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Supplemental Material: Optimal String
Sanitization Against Strategic Attackers

Pengxin Bian, Graduate Student Member, IEEE, George Theodorakopoulos,
Solon P. Pissis, and Grigorios Loukides, Senior Member, IEEE

I. ADDITIONAL RELATED WORK

There are two main directions in privacy-preserving data
publishing; data sanitization and anonymization. The former
has been reviewed in Section II of the main paper. The
latter aims to prevent the inference of information about
individuals represented in a disseminated dataset [1]. Below
we discuss data anonymization approaches as a supplement
to Section II of the main paper.

Instead of protecting the privacy of sensitive patterns mod-
eling confidential information as data sanitization does, data
anonymization aims to protect information about individuals.
For example, anonymization aims to prevent the disclosure
of individuals’ identities or attributes these individuals are
not willing to be associated with. Existing string anonymiza-
tion approaches propose algorithms based on two privacy
principles: k-anonymity [2] and differential privacy [3].

To enforce k-anonymity, several algorithms [4]–[6] apply
condensation, a methodology which splits a dataset into
multiple groups of size at least k and then releases aggregate
statistics about each group. These algorithms aim to create
groups of similar entities, so that the quality loss incurred
by releasing the group statistics is small. For example, [5],
[6] are applied to a collection of strings and create groups
of at least k similar strings. They represent each group of
strings using summary statistics containing first and second
order information about the distribution of the letters in the
strings, while [6] also discusses the possibility of releasing
third order information.

The algorithms based on differential privacy could be
classified into those that are applied to a collection of strings
and those that are applied to a single string. [7] proposes
an algorithm to extract differentially-private variable-length
n-grams with counts larger than a threshold and lengths
larger than another threshold from a collection of strings.
[8] releases a set of differentially-private top-k frequent
strings from a collection of strings, where k denotes the
number of frequent strings required, while [9] releases a
set of differentially-private frequent subsequences from a
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collection of strings under a maximum gap constraint. The
approach of [10] proposes a sampling-based mechanism to
enforce differential privacy on a single string and several
algorithms, exact and heuristics, to achieve this while pre-
serving data utility. The privacy goal of this approach is
to prevent an attacker from inferring the presence in the
disseminated string or absence from the disseminated string
of any q-gram.

Since anonymization algorithms do not aim to hide sen-
sitive patterns, they are not alternatives to our algorithms.

II. CONTEXTS CONSTRUCTION

Given a sensitive pattern s ∈ S, we find all its occurrences
in the reference string R = R[1] · . . . ·R[n] using the pattern
matching algorithm of [11]. Then, for each occurrence
(starting position i) of s, we assign cℓl = R[i−l]·. . .·R[i−1]
and crl = R[i + 1] · . . . · R[i + l]. If any of the strings cℓl
or crl overlaps with a sensitive pattern, we truncate it by
removing the minimum number of letters from it so that it
does not. This is to allow our algorithms to replace a pattern
occurring right after cℓl and right before crl without replacing
letters of cℓl or crl . An alternative would be to extend cℓl or
crl , so that it includes the sensitive pattern(s) that overlap
with R[i− l] · . . . · R[i− 1] or R[i+ 1] · . . . · R[i+ l]. We
will henceforth assume the first way, as the second one did
not lead to a practical benefit, based on our experiments.
Furthermore, we truncate cℓl if i− l < 1 or crl if i+ l > |R|,
to ensure that the context occurs in R.

III. BEST K NONSENSITIVE PATTERNS SELECTION

We use the pattern matching algorithm of [11] to find
occR(cℓl ) and occR(crl ) (i.e., the positions of cℓl and of crl
in R). Then, for each position i ∈ occR(cℓl ), we find the
closest position j > i+ |cℓl |−1 such that j ∈ occR(crl ) (i.e.,
the closest starting position of crl ). Recall that Ucl at this
point contains all sensitive patterns that are associated with
context cl. If the string u′ right after cℓl and right before crl
is not sensitive (i.e., u′ = R[i+ |cℓl |] · . . . ·R[j−1] /∈ S), then
we add the pair (

