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A B S T R A C T

Monitoring water quality (WQ) is crucial to ensure the safety and health of our water resources. Despite their 
importance, contemporary WQ monitoring programs are struggling with challenges such as high costs, limited 
spatio-temporal resolution, and data reliability issues. A promising solution to these challenges is the integration 
of remote sensing (RS) techniques with machine learning (ML) and artificial intelligence (AI) algorithms, which 
can significantly improve the efficiency and accuracy of WQ monitoring. Based on the literature, most of the 
studies have focused on optically active (OA)-WQ indicators like chlorophyll-a and colored dissolved organic 
matter, etc., while a few studies have been carried out focusing on optically inactive (OI)-WQ indicators. But WQ 
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monitoring requires a number of OA- and OI-WQ indicators; for instance, the European Union Water Framework 
Directive (WFD) recommend 11 fundamental WQ indicators, which include both OA- and OI-WQ. Therefore, it is 
essential to consider both types of indicators in a regular WQ monitoring program to develop an effective water 
resources management plan. However, several recent studies have shown that the development of RS-based OI- 
WQ indicator retrieval model(s) introduces considerable uncertainty in the final retrieval results due to various 
factors. Additionally, these studies highlight that most of the retrieval models may not be suitable for global 
application. To highlight these challenges, the goal of the research is to conduct a comprehensive analysis of 
various RS data and existing techniques in order to more accurately retrieve OI-WQ indicators such as pH, 
dissolved oxygen (DOX), biological oxygen demand (BOD5), total phosphorus (TP), total nitrogen (TN), and 
dissolved inorganic nitrogen (DIN) in different waterbodies. To achieve the research objectives, this study 
conducted a critical review analysis of 105 research publications, including journal papers and conference pa
pers, from 2005 to 2023. The study not only identified different types of satellite data, such as Landsat, Sentinel, 
and Aqua/Terra (MODIS), which are widely used, but also identified the advantages and disadvantages of 
different models, including empirical, semi-empirical, and ML/AI-based methods that are widely used in 
developing RS-driven retrieval model(s) for various OI-WQ indicators. Additionally, the study identified a range 
of opportunities (e.g., proposing a structural framework, reliable global model, etc.) and limitations (e.g., lack of 
in-situ data, structural framework, optimal RS wavelength for different OI-WQ indicators, etc.) in existing 
retrieval models. Moreover, the analysis suggests that advanced ML/AI approaches can be effective in retrieving 
OI-WQ indicators compared to other techniques in terms of retrieval data accuracy and reliability. The study also 
highlights current limitations of RS data and retrieval methods, such as spatial and temporal constraints, the need 
for improved calibration, and the demand for broader and more diverse training and testing datasets. Finally, the 
findings emphasize the significant potential of ML/AI algorithms in improving RS-based techniques for WQ 
monitoring, which may be more useful for water resource management and sustainable development strategies 
in the future.
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1. Introduction

Water quality (WQ) is essential for ecosystems, human health, and 
economic development. Typically, WQ is defined by its suitability for a 
specific use, which is determined by physical, chemical, and biological 
properties of water (EPA, 2007). However, disruptions in any WQ in
dicators can lead to various issues, for example, hypoxia caused by low 
dissolved oxygen (DOX) (Post et al., 2018); organic pollution indicated 
by high biological oxygen demand (BOD5) (Nafsin and Li, 2022); acidic 
aquatic systems due to high pH (Ascani et al., 2022; Boyd, 2015); and 
eutrophication caused by high nutrients (e.g., total phosphorus (TP), 
total nitrogen (TN), and dissolved inorganic nitrogen (DIN), etc.) 
(Siriwardana et al., 2024; van Wijk et al., 2024). These WQ indicators 
affect the suitability of water for ecosystems and human use (Gani et al., 
2023). Over the past few decades, WQ degradation has been driven by 
both natural factors, such as climate change, and anthropogenic factors, 
including population growth, urbanization, and industrialization (Gani 
et al., 2023; Sajib et al., 2024; Uddin et al., 2021, 2023a, 2023b). 
Recently, UNESCO (2021) highlighted WQ as a critical issue for the 21st 
century because it has profound impacts on human health, food pro
duction, ecosystems, and economic growth. For example, in 2017, un
safe water caused over 1.1 million deaths, which was 2.2 % of global 
deaths (Ritchie and Roser, 2021). As a result, worldwide efforts are 
required for regular, timely, and sustainable WQ monitoring.

Several developed countries have implemented management and 
action strategies to maintain their “Good” WQ standards. Within this, 
the European Union (EU) Water Framework Directive (WFD;, 2000/60/ 
EC) has been established to standardize the assessment of all water
bodies across Europe (EU, 2019). Specifically, the WFD aim is to ensure 
good water for wildlife and humans by assessing the ecological and 
chemical status in all types of waterbodies (WFD, 2000). To achieve this, 
the WQ indicators under the WFD have been classified into several 
groups (EU, 2019). These groups include hydro-morphological elements 
(e.g., water flow dynamics, connection to aquifers); hydrodynamics (e. 
g., depth, velocity, residence time); physical components (e.g., TEMP, 
Colour, Taste, Odor, TUR, Solids, TRAN, EC); chemical components (e. 
g., pH, DOX, BOD5, COD, TOC, TSS); biological components (e.g., CHL, 
FC, TC, phytoplankton); and nutrient elements (e.g., TON, DIN, TN, 
MRP, TP) (Pattnaik et al., 2021; Diganta et al., 2024).

Furthermore, according to the WFD standards, the ecological status 
of surface waterbodies assesses the health of the overall ecosystem as 
determined by biological quality elements (e.g., fish, aquatic flora, 
macroinvertebrates, and phytoplankton) (EU, 2019). To maintain the 
quality of these biological components, it is essential to establish stan
dard levels for the physico-chemical indicators (e.g., TEMP, DOX, BOD5, 
SAL, pH, NH4

+, TON, DIN, MRP, TP, and TRAN). Moreover, regular 
monitoring is crucial to ensure compliance with these standards (EPA, 

2023). Notably, any disturbances in these physico-chemical indicators 
directly affect the biological quality properties (Samarinas et al., 2023; 
Uddin et al., 2021, 2023a). However, it should be noted that some of 
these WQ indicators are inherently interrelated (Mohseni et al., 2022) 
and their reciprocal relationship can significantly affect the overall WQ 
of an aquatic ecosystem. For example, high nutrient levels can cause 
eutrophication, which reduces water transparency. As a result, BOD5 
levels increase while DOX levels decrease, potentially leading to hypoxia 
(Ahmad et al., 2024; Gao et al., 2019). Furthermore, physical factors like 
TEMP and Cond can also affect chemical processes and the solubility of 
compounds in a waterbody (Mamun and An, 2021).

Generally, two types of techniques are widely used for assessing and 
monitoring WQ indicators: (1) in-situ techniques - WQ assessment and 
monitoring involves real-time data collection using sensors and probes 
placed directly in waterbodies, supplemented by laboratory analyses 
(Diganta et al., 2024; Uddin et al., 2021, 2023a, 2023b). These methods 
offer valuable insights into dynamic processes, which facilitate informed 
decision-making and effective management of water resources (Pollard 
et al., 2017); and (2) remote sensing (RS) techniques - provide valuable, 
non-invasive tools for assessing and monitoring WQ at various spatial 
and temporal scales (Sagan et al., 2020; Tao et al., 2025; Wilson et al., 
2025). These methods contribute to a better understanding and man
agement of aquatic ecosystems and resources (Ogashawara et al., 2017; 
Sajib et al., 2024; Uddin et al., 2023g). While both in-situ and RS 
techniques have unique benefits, but they also have distinct constraints. 
For instance, in-situ approaches provide accurate, localized measure
ments of WQ indicators, but they can be time-consuming, labour- 
intensive, and have limited spatial coverage (Agarwal et al., 2018; Cao 
et al., 2023; Mohseni et al., 2022). In contrast, RS techniques offer broad 
spatial and temporal coverage with reduced fieldwork requirements, 
enabling continuous monitoring of large waterbodies, such as inland, 
coastal, and transitional (He et al., 2008; Matthews, 2011; Soomets 
et al., 2022; Sun et al., 2022). However, effects such as atmospheric 
disturbance, sun-glint, adjacency effects, etc., significantly affect 
retrieval model development using RS technology in inland, coastal and 
open waters (Ansper-Toomsalu et al., 2024; Concha et al., 2021; Frouin 
et al., 2019; Gleratti et al., 2024; González Vilas et al., 2023; Kutser, 
2012; Pahlevan et al., 2021a, 2021b; Vanhellemont and Ruddick, 2018; 
Zibordi et al., 2022). Additionally, hydrodynamic factors, particularly 
surface waves and tides further complicate coastal and transitional and 
inland river-based WQ retrieval model development (Pan and Lou, 
2023; Wei et al., 2016). Moreover, recent studies have highlighted a 
range of limitations of RS techniques, including image acquisition error 
(s), impacts of various atmospheric factors, cloud coverage, image pro
cessing error(s), challenges in capturing fine-scale variations, etc. 
(Adjovu et al., 2023; Gholizadeh et al., 2016; Sagan et al., 2020; Wang 
and Yang, 2019; Yang et al., 2022b). Despite these challenges, recent 
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research has suggested that combining in-situ and RS methods may 
improve understanding of RS attribute interactions for effective WQ 
management (Arabi et al., 2020; Diganta et al., 2024; Sajib et al., 2024; 
Sheffield et al., 2018). As a result, despite their limitations, RS tech
niques have gained much more attention from scientific communities, 
including the various national and international environmental orga
nizations, in the field of WQ model development (Gholizadeh et al., 

2016; Sagan et al., 2020; Wang and Yang, 2019; Yang et al., 2022b).
Typically, WQ assessment using RS involves optically active (OA – e. 

g., CHL, TSM, CDOM, etc.) and optically inactive (OI – e.g., DO, BOD5, 
DIN, TP, TN, etc.) WQ indicators, each presenting unique advantages 
and challenges (Adjovu et al., 2023; Gholizadeh et al., 2016; He et al., 
2008). For instance, OA indicators, such as CHL, TSM, and CDOM, can 
be retrieved from the RS data due to the inherent capabilities of this 

Fig. 1. Methodological framework of the research.
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technology (Diganta et al., 2024; Frouin et al., 2019; Gleratti et al., 
2024; González Vilas et al., 2023; Kutser, 2012; Pahlevan et al., 2021a; 
Zhang et al., 2021a). In particular, the spectral properties of water 
around 440, 675 and 700 nm are highly sensitive to CHL concentration 
(Gilerson et al., 2010; Diganta et al., 2024; Pahlevan et al., 2021b), 
whereas the NIR regions are highly sensitive to the concentration of TSM 
(Du et al., 2020; Wen et al., 2022; Odermatt et al., 2010). On the other 
hand, CDOM is characterized by the absorption coefficient of solar ra
diation at 440 nm (Dall’Olmo et al., 2017; Morel and Gentili, 2009; 
Hooker et al., 2020; Houskeeper et al., 2021). However, recent studies 
have identified several challenges in retrieving OA-WQ retrieval algo
rithms, including atmospheric conditions (Ansper-Toomsalu et al., 
2024; Concha et al., 2021; Frouin et al., 2019; Gao et al., 2006; Gleratti 
et al., 2024; González Vilas et al., 2023; Kutser, 2012; Pahlevan et al., 
2021a; Vanhellemont and Ruddick, 2018; Zibordi et al., 2022), surface 
reflection (IOCCG, 2010; Wei et al., 2016; Scheirer et al., 2018), adja
cency effect (Ansper-Toomsalu et al., 2024; Tao and Hill, 2019; Tessin 
et al., 2024), and sensor characteristics (Gholizadeh et al., 2016; Chawla 
et al., 2020), etc. To address these issues, particularly the atmospheric 
problems, several atmospheric correction (AC) algorithms have been 
developed, such as ACOLITE (Vanhellemont and Ruddick, 2018), 
POLYMER (Steinmetz et al., 2011), C2RCC (Brockmann et al., 2016), 6 s 
(Kotchenova et al., 2006), Sen2Cor (Louis et al., 2016), etc. (Li et al., 
2023b; Li et al., 2023c). Additionally, numerous studies have also 
emphasized the need for extensive in-situ data to accurately retrieve OA- 
WQ indicators from optically complex waters (Chen et al., 2022; Diganta 
et al., 2024; Ogashawara et al., 2017; Sajib et al., 2024). A detailed 
description of the progress and challenges in retrieving OA-WQ in
dicators from satellite data can be found in Cao et al. (2023), Chawla 
et al. (2020), Diganta et al. (2024), Dey and Vijay (2021), Dörnhöfer and 
Oppelt (2016), Yang et al. (2022a), and Yang et al. (2022b).

