data anonymization approaches. The latter are not alterna-
tives to our approach, as they do not aim to conceal a set
of sensitive patterns from a string, but rather to prevent the
inference of information about individuals from a dataset
containing the information of these individuals [32]. In this
section, we review methodological papers and refer the
reader to [33[|-[41] for applications of privacy to specific
areas: biomedicine [33]], [38], [39]], IoT [34], urban mobil-
ity [35]-[37]l, and natural language processing [40], [41].

Data sanitization approaches can be categorized based
on the type of information they protect into those that
protect: (I) sets of items [19], [20], [42], [43], [44] or
rules (relations between sets of items) [18]], [45], [46]; (II)
trajectories [16]; (II) sequences (elements of a string that
are not necessarily consecutive) [[14]-[16], [47]; (IV) single
elements of a string [17], [21], [24], [25], [48]; and (V)
substrings (consecutive elements of a string) [[LO]-[13]], [49].

The works that protect sets of items employ integer pro-
gramming [ 19], [20], or heuristics [42], [43]], [44]. The works
that protect rules employ heuristics [18]], [45], [46]; the
heuristic of [18] is based on decision tree construction,
that of [45]] on decreasing the support or confidence of the
sensitive rules, and that of [46]] on swarm optimization. The
work of [16] is applied to a collection of trajectories (i.e.,
a collection of sequences of spatiotemporal points). It pro-
poses a heuristic algorithm that protects sensitive trajectory
patterns in a collection of trajectories by deleting certain
elements from them in a greedy fashion. The objective is
to reduce the frequency of the sensitive trajectory patterns
in the sanitized dataset to at most a given threshold. All
the aforementioned works differ from ours in the type of
data they consider (i.e., they do not consider a string), the
operations they use to conceal sensitive patterns (i.e., they
do not replace substrings), and in that they consider attackers
with no background knowledge (i.e., they do not consider
attackers with knowledge of the sanitization algorithm or of
the statistics of the input data).

The works that protect sequences are applied to a collec-
tion of strings [[14f|-[|16[], or a single string [47]]. The former
works aim to reduce the frequency of the sequences that
they protect in the sanitized collection to at most a given
threshold. This ensures that sensitive sequences cannot be
mined at this threshold by an attacker with no background
knowledge about W. To do this, [14], [16] delete some
elements from the sensitive sequences using greedy heuris-
tics aiming to minimize the number of deleted elements in
order to preserve data utility [[16]], or to preserve the set of
frequent nonsensitive sequences in the collection [14]. The
work of [[15] shares the same utility goal as that of [14]
but proposes a heuristic that employs permutation instead of
deletion. The work of [47] aims to delete a minimal number



JOURNAL OF I5TgX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Ref. Algorithm input Attacker knowledge Attacker objective
OS SP SA RLF RSS

[14]-[16] collection of strings v v find frequent sensitive patterns

[47) single string v v find frequent sensitive patterns

210, 1240, 1250 single string v/ v/ v/ find sensitive string elements

[17], 48] single string v v find sensitive string elements
~ L0131, 149] single string v v find location of sensitive patterns
Our approach single string v v v v find location of sensitive patterns

TABLE I: Differences among the string sanitization approaches. OS: output string(s); SP: sensitive patterns; SA: sanitization
algorithm; RLF: reference letter frequencies; RSS: reference string statistics.

of letters from a string, so as to reduce the frequency of
sensitive sequences to zero, and it proposes three heuristic
algorithms for this. The works of [14]-[16], [47] differ
from ours in the type of data they protect (i.e., they protect
sequences), in the operations they use to conceal sensitive
patterns (i.e., they do not replace substrings), and in that they
consider attackers with no background knowledge (i.e., they
do not consider attackers with knowledge of the sanitization
algorithm or of the statistics of the input data).

The works that protect single elements of a string protect
each element independently of all other elements. The work
of [24]] formalizes the localization attack (i.e., computing the
probability distribution over regions where the user might be
at a certain time), by considering a strategic attacker who
has background knowledge of the user’s mobility (statistics
of the input string), as well as of the protection algorithm.
The works of [21]], [25] propose approaches to defend
against this strategic attacker. They formalize the attacks
as a zero-sum Bayesian Stackelberg game and compute
strategies for the user and the attacker that are mutually
best responses. These approaches provide robust protection
for any location inference attack [25[]. The works of [17]
and [48]] consider attackers with no background knowledge;
the former works by optimally deleting elements from the
string to reduce their frequency in prefixes of the string,
and the latter by replacing elements with synthesized ones
that have similar semantic features to the actual ones. Our
approach differs from [17], [21], [24]], [25], [48] in the type
of data it protects (a string vs. one string element) and in the
background knowledge assumed by the attacker (reference
string statistics vs. reference letter frequencies [21]], [24],
[25]], or no background knowledge [17], [48]).

The works that protect substrings [10]-[13], [49] are the
most relevant to our work. All of these works consider
sensitive substrings that have the same length k£ and reduce
their frequency in the sanitized string to zero. To achieve
this, they add nonsensitive parts of the string and/or new
letters, including potentially a special letter # that is not
contained in the alphabet of the input string. These works
differ in their utility objectives. The work of [[12] aims to
construct a sanitized string with a minimum length that also
preserves the order of the length-%k nonsensitive substrings in
the input string. The works of [11] and [13]] aim to construct
a sanitized string that preserves the order of all length-k
nonsensitive substrings but is at minimal edit distance from
the original string. The work of [49] aims to construct a

2. Construct the Input

1. Basic Concepts Data to the Algorithms

3. hy
« Original string W Compute the

« [-context ¢;
Ll* Replaceable strings U,
* Replacement strings U,

Optimal Replacement

« Sensitive patterns § .
Matrix P bl

« Reference string R Construct the

4. Apply P to W to

. s * APQ-LP s .
Contez(t length I « Prior probabilitics (ulcy) | |1 a %-MILP Sanitized String Z
« No. of nonsensitive . ) . Q
* Quality loss matrix d « DP-LP

replacements K * Privacy gain matrix d,,

Fig. 1: Flow chart of our algorithmic framework.

sanitized string that is at minimal k-gram distance from the
original string. A limitation of [11]-[[13]], [49] is that they
may introduce spurious patterns that cannot be mined from
the original string, but can be mined from the sanitized
string [[10f], [11]. Since such spurious patterns harm data
utility, the work of [[10] studies the problem of minimizing
their number, proposing integer linear programming algo-
rithms that replace all #’s. The novelty of our approach
compared to [1O0]-[13]], [49] is that it considers stronger
attackers, it is applicable to sensitive substrings of different
length (not only fixed-length ones), it uses different data
transformation strategies (probabilistic pattern replacement),
and it has different utility objectives (see Section [I).