∑
u∈Ucl

d(u′, u), u) into an initially empty
priority queue, which is sorted in descending order of the
first element of the pairs in it. As we consider the positions
in occR(cℓl ), the priority queue will contain K elements at
some point1. Then, when we consider the current u′, we

1If this never happens, we cannot have enough nonsensitive pattern
replacements for cl, so we report failure.
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compute
∑

u∈Ucl
d(u′, u) incrementally (i.e., term by term)

and if at some point the current sum exceeds the sum of
the top element in the priority queue, we skip this u′, as
it cannot be one of the K best, and continue with the next
one. Otherwise, the fully computed sum and this u form
a pair which replaces the current top pair in the priority
queue. Thus, the priority queue will have K elements, after
all positions in occR(cℓl ) are considered. Last, we remove
each element from the priority queue and add its string into
the set U ′

cl
.

IV. LINEARIZATION OF THE PROGRAM FOR AQL-MILP

To prove that the linear program in Program 2 is equiv-
alent to that in Program 1, we show below that, for any
u′, zu′ indeed takes the minimum value of TMIN and
M ·

∑
u P (u′ | u).

Minimize
∑
u

π(u | cl)
∑
u′

P (u′ | u)dq(u′, u) (1)

subject to∑
u

π(u | cl)P (u′ | u)dp(û, u)

≥ min{TMIN,M ·
∑
u

P (u′ | u)}, ∀û, u′ (2)∑
u′

P (u′ | u) = 1, ∀u (3)

P (u′ | u) ≥ 0, ∀u, u′ (4)

Program 1: Average quality-loss-minimizing, privacy-constrained
nonlinear program

Minimize
∑
u

π(u | cl)
∑
u′

P (u′ | u)dq(u′, u) (5)

subject to

zu′ ≤
∑
u

π(u | cl)P (u′ | u)dp(û, u) , ∀û, u′ (6)

zu′ ≤ TMIN,∀u′ (7)

zu′ ≥ TMIN −m · yu′,1, ∀u′ (8)

zu′ ≤ M ·
∑
u

P (u′ | u), ∀u′ (9)

zu′ ≥ M ·
∑
u

P (u′ | u)−m · yu′,2, ∀u′ (10)

yu′,1 + yu′,2 ≤ 1, ∀u′ (11)

yu′,1, yu′,2 ∈ {0, 1},∀u′ (12)∑
u′

P (u′ | u) = 1, ∀u (13)

P (u′ | u) ≥ 0, ∀u, u′ (14)

Program 2: Average quality-loss-minimizing, privacy-constrained
linear program

Case 1: yu′,1 = 0, yu′,2 = 0.
In Case 1, Eq. 8 becomes

zu′ ≥ TMIN (15)

and Eq. 10 becomes

zu′ ≥ M ·
∑
u

P (u′ | u). (16)

From Eq. 7 and Eq. 15, we infer that

zu′ = TMIN (17)

From Eq. 9 and Eq. 16, we infer that

zu′ = M ·
∑
u

P (u′ | u) (18)

From Eq. 17 and Eq. 18, we get

TMIN = M ·
∑
u

P (u′ | u) (19)

Therefore, in Case 1 z(u′) could be either TMIN or M ·∑
u P (u′ | u) for a specific u′ as they are equal.
Case 2: yu′,1 = 0, yu′,2 = 1.
In Case 2, Eq. 8 becomes

zu′ ≥ TMIN (20)

and Eq. 10 becomes

zu′ ≥ M ·
∑
u

P (u′ | u)−m. (21)

From Eq. 7 and Eq. 20, we infer that

zu′ = TMIN (22)

Eq. 9 and Eq. 21 will always hold, because m − M ·∑
u P (u′ | u) > 0 for every u′ always holds.
Therefore, in Case 2 zu′ = TMIN.
Case 3: yu′,1 = 1, yu′,2 = 0.
In Case 3, Eq. 8 becomes

zu′ ≥ TMIN −m (23)

and Eq. 10 becomes

zu′ ≥ M ·
∑
u

P (u′ | u). (24)

Eq. 7 and Eq. 23 will always hold because TMIN −m < 0
always holds.