On the other hand, OI-WQ indicators also face various challenges, 
including complex mathematical models for indirect estimation, which 
require large amounts of ancillary data to validate the models 
(Gholizadeh et al., 2016; Niu et al., 2021; Sagan et al., 2020; Vakili and 
Amanollahi, 2020). Additionally, OI-WQ indicator models heavily 
depend on the input data’s accuracy, calibration, and validation with in- 
situ measurements (Chen et al., 2022; Gholizadeh et al., 2016; Sajib 
et al., 2024). Moreover, numerous retrieval models, such as empirical 
models (EM) (Portela et al., 2024), semi-empirical models (SEM) (Chen 
et al., 2022; Goyens and Ruddick, 2023; Mobley, 2001; Mobley et al., 
2004), and machine learning (ML)/artificial intelligence (AI)-based 
models (Chen et al., 2022; Han et al., 2023) have been developed for OA- 
WQ indicators. However, OI-WQ-based models (e.g., DOX model by Liu 
et al., 2022b; Salas et al., 2022; Sharaf El Din et al., 2017) have faced 
much criticism due to the considerable uncertainty in the final retrieval 
results (Sajib et al., 2024). A detailed description of uncertainty asso
ciated with retrieval algorithms can be found in Chen et al. (2022), Yang 
et al. (2022a), and Yang et al. (2022b).

To the best of the authors’ knowledge, while there have been a 
considerable number of studies focusing on monitoring OA-WQ in
dicators (Chen et al., 2022; Gholizadeh et al., 2016; Diganta et al., 2024; 
Sagan et al., 2020; Wang and Yang, 2019; Yang et al., 2022b), but 
research on the OI-WQ remains limited. Therefore, the aim of the 
research was to identify the suitable RS data and retrieval methods for 
retrieving the OI-WQ indicators from different waterbodies by analysing 
the literature. To achieve the goal of the research, the following objec
tives were considered: 

• To review and evaluate the existing RS data and retrieval methods 
for retrieving OI-WQ indicators.

• To identify the key spectral bands and indices that are widely used 
and most effective in retrieving OI-WQ indicators from RS data.

• To assess the accuracy and reliability of different RS data and 
retrieval methods for OI-WQ indicators by comparing the literature.

• To compare the performance of different retrieval methods, 
including EM, SEM, and ML/AI-based methods, by conducting a 
critical analysis of literature.

• To determine the limitations and potential avenues for further 
improvement of current RS data and retrieval methods for moni
toring OI-WQ indicators.

• To provide recommendations for the selection of appropriate RS 
data, band(s), and combination of band(s) for the development of 
effective retrieval model(s) in order to retrieve various OI-WQ in
dicators in terms of certain environmental conditions.

The paper consists of seven sections. Following the introduction, 
Section 2 explains the techniques utilized in the review process. Section 
3 not only describes the parameters and satellite data used in OI-WQ 
estimation but also addresses different AC methods. Section 4 ad
dresses RS-based EM, SEM, and ML/AI retrieval models and limitations 
of those retrieval models. Section 5 provides a brief description of the RS 
data, parameters, algorithms, and optimization process utilized to 
retrieve OI-WQ indicators. This section also addresses the existing lim
itations in the retrieval of OI-WQ indicators. On the other hand, section 
6 discussed the limitations and suggested future scope for OI-WQ 
research. Finally, a conclusion is presented in Section 7.

2. Method of review

There are several established guidelines for conducting literature 
reviews (Snyder, 2019) and researchers commonly utilized these 
methodologies based on their review goals. The current study was 
conducted using a systematic literature review process (Fig. 1). A sys
tematic literature review differs from traditional narrative reviews in 
that it uses a well-defined search strategy and inclusion/exclusion pro
cess to identify, select, and critically evaluate existing literature (Rousso 
et al., 2020). The advantage of utilizing is that it reduces uncertainty at 
every step of the review process by using an organized and clear 
approach (Mengist et al., 2020). Details of this methodology can be 
found in Ozdemir et al. (2023) and Rousso et al. (2020). However, 
systematic search in this study was challenging because most published 
studies of OI-WQ did not mention “non-OA/OI-WQ” in their publica
tions. On the other hand, several studies have focused on both OA-and 
OI-WQ indicators (Arias-Rodriguez et al., 2023; Tian et al., 2023; 
Zhang et al., 2020). Therefore, the present study reviewed both cate
gories of RS-based WQ indicator monitoring studies to identify the 
focused WQ indicators.

Table 1 
Keywords used for articles and conference proceedings.

Keyword category Search query

RS-based OI-WQ indicators • Water AND quality AND using AND remote AND 
sensing

• Optically AND active AND water AND quality 
AND monitoring

• Optically AND inactive AND water AND quality 
AND monitoring

• Non-optically AND active AND water AND quality 
AND monitoring

• Water AND quality AND retrieval using AND 
Machine AND learning AND RS

• Water AND quality AND retrieval AND using AND 
deep AND learning AND RS

ML/AI based OI-WQ 
indicators prediction

• pH AND prediction AND in AND water
• DO AND prediction AND in AND water
• BOD5 AND prediction AND in AND water
• TP AND prediction AND in AND water
• DIN AND prediction AND in AND water
• TN AND prediction AND in AND water
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2.1. Research questions

The study critically reviews the current global trends and research 
progress in the field of OI-WQ indicators, guided by the following 
research questions (RQs). This RQ determines the scope of the research.

RQ1: What are the basic principles of retrieving OI-WQ from 
different waterbodies?

RQ2: What are the tools and techniques commonly used for 
retrieving OI-WQ from various waterbodies?

RQ3: What types of RS data are widely utilized to retrieve OI-WQ 
indicators from different types of waterbodies, such as lakes, rivers, 
estuaries, bays, and seas?

RQ4: What parameters (e.g., OA-WQ indicators, spectral bands, 
indices, etc.) are typically utilized in the retrieval process?

RQ5: What types of algorithms and optimization methods, including 

EM, SEM, and ML/AI techniques, are utilized in the retrieval process of 
OI-WQ indicators?

RQ6: What is the accuracy and reliability of different RS data and 
retrieval methods for OI-WQ indicators?

RQ7: What are the limitations and potential for improvement to 
current RS data and retrieval methods for OI-WQ indicators?

2.2. Selection criteria for reviewed OI-WQ indicators

The management of WQ has received significant attention due to 
growing environmental concerns and inadequate freshwater resources 
(Sajib et al., 2023). As a result, this aspect has directed various stake
holders, including researchers, organizations, and nations, to develop 
cost-effective methods for managing water resources (Mustafa et al., 
2021; Uddin et al., 2022a, 2023c, 2023d, 2023e). Although several 

Fig. 2. (a) Number of published papers on OI-WQ indicators in peer-reviewed papers and conference proceedings; (b) Number of studies conducted on different 
waterbodies.

Fig. 3. Published research on OI-WQ indicators in different waterbodies around the world.
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policies and regulations have been established to monitor the WQ in 
various waterbodies (Diganta et al., 2024; Uddin et al., 2021), these 
programs often rely on conventional monitoring systems, which are 
time-consuming and require considerable manpower (Uddin et al., 
2021). Furthermore, these measures often fail to provide a concise 
scenario of the current state of the waterbodies (Uddin et al., 2022a). To 
address this issue, different stakeholders utilize various approaches; the 
water quality index (WQI) model is one of them, which can provide a 
concise view of the waterbody by incorporating a range of WQ in
dicators; and a well-known methodology in the field of water resource 
management (Uddin et al., 2022a, 2022b, 2023f, 2024). For instance, 
the Irish Water Quality Index (IEWQI) model serves as a notable 
example in order to assess and monitor the TrC waters (Uddin et al., 
2023e). Moreover, the WFD is another fundamental approach to main
tain the “Good” WQ condition within the EU extent. As the aim of the 
research, the study focuses on the WFD regulations for selecting the OI- 
WQ variables that are guided by the framework to consider the regular 
monitoring programme in EU member states. The framework which 
outlined 11 WQ indicators, including five OI-WQ indicators like DOX, 
BOD5, pH, DIN, TP, and TN for monitoring the WQ in the EU water
bodies (WFD, 2000). A detailed description of these WQ indicators and 
their standard values can be found in Table S2. Therefore, the study 
considered these OI-WQ indicators for a comprehensive analysis of their 
existing tools and techniques.

2.3. Literature search

In order to achieve the primary research objective, the current study 
utilized a systematic search on the Google Search Engine, Google 
Scholar, Web of Science, and Scopus Index with the keywords listed in 
Table 1. The search method is implemented according to methodology 
provided in the studies by Ozdemir et al. (2023) and Yang et al. (2022b). 
Moreover, the study considered articles published from 2006 to late 
2023. This selected timeframe allows for the examination of techniques 
utilized in OI-WQ retrieval, ranging from traditional EM to recent ML/AI 
and deep learning (DL) techniques and widely utilized RS data. By 
following this rigorous search and selection process, this study provides 
a comprehensive overview of the current state-of-the-art techniques and 
advances in RS-based OI-WQ retrieval and prediction.

2.4. Inclusion and exclusion criteria

The following inclusions and exclusions (IC/EC) were utilized in the 
review process to identify the relevant studies. 

• IC/EC 1: The study must be related to the OI-WQ (e.g., pH, DOX, 
BOD5, TP, TN, and DIN) assessment and monitoring.

• IC/EC 2: The study must include various types of approaches (e.g., 
EM, SEM, ML/AI, and DL) that use RS data to develop algorithms for 
pH, DOX, BOD5, TP, TN, and DIN.

• IC/EC 3: The study must include different types of sensors (e.g., 
ground, UAV and space-borne) used for monitoring pH, DOX, BOD5, 
TP, TN, and DIN in different waterbodies.

• IC/EC 4: Preprints or early versions of articles are excluded from the 
review process.

2.5. Conducting the review

The systematic search was conducted between October 2022 and 
November 2023. In the first phase, a total of 450 papers were found 
based on search criteria. After removing duplicates and applying in
clusion and exclusion criteria, a total of 105 papers are selected, 
including 102 peer-reviewed papers and 3 full-length conference pro
ceedings. The details of individual numbers of identified OI-WQ indi
cator studies are shown in Fig. 2(a), and tested waterbodies are 
illustrated in Fig. 2(b), while Fig. 3 shows the country-wise published 

studies.

2.6. Obtained information

In order to achieve the research goal, the review encompassed 
several key attributes relevant to OI-WQ indicator retrieval. These at
tributes are summarized as follows:

(i) Major OI-WQ indicators:
The review focused on identifying and analysing the primary in

dicators used for OI-WQ assessment. This involved examining the 
commonly studied parameters and characteristics that are indicative of 
WQ, such as DOX, pH, and BOD5.

(ii) Availability of RS data:
The review investigated the existing RS datasets that are commonly 

utilized for OI-WQ retrieval. This involved assessing the availability and 
accessibility of satellite imagery, aerial photographs, and other RS- 
derived data sources that enable the monitoring of WQ indicators.