A summary of the differences among the string sanitiza-
tion approaches is in Table

III. ALGORITHMIC FRAMEWORK

In this section, we discuss our sanitization framework.
Central to our framework is a reference string, parts of which
are known to the attacker and referred to as contexts (see
Section [[TI-A). The probability that a substring of the refer-
ence string is associated to a context is computed for selected
strings, and it is given as input to our sanitization algorithms
along with matrices quantifying the quality loss and privacy
gain from sanitization (see Section [[II-B). The attacker
model, our sanitization algorithms, and the construction of

the sanitized string are discussed in Section MT-D|
and [[TI-E] respectively. See Fig. [I] for a flow chart.

A. Basic Concepts

An alphabet . is a finite nonempty set of elements called
letters. A string X is a sequence of letters over Y. The
concatenation of two strings X, Y is denoted by X - Y. For
two positions ¢ and j on X, X[i]-...- X[j] is the substring
of X that starts at position ¢ of X and ends at position
7. We also say that this substring occurs at position 7. A
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substring Y of X can occur multiple times in X. The set of
its occurrences (starting positions) is denoted by occx (V).

By W we denote a string that needs to be sanitized
and by S a set of sensitive patterns (i.e., strings modeling
confidential information). Any substring of W that is not in
S may be referred to as nonsensitive pattern.

By R we denote a reference string drawn from the same
probability distribution of substring occurrences as 1. That
is, each sensitive pattern and each string used to replace a
sensitive pattern occur with the same probability in R as
in W. R is known to both the user and the attacker, while
W is only known to the user. Therefore, R can be used by
the attacker to derive the probability that any substring u
(including a sensitive pattern) occurs in a certain “part” of
W, which we define as [-context (or simply context) below.

Definition 1 (/-context). Given a nonnegative integer | and
a reference string R, an l-context ¢; of a substring u in R
is a pair of strings (ct,cl') such that the string cf - u - ¢}
occurs in R and |cf| = |cf| = L.

Note that a substring « may have multiple contexts in R.
Also, note that Definition [I| has a parameter [ that controls
the length of the substrings clf and ¢} of R occurring right
before and right after u. This offers the flexibility to model
attackers with different powers (a larger [ implies a more
powerful attacker) and is in line with research on mobility
mining with Markov chains of order ! [50]. The following
example illustrates the notion of context.

Example 3. When the vreference string R is
GGACTTACGGAATTCCGGCATTCAGG and | = 2, the substring
u = AC of R has two 2-contexts: (GG, TT) and (TT,GG).

The contexts in our approach are given as input by the
user. The search for contexts in a reference string R can
be performed efficiently with well-known pattern matching
algorithms [51]]. The main idea is to find each occurrence of
a sensitive pattern in R and then assign to c{ (respectively,
cj) the [ letters that are right before (respectively, right after)
this occurrence of u; see Section II in Supplemental Material
for details. We denote by C' the set of all such contexts.

B. Constructing the Input Data to the Algorithms

Replaceable and Replacement Strings. Our mathematical
programming algorithms are applied to a single context
c;, and they create a replacement matrix P whose rows
correspond to the set U, of strings that may be replaced
and columns to the set U/, of strings that can be used as
replacements. Then, they compute a replacement probability
P(u | u’) for each row-column pair (u,u’) in P. In the
following, we explain how to construct the sets U, and U/, .

We first add all sensitive patterns that are associated with
¢ (i.e., each string u € S such that ¢f - u - ¢} occurs in R)
into U, and into U/, . This is to allow any such pattern to
be replaced by any other sensitive pattern that is associated
with ¢; or by itself (i.e., not replaced). We want to ensure
that (I) there are sufficiently many potential replacements for

each sensitive pattern, as this improves privacy, and (II) there
are not “too” many potential replacements, as this would
increase the runtime of our mathematical programming al-
gorithms. Thus, we require that any sensitive pattern v € U,,
can be replaced by any of K nonsensitive patterns, where
K is a parameter specified by the user.

To select the K nonsensitive patterns, we observe that the
quality loss of replacing a pattern u € U, with a pattern
u' € U/, can be quantified by the distance d(u,u’), where
d() is any string distance function; our mathematical pro-
gramming algorithms can work with any d(). For example,
one can use measures such as Hamming distance or edit
distance [51], as well as semantic-aware distances [52]-
[54]. Thus, we select every nonsensitive pattern u' whose
distance ), r; d(u’,u) from the (sensitive) patterns in U,
is one of the K smallest (breaking ties arbitrarily). These
K nonsensitive patterns are added to U, and U/, so that
each can replace any other pattern U, or itself (i.e., not be
replaced). Thus, U, = U, él. However, for clarity, we will
use U,, to refer to the strings that may be replaced and Uy,
to those that may replace them.

Based on the above, we define the set UC’L as follows:

Definition 2 (Set of Replacement Strings). The set U, is
the union of the set {u | u € S A |occr(cf - u-cl)| > 0}
of sensitive patterns that are associated to c¢; and the set of
K nonsensitive patterns in ‘R such that each such pattern u

has one of the K smallest ZueUcl d(u',u).

The main idea for constructing Uél is (I) to find the
occurrences of cf and of ¢/ in R, using a pattern match-
ing algorithm [51]; (II) for each occurrence, to find as a
candidate v’ the string right after cl[ and right before cj,
and compute its distance Zuqu d(v',u); and (III) after
candidate creation, to keep the best K candidates. See
Section IIT of the Supplemental Material for details.