From Eq. 9 and Eq. 24, we infer that

zu′ = M ·
∑
u

P (u′ | u) (25)

Therefore, in Case 3 zu′ = M ·
∑

u P (u′ | u),∀u′.
These are the only cases, due to Eq. 11. Thus, the lin-

earization of the minimum operator in AQL-MILP is correct;
zu′ will always be the minimum one among TMIN,M ·∑

u P (u′ | u) for every u′ ∈ U ′
cl

.
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V. ADDITIONAL EXPERIMENTAL RESULTS

A. Impact of main parameters

Figs. 1, 2, 3, and 4 present the results of APG and AQL,
illustrating how each parameter (QMAX for APG-LP, TMIN
for AQL-MILP, ϵ for DP-LP, and R for the Baseline) affects
its respective algorithm on the msnbc, trucks, kasandr, and
iot datasets. They correspond to the experiments in the
Impact of Main Parameters part of Section IV-D in the main
paper.

Figs. 5, 6, 7, and 8 show the APG and AQL of each
method for varying K on the msnbc, trucks, kasandr, and iot
datasets. They correspond to the experiments in the Impact
of Main Parameters part of Section IV-D in the main paper.

Figs. 9, 10, 11, 12, and 13 show the results of APG
and AQL of each method for varying l on the iot, ecoli,
msnbc, trucks, and kasandr datasets. The results are too data-
dependent to draw general conclusions (e.g., they depend
on how the values of the dq matrix and π(u | cl) values
change). Take iot dataset as an example. Fig. 9 shows that
increasing l results in a lower AQL for all algorithms, as
the values in their dq matrices decrease. As l increases, the
APG-LP algorithm has a higher privacy (APG increases);
see Fig. 9a. This is because the differences between the
probabilities π(u | cl) for the different strings u ∈ Ucl

become smaller, while the values in the dp matrix do not
change (observe Eqs. 8 and 9 in the main paper). On
the other hand, AQL-MILP has the same APG (equal to
TMIN · |Ucl |); see Fig. 9c. For DP-LP and Baseline, APG
decreases (see Figs. 9e and 9g) because the π(u | cl) values
change as explained above and the values in dp stay the
same (see Eqs. 5 and 6). On the other hand, for the ecoli
dataset, increasing l results in a generally higher AQL for all
algorithms (see Figs. 10b, 10d, 10f, and 10h), as the values
in their dq matrices increase, while APG stays the same (see
Figs. 10a, 10c, 10e, and 10h) because in this case π(u | cl)
does not vary with l, nor does the dp matrix.
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Fig. 1: (a)(b)(c)(d) APG and (e)(f)(g)(h) AQL for APG-LP vs.
QMAX in the msnbc, trucks, kasandr, and iot datasets.

B. Hybrid Algorithms

Recall that the first hybrid algorithm APG-MILP maxi-
mizes APG while ensuring that AQL does not exceed QMAX
and that each possible replacement u′ gains at least TMIN
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Fig. 2: (a)(b)(c)(d) APG and (e)(f)(g)(h) AQL for AQL-MILP vs.
TMIN in the msnbc, trucks, kasandr, and iot datasets.
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Fig. 3: (a)(b)(c)(d) APG and (e)(f)(g)(h) AQL for AQL-MILP vs.
ϵ in the msnbc, trucks, kasandr, and iot datasets.
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Fig. 4: (a)(b)(c)(d) APG and (e)(f)(g)(h) AQL for AQL-MILP vs.
R in the msnbc, trucks, kasandr, and iot datasets.
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Fig. 5: APG and AQL for APG-LP vs. K in the msnbc, trucks,
kasandr, and iot dataset.

privacy. Its mathematical programming formulation is shown
in Program 3.
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Fig. 6: APG and AQL for AQL-MILP vs. K in the msnbc, trucks,
kasandr, and iot dataset.
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Fig. 7: APG and AQL for DP-LP vs. K in the msnbc, trucks,
kasandr, and iot dataset.
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Fig. 8: APG and AQL for Baseline vs. K in the msnbc, trucks,
kasandr, and iot dataset.
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Fig. 9: (a)(c)(e)(g) APG and (b)(d)(f)(h) AQL vs. l for APG-LP,
AQL-MILP, DP-LP, and Baseline. All results are for the iot dataset.