(iii) Tools and techniques:
The review encompassed an exploration of the various tools and 

techniques employed for OI-WQ retrieval. This included: 

• Statistical approaches: The review examined statistical methods, 
such as regression analysis and multivariate analysis, that have been 
utilized to establish relationships between RS data and OI-WQ 
indicators.

• ML/AI techniques: The review investigated the application of ML/AI 
techniques, such as SVM, NN, and RF algorithms for OI-WQ retrieval.

• Others: In addition to statistical and ML/AI approaches, the review 
considered other methods and techniques that have been employed, 
such as fuzzy logic, expert systems, and hybrid approaches 
combining multiple methodologies.

• Comparison of various tools and techniques: The review included a 
comparative analysis of the different tools and techniques used for 
OI-WQ retrieval. This involved assessing their strengths, limitations, 
and performance in different scenarios.

(iv) Limitations:
The review acknowledged and discussed the limitations associated 

with OI-WQ retrieval. This encompassed considerations such as un
certainties in RS data, limitations of specific tools and techniques, and 
challenges in accurately interpreting and validating the retrieved WQ 
information.

By comprehensively addressing these attributes, the review provides 
valuable insights into the list of major OI-WQ indicators, the availability 
of RS data, and the range of tools and techniques employed for OI-WQ 
retrieval. It also highlights the limitations that need to be considered 
when interpreting the results of such retrieval models.

3. RS data and atmospheric corrections

In contemporary times, the implementation of a free and open data 
policy has significantly enhanced access to vast amounts of RS data 
(Gholizadeh et al., 2016; Sajib et al., 2024). Additionally, combined 
with advanced cloud computing services, this has greatly accelerated the 
analysis of extensive time series data (Arias-Rodriguez et al., 2023; 
Doxani et al., 2018). Specifically, spaceborne, airborne, and modern 
ground-based sensors are utilized in the RS process to estimate the ra
diation frequency across various wavelengths (e.g., visible, infrared, and 
microwave) reflected from the water surface to assess WQ (Diganta 
et al., 2024; Wagle et al., 2020). For instance, the optimal spectral range 
for total suspended matter (TSM) concentration lies between 580 nm - 
680 nm and 700 nm - 900 nm (Mohseni et al., 2022). Similarly, in the 
microwave domain, the ocean surface TEMP and SAL can be estimated 
by microwave radiometers and synthetic aperture radars (Guo et al., 
2022a). The most commonly used RS data for WQ retrieval are the 
Landsat series (e.g., Landsat-5 TM, Landsat-7 ETM+, Landsat-8 OLI, and 
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Landsat-9 OLI), the Copernicus programme imageries (e.g., Sentinel-2 
MSI, Sentinel-3 OLCI), the MODIS (Aqua/Terra), and the VIIRS (Chen 
et al., 2022; Llodrà-Llabrés et al., 2023; Matthews, 2011; Portela et al., 
2024; Radeloff et al., 2024; Sagan et al., 2020; Samarinas et al., 2023; 
Wagle et al., 2020; Wang and Yang, 2019; Yang et al., 2022a; Yang et al., 
2022b). Moreover, unmanned aerial vehicles (UAV) and ground-borne 
(proximal and portable) high-resolution hyperspectral data have 
gained popularity in recent years (Gholizadeh et al., 2016; Diganta et al., 
2024; Wasehun et al., 2024). However, since hyperspectral data 
collection and processing is quite complex, multispectral satellite data 
are preferable for large-scale waterbody monitoring (Li et al., 2022c; 
Raghul and Porchelvan, 2024). A detailed description of frequently used 
satellites for WQ retrieval can be found in Table S3 and Table S4.

Over the past four decades, notable progress has been achieved in 
RS-based WQ retrieval through advances in sensors, image correction 
processes, and retrieval algorithms (Ansper-Toomsalu et al., 2024; 
Concha et al., 2021; Guo et al., 2022a). However, numerous challenges 
complicate the use of RS data for WQ monitoring (Gleratti et al., 2024; 
González Vilas et al., 2023; Kutser, 2012; Pahlevan et al., 2021a; Van
hellemont and Ruddick, 2018; Zibordi et al., 2022). Particularly, water 
reflectance observations conducted from space are subject to various 
interfering processes that arise as a result of the two conditions within 
the atmosphere-surface system; condition one encompasses various 
phenomena such as particles (e.g., soot), gaseous absorption, molecular 
scattering, aerosol scattering and absorption, and water reflection in a 
clear sky; on the other hand, condition two includes scattering, specif
ically scattering caused by cloud droplets (Frouin et al., 2019). To 
accurately retrieve WQ, it is essential to eliminate the impact of the 
atmosphere and surface from RS data (Diganta et al., 2024; Kim et al., 
2023; Kutser, 2012; Sajib et al., 2024). This process is commonly known 
as atmospheric correction (AC) in scientific literature. The imple
mentation of AC is deemed essential for RS retrieval applications, 
although it may not always be necessary for RS classification applica
tions (Zhu and Xia, 2023). The conventional method for AC involves the 
assumption of a “black pixel” (Song et al., 2023; Wang et al., 2023a). 
Typically, there are two ways to correct this issue: firstly, the estimation 
of aerosol/surface reflectance is performed over totally absorbing water 
in the red and NIR regions, and secondly, applying extrapolation tech
niques to determine the aerosol/surface reflectance at shorter wave
lengths (Frouin et al., 2019). Alternatively, another method for AC 

involves simultaneously determining the aerosols and water constitu
ent’s properties by comparing the top-of-atmosphere (TOA) reflectance 
with the output of a radiative transfer model (Shi and Nakajima, 2018). 
Consequently, several methods for AC have been developed and exten
sively utilized in various RS applications (Ansper-Toomsalu et al., 2024; 
Concha et al., 2021; Frouin et al., 2019; Gleratti et al., 2024; González 
Vilas et al., 2023; Kutser, 2012; Pahlevan et al., 2021a; Vanhellemont 
and Ruddick, 2018; Zibordi et al., 2022).

The AC methods commonly utilized include, Sen2Cor, C2RCC, 
POLYMER, iCOR, ACOLITE, FLAASH, 6s, DOS, COST, and L2gen 
(Ansper-Toomsalu et al., 2024; Concha et al., 2021; Frouin et al., 2019; 
Gleratti et al., 2024; González Vilas et al., 2023; Kutser, 2012; Pahlevan 
et al., 2021a; Vanhellemont and Ruddick, 2018; Zibordi et al., 2022). 
The specific characteristics and properties of these AC methods can be 
found in Li et al. (2023b) and Diganta et al. (2024). Fig. 4 illustrates the 
various AC methods utilized in different research studies for the OI-WQ 
retrieval across diverse waterbodies. Notably, the FLAASH AC method is 
commonly utilized for the Landsat series (Cruz-Montes et al., 2023; Fu 
et al., 2022; Kapalanga et al., 2021; Krishnaraj and Honnasiddaiah, 
2022; Mohandas and Brema, 2023), whereas the Sen2Cor method is 
considered the most suitable for AC in the context of Sentinel 2 A/2B 
MSI missions (Guo et al., 2021a; Mohandas and Brema, 2023; Salas 
et al., 2022). However, specific algorithms, such as C2RCC, ACOLITE, 
POLYMER, and L2gen designed for water applications (Ansper-Toom
salu et al., 2024; Diganta et al., 2024; Vanhellemont and Ruddick, 
2018), while Sen2Cor and 6 s are specifically tailored for land applica
tions (Li et al., 2023b; Li et al., 2023c). Furthermore, numerous studies 
have employed these algorithms to identify the most appropriate AC 
method for quantifying WQ in various regions (Ansper-Toomsalu et al., 
2024; Concha et al., 2021; Frouin et al., 2019; Gleratti et al., 2024; 
González Vilas et al., 2023; Kutser, 2012; Li et al., 2023b; Li et al., 
2023c; Pahlevan et al., 2021a; Vanhellemont and Ruddick, 2018; 
Zibordi et al., 2022). Nevertheless, numerous researchers have also 
highlighted that all these AC methods have certain limitations (Arena 
et al., 2024; Diganta et al., 2024; Soppa et al., 2021; Warren et al., 
2019), and the outcome of AC varies in terms of waterbodies.

4. RS based retrieval methods for OI-WQ indicators

The current study focused on the OI-WQ indicators and techniques 

Fig. 4. Atmospheric correction methods utilized in the OI-WQ indicator retrieval models.

A.M. Sajib et al.                                                                                                                                                                                                                                 Earth-Science Reviews 271 (2025) 105259 

8 



available for retrieving these indicators using RS data. Recent ad
vancements in RS technology have notably enhanced the ability to es
timate OI-WQ indicators using various methods, such as EM, SEM and 
ML/AI-based models (Chen et al., 2022; Sagan et al., 2020; Wagle 
et al., 2020; Yang et al., 2022a). These approaches are widely utilized to 

assess spatial and temporal variations in WQ indicators (Chen et al., 
2022; Sagan et al., 2020; Wagle et al., 2020; Wang and Yang, 2019; Yang 
et al., 2022a; Yang et al., 2022b; Zhu and Xia, 2023). Furthermore, re
searchers have recently made notable progress in improving algorithms 
for estimating OI-WQ using RS technology (Diganta et al., 2024; Sajib 

Fig. 5. Frequently used RS data in OI-WQ indicator retrieval models. (here, HS = Hyperspectral; UAV = Unmanned Aerial Vehicle; MS = Multi Spectral).

Fig. 6. Boxplot of the RS data wavelength used in different OI-WQ indicator retrieval processes.
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Fig. 7. A comparison between in-situ and RS-retrieved OI-WQ concentrations in different studies. (here, S2 MSI = Sentinel 2 MSI, S3 OLCI = Sentinel 3 OLCI).
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et al., 2024); however, despite these advancements, most of the devel
oped models still struggle to achieve high accuracy when applied across 
different regions (Chen et al., 2022; Diganta et al., 2024; Sagan et al., 
2020).

Typically, the EM is a correlation-based regression analysis between 
in-situ WQ indicators and the corresponding RS band value (Shang et al., 
2021). For instance, common EM methods include linear regression 
(such as stepwise linear, multiple linear, quadratic polynomial, power 
curvilinear, etc.), single-band approach, band-combination method 
(such as band ratio and band difference), principal component analysis, 
and so on (Wang and Yang, 2019). However, several researchers have 
questioned the applicability of EM due to its high uncertainty and reli
ance on extensive in-situ data (Aladejare and Idris, 2020; Kumar et al., 
2024; Panchanathan et al., 2023). Nevertheless, one of the key advan
tages of EM techniques is their user-friendliness (Ding et al., 2020; Shang 
et al., 2021; Sun et al., 2022; Wu et al., 2010; Zhang et al., 2022a).

Moreover, the application of hyperspectral RS technology has 
accelerated the development of SEM (Wang and Yang, 2019), which is 
based on optical physics (inherent optical properties (IOPs) and 
apparent optical properties (AOPs)) with traditional statistical methods 
(Cao et al., 2023; Chen et al., 2022; Shin et al., 2020; Sagan et al., 2020). 
On the one hand, SEM is primarily applicable to local contexts (for most 
optically complex Case 2 waters) due to their high sensitivity to changes 
in water composition and concentration (Lednicka and Kubacka, 2022). 
On the other hand, compared to other models, these models offer high 
performance with minimal computational costs (Han et al., 2022). 
Additionally, to date, the most widely used RS estimation model is based 
on cutting-edge ML/AI technology (Cao et al., 2022a; Cao et al., 2021; 
Karimi et al., 2023; Zhang et al., 2021b). By combining big data tech
nology and high-performance computing, ML/AI techniques not only 
enhance the ability to develop a relationship between WQ and RS 
reflectance (Xiong et al., 2022) but also significantly reduce time and 
cost while generating accurate results for large datasets (Wagle et al., 
2020). A detailed description of ML/AI and RS-based estimation 
methods for WQ indicators can be found in Chen et al. (2022), Yang 
et al. (2022b) and Wagle et al. (2020).