Example 4. Consider the reference string R =
GGACTTACGGAATTCCGGCATTCAGG from Example |3| and that
S = {AC} and K = 1. AC has two 2-contexts (GG, TT)
and (TT,GG). To construct Uleg 1), we first add the sensi-
tive pattern AC to this set and to U g ). There are two
nonsensitive candidates for being added into U(/GG,TT)" AA
and CA (underlined in R). We use the Hamming distance as
d(), and compute ZueU(GG,m d(AA,u) = d(AA,AC) = 1 and
Zu€U<cc,TT> d(CA,u) = d(CA, AC) = 2. Thus, we add AA into
Ulgerr) and hence Uy, oy = {AC,AA}. Similarly, Uiy o)
is {AC,CC}.

Prior Probabilities. Let 7(u | ¢;) be the probability that
string u € U,, occurs in the reference string R conditional
on ¢;. Our algorithms take as input 7(u | ¢;), for each u €
U.,. This probability is part of the attacker’s background
knowledge and is defined below.

Definition 3 (Prior probability of u conditional on the
l-context). The prior probability of string uw € U, con-
ditional on the l-context ¢; = (cf,cl) is w(u | ¢) =
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locer (cf-u-cl)|
E’UGUCL \OCCR(cf-vc;")\

To compute this probability, we search for each occur-
rence of ¢/ - u - ¢l in R using a pattern matching algorithm
based on ideas from Section 4.2 of [51]]; see Algorithm
Our algorithm uses two classic text indexes, the suffix array
(SA) and the longest common prefix (LCP) array [S5]. It
first constructs the SA and LCP array of R, and then finds
the starting positions of the occurrences of ¢f - u - ¢} in R,
by matching cf - - ¢] using the SA and LCP array. Next, it
stores the size |0CCR (cf -u-c])| of these positions and adds it
to a variable den, which becomes equal to the denominator
of w(u | ¢) after the for-loop terminates. The final output

7(u | ¢;) is computed for each u by dividing the stored size
loccr (el - u-cl)| by den.

The time complexity of Algorlthmlls O(IR|+|Ue, |- (|t
u - cf| +log|R|)), where u is the string with the maximum
length in U,,, as we need O(|R|) time to construct the
SA and LCP of R and then execute the pattern matching
algorithm in [51] |U,,| times.

Algorithm 1: Computing 7(u | ¢;) for each w in U,

Imput : R, U, ¢ = (cf, clr)
Output: 7(u | ¢;), for each u € Uy,
1 Construct the SA and LCP array of R
2 den < 0
3 for u € U, do
4 \OCCR(cl u - ¢} )| + Use the SA and LCP array of R to
count the number of occurrences of Cz u-c; inR
5
6 output w(u | ¢;) +

den « den + |ocCr (cf - u - c])]

|occr ((‘L

u-c] )|
den , for each v € U,

Quality Loss and Privacy Gain Matrix. Our algorithms
take as input the matrices d, and d,, which quantify,
respectively, the quality loss and privacy gain from string
replacements.

The matrix d, is a |U/, | x |U,, | nonnegative matrix whose
elements d,(u’, u) determine the quality loss incurred when
replacing a string u € U, by a string v’ € U/, where u
and v’ are not necessarily distinct. The value of element
dq(u',u) is equal to the same distance d(u’, u) between o’
and v that we used to select the K nonsensitive patterns
earlier in this section.

Let U., be the set of strings that an attacker guesses
when observing the replacements of the strings in U,. I
practice, we set UCZ = U,,. The matrix d,, is a |Uc,| X \Uc,|
nonnegative matrix whose element d (u,u) quantifies the
privacy gain when the attacker’s guess is @ and the actual
string is u.

The values of the d, matrix are provided by the user.
However, we provide some intuition for how these values
may be chosen. There are 6 cases for a pair (i, u) in dy:

lLu#d,ue S ueSs.

Hu£a,ues, a¢S.

I u#d,u¢gsS aes.
IVu#a,ué¢gS u¢s.

Vu=aueS ues.

Viu=1a,ué¢sS, aé¢s.

In Cases V and VI, the attacker correctly guesses u, so
dp (@, u) will take its minimum value 0. In Cases I and II,
the attacker does not guess the sensitive pattern v correctly,
SO dp(ﬁ, u) may take a positive value, since w is sensitive;
and in Case I a larger value than Case I, since in Case I u is
guessed as sensitive. In Cases III and IV, the attacker does
not guess the nonsensitive pattern u correctly, so d, (@, )
may take a small positive value (smaller than in Cases I and
II), since u does not represent confidential information.

C. Attacker Model

The attacker’s objective is to minimize privacy (i.e., the
opposite of the privacy goal of each corresponding sanitiza-
tion algorithm in Section [[II-D). We assume that the attacker
knows the reference string R. Also, for each context ¢;, the
attacker knows the P matrix that is output by any of our
sanitization algorithms, the prior probability 7(u | ¢;) for
each u € U,,, the privacy gain matrix dj,, the quality loss
matrix dy, and the set (761.

D. Mathematical Programming Sanitization Algorithms

In different application scenarios, the goal of sanitization
may be different [[11]], [21]]. One may want to gain as much
privacy as possible, as long as the quality loss is acceptable,
or they may prefer to have a minimum quality loss, as long as
the privacy gain is acceptable. To handle these scenarios, we
design three optimal, mathematical programming algorithms
with different objectives and constraints. For an introduction
to mathematical programming, we refer the reader to [56].
All algorithms are applied to a single context ¢; and output
a matrix P of optimal replacement probabilities. To sanitize
a string, we need to apply them to each context separately.

APG-LP. Our first algorithm maximizes the Average Privacy
Gain (APG) and it is based on Linear Programming (LP).
APG-LP limits the average quality loss caused by string
replacement. We show how to formulate this algorithm as
a linear program (see Program [I). The other algorithms we
present later can be formulated analogously.

We focus on a single context ¢; to which the algorithm
is applied. Consider the case when the attacker observes the
string v’ € U, together with ¢; somewhere in the sanitized
string. We will show how to compute APG step by step.
First, we compute the probability that the string that has
been replaced is u© when the attacker observes a replacement
string v’ in the sanitized string (Eq. [I). To guess the string
u € U,,, the attacker can form the posterior distribution on
u, conditional on the observed replacement '

Pr(u,u’)
Pr(u’)
_ Pr(u’ | uw) Pr(u)
> Pr(u,u’)
P wm(e] )
2P [u)m(ule)’

Pr(u| ') =

)]
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where we have used our definitions that Pr(u’ | u)
u) and Pr(u) = n(u | ¢).