Fig. 14 and Fig. 15 show the results of WAPG, WMPG
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Fig. 10: (a)(c)(e)(g) APG and (b)(d)(f)(h) AQL vs. l for APG-
LP, AQL-MILP, DP-LP, and Baseline. All results are for the ecoli
dataset.
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Fig. 11: (a)(c)(e)(g) APG and (b)(d)(f)(h) AQL vs. l for APG-LP,
AQL-MILP, DP-LP, and Baseline. All results are for the msnbc
dataset.
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Fig. 12: (a)(c)(e)(g) APG and (b)(d)(f)(h) AQL vs. l for APG-LP,
AQL-MILP, DP-LP, and Baseline. All results are for the trucks
dataset.

and WAQL when varying QMAX and TMIN respectively in
msnbc, trucks, ecoli, and iot datasets, which correspond to
the experiments in the Hybrid Algorithms part of Section
IV-D in the main paper.

Recall that the second hybrid algorithm, DP-MILP, is
derived by incorporating the differentially private constraint
from DP-LP into AQL-MILP. The mathematical program-
ming formulation for DP-MILP is shown in Program 4.

Similar to APG-MILP, we evaluate DP-MILP by varying
TMIN and ϵ separately. Fig. 16 and Fig. 17 show the results
of WAPG and WAQL when varying TMIN and ϵ respectively
on the msnbc, trucks, ecoli, and iot datasets. These results
supplement the experiments discussed in the Hybrid Algo-
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Fig. 13: (a)(c)(e)(g) APG and (b)(d)(f)(h) AQL vs. l for APG-LP,
AQL-MILP, DP-LP, and Baseline. All results are for the kasandr
dataset.

Maximize
∑
u′

zu′ (26)

subject to∑
u

π(u | cl)
∑
u′

P (u′ | u)dq(u′, u) ≤ QMAX (27)

zu′ ≤
∑
u

π(u | cl)P (u′ | u)dp(û, u) ,∀û, u′ (28)

zu′ ≤ TMIN, ∀u′ (29)

zu′ ≥ TMIN −m · yu′,1, ∀u′ (30)

zu′ ≤ M ·
∑
u

P (u′ | u), ∀u′ (31)

zu′ ≥ M ·
∑
u

P (u′ | u)−m · yu′,2,∀u′ (32)

yu′,1 + yu′,2 ≤ 1, ∀u′ (33)

yu′,1, yu′,2 ∈ {0, 1}, ∀u′ (34)∑
u′

P (u′ | u) = 1, ∀u (35)

P (u′ | u) ≥ 0, ∀u, u′ (36)

Program 3: APG-MILP: Combination of APG-LP and AQL-MILP
to maximize APG.
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Fig. 14: WAPG and WAQL for APG-MILP vs. QMAX in the msnbc,
trucks, ecoli, and iot datasets.

rithms part of Section IV-D of the main paper.
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Fig. 15: WMPG and WAQL for APG-MILP vs. TMIN in the msnbc,
trucks, ecoli, and iot datasets.

Minimize
∑
u

π(u | cl)
∑
u′

P (u′ | u)dq(u′, u) (37)

subject to

zu′ ≤
∑
u

π(u | cl)P (u′ | u)dp(û, u) ,∀û, u′ (38)

zu′ ≤ TMIN, ∀u′ (39)

zu′ ≥ TMIN −m · yu′,1, ∀u′ (40)

zu′ ≤ M ·
∑
u

P (u′ | u), ∀u′ (41)

zu′ ≥ M ·
∑
u

P (u′ | u)−m · yu′,2,∀u′ (42)

yu′,1 + yu′,2 ≤ 1,∀u′ (43)

P (u′ | ui) ≤ P (u′ | uj) · eϵ, ∀u′ ∈ U ′
cl , ui, uj ∈ Ucl

(44)

yu′,1, yu′,2 ∈ {0, 1}, ∀u′ (45)∑
u′

P (u′ | u) = 1, ∀u (46)

P (u′ | u) ≥ 0, ∀u, u′ (47)

Program 4: DP-MILP: Combination of AQL-MILP and DP-LP to
minimize the AQL
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Fig. 16: WAPG and WAQL for DP-MILP vs. TMIN in the msnbc,
trucks, ecoli, and iot datasets.
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