5. OI-WQ Indicators

5.1. pH

The pH of water plays a critical role in the aquatic environment, as it 
indicates whether the water is acidic or alkaline, ranging from zero (very 
acidic) to fourteen (very alkaline) (EPA, 2001). A detailed description of 
its significance as a WQ indicator and its traditional measurement 
method can be found in the supplementary materials as a continuation 
of Section 5.1. Beside traditional methods, ML/AI is widely utilized for 
water pH prediction in different waterbodies (DeSimone et al., 2020; 
Flecha et al., 2022; Fu et al., 2021; Hu et al., 2019; Son et al., 2021; 
Stackelberg et al., 2021). However, a key limitation of these approaches 
is their reliance on in-situ measurements, which fail to capture the 
spatio-temporal distribution of pH in different waterbodies. To address 
this challenge, researchers have recently integrated RS data with ML/AI 
and statistical techniques to predict and estimate water pH more effec
tively (Abbas et al., 2021; Batur and Maktav, 2019; Jiang et al., 2022; 
Nakano and Watanabe, 2005; Pereira et al., 2020; Sabia et al., 2015).

5.1.1. RS data and bands (wavelength) used for pH retrieval models
To date, several RS data have been utilized for developing pH 

retrieval models. Notably, the Landsat 8 OLI stands out as the most 
widely utilized satellite (Abbas et al., 2021; Cruz-Montes et al., 2023). 
Additionally, medium-resolution satellite (10 m - 250 m) data such as 
the Landsat series (Landsat 5 TM, Landsat 7 ETM+), the Sentinel 2A MSI, 
and the MODIS-Aqua/Terra are commonly utilized for assessing pH in 
different waterbodies (Fig. 5a). Furthermore, high-resolution (30 cm - 5 
m) satellite images from the Gokturk-2 and hyperspectral data are also 
used in pH retrieval models (Batur and Maktav, 2019). Moreover, single 
or multi-parameter-based satellite images, which are the combination of 
in-situ and RS data such as the SMOS-L3, the L4-OSTIA, the ESA- 
OceanFlux-GHG project climatology (Sabia et al., 2015), WOA 
(Nakano and Watanabe, 2005), etc., are used in pH retrieval models. 
Additionally, satellite-derived indicators, such as CHL, DOX, TEMP, 
ALK, pCO2, and MLD, have been used to develop RS-based pH algo
rithms (Batur and Maktav, 2019; Jiang et al., 2022; Nakano and Wata
nabe, 2005; Sabia et al., 2015). In parallel, different indices, such as 

Fig. 8. Performance evaluation results of different pH retrieval models.
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NDVI, AWEInsh, NDWI, and MNDWI, have been utilized to develop pH 
retrieval algorithms (Pereira et al., 2020). According to the existing 
literature, most studies found a positive correlation between pH values 
and green, red, blue, NIR, and VNIR spectral bands (spectral reflectance 
in the range from 480 nm to 2210 nm) for medium-resolution satellites 
(Fig. 6). In contrast, the spectral reflectance ranges between 400 nm and 
800 nm in hyperspectral images utilized for pH retrieval from lake and 
river waterbodies (Table S5).

5.1.2. Performance of various RS data in retrieving pH concentration
Fig. 7a shows the differences between in-situ pH measurements and 

RS retrieval pH values from different studies. It can be seen from the 
Fig. 7a that the Landsat 8 OLI and the Sentinel 2 MSI demonstrated high 
accuracy in RS-based pH retrieval. For instance, the difference between 
the measured and predicted values of the Landsat 8 OLI-based pH 
retrieval model was 0.11 (Cao et al., 2022a; Krishnaraj and Honna
siddaiah, 2022; Pereira et al., 2020). Furthermore, using a recent 
cutting-edge technology known as the image fusion process, researchers 
have achieved high accuracy in pH measurements. For example, Batur 
and Maktav (2019) utilized the Gokturk-2, the Landsat 8 OLI, and the 
Sentinel 2 MSI to retrieve pH from Turkish lakes, where the difference 
between measured and predicted pH was ≈ 0.29. However, it should be 
noted that image fusion is a complex process that requires multi-sensor 
data. Additionally, Qian et al. (2022) obtained high accuracy from the 
Sentinel 2 MSI-based pH retrieval model.

5.1.3. Comparison of various RS models for retrieving pH
Although, in the field of RS-based WQ indicators, it is widely 

acknowledged that water pH values cannot be directly measured from 
RS data (Jiang et al., 2022; Pereira et al., 2020). However, numerous 
studies have explored the efficacy of RS and ML/AI-based models for pH 
estimation (Abbas et al., 2021; Batur and Maktav, 2019; Cao et al., 
2022a; Cao et al., 2022b; Cruz-Montes et al., 2023; Jiang et al., 2022; 
Krishnaraj and Honnasiddaiah, 2022; Mohandas and Brema, 2023; 
Pereira et al., 2020; Qian et al., 2022). Additionally, many studies have 
shown that water pH value can be estimated based on the statistical 
relationship between pH and other WQ indicators, such as CHL, TEMP 
(Nakano and Watanabe, 2005), pCO2, DIC, TA (Sabia et al., 2015) and 
the spectral reflectance of the RS data (Abbas et al., 2021; Cruz-Montes 
et al., 2023; Pereira et al., 2020; Qian et al., 2022). According to existing 
literature, ML/AI and EM models are widely utilized for pH retrieval 
using RS technology. Notably, based on the evaluation metrics (R2 and 
RMSE score), EM have consistently performed better than ML/AI models 
(Fig. 8). It can be seen from Fig. 8 that there was a significant difference 
between the EM and ML/AI retrieval models performance.

In the field of pH estimation using RS technology, Mohandas and 
Brema (2023) developed two different pH retrieval equations using the 
wavelength ranges of 443 nm – 665 nm from the Landsat 8 OLI and the 
Sentinel 2 MSI, respectively. These models demonstrated high perfor
mance, with R2 values ranging from 0.98 to 0.99. Similarly, Abbas et al. 
(2021) utilized the MLR model to retrieve river pH in Iraq across 
different seasons. This study utilized the B4 - B5 (655 nm – 865 nm) 
bands of Landsat 8 OLI as input variables and achieved outstanding 
results during both training (R2 > 0.90) and validation (R2 > 0.85) 
periods. Furthermore, Table 2 summarizes various regression models for 
retrieving pH in different waterbodies using different RS data. Addi
tionally, the study by Pereira et al. (2020) has utilized the cloud-based 
approach for retrieving pH in Brazilian lakes using time series data 
from the Landsat satellites. In this study, the authors employed the GP 
and SMLR models for retrieving water pH by utilizing the Google Earth 
Engine platform in various lakes. Their findings showed that, compared 
to the SMLR (R2 = 0.73), the GP model could be effective (R2 = 0.81) for 
predicting pH in lakes (Table 2).

To the best of the authors’ knowledge, there are no tools or tech
niques for directly retrieving the pH from satellite data. However, recent 
studies have notably employed ML/AI technologies to predict or retrieve Ta
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pH concentrations directly from RS data. For instance, Jiang et al. 
(2022) proposed a framework to retrieve pH concentration from the RS 
data using ML/AI methods. In this study, the authors utilized the RF 
model to predict monthly sea surface pH for the years 2004-2019 using 
the MODIS-Aqua data. Consequently, the study revealed that the RF 
model performed better in both the training and testing phases with a R2 

value of 0.80 (Fig. 8 and Table S5). Moreover, evidence from different 
studies suggest that NN-based models performed better with complex 
nonlinear variables than EM techniques. For example, Cao et al. (2022a)
developed an ANN-based retrieval model based on the correlation of the 
Landsat 8 OLI data and in-situ pH measurements, which showed rela
tively low errors compared to a regression model (relative error ANN 
model = 1.25 % and relative error regression model = 1.58 %). Simi
larly, the BPNN model showed higher effectiveness than the RF model 
with R2 value of 0.90 during training and testing periods (Cao et al., 
2022b). Additionally, to investigate the spatio-temporal distribution of 
pH in the Ganga River basin in India, Krishnaraj and Honnasiddaiah 
(2022) developed two ML-based models (XGB and MLP), where they 
utilized B1–B4 bands (440 nm - 655 nm) of the Landsat 8 OLI, along with 
their ratios, as input variables and validated the model using the in-situ 
measurements. Consequently, both models show high (R2 = 0.72) ac
curacy in the training and testing phase (Fig. 8 and Table S5). Further
more, recent studies have explored alternative approaches, such as 
image fusion combined with a PCA regression model to retrieve pH in 
lakes (Batur and Maktav, 2019). The study showed that, compared to 
other ML/AI models (e.g., MLR, ANN and SVM), the PCA regression 
model offered a reliable alternative for retrieving pH (Table S5).

5.1.4. pH retrieval algorithm(s) optimization processes
Publications focusing on the development of ML/AI models for 

retrieving water pH using RS technology often incorporate various 
hyperparameter optimization techniques to enhance the model perfor
mance in order to achieve the optimal results. Table S6 summarizes the 
optimal hyperparameter utilized across various pH retrieval models in 
the literature. To date, several studies have implemented the hyper
parameters tuning approaches to improve the performance of pH 
retrieval models (Cao et al., 2022a, 2022b; Jiang et al., 2022; Krishnaraj 
and Honnasiddaiah, 2022). For instance, Jiang et al. (2022) have uti
lized 1200 decision trees during training to enhance the RF model’s 
accuracy. Their study reported that the using 1200 trees, a maximum 
tree depth of 20, and 30 iterations could be potentially improved the 
model performance; whereas Krishnaraj and Honnasiddaiah (2022)
adopted a grid search approach to optimize the XGB model for pH 
retrieval. Additionally, the study by Krishnaraj and Honnasiddaiah 
(2022) recommended a learning rate of 0.26, a max depth of trees 4, L1 
regularization term on weights of 0.22, and L2 regularization term on 
weights of 0.00059588 to enhance retrieval accuracy (Table S6). Simi
larly, Cao et al. (2022a; 2022b) have reported that neuron sizes of seven 
and five were effective in improving the performance of the ANN and 
BPNN models, respectively, for pH retrieval.

5.1.5. Limitations

• Most of the ML/AI-based pH retrieval models are focused on inland 
waters and are not suitable for long-term prediction.

• The developed pH retrieval models are not generalized and require 
further parameterizations and algorithm updates based on the 
application domain.

• In large waterbodies, EM techniques failed to achieve good accuracy 
in pH retrieval.

• The data gaps in the RS data reduced the pH retrieval model’s 
accuracy.

• The uncertainty and reliability of the developed retrieval models are 
not specified.

• Another major constraint of the developed retrieval model(s) is that 
their sensitivity has not been specified or validated in terms of geo
spatial resolution.

5.2. Dissolved Oxygen (DOX)

DOX is a fundamental chemical property of aquatic ecosystems. 
Typically, the sources, consumption, and water solubility of oxygen 
determine the DOX concentration (Guo et al., 2021b). A brief descrip
tion of DOX associations with different water catastrophes (e.g., heavy 
rainfall, flooding, typhoons, water temperature) and traditional mea
surement approaches can be found in the supplementary materials as a 
continuation of Section 5.2. In addition to traditional approaches, 
several investigations of DOX have utilized complex computational 
models such as QUAL2E (Palmieri and De Carvalho, 2006), QUAL2K (Ye 
et al., 2013) and QUASAR (Cox, 2003). However, these models have 
failed to provide a generalized approach for all users due to their com
plex nature (Zhang et al., 2020). Similarly, statistical models often 
struggle to accurately predict DOX concentrations (Moghadam et al., 
2021). As a result, ML/AI and RS techniques have been proposed as an 
alternative method for predicting and quantifying DOX in waterbodies 
(Chatziantoniou et al., 2022; Ziyad Sami et al., 2022).