When the attacker observes a string «’ in the sanitized
string, they estimate the string that has been replaced as
@ € U,,. The privacy gain for a specific estimate % of u is
d, (@, ), and the probability that this estimate is made is
Pr(u | u’). Averaging over all u € U,,, we obtain the user’s
conditional expected privacy for an arbitrary 4 € ﬁcl:

> Pr(u | w)dy (i, u).

The attacker’s objective is then to choose an estimate
string @ € U,, to minimize the user’s conditional expected
privacy, where the expectation is taken over Pr(u | u’). This
leads to the following equation:

= P(u |

min » " Pr(u | u')dy (i, u). )

Since the privacy for a string v’ € U/, is given by Eq.

and this u' is selected as a replacement with probability
Pr(v') =3, P(u' | u)m(u | ¢;), averaging over all possible
u' € U, leads to the user’s unconditional expected privacy:

ZPr(u') H%inZPr(u | w)dp (0, u)
‘ 3)
= Zmume(u | c)P(u' | w)dp (@, ),

where we have used Pr(u/)Pr(u | o) =
Pr(u) Pr(v’ | uw) =7(u | ¢)P(u | w).
We define the Minimum Privacy Gain (MPG) as follows:

2o 2 min Yy w(u| )P’ | w)dy (i u). @

Incorporating x, into Eq. [3] we rewrite the unconditional
expected privacy of the user as

> @, o)

which the user aims to maximize by choosing the optimal P
matrix. We refer to Eq. 5| as Average Privacy Gain (APG).
The minimum operator would make our mathematical pro-
gram nonlinear. As this is undesirable for efficiency reasons,
we transform Eq. E] into a series of linear constraints, so that
the program becomes linear, following [57]:

Ty < Zﬂ'(u | c)P(u' | w)

Then, maximizing Eq. [ under Eq. [ is equivalent to
maximizing Eq. 5| under Eq. [f] Therefore, we formulate the
privacy objective for the user from Eq. [5] (as a maximization
objective) and from Eq. 6| (one constraint for each v’ € U/,).

We now formulate the user’s quality goal as a constraint
on the average quality loss caused by the replacement of u €
Ue, by u' € U/,. The probability that v appears in the string
is Pr(u) = m(u | ¢;), and the probability that «’ replaces u is
Pr(u' | u) = P(v' | u). The quality loss caused by replacing
u by «’ is dg(v',u). Therefore, the Average Quality Loss
(AQL) over all possible pairs (u,u’) € U, x U/, is

Pr(u,u) =

(u' | w)

dy (11, u), Vi (6)

Z u\chP | w)dg(u',u). ™)
We want AQL to be at most equal to a user-specified
threshold Qyax in our mathematical program.

Thus, APG-LP can be formulated as in Program [I] Eq. [9]
are the series of linear constraints from Eq. [6] one series for
each value of u'; Eq. |10| reflects the quality loss constraint;
and Eq. [II] and Eq. [I2] reflect that, for each value of
u, its corresponding row P(u’ | w), Vu' € U/, is
probability distribution. Then, the algorithm finds a solut1on
P(u' | u),zy,Yu € Ugyu' € U], to Program I}

Maximize Z T (3

subject to

xu/<z (u]e)P | u)d
Z (u|a) ZP
ZPU |u) =1, Vu

Pl [u) > 0, Vus, o

(T, ), Vi, u’ 9)

u u) < QMAX (10)

(1)

(12)

Program 1: APG-LP: Average-privacy-gain-maximizing,
average-quality-constrained linear program.

AQL-MILP. This algorithm is derived from a nonlinear
program (Program [2), which we linearize to improve its
runtime without changing its output. The algorithm differs
from APG-LP in that it minimizes the Average Quality Loss
(AQL) in Eq. |13]instead of upper-bounding it, while lower-
bounding the privacy gain for each possible replacement
u' € U/, by a user-specified threshold Ty (Eq. , instead
of maximizing APG. We write possible replacement because
if a string v’ has ) P(u' | w) = 0 (i.e., it is not used to
replace any u € U,,) then its privacy gain does not need
to be constrained. This is achieved by Eq. [I[4 where we

T .
use a constant M > — MIN This
miny/evy, zu P(u|u)>0 2oy P/ u)”

equation ensures that, for any u' with Yoo P [u) >0, its
privacy gain must be at least Ty, while for any other v/,
its privacy gain must only be at least 0. Egs. |15 and |16| are
the same as the last two equations in APG-LP.

Program [2] is clearly nonlinear due to the minimum
operator in Eq. We therefore linearize it as shown in
Program (3| For this, we add a continuous decision variable
Z,’, binary decision variables ¥, 1, y./,2, and constraints
in Egs. @] to @ Moreover, we also introduce a constant
m satisfying m > Tyyy and m > M - P(u' | u), for
any u' € U/,. The proof that the linearization is correct
is in Section IV of the Supplemental Material. Note that
the existence of integer and continuous variables make
Program [3] a mixed-integer linear program (MILP).

DP-LP. Differential privacy (DP) [26] is a rigorous privacy
principle to prevent an attacker from distinguishing between
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Minimize » w(u|c)d P |u)dg(u',u)  (13)
subject to ’ :
Y owu]e)P(u’ | u)dy(a, u)
zu min{ Ty, M - Z P’ [u)}, Va,u' (14)
Z P |u) =1, Vu (15)
( | u) >0, Yu, u’ (16)
Program 2: Average-quality-loss-minimizing, privacy-
constrained nonlinear program.
a7

Minimize » " 7(u|c) Y P(u | u)dg(u', u)

subject to

Zyr < Zw(u | c)P(u' | w)dy(d, ), Vi, u (18)
zu < T, V' (19)
zw = Taw —m - yur 1, VU (20)
Zur < M - ZP | w), Vu' 1)
2! ZM-ZP u' [ u) = m - yur 2, Yl (22)
Yu’ 1 + Yu’ 2 S 1yvul (23)
Yu' 1 Yu' 2 € {O 1} vu' 24
> P |u)=1,Vu (25)
P/ |u) >0, Yu,u’ (26)

Program 3: AQL-MILP: Average-quality-loss-minimizing,
privacy-constrained linear program.

different inputs. In our work, the inputs are any two strings
from U,,, and DP can be defined as follows:

Definition 4. Ler K be the replacement operator that takes
as input a string from U, and outputs a set of possible
replacements from U/ together with the probabilities of
these replacements. The K operator offers e-differential
privacy, for a positive real number ¢, if for all strings u;,
u; € U, and all subsets L of Uc/l, it holds that:

Pr{K(u;) € L] < e - Pr[K(u;) € L]. (27)

Based on Definition 4] we propose our DP-LP linear pro-
gramming algorithm (see Program ). In this algorithm, K
corresponds to the P matrix, i.e., the choice of replacements
u' € U], for every u € U,,, while L corresponds to a single
replacement u’. Therefore, Eq. is directly written as the
constraints in Eq. [28| using the notation in our algorithm; for

a given context ¢;, the inequality

P/ |ui) < P(u' | uy)-ef (28)

must hold for all output strings v’ € U, and for all
input pairs of (u;,u;), u;,u; € U, with a given positive
real number e. The objective function in Eq. 29] and the
constraints in Eq. [31] and Eq. 32] are as in AQL-MILP.

Minimize » 7(u| ) P’ |u)dg(u',u)  (29)
subject to

P/ |u) < P(u' | uy) - e, V', ui, uy (30)

> P [u)=1,Vu 31)

(v | u) >0, Vu,u (32)

Program 4: DP-LP: Differentially private average-quality-
loss-minimizing linear program.

E. Constructing the Sanitized String 7

We first initialize Z with W. Then, for each context ¢,
we get the output P matrix from any of our mathematical
programming algorithms, and sanitize each string u € Uy,
that appears in Z by selecting a replacement string u’ for
u with probability P(u’ | u) (i.e., we sample u’ from the
probability distribution in the row of matrix P for u).

IV. EXPERIMENTS
A. Datasets

We use five publicly available datasets commonly used
in the string privacy literature [10]-[12], [S8]]: Trucks
(trucks) [29], the complete genome of Escherichia coli
(ecoli) [27)], MSNBC (msnbc) [28|], Kasandr (kasandr) [30],
and IoT (ior) [31]. The trucks dataset contains transportation
data, ecoli contains genomic data, msnbc contains click-
stream data, kasandr contains eCommerce behavior data,
and iot contains advertisement / traces generated from Blue-
tooth Low Energy beacons. The dataset characteristics and
the default values for the parameters are shown in Table

Dataset Length Alphabet  Size of  Sens. pattern  Context  No. of nonsens.
n size |3| set S length & length [  replacements K
trucks 5,763 100 300 5 1 5
ecoli 4,641,652 4 300 15 3 6
msnbc 4,698,764 17 300 10 3 6
kasandr 16,118,213 95 300 10 4 10
iot 18,673,095 63 300 10 4 10

TABLE II: Dataset characteristics and the default values
used in our experiments.

B. Experimental Setup

Reference String R. We chose as the reference string R the
input string W which will be sanitized. This is the worst
case where the attacker’s prior information is completely
accurate. The same assumption was made in [21]]. That is,
both the user and the attacker know the prior probabilities
7(u | ¢), for each context ¢; in W.
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If the attacker has partial information about R, then the
attacker’s inference of the sensitive patterns will have errors,
so the user’s privacy gain will be higher than what we report.

If 'R is the same for both the user and the attacker, but
it has different statistics from W, then the computation of
the privacy gain and of the quality loss as computed by our
framework (which is based on the statistics of R) can be
inaccurate in either a positive or a negative way. That is,
in reality, the privacy gain and quality loss can be better or
worse than what our framework reports. The correct values
could then be computed by plugging the true statistics in
Eq. (7) for quality loss or Egs. @) and (3] for privacy gain.

Privacy Gain Matrix d,. Recall that the values of the
privacy gain matrix d, must be specified by the user. In
our experiments, we set these values as follows — see
Section[[II-B] for the six cases (types of privacy gain): Case I,
dp (@, u) = 9; Case II, dp, (4, w) = 10; Case III, dp(t, u) = 2;
Case IV, dp(4,u) = 1; and Cases V and VI, d,(u,u) = 0.

Privacy Gain and Quality Loss Metrics. To evaluate the
effectiveness of a sanitization algorithm, we measure the
privacy gained against the strategic attacker, as well as the
quality loss caused by the algorithm:

1. Average Privacy Gain (APG) for Context c;. This is
the measure from Eq. [5| which we denote by P, (c;), for
context ¢;.

2. Weighted Average Privacy Gain (WAPG) for Sensitive
Set S. This measure aggregates the APG scores of all
contexts in the context set C', weighting each context ¢; € C'
by the total number f(c;) of occurrences of the sensitive
patterns associated to ¢; in W. The intuition is that a context
with a larger f(¢;) should matter more when we measure the
privacy gain. Thus, WAPG is defined as

C;C checf(cl) .

3. Weighted Minimum Privacy Gain (WMPG) for Sensitive
Set S. The minimum privacy gain (MPG) for context ¢; is
defined as Pvin(c1) = ming.s~  p(ur|u)>0 Tu» Where x, is
as in Eq. 4} The intuition is to calculate the privacy gain
based on the protection offered when u € U, is replaced
by the string v’ € U/ that offers the smallest privacy gain.

C

Based on that, the WMPG measure is defined as

fla) - Pun(a)
C;C‘ chgc fla) ’

where f(c;) is as defined in WAPG.

4. Average Quality Loss (AQL) for Context c;. This is
the measure from Eq. [7, which we denote by Qaye(c;), for
context ¢;.

5. Weighted Average Quality Loss (WAQL) for Sensitive
Set S. This measure aggregates the AQL scores of all
contexts in the context set C', Wei%hting each context ¢; € C'
2ueu,, loccw (u)]
cleC ZuGUC locew (u)]
is that a context with a larger w(c;) should matter more
when we measure the quality loss. Thus, WAQL is defined
as

by a weight w(c;) = 5= . The intuition

w(cr) - Quvg(cr)
2 Peecwla)

ceC

6. g-Gram Distance (D,). We quantify the quality loss,
caused by sanitizing the string W, using the well-known
g-gram distance [59]. Given an integer ¢, we denote by
37 the set of all possible length-g strings (g-grams) over
>, and fix an enumeration order to list the elements in
39, Then, the g-gram profile of string W is the vector
G,(W) = (Joccw (x)],z € ¥?). The ¢g-gram distance be-
tween the original string W and the corresponding sanitized
string Z is defined as

Dy(W,2) ="

reXq

(33)

Go(W)z] = Go(2)[x]|.