5.2.1. RS data and bands (wavelength) used for DOX retrieval models
According to the literature, many studies have utilized the Landsat 

and Sentinel data to develop DOX retrieval model(s) (Ahmed et al., 
2022; Cruz-Montes et al., 2023; Karaoui et al., 2019; Padilla-Mendoza 
et al., 2023; Peterson et al., 2020; Tanjung et al., 2023; Tian et al., 2023). 
Among these, the Landsat 8 OLI and the Sentinel 2 MSI sensors are most 
widely used for retrieving DOX concentrations (Fig. 5b). Additionally, 
several recent researchers have also explored the use of the MODIS- 
Aqua/Terra data to validate their potential of retrieving DOX concen
trations in different waterbodies (Guo et al., 2022b; Kim et al., 2020; Liu 
et al., 2022b). Moreover, there has been a growing trend in utilizing 
hyperspectral RS data to assess DOX concentrations (Li et al., 2023a; 
Wang et al., 2020; Wang et al., 2021; Yang et al., 2022c). In addition to 
these frequently used satellite products, such as the Gokturk-2 (Batur 
and Maktav, 2019), the CMEMS (Copernicus Marine Environment 
Monitoring Service) ocean products (Chatziantoniou et al., 2022), and 
the VIIRS (Kim et al., 2020) have also been employed to develop DOX 
retrieval algorithms for estimating DOX concentrations in aquatic en
vironments (Fig. 5b). Regarding input variables during model develop
ment, studies have frequently utilized blue, green, red, and VNIR of the 
Sentinel 2 MSI data for rivers (Salas et al., 2022; Yang et al., 2022c), 
while green, red, and VNIR bands are commonly used for lakes, 
respectively (Batur and Maktav, 2019; Dong et al., 2023; Peterson et al., 
2020). Moreover, the B1-B8a (Coastal-VNIR) bands of the Sentinel 2 MSI 
are often employed to estimate DOX in transitional and coastal (TrC) 
waters (Batur and Maktav, 2019; Zhu et al., 2022a) (Fig. 6). Recent 
studies have also identified a positive association between DOX and 
blue, green, red and NIR bands of the Landsat 8 OLI for lakes and rivers 
(Table S7) (Al-Shaibah et al., 2021; Cao et al., 2022a; Mohandas and 
Brema, 2023). Additionally, the study by Karakaya and Evrendilek 
(2011) showed that the B1-B7 (Coastal-SWIR) bands of the Landsat 8 
OLI can be effective for retrieving DOX concentrations in TrC waters. On 
the other hand, in terms of hyperspectral data, most DOX retrieval 
models developed using the spectral reflectance range between 450 nm 
– 810 nm and reported that this particular spectral range could be 
effective for retrieving DOX in aquatic environments, especially for lake 
and river waters (Table S7).

5.2.2. Performance of various RS data in retrieving DOX concentration
For the purposes of understanding the model performance, the study 

has carried out a comparative analysis of various retrieval models using 
different RS data to estimate DOX in rivers, lakes and TrC waters. Fig. 6
presents a summary of the wavelengths of RS data; these are widely 
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Fig. 9. Performance evaluation results of different DOX retrieval models.
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utilized for developing DOX retrieval models. Since DOX is an OI-WQ 
indicator, its concentration is estimated indirectly through various 
OA-WQ indicators. Notably, the most frequently utilized indicators 
include TEMP, CHL, TSS and SDD (Chatziantoniou et al., 2022; Guo 
et al., 2022b; Kim et al., 2020; Liu et al., 2022b). Furthermore, recent 
studies have explored different bands’ arithmetic formulas, such as NDI, 
SI, DI index, etc., to develop models (Salas et al., 2022; Peterson et al., 
2020; Zhu et al., 2022a). However, most studies have primarily relied on 
correlations between different RS bands and DOX or other WQ in
dicators (Al-Shaibah et al., 2021; Cao et al., 2022a; Liu et al., 2022c; 
Quang et al., 2023; Salas et al., 2022). Fig. 7b shows a comparison result 
between in-situ and RS-retrieved DOX concentrations (unit = mg/L). It 
can be seen from the Fig. 7b that the use of the MODIS-Aqua, the 
Sentinel 2 MSI, and the Landsat 8 OLI demonstrated excellent perfor
mance in retrieving DOX concentrations (Fig. 7b). For example, Al- 
Shaibah et al. (2021) reported a minimal variation of ±0.08 mg/L be
tween measured and predicted DOX using the Landsat 8 OLI. Addi
tionally, the study by Mohandas and Brema (2023) showed that 
compared to the Sentinel 2 MSI, the Landsat 8 OLI provided better ac
curacy in order to retrieve DOX. Similarly, a comparative study has been 
conducted between three different hyperspectral satellites (e.g., GF5-01, 
ZY1-02D, and Zhuhai-1), where the Zhuhai-1 performed better than 
other hyperspectral satellites (Li et al., 2023a). Moreover, several 
studies have highlighted the effectiveness of fusion satellite data and 
UAV hyperspectral data in retrieving DOX from different waterbodies 
(Batur and Maktav, 2019; Li et al., 2023a; Peterson et al., 2020). 
Nevertheless, compared to commonly used datasets, the image fusion 
method resulted in a relatively high variation of ±4.0 mg/L between 
measured and retrieved DOX concentrations (Batur and Maktav, 2019). 
Additionally, several studies have reported that the overestimation is a 
common problem in retrieving DOX from RS data-driven approaches 
(Dong et al., 2023; Krishnaraj and Honnasiddaiah, 2022; Sharaf El Din 
et al., 2017).

5.2.3. Comparison of various RS models for retrieving DOX
Recently a series of studies have widely utilized the state-of-the-art 

ML/AI techniques for retrieving DOX concentration using RS data 
across different waterbodies (Shi et al., 2023; Dong et al., 2023; Quang 
et al., 2023; Tian et al., 2023). This rapid advance of ML/AI techniques 
has facilitated accurate measurements of DOX in various waterbodies, 
incorporating complex hydro-environmental issues (Maroufpoor et al., 
2022). However, it is widely acknowledged that retrieving DOX 

concentrations using RS data remains challenging, mainly because DOX 
is an OI-WQ indicator (Chatziantoniou et al., 2022; Salas et al., 2022). 
Despite these challenges, numerous studies have demonstrated that DOX 
concentrations can be successfully retrieved and predicted by inte
grating satellite-derived OI-WQ indicators (e.g., CHL, TEMP, and TSS) 
with ML/AI algorithms (Liu et al., 2022c; Quang et al., 2023; Sharaf El 
Din et al., 2017).

Generally, EM techniques are widely utilized to retrieve DOX con
centrations from satellite data (Sharaf El Din and Zhang, 2017; Karakaya 
and Evrendilek, 2011; Kim et al., 2020). Moreover, regression-based 
algorithms, such as MLR, SMLR, LR, etc., have consistently demon
strated strong performance in retrieving DOX concentrations from 
various waterbodies (Table S7). For instance, Kim et al. (2020) devel
oped the first generalized RS-based DOX retrieval model using the SMLR 
model, which effectively correlated the measured DOX with satellite- 
derived OA-WQ indicators (SST and CHL) to capture long-term DOX 
concentration trends. Similarly, Sharaf El Din and Zhang (2017) devel
oped a DOX retrieval algorithm using the SMLR model and achieved 
high accuracy with R2 value of 0.92 (Fig. 9). The derived equation from 
the regression-based study can be found in Table 3. Consequently, 
numerous studies have employed a similar approach to develop RS- 
based DOX retrieval model (Al-Shaibah et al., 2021; Batur and Mak
tav, 2019; Cruz-Montes et al., 2023; Escoto et al., 2021; Karaoui et al., 
2019; Mohandas and Brema, 2023; Padilla-Mendoza et al., 2023). 
However, it is worth noting that some studies, such as Al-Shaibah et al. 
(2021), Escoto et al. (2021), and Karakaya and Evrendilek (2011), re
ported unsatisfactory results compared to the research conducted by 
Batur and Maktav (2019), Cruz-Montes et al. (2023), Kim et al. (2020), 
Mohandas and Brema (2023), and Padilla-Mendoza et al. (2023) (Fig. 9
and Table S7).

Furthermore, numerous studies have demonstrated the effectiveness 
of ML/AI-based tools and techniques in retrieving DOX concentrations 
(Table S7). For example, Chatziantoniou et al. (2022) utilized satellite- 
derived CHL and SST data coupled with the SVR model to estimate DOX 
concentrations in Greece. Although the proposed model yields an un
satisfactory R2 value of 0.32 (Fig. 9). In contrast, Guo et al. (2021a)
utilized the Landsat series and the MODIS-Aqua/Terra data, also 
coupled with the SVR model for long-term DOX retrieval from lakes, 
achieving a robust model performance with R2 value exceeding 0.90. In 
both studies by Chatziantoniou et al. (2022) and Guo et al. (2021a), the 
SVR model showed excellent performance in retrieving DOX using RS 
data. However, the SVR model failed to demonstrate high performance 

Table 3 
Application of regression-based DOX retrieved models.

RS Data Type Waterbody 
Type

Domain Equation R2 Reference

Sentinel 2 MSI Wetlands India
DOX = 4.7068*

(
B2

B4

)
0.81

Mohandas and Brema (2023)

Landsat 8 OLI DOX = 5.3111*
(

B1

B2

)
0.99

Landsat 8 OLI Lake Colombia
DOX =
[

3.940628.099(B4)
2*0.32123

(
B4

B2

)

*1.08(10)9*(B11) + 32.083
(

B4

B2

)3
]2 0.80 Cruz-Montes et al. (2023)

Sentinel 2 MSI Wetlands Colombia DOX = − 39.2556+ 0.8061/B4 + 4288.3263*(B4*B5)+ 19.4829*(B4/B5) 0.95 Padilla-Mendoza et al. 
(2023)

Landsat 5 TM, 
Landsat 7 ETM+, 
Landsat 8 OLI

Lake China
DOXLandsat− 8OLI = (B5 − B4)*

((
B5

B3

)

*80
)

+ 8.3 

DOXLandsat 5TM or 7ETM+ = (B4 − B3)*
((

B4

B2

)

*80
)

+ 8.3

0.61 Al-Shaibah et al. (2021)

MODIS Aqua and 
VIIRS Sea Korea DOX = − 0.131*SST − 0.132 − SSTm− 1 − 0.066*Chlam− 1 + 12.343 0.80 Kim et al. (2020)

Sentinel 2 MSI Reservoir Morocco DOX = − 0.0167*B8 + 0.0067*B9 + 0.0162*B10 + 0.0162*B11 + 9.577 0.74 Karaoui et al. (2019)

Landsat 8 OLI River Canada DOX = − 4.635
(

B6

B3

)

− 51.305*
(

B1

B2

)

+ 75.409 0.91 Sharaf El Din and Zhang 
(2017)
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in the study by Liu et al. (2022b). On the other hand, the study by Quang 
et al. (2023) found that the RF model performed most accurately (R2 =

0.70) in the DOX concentration retrieval process using the Sentinel 2 
MSI data. Additionally, another ML model, the XGB, has demonstrated 
robust performance for DOX estimation across different waterbodies 
worldwide using the Landsat 8 OLI, the Sentinel 2 MSI, and hyper
spectral data (Krishnaraj and Honnasiddaiah, 2022; Tian et al., 2023; 
Yang et al., 2022c; Zhu et al., 2022a) (Table S7).

Moreover, the concentration of DOX can be estimated based on the 
empirical relationship between satellite band reflectance, synthetic 
band combinations, and in-situ DOX measurements (Table S7). For 
example, Salas et al. (2022) used the Sentinel 2 MSI and ML algorithms 
(RF and SVM models) to map DOX in the Little Miami River, USA. 
Likewise, Sharaf El Din et al. (2017) utilized the BPNN algorithm and the 
Landsat 8 OLI to retrieve river DOX in Canadian rivers, achieving high 
accuracy (Fig. 9). Conversely, Liu et al. (2022c) found that both the 
BPNN and SVM models underperformed compared to the GPR model. 
Additionally, DL/hybrid models have also demonstrated strong perfor
mance in estimating DOX levels across various waterbodies. Specifically, 
models such as V-LSTM (Ahmed et al., 2022), BP-VIP-SPCA (Wang et al., 
2021), DNS-DNNs (Wang et al., 2020), pDNN (Peterson et al., 2020) and 
MSMCF (Li et al., 2023a) have significantly outperformed different 
standalone models in DOX estimation using RS-based approaches (Table 
S7).

5.2.4. DOX algorithm optimization techniques
In order to achieve high performance and reliable predictions, 

several studies have modified the default hyperparameters in the RS- 
based ML/AI models for DOX retrieval (Cao et al., 2022a; Chatzianto
niou et al., 2022; Guo et al., 2021b; Liu et al., 2022a; Liu et al., 2022c; 
Sharaf El Din et al., 2017). For example, grid search techniques have 

been employed by Guo et al. (2021b), Krishnaraj and Honnasiddaiah 
(2022), and Liu et al. (2022b) to identify the optimal hyperparameter 
values. Additionally, the utilization of a radial basis kernel function 
enhances the performance of the RS-based SVR model (Chatziantoniou 
et al., 2022; Guo et al., 2021b). Table S8 presents the hyperparameters 
discussed in different studies. It can be seen from Table S8 that Sharaf El 
Din et al. (2017) developed a BPNN-based DOX model by employing 20 
hidden layers, a learning rate of 0.01, and a sigmoid activation function 
to minimize model error. Similarly, the XGB model utilized a regression 
lambda value of 0.22, a learning rate of 0.23, and a maximum depth of 4 
in order to achieve favourable performance (Table S8). Furthermore, 
Ahmed et al. (2022) and Tian et al. (2023) employed hyperparameter 
tuning techniques to optimize the performance of the V-LSTM and XGB 

Fig. 10. Performance evaluation results of different BOD5 retrieval models.

Table 4 
Application of regression-based BOD5 retrieval models.

RS data 
type

Waterbody 
type

Domain Equation R2 Reference

Sentinel 
2 MSI

Lake India BOD5 =

2.8759*
(

B1

B2

)
0.79

Mohandas 
and Brema 
(2023)

Zhuhai-1 Lake China
BOD5 =

1.0504
(

B12

B13

)

−

0.0028

0.59
Cao et al. 
(2021)

Landsat 
8 OLI

River Canada
BOD5 = 0.568* 
(

B1

B6

)

+ 189.29* 

(B6) − 4.821

0.86
Sharaf El 
Din and 
Zhang 
(2017)
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models, respectively.

5.2.5. Limitations

• Existing DOX retrieval models are developed based on a specific 
region and cannot be generalized to another domain.

• Most of the DOX concentration retrieval models have not focused on 
the spatio-temporal variability.

• Cloud cover had a substantial negative impact on the accuracy of 
DOX retrieval models.

• Researchers did not recommend any optimal RS wavelengths for 
retrieving DOX from waterbodies.

• Over- and underestimation of DOX concentrations was a common 
phenomenon in DOX retrieval models.

5.3. Biochemical oxygen demand (BOD5)

BOD5 refers to the amount of DOX required by microorganisms to 
break down organic matter in water, usually measured at a TEMP of 20 
◦C over a specific period (Li and Zhang, 2020). This method is commonly 
employed to assess the quantity of biodegradable organic pollution 
present in waterbodies (Abyaneh, 2014). A detailed description of the 
significance of BOD5 as a WQ indicator, its impact on aquatic systems, 
and various measurement techniques can be found in the supplementary 
materials as a continuation of Section 5.3. In addition to traditional and 
biosensor methods, ML/AI-based prediction models are commonly used 
for BOD5 estimation (Baki et al., 2019). According to Alsulaili and Refaie 
(2021), measuring BOD5 with a prediction model saves time and enables 
online management. Therefore, a series of recent studies on BOD5 
(Arias-Rodriguez et al., 2023; Cao et al., 2021; Escoto et al., 2021; Sharaf 
El Din et al., 2017; Sharaf El Din and Zhang, 2017; Zhang et al., 2022a; 
Zhang et al., 2021b) explored the effectiveness of RS technology for 
predicting BOD5 in various waterbodies, even though BOD5 is an OI-WQ 
indicator.

5.3.1. RS data and bands (wavelength) used for BOD5 retrieval models
BOD5 is one of the most commonly analysed WQ indicators in the 

planning and management of wastewater treatment plants (Baki et al., 
2019). Typically, RS-based BOD5 retrieval models utilized satellite- 
derived band combination and band reflectance to retrieve BOD5 from 
different waterbodies (Table S9). Among the RS data, the Sentinel 2 MSI 
and the Landsat 8 OLI are most widely utilized to retrieve BOD5 con
centrations (Fig. 5c). Fig. 6 shows a statistical summary of frequently 
utilized RS wavelengths in BOD5 estimation. In literature, different 
studies used different bands to retrieve BOD5 for lakes and rivers; 
however, there are no defined conclusion (Table S9). For example, both 
Mohandas and Brema (2023) and Arias-Rodriguez et al. (2023) have 
utilized the Sentinel 2 MSI and the Landsat 8 OLI data to retrieve BOD5 
from lakes. In these studies, Mohandas and Brema (2023) retrieved 
BOD5 using the spectral reflectance range of 440 nm – 490 nm, whereas 
Arias-Rodriguez et al. (2023) retrieved BOD5 utilizing 560 nm – 865 nm 
(Table S9). Similarly, numerous studies reported a positive correlation 
of BOD5 with the 440 nm – 1610 nm spectral reflectance range of the 
Landsat 8 OLI data in rivers (Sharaf El Din et al., 2017; Sharaf El Din and 
Zhang, 2017; Zhang et al., 2022a). On the other hand, a number of 
studies proposed that the UAV hyperspectral image reflectance range 
from 400 nm to 930 nm can be suitable for retrieving BOD5 from rivers 
(Zhang et al., 2020; Zhang et al., 2021b; Zhang et al., 2023b).

5.3.2. Performance of various RS data in retrieving BOD5 concentration
Several researchers, including Arias-Rodriguez et al. (2023), Escoto 

et al. (2021), Sharaf El Din and Zhang (2017), and Zhang et al. (2022c), 
developed a RS-based BOD5 retrieval model using medium-resolution 
satellites, such as the Landsat 8 OLI and the Sentinel 2 MSI (Fig. 7c). 
Additionally, hyperspectral RS images were employed to develop the 
BOD5 retrieval models (Cao et al., 2021; Zhang et al., 2021b). However, 

hyperspectral RS data performed better than medium-resolution satel
lites in terms of retrieval accuracy (Fig. 7c). For example, the difference 
between measured and predicted BOD5 in hyperspectral and the Landsat 
8 OLI-based retrieval models is ±0.67 mg/L (Zhang et al., 2021b) and ±
1.25 mg/L (Sharaf El Din et al., 2017), respectively (Fig. 7c).

5.3.3. Comparison of various RS models for retrieving BOD5
Data-driven ML/AI approaches are most widely used for BOD5 con

centration prediction and simulation, especially in wastewater treat
ment applications (Baki et al., 2019; Qambar and Al Khalidy, 2023). 
Although BOD5 is an OI-WQ indicator, a number of RS-based approaches 
combined with ML/AI methods were used to retrieve BOD5 concentra
tions from various waterbodies (Table S9). For instance, Sharaf El Din 
et al. (2017) quantified BOD5 concentrations using the BPNN algorithm 
and the Landsat 8 OLI data. In this study, compared to the SVM model, 
the BPNN model achieved higher accuracy (R2 = 0.93). Similarly, the 
Landsat 8 OLI band ratios and the SMLR model were employed to 
determine BOD5 concentrations in rivers, where the coastal aerosol and 
SWIR-2 bands of the Landsat 8 OLI were particularly effective in 
retrieving BOD5 concentrations (Sharaf El Din and Zhang, 2017). The 
performance of different BOD5 retrieval models is shown in Fig. 10, and 
the derived regression equations presented in Table 4. Unlike Sharaf El 
Din and Zhang (2017), the empirical regression model has not per
formed strongly in the study of Escoto et al. (2021). The study by Escoto 
et al. (2021) has developed a BOD5 retrieval model coupling the OLS 
model and the Sentinel 2 MSI in the Pasig River, Philippines. While most 
of the available literature on BOD5 concentration deals with single sat
ellites, Arias-Rodriguez et al. (2023) developed a cloud-based RF model 
for retrieving BOD5 concentrations at a global scale by combining data 
from the Landsat 8 OLI and the Sentinel 2 MSI. Although this model 
didn’t perform well, it is still a first step towards developing the global- 
scale BOD5 retrieval model for lakes using the image fusion process.

Regarding the DL approach for estimating BOD5 concentrations, 
Zhang et al. (2022a) developed a novel DL model driven by spectral 
characteristics to determine monthly six-year BOD5 changes at Dongp
ing Lake in China. Specifically, this study utilized 26 Landsat 8 OLI band 
arithmetic formulas as model inputs, and the ConvLSTM model per
formed notably well, with a R2 of 0.77 (Fig. 10). Similarly, Zhang et al. 
(2021b) developed the HF-DFM model to quantify BOD5 concentrations 
utilizing UAV hyperspectral data. Notably, performance evaluation 
metrics demonstrated that this model outperformed other models, such 
as OLS and BPNN, achieving a R2 value of 0.81 (Fig. 10). Furthermore, 
Zhang et al. (2023b) proposed the novel SMPE-GCN model that in
corporates feature engineering to predict BOD5 concentrations in rivers 
using UAV hyperspectral data. Meanwhile, Fu et al. (2022) demon
strated that the LOOCV-XGB model is an optimal method for estimating 
BOD5 in lakes when combined with multispectral and hyperspectral 
data. Nevertheless, the application of this model is more complex than 
other models.

Moreover, in hyperspectral-based BOD5 retrieval model develop
ment studies, Cao et al. (2021) and Zhang et al. (2020, 2021b) investi
gated the relationship between BOD5 and the spectral reflectance of 
hyperspectral data, where they found a strong positive correlation in the 
wavelength range of 400 nm to 800 nm. Specifically, Cao et al. (2021)
estimated BOD5 concentrations in Chinese lakes using the B12/B13 
(640 nm/500 nm) composite band of Zhuhai-1 hyperspectral data. The 
derived regression equation can be found in Table 4. Similarly, Zhang 
et al. (2020) introduced a hybrid BPNN to estimate BOD5 concentration 
using UAV hyperspectral images. The proposed method showed high 
accuracy (R2 = 0.91) despite the small size of the training data (Fig. 10). 
Moreover, the model demonstrated superior performance compared to 
the hybrid ANN-BPNN model, SEM, and empirical regression methods 
(Table S9).

5.3.4. BOD5 algorithm optimization techniques
Data from several studies showed that, compared to traditional ML/ 

A.M. Sajib et al.                                                                                                                                                                                                                                 Earth-Science Reviews 271 (2025) 105259 

17 



AI models, optimized models performed better in developing BOD5 
retrieval models (Arias-Rodriguez et al., 2023; Sharaf El Din et al., 2017; 
Zhang et al., 2020; Zhang et al., 2021b; Zhang et al., 2023b). Table S10 
shows the hyperparameters discussed in various BOD5 retrieval studies. 
For example, ReLU, Leaky-ReLU and sigmoid activation functions were 
employed to maximize the performance from the RS-based BPNN model 
(Sharaf El Din et al., 2017) and the hybrid BPNN model (Zhang et al., 
2020) for BOD5 concentration retrieval. However, in NN-based models, 
selecting the appropriate number of hidden layers remains a challenge, 
as no constant number of hidden layers is suggested in any studies. For 
instance, Zhang et al. (2023b) set a hidden layer of 3 and 15 input layers 
to develop the SMPE-GCN model, whereas Sharaf El Din et al. (2017)
used 4 hidden layers and 7 input layers to develop the BPNN algorithm. 
Additionally, Arias-Rodriguez et al. (2023) used a grid search technique 
to optimize the model hyperparameters, as this method assesses model 
accuracy at each grid. Moreover, in order to minimize model errors, Fu 
et al. (2022) and Arias-Rodriguez et al. (2023) utilized 5-fold and 10- 
fold cross-validation approaches, respectively (Table S10).