7. JS-divergence (JS). We quantify the loss in predictive
performance of the original string W when sanitized using
the well-known JS-divergence measure [[60]. Given two
probability distributions pq, po, the JS-divergence between
them is defined as

IS(p1,p2) = % Z] <p1[i] +logy (IM)

i€[l,n

Specifically, we quantify the predictive performance based

on (first-order) Markov-chain prediction: First, we construct
the transition matrix M from the original string W and
the corresponding transition matrix M’ from the sanitized
string Z. Then we compute the JS-divergence between the
corresponding rows of M and M’ and compute the average
or maximum over all rows. JS-divergence values are in [0, 1]
and smaller values mean that the sanitized string can support
prediction as well as the original string.
Code and Environment. Our code was written in C++
and is available at https://bit.ly/3WXdNK6. We used the
Gurobi solver v. 11.0.0 (single-thread configuration) in our
linear programming and mixed-integer linear programming
algorithms. All experiments were run on an Intel Core i7-
1365U CPU @ 1.50 GHz with 32 GB RAM, with Ubuntu
22.04.4 LTS operating system.

C. Methods

We evaluated our algorithmic framework using each of
our algorithms (APG-LP, AQL-MILP, DP-LP). We use the
name of the algorithm to refer to the corresponding ap-
proach. Since existing string sanitization methods are not
comparable to our approach (see Section [[), we used as
a baseline an algorithm inspired by the basic obfuscation
algorithm in [21]. The baseline algorithm, referred to as
Baseline, chooses a replacement string v’ € U/, for each
u € U, uniformly at random, i.e., each v’ is chosen with
equal probability, among the R closest strings to u that are
contained in U, with respect to their distance d()ﬂ where R

IAs distance d(), we used the Hamming distance due to its efficiency
(if for two strings w, w’, it holds that |u| < |u/|, we append |u/| — |u]
occurrences of a letter that is not contained in X to w, and similarly we
append |u| — |u’| occurrences of this letter to v’ if |u| > |u/|).


https://bit.ly/3WXdNK6
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is a parameter set by the user. Thus, the element P(u' | u)
of the P matrix for the baseline has a value % if u’ is among
the R closest strings to u, and O otherwise.

D. Experimental Results

Impact of Main Parameters. As each algorithm has its own
parameter to control privacy gain and quality loss (APG-LP
has Qmax, AQL-MILP has Tyn, DP-LP has ¢, and Baseline
has R), we evaluate these algorithms separately. We choose
one context randomly to evaluate our algorithms, since they
are applied to a single context (similar trends were observed
for all other contexts we tested). We present results for ecoli
in Fig. 2| The results for the other datasets are analogous (see
Section V in Supplemental Material).

Recall that the APG-LP algorithm maximizes APG sub-
ject to AQL < @max and other constraints. As can be
seen in Figs. 2a] and [2b] with the increase of the quality
threshold Qmax, both APG and AQL generally increase.
This is because higher privacy comes with more quality
loss. Also, after some Qyax value, APG remains the same,
as it reaches its maximum possible value subject to the
constraints. Increasing QQyax beyond that value does not
lead to a corresponding monotonic increase for AQL: The
algorithm can output any of the feasible solutions (those with
AQL at most Quax) that maximize the privacy gain, and it
does not necessarily choose the one with the largest AQL.

Recall that the AQL-MILP algorithm minimizes AQL
subject to ensuring that the privacy gain of each possible
replacement v’ is at least Ty and other constraints. Figs.
and [2d] show that both APG and AQL increase to some level
when the privacy threshold Tyn increases. This is because
a higher Tyn requires the output to have more privacy for
each possible replacement - see Eq. - and this generally
leads to a higher APG. On the other hand, more quality
loss has to be incurred, and this leads to a higher AQL.
Notice that unlike APG-LP, which can always find a feasible
solution no matter how large Qyax is, AQL-MILP may not
always find a feasible solution when Ty is too large, as the
privacy constraints in Eq. [I8]to Eq.[24] may not be satisfiable.

Recall that the DP-LP algorithm minimizes AQL subject
to e-differential privacy and other constraints. Figs. [2e] and
[2f| demonstrate that increasing e reduct/as both APG and AQL.
This is expected, since the ratio 58,:27; for any u;,u; €
U,,, can have more possible values when ¢ is larger, and the
algorithm selects the values that lead to the minimum AQL.
Note that for a very large €, Eq. [30] does not really constrain
the P matrix values. This leads to a P matrix with 1s on
the diagonal, which means that the algorithm optimizes AQL
by always choosing the trivial replacement u' = u, which
makes both APG and AQL equal to zero.

Recall that the Baseline algorithm selects one of the R
possible replacements with uniform probability for each u €
U,,. Figs.[2gland [2h|show that both APG and AQL increase
when R increases. This is because a higher R leads to more
possible replacements for each u, which can achieve more
privacy gain but also incur a higher quality loss.

10

Recall that all algorithms use the parameter K (number
of nonsensitive patterns that can replace a sensitive pattern).
We evaluated the impact of K on privacy and quality loss.
Again, we choose one context randomly (similar trends were
observed for all other contexts tested) and present the results
for ecoli (similar results for other datasets can be found in
Section V-A of Supplemental Material).

Fig. 3| shows that a larger K increases privacy (APG
increases) for all algorithms and also increases quality loss
(AQL increases) for all algorithms except APG-LP and
Baseline. As K increases, APG-LP has more potential re-
placements for the sensitive pattern (hence APG increases);
see Fig.[3a] However, as in the experiment of Figs. [2a]and [2b]
the solver selects the solution among any solution with AQL
at most (Qmax, Which causes AQL to not only increase or
only decrease as K increases. Also, as K increases, Uél
becomes larger (i.e., there are more potential replacements),
and thus AQL-MILP and DP-LP have larger AQL and also
larger APG; see Figs. and For Baseline, we used
R = K. As K increases, APG increases (see Fig. since
there are more potential replacements, and AQL does not
always increase or decrease (see Fig. [3h), as K affects all
terms in Eq. [/ in a way that depends on the data and not
on how Baseline works. We also evaluated the impact of [
(context length); see Section V-A of Supplemental Material.