5.3.5. Limitations

• Most of BOD5 retrieval models have been developed for inland 
waters.

• Standalone ML/AI-based retrieval models failed to achieve high ac
curacy of BOD5 concentrations.

• No researcher has suggested any unified RS wavelength for esti
mating BOD5 concentrations.

• Models trained using small datasets often overestimate BOD5 con
centrations in various retrieval models.

5.4. Total phosphorus (TP)

TP is the total amount of orthophosphate, phosphorus monoester, 
phosphorus diester, phosphonate, polyphosphate monoester, poly
phosphate, and pyrophosphate (all P-content) present in a water sample 
(Ma et al., 2017). A detailed description of the importance of TP as a WQ 
indicator, its traditional measurement methods, and its role in eutro
phication can be found in the supplementary materials as a continuation 
of Section 5.4. Generally, traditional TP measurements are time- 
consuming, labour-intensive and cannot illustrate the spatio-temporal 
scenario of TP in different waterbodies (Quinlan et al., 2021; van Wijk 
et al., 2024). With the advancement of RS technology, numerous studies 
have demonstrated that TP can be estimated using RS approaches (Du 
et al., 2018; Vakili and Amanollahi, 2020; Soomets et al., 2022; Yang 
and Jin, 2023; Zhao et al., 2023). Nevertheless, the techniques are quite 
complex since TP does not exhibit spectral features (Xiong et al., 2022). 
As a result, OA-WQ indicators such as SPM, SPOM, TSM, CHL, etc., are 
often used to determine the TP in waterbodies (Xiong et al., 2019).

5.4.1. RS data and bands (wavelength) used for TP retrieval models
A considerable amount of literature has been published on TP con

centration estimation using different sensors (Table S11). Notably, the 
Landsat series, the Sentinel series and hyperspectral RS data are 
frequently used to measure TP concentrations (Fig. 5d). Additionally, 
the MODIS-Aqua/Terra, the SMAP, the GOCI, the IKONOS, and the 
Gaofen-1 were also utilized in the TP retrieval models. Fig. 5d shows the 
frequently used RS data to retrieve TP concentration, whereas Fig. 6
presents a summary of the satellite band spectral reflectance utilized as 
input parameters in ML/AI and RS-based models. As previously noted, 
TP is an OI-WQ indicator. However, several studies have shown that it 
can be retrieved using strongly correlated OA-WQ indicators (Table 
S11). For instance, studies by Du et al. (2018), Gholizadeh and Melesse 
(2017), Lu et al. (2020), Vakili and Amanollahi (2020), Wang et al. 
(2018), and Xiong et al. (2019, 2022) have demonstrated strong corre
lations between TP and WQ indicators, such as SPM, SPIM, SPOM, TSM, 
SST, SS, TSS, and CHL. As a result, band RI, NDI, DI, and individual band 

reflectance, which are employed to calculate SPM, SPIM, SPOM, TSM, 
SSL, SS, TSS, and CHL, can be utilized in the TP retrieval models (Table 
S11).

Moreover, numerous studies have investigated the relationship be
tween TP and different spectral reflectance’s using both statistical and 
ML models (Table S11); however, there is no unified conclusion. For 
example, Karimi et al. (2023) utilized blue and green bands of the 
Landsat 8 OLI, whereas Vakili and Amanollahi (2020) utilized red, green 
and blue bands of the same satellite to retrieve TP concentrations from 
rivers. Additionally, some studies found a correlation between TP in 
rivers and the spectral range of 400 nm – 800 nm hyperspectral RS data 
(Hou et al., 2023; Zhang et al., 2021b; Zhang et al., 2023b). Similarly, 
the blue, green, and red bands of the Landsat series have shown the 
highest potential for estimating TP in lakes and reservoirs (Table S11). 
While most TP retrieval models concentrate on inland waterbodies, only 
a few have tried to estimate TP in coastal waters. For instance, Li et al. 
(2022a) identified a strong correlation between TP and spectral reflec
tance ranges from 440 nm to 655 nm. Similarly, Wang et al. (2018)
found that 443 nm, 490 nm, 555 nm, 660 nm, and 680 nm can be used to 
estimate TP concentrations in Chinese coastal waterbodies.

5.4.2. Performance of various RS data in retrieving TP concentration
In terms of the accuracy of the satellite-derived TP concentrations, 

only a few researchers have published comparison of actual and pre
dicted TP values (Fig. 7d). Fig. 7d shows the difference between in-situ 
and RS-derived TP concentrations in different studies. To date, 
numerous studies have reported notable accuracy in TP concentration 
retrieval models using the Landsat 8 OLI (Table S11). For example, the 
difference between the measured and predicted values of the Landsat 8 
OLI-based TP retrieval model was approximately ±0.004 mg/L (Chen 
and Quan, 2012; Li et al., 2022c). Additionally, IKONOS and hyper
spectral data have shown strong performance in predicting TP concen
trations in lakes and rivers (Liu et al., 2015; Sun et al., 2022). For 
instance, difference between measured and predicted values of the 
IKONOS and hyperspectral data-derived TP concentration was ±0.03 
mg/L and ± 0.017 mg/L, respectively (Fig. 7d). Furthermore, many 
researchers have demonstrated the efficacy of the Sentinel series prod
ucts in the TP retrieval models (Li et al., 2022b; Fu et al., 2022; Padilla- 
Mendoza et al., 2023).

5.4.3. Comparison of various RS models for retrieving TP
Thus far, numerous researchers have developed TP retrieval algo

rithms using RS techniques (Table 11), whereas most studies relied on 
statistical techniques to identify spectral bands that can be used to 
determine TP concentrations (Xiong et al., 2019). However, EM and ML/ 
AI methods have shifted the trend towards more accurate TP concen
tration estimation in waterbodies than other statistical models (Table 
S11). For instance, Du et al. (2018), Gholizadeh and Melesse (2017), Li 
et al. (2017), Lu et al. (2020), Vakili and Amanollahi (2020), Wang et al. 
(2018), and Xiong et al. (2019, 2022) employed an EM-based direct 
derivation method that uses the statistical linear or non-linear connec
tions between the band reflectance and the in-situ P concentration to 
estimate the TP levels. In these studies, regression models were utilized 
to develop a direct retrieval method of TP concentrations from hyper
spectral images, the Landsat 8 OLI and the MODIS-Aqua/Terra satellites, 
respectively. Consequently, these studies reported R2 values ranging 
from 0.58 to 0.79 (Fig. 11).

On the other hand, some studies utilized different satellites to 
determine the most effective RS data for TP retrieval (Table S11). For 
example, Liang et al. (2022) used two distinct satellites, such as the 
Landsat 8 OLI and the Sentinel 2 MSI, coupled with the PLSR model to 
develop a direct TP retrieval model, where the Sentinel 2 MSI (R2 =

0.77) data performed better than the Landsat 8 OLI (R2 = 0.63). Simi
larly, Li et al. (2022a) utilized the BPNN model coupling the Landsat 5 
TM and the Landsat 8 OLI images to find the best algorithms for TP 
retrieval, in which the Landsat 5 TM showed high accuracy with R2 =
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Fig. 11. Performance evaluation results of different TP retrieval models.

A.M. Sajib et al.                                                                                                                                                                                                                                 Earth-Science Reviews 271 (2025) 105259 

19 



0.84 compared to the Landsat 8 OLI data. Moreover, the PLSR and MLR 
models also showed high accuracy in the TP retrieval process in the 
studies by Hajigholizadeh et al. (2021) and Padilla-Mendoza et al. 
(2023). The equations of various direct and indirect retrieval algorithms 
are presented in Table 5, while the performance of different models is 
shown in Fig. 11. Although, in various studies, direct retrieval models 
demonstrated high accuracy, the estimation mechanism is still quite 
complex and challenging to interpret (Xiong et al., 2019). Therefore, 

researchers, such as Guo et al. (2022b), Lu et al. (2020), and Zhang et al. 
(2022b) used EM and various RS data to develop indirect algorithms for 
TP retrieval and achieved satisfactory results (Table S11).

With advances in algorithm development, computing power, and 
data availability, ML/AI models have been widely used for estimating TP 
concentrations using satellite data (Li et al., 2022a,b). Specifically, 
popular ML/AI algorithms, such as the GPR (Zhang et al., 2023a), XGB 
(Xiong et al., 2019; Yang et al., 2022c), BPNN (Guo et al., 2021a; Li 

Table 5 
Application of regression-based TP retrieval models.

RS Data Type Waterbody 
Type

Domain Equation R2 Reference

Sentinel 2 MSI Wetlands Colombia TP = 1.6130 − 0.030× (1/B2) − 12.1973× B6 − 0.2562× (B4/B8) 0.78 Padilla-Mendoza et al. 
(2023)

Landsat 8 OLI
Lake Iran

ln(TP) = 0.8*B2 + 15*B3 − 4.2 0.5

Karimi et al. (2023)Sentinel 2 MSI ln(TP) = 2.5*
(

B3 − (B2 + B4 + B11)

B3 + (B2 + B4 + B11)

)2
+ 3.1*

(
B3 − (B2 + B4 + B11)

B3 + (B2 + B4 + B11)

)

− 2.4 0.61

Sentinel 2 MSI River China TP = 0.542*
(

B4 + B5

B3

)6.693 – Wang et al. (2022)

Landsat 8 OLI

Lake China

TP = 0.0782+ 0.00004*(B1 − B4) − 0.00007*(B1 − B5) − 0.0001(B2 − B3) − 0.00001* 
(B2 − B4) − 0.00009*(B2 − B5)+ 0.00021*(B5 − B6)

0.63

Liang et al. (2022)
Sentinel 2 MSI

TP = 0.0527+ 0.0231*
(

B1 + B8

B1 − B8

)

+ 0.0039*
(

B2 + B8

B2 − B8

)

− 0.0536*
(

B3 + B8

B3 − B8

)

+

0.0149*
(

B4 + B8

B4 − B8

) 0.77

Landsat 5 TM 
Landsat 8 OLI

Lake USA

TPDry (Landsat− 5 TM) = 0.001(TSS) − 0.202(B2/B3) − 2.56(B4)+ 0.468  

TPDry (Landsat− 8 OLI) = 0.001(TSS) − 0.202(B3/B4) − 2.56(B5)+ 0.468
0.92

Hajigholizadeh et al. 
(2021)TPwet (Landsat− 5 TM) = 0.002(TSS) + 0.154(B1/B3)+ 1.66(B4/B2) − 1.23(B4/B3) − 0.232  

TPwet (Landsat− 8OLI) = 0.002(TSS) + 0.154(B2/B4)+ 1.66(B5/B3) − 1.23(B5/B4) − 0.232
0.89

Landsat 8 Dam Namibia TP = − 0.00309 − 8.78139(B2) − 4.99958(B3)+ 15.37113(B4)+ − 0.3916(B5) 0.90 Kapalanga et al. (2021)
Hyperspectral 

data Lake China TP = 0.136
[
Rrs(443) + Rrs(710)

Rrs(575)

]2
− 0.284

[
Rrs(443) + Rrs(710)

Rrs(575)

]

+ 0.234 0.77 Lyu et al. (2022)

Landsat 8 OLI Lake China

TP = − 5.3248*
ln(B4)

B4
+ 0.0885 (Lake − 1) 0.75

Shang et al. (2021)TP = 0.0037*
(

B4 − B3

B5

)2
+ 0.0146*

(
B4 − B3

B5

)

+ 0.0772 (Lake − 2) 0.58

TP = 0.0292*
(

B5

B1

)2
+ 0.0979*

(
B5

B1

)