Privacy Gain and Quality Loss Tradeoff. We examined
the effectiveness of our algorithms in terms of the trade-
off between privacy gain and quality loss. To make these
algorithms that have different parameters comparable, we
configured them to have equal quality loss (or as close to
equal as possible) and compared the privacy gain they offer
(Fig. [ and Fig.[3), or vice versa to have the same or as much
similar as possible privacy gain and compared the quality
loss they incur (Figs. [6] [7] and [g).

We first configured all our algorithms to achieve the
same WAQL values, and Baseline to have WAQL values
as close as possible to the WAQL values of our algo-
rithms, by trying different R values (it was not possible to
have the same WAQL values as the other algorithms, as
R € {1,2,...,|U/|} is the only parameter and we tried
all its possible values). In Fig. 4] we show the WAPG of
the algorithms for varying WAQL values. APG-LP always
outperforms all other algorithms with respect to WAPG. This
is because by maximizing APG for each context subject to
the constraints, this algorithm also maximizes WAPG (i.e.,
the weighted average of the privacy gains of all contexts).
Moreover, all our algorithms outperform Baseline by achiev-
ing a higher privacy gain while incurring a smaller quality
loss. For example, our worst-performing algorithm DP-LP
achieved on average 76% and up to 109% higher WAPG
than Baseline over all the datasets.

Fig. [5] shows the results of the same experiment as Fig. []
but for the WMPG measure instead of WAPG. AQL-MILP
achieves the highest WMPG among all algorithms. This is
because the privacy gain of each possible replacement u’ is
guaranteed to be at least Tyn, so WMPG (i.e., the weighted
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Fig. 2: APG-LP: (a) Average Privacy Gain (APG), (b) Average Quality Loss (AQL) vs. Qmax. AQL-MILP: (c) APG, (d)
AQL vs. Tyn. DP-LP: (e) APG, (f) AQL vs. e. Baseline: (g) APG, (h) AQL vs. R. All results are for the ecoli dataset.
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Fig. 3: APG-LP: (a) Average Privacy Gain (APG), (b) Average Quality Loss (AQL) vs. K. AQL-MILP: (c) APG, (d) AQL
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Fig. 4: Weighted Average Privacy Gain (WAPG) for varying Weighted Average Quality Loss (WAQL).

minimum of the privacy gains of all contexts) cannot be MILP because DP-LP also focuses on protecting privacy
very small. The WMPG of DP-LP is close to that of AQL- by ensuring that each possible replacement v’ satisfies the



JOURNAL OF I5TgX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

1 16 1.5

L3 £ == APG-LP 0.5 ! == APG-LP O w1 H -+= APG-LP i -<-- APG-LP
1.2 { AQL-MILP 0.4 | AQL-MILP 0.8 AQL-MILP | 1.21 | AQL-MILP | AQL-MILP
/' e DP-LP | -+- DP-LP -=- DP-LP | ' i -=+- DP-LP 1.0 ] e
Q0.9 ‘f _a- Baseline 0.3 ;' -=- Baseline 0.6 _._ Baseline 0.8 i -#- Baseline fl - g::j‘ne
206 y 0.2 0.4 o | ! i
7 il { 0.5 1
0.3 % 0.1 0.2 LT 04 l :
0.0 2P e aa 0.0 ———m e ——m——a 0.0 sBE322mmle ., 0.0 S —— 0.0 4 — e mn
Q ™ © Q * © Q .
09 Q?) Q'b 09 \,'} \,?) Q Q Q(‘b \,r"’ ~ Qr 0,'1' Q" O 0?’ N 0~° 0*’ \,’-1’ \,(-b q,-b‘ '5-0 4)@ QN v H» % 9 O
WAQL WAQL WAQL WAQL WAQL
(a) msnbc (b) ecoli (¢) trucks (d) kasandr (e) iot

Fig. 5: Weighted Minimum Privacy Gain (WMPG) for varying Weighted Average Quality Loss (WAQL).
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Fig. 6: ¢-Gram distance D, (W, Z) with ¢ = 10 for varying Weighted Average Privacy Gain (WAPG). Error bars represent
the standard deviation at each point.
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Fig. 7: ¢-Gram distance D (W, Z) for varying g. Error bars represent the standard deviation at each point.
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Fig. 8: Average and Maximum JS-divergence between the corresponding rows of the transition matrix M on W and the
transition matrix M’ on Z for varying WAPG. Error bars represent the standard deviation at each point.

property of DP. APG-LP is worse than the two aforemen- quality loss. In Fig. [f] we set ¢ = 10, vary WAPG, and
tioned algorithms because it only optimizes the APG over compare D, (W, Z) for all algorithms. In Fig. [7| we set the
the string replacements, so for some of them the privacy WAPG of all algorithms to a fixed value 0.11 and vary ¢
gain can be small. Similarly to Fig. @ all our algorithms to compare their D, (W, Z). Both Fig. |§| and Fig. [7| show
outperform Baseline in both WAQL and WMPG. In fact, that our algorithms outperform the Baseline, as they achieve
the WMPG for Baseline was 0 or very close to 0. lower D, (W, Z). In particular, our algorithms outperformed
Baseline by 216% on average (and by up to 335%).
We then configured all our algorithms to achieve the same
WAPG values, and Baseline to have as close WAPG values Last, we evaluate how sanitization affects the predictive
to those of the other algorithms, as before. We use the performance of the data based on JS-divergence (see Sec-

g-gram distance Dy(W,Z) (see Eq. to measure data tion [[V-B). We use the msnbc and ecoli datasets because
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Fig. 10: Runtime for varying |S].

their alphabet size is smaller and each letter occurs more
frequently. Thus, the pairs of letters (transitions) occur more
frequently, which means that these datasets are more suitable
for making predictions. Figs. [8a] and [8P] report the average
JS-divergence over the pairs of the corresponding rows of
the transition matrices M and M’, while Figs. 8 and
report the maximum JS-divergence over the pairs of the cor-
responding rows of M and M’. Note that the JS-divergence
values are small, which implies that all algorithms preserve
the predictive performance of the data fairly well.

Differential Privacy in DP-LP. We show that all other
algorithms except DP-LP do not satisty differential privacy
for any positive €, unlike DP-LP which satisfies differential
privacy for any positive € (as expected). To show this, we
rewrote Eq. [30] of DP-LP as follows:

. (P(u’ | ;)

P(u’ [ uj)

Clearly, if an algorithm is differentially private, then
Eq. B3] can always find a feasible solution for any given
positive €. We tried large values of ¢ from 2.5 to 10 to
examine whether the algorithms other than DP-LP could
satisfy differential privacy (although they do not guarantee
it), and this did not happen for any/of the e tested. Then we
computed the maximum ratio % in Eq. (over all
triplets (u’,u;,u;)) for each of these algorithms and found
that its numerator is positive, but the denominator is zero.
This means that the attacker is certain that this u; cannot be
replaced by this v/, and thus these algorithms do not satisfy
differential privacy for any positive e.

> <€, V', ui, uj. (35)

Runtime. There are two main factors that affect the runtime
of our algorithms: the number K of nonsensitive patterns

added to U, and U/ ; and the number |C| of all contexts.
We examine these in what follows — we do not report results
for Baseline, as it is much simpler and thus much faster than
our algorithms. We emphasize that the dominant factor in the
runtime of our framework is the runtime of the optimization
solver, which is what we report below. In contrast, the size
of the dataset (length of the input string) only affects the
runtime of our framework in the preprocessing stage, which
is comparatively much faster.

We first examine K. This parameter determines the size
of sets U, and U/, which in turn determines the number of
constraints and variables in the mathematical programming
formulations of our algorithms and hence the runtime of
the algorithms. Fig. [9] shows the runtime of each algorithm
for varying K. As expected, the runtime of all algorithms
increases as K increases. Specifically, the runtime of AQL-
MILP is generally higher than that of APG-LP and DP-
LP (the runtimes of the latter two algorithms are similar).
This is because AQL-MILP is an MILP algorithm (see
Section unlike our other two algorithms which are
based on LP, and MILP algorithms are well known to be
generally slower than LP algorithms.

We then examine |C|, which is equal to the number of
times each of our algorithms needs to run to sanitize W. To
ensure that we consider all the contexts of sensitive patterns,
we varied | S|, i.e., the number of sensitive patterns, which in
turn determines |C|. As can be seen in Fig.[I0] the runtime of
all algorithms increases with |C|. However, our algorithms
remain practical, requiring less than three minutes in all
tested cases, which include multi-million-letter strings.

Hybrid Algorithms. So far we have demonstrated that
each of our algorithms can outperform the others depending
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on the tested measure. Now we consider whether we can
achieve a better tradeoff between privacy gain and quality
loss by “combining” two of our algorithms to obtain hybrid
algorithms, APG-LP and AQL-MILP to obtain APG-MILP,
and AQL-MILP and DP-LP to obtain DP-MILP.

APG-MILP maximizes APG while ensuring that AQL
does not exceed QXmax and that each possible replacement
u’ gains at least Tyqn privacy. Thus, to obtain APG-MILP,
we replace x,s with z,, in APG-LP and add the constraints
in Eq. [I8] to Eq. 24] to it (see Section V in Supplemental
Material for details). As APG-MILP imposes both an upper
bound Qumax on AQL and a lower bound Ty on privacy
gain to control its privacy-quality tradeoff, we evaluated the
effects of Qmax and Tyin separately. Figs. [TTa] [TTb]
and [I1d] show the results for the kasandr dataset; the
results for the other datasets are provided in Section V-
B of Supplemental Material. In Figs. [ITa] and [T1b] APG-
MILP achieves the same WAPG as APG-LP but with a
smaller WAQL when varying Qmax. Although AQL-MILP
has the lowest WAQL, it offers a higher WAPG. A similar
phenomenon is observed in Figs. and[ITd] When varying
Ty, APG-MILP even outperforms AQL-MILP in WMPG
in some cases, while its WAQL is much better than that of
APG-LP. Consequently, APG-MILP inherits the advantages
in terms of privacy gain from both APG-LP and AQL-MILP,
while incurring a lower quality loss than APG-LP.

DP-MILP is obtained by adding the differentially private
constraint of DP-LP (i.e., Eq. @) to AQL-MILP. That is, DP-
MILP enforces two privacy notions: Minimum Privacy Gain
(MPG) for each possible replacement v’ and e-differential
privacy. Thus, we evaluated DP-MILP by varying Tyyn and
e separately. In Figs. [TTe] and [T1f] DP-MILP always obtains
the highest WAPG, without being worse than the worst of

AQL-MILP and DP-LP in terms of WAQL. Similar results
for varying e are shown in Figs. [[Tg] and [TTH

V. CONCLUSION

Strings often need to be disseminated in the context of
numerous applications after sanitizing the sensitive patterns
occurring in them. However, all existing string sanitization
algorithms may reveal the location(s) of sensitive patterns in
the sanitized string, thus offering no privacy, when attackers
are strategic, i.e., when they possess background knowledge
about statistics of the input string and also know the al-
gorithm that was used to sanitize the string. In this work,
we considered for the first time such strategic attackers and
proposed a novel framework to counter them. Within this
framework, we designed three mathematical programming
algorithms that compute optimal string replacement prob-
abilities, offering different tradeoffs between privacy gain
and quality loss. Our algorithms are optimal in the sense
that there is no algorithm that performs better against an
attacker with the same strategic background knowledge of
the substring probabilities and of the sanitization algorithm.

Our experimental results show that our three algorithms
outperform a natural baseline, offering both higher privacy
gain and lower quality loss when one is kept constant com-
pared to the other. Furthermore, we proposed two hybrid,
optimal algorithms which provide a better tradeoff between
privacy and quality compared to their component algorithms.

The main decision for a practitioner who wishes to inte-
grate our approach with a real-world system is how to model
the attacker’s background knowledge. The most reasonable
approach is to look for publicly available information that
the attacker may be aware of. For example, there are publicly
available DNA reference human genome sequences (see
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Motivation subsection in Section [) or publicly available
information about sequences of location visits by people
in a city. After constructing a sanitized string Z by any
of our algorithms, the practitioner can directly use it in
any task in which they would use the original string W.
For example, they could index Z (instead of W) to answer
pattern matching queries or to discover frequent patterns.
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