+ 0.0332 (Lake − 3) 0.71

Landsat 8 OLI River China TP = 0.0577
(

B4 + B6 + B7

3

)2
+ 0.707

(
B4 + B6 + B7

3

)

+ 0.0735 0.87 He et al. (2021b)

Gaofen-1 River China
TP = − 0.531B1 − 0.9224B2 − 5.41B3 + 12.638B4 + 0.4083 0.76

Lu et al. (2020)TP = 0.0126CODMn + 0.00124CHL+ 0.0047SS+ 0.02296 0.91

MODIS-Aqua Lake China TP = 0.2553*
(

B2 − B5

B2 + B5

)

− 0.0084 0.75 Xiong et al. (2019)

Hyperspectral River and 
Lakes

China
TP = 2.203(Rrs798 + Rrs803)2

+ 1.903(Rrs798 + Rrs803) (Type − 1) 0.80

Du et al. (2018)ln(TP) = 0.99ln(Rrs730) + 2.199 (Type − 2) 0.66
TP = 2.514(Rrs827)0.679

(Full data) 0.45
Landsat 5 TM 

Landsat 8 OLI
Reservoir China TP = − 0.023+ 0.0055*e(0.67098*((B1+B3+B4)/B2 )) – Li et al. (2017)

Landsat 5 TM 
Landsat 8 OLI Bay USA

TPwet season− Landsat 5 TM = 0.163+ 0.002*CHL − 0.068*
(

B1

B2

)

− 0.086*
(

B2

B1

)

+ 0.002*
(

B2

B3

)

−

0.001
(

B2

B4

)

TPwet season− Landsat 8 OLI = 0.163+ 0.002*CHL − 0.068*
(

B2

B3

)

− 0.086*
(

B3

B2

)

+ 0.002* 
(

B3

B4

)

− 0.001
(

B3

B5

)

0.69

Gholizadeh and Melesse 
(2017)TPDry season− Landsat 5 TM = − 0.101+ 0.002*CHL+ 0.022*

(
B1

B3

)

+ 0.105*
(

B3

B1

)

+ 0.051* 
(

B4

B1

)

TPDry season− Landsat 8 OLI = − 0.101+ 0.002*CHL+ 0.022*
(

B2

B4

)

+ 0.105*
(

B4

B2

)

+

0.051*
(

B5

B2

)

0.74

Landsat 8 OLI River Korea TP = 0.043+ 0.152*B3 − 0.168*B5 0.57 Lim and Choi (2015)

Landsat 5 TM Lake China TP = 0.042B1 + 0.0162B2 − 0.0001B3 − 0.175 0.65 Song et al. (2006)
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et al., 2022a; Sun et al., 2022; Wang et al., 2018; Xiao et al., 2022), ETR 
(Li et al., 2022b; Qiao et al., 2021), RF (Karimi et al., 2023; Li et al., 
2022b), and ANN (Ding et al., 2020; Vakili and Amanollahi, 2020; 
Zhang et al., 2022c) have been extensively used in TP estimation along 
with various RS data such as the Landsat 5/7/8, the MODIS-Aqua/Terra, 
the Sentinel 2/3, and hyperspectral imagery (Table S11). Among these 
studies, around 75 % focus on retrieving TP from lakes, while 25 % focus 
on rivers, oceans and seas. Additionally, some researchers used hybrid/ 
DL models, such as the SMPE-GCN (Zhang et al., 2023b), DRF (Du et al., 
2018), MDL (Guo et al., 2022b), GA-XGB (Chen et al., 2021; Hu et al., 
2023), LOOCV-GB (Fu et al., 2022), BP-VIP-SPCA (Wang et al., 2021), 
HF-DFM (Zhang et al., 2021b) and ConvLSTM (Zhang et al., 2022a), to 
retrieve TP concentrations from various waterbodies and achieved 
robust model performance (Fig. 11). Furthermore, an interesting study 
by Xiong et al. (2022) compared the conventional models (direct and 
indirect derivation methods) and ML/AI models to understand the effi
cacy of the optimal method for TP prediction in eutrophic lakes. The 
result demonstrated that the ML framework performed better than the 
conventional methods with R2 value of 0.64 (Table S11).

5.4.4. TP algorithm optimization techniques
Similar to other OI-WQ indicators, studies that concentrate on TP 

model development using RS and ML/AI technologies often adopt 
optimization strategies to enhance model performance (Table S12). For 
instance, Cao et al. (2022b), Ding et al. (2020), Vakili and Amanollahi 
(2020), and Wang et al. (2018) employed different hidden layers, acti
vation functions and neuron numbers to achieve high accuracy from the 
NN-based TP retrieval models (Table S12). In these studies, the 
Levenberg-Marquardt algorithm was used in the ANN model to optimize 
the model performance using the Landsat 8 OLI (Vakili and Amanollahi, 
2020) and the IKONOS data (Liu et al., 2015). In addition to optimizing 
standalone models, researchers also apply various optimization tech
niques to hybrid models in order to enhnace their accuracy (Table S12). 
For instance, activation functions, such as ReLU and ELU, were 
employed in the HF-DFM (Zhang et al., 2021b) and the MDL (Guo et al., 
2022b) to achieve high accuracy. Moreover, 10-fold and 5-fold cross- 
validation approaches were applied by Guo et al. (2021a) and Xiong 
et al. (2022) to optimize model performance. Similarly, Qiao et al. 
(2021) set the tree number to 125 and the maximum depth size to 25 to 
enhance the accuracy of the ETR model.

5.4.5. Limitations

• Development of TP retrieval models is limited due to lack of in-situ 
datasets and high cloud cover in various waterbodies.

• Lack of a generalized TP retrieval model for different waterbodies.
• Region-based TP retrieval models failed to achieve high accuracy in 

the testing domain.
• Only a few studies highlighted the sensitivity and uncertainty of the 

developed TP retrieval models.

5.5. Total Nitrogen (TN)

TN is the composition of nitrate‑nitrogen (NO3-N), nitrite‑nitrogen 
(NO2-N), ammonium‑nitrogen (NH4-N), and organic nitrogen found in a 
water sample (LAWA, 2021). Recently, numerous studies (e.g., He et al., 
2008; Li et al., 2017; Liu et al., 2015; Shang et al., 2021; Wang et al., 
2022) have shown the possibilities of combining RS with ML/AI models 
in retrieving TN from various waterbodies as an alternative to tradi
tional methods. A detailed description of the importance of TN as a WQ 
indicator, its impact on the aquatic environment, and traditional mea
surement methods can be found in the supplementary materials as a 
continuation of Section 5.5.

5.5.1. RS data and bands (wavelength) used for TN retrieval models
The RS data utilized in TN retrieval are illustrated in Fig. 5e. It is 

apparent from Fig. 5e that the Landsat 8 OLI satellite is most frequently 
utilized for TN level estimation. Moreover, several studies used other 
Landsat series data, such as the Landsat-5 TM and the Landsat-7 ETM+, 
to obtain long-term TN concentrations from different waterbodies (Guo 
et al., 2022b, 2022c; Zhang et al., 2022a). Similar to the Landsat data, 
the Copernicus RS data (e.g., Sentinel 2 MSI and Sentinel 3 OLCI) are 
also the most utilized RS data for TN retrieval (Table S13). Recently, 
hyperspectral and UAV RS data gained popularity in the TN retrieval 
process due to their spectral advantages (Cao et al., 2022b; Hou et al., 
2023; Sun et al., 2022; Xiao et al., 2022; Zhang et al., 2023b).

Furthermore, RS and ML/AI are data-driven models that rely on 
various types of input parameters to predict and quantify TN levels in 
waterbodies. Particularly, band combinations (one-band, two-band and 
three-band statistics), band reflectance, and spectral indices are used as 
input parameters in the TN retrieval models (Cao et al., 2022b; Chen and 
Quan, 2012; Kapalanga et al., 2021; Sun et al., 2022; Wang et al., 2022). 
Additionally, WQ indicators, such as TUR, SAL, and TP, are also utilized 
by different researchers to develop RS-based TN models (Gholizadeh 
and Melesse, 2017; Wang et al., 2018). Fig. 6 shows an overview of the 
RS wavelength utilized to measure TN concentrations in EM and ML/AI 
models. Notably, several studies have identified a positive correlation 
between TN concentration and spectral reflectance across various 
wavelength ranges (Table S13). For instance, several studies demon
strated that wavelengths from 440 nm to 2200 nm (Landsat 8 OLI) are 
effective for lakes (Chen and Quan, 2012; Shang et al., 2021). Similarly, 
wavelength ranges from 480 nm to 865 nm (Landsat 8 OLI) are suitable 
for reservoir, dam and river waters (Kapalanga et al., 2021; Li et al., 
2017; Lim and Choi, 2015; Liu et al., 2022c; Vakili and Amanollahi, 
2020). Additionally, He et al. (2008) showed that wavelengths from 660 
nm to 2215 nm (Landsat 5 TM) can be used for reservoirs, while Guo 
et al. (2021a) showed that 490 nm to 842 nm of the Sentinel 2 MSI are 
effective for rivers. Furthermore, numerous studies demonstrated that 
high-resolution RS data (e.g., hyperspectral and IKONOS) in the wave
length range of 500 nm to 900 nm can be utilized for TN retrieval in 
lakes and rivers (Liu et al., 2015; Sun et al., 2022).

5.5.2. Performance of various RS data in retrieving TN concentration
Recent evidence from various studies indicates the feasibility of RS- 

based TN retrieval (Table S13); however, there is no specific framework 
to achieve high accuracy from the retrieval models. Fig. 7e shows the 
difference between in-situ and RS-derived TN concentrations across 
various studies. Previously, several researchers have reported high ac
curacy using the Landsat 8 OLI-based models (Lim and Choi, 2015; Li 
et al., 2017; Kapalanga et al., 2021). For example, Liu et al. (2022c)
found a difference of ±0.28 mg/L between the measured and retrieval 
TN values. In contrast, hyperspectral RS data accuracy varies by loca
tion. Particularly, Zhang et al. (2023b) observed that their UAV 
hyperspectral-based retrieval model overestimated TN concentrations, 
whereas Sun et al. (2022) noted their hyperspectral-based retrieval 
model underestimated TN concentrations. Additionally, high- 
resolution-based RS data demonstrated high accuracy in the TN 
retrieval model in urban narrow rivers (Table S13). The difference be
tween measured and predicted data from the IKONOS-based TN 
retrieval model was ±0.02 mg/L (Liu et al., 2015).

5.5.3. Comparison of various RS models for retrieving TN
TN is an OI-WQ indicator, but considerable evidence indicates that 

RS-based models can be utilized to quantify TN levels because it is 
significantly correlated with OA-WQ indicators, such as CHL, SPM, 
CDOM, etc. (Liu et al., 2022c; Soomets et al., 2022; Vakili and Ama
nollahi, 2020). Furthermore, several published studies (Cao et al., 
2022b; Chen and Quan, 2012; Guo et al., 2021a; Sun et al., 2022) have 
explored the relationship between RS reflectance and TN levels. Most of 
the RS-based TN retrieval empirical algorithms (direct and indirect) rely 
on regression-based approaches (Table S13). These include models such 
as simple LR (Chen and Quan, 2012), PCR (Wang et al., 2022), lassoR 
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Fig. 12. Performance evaluation results of different TN retrieval models.
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(Hou et al., 2022), SMLR (Guo et al., 2022c; Li et al., 2017), BR (Yuan 
et al., 2022), MLR (He et al., 2008; Lim and Choi, 2015), and QLR (He 
et al., 2021b; Soomets et al., 2022). The performance of these models is 
shown in Fig. 12, while the derived equations are summarized in 

Table 6. It is apparent from Table 6 that the Landsat 8 OLI-based 
regression model showed high accuracy (R2 = 0.58 to 0.80) in Chi
nese waterbodies compared to the Landsat 5 TM-based regression model 
(R2 = 0.24 to 0.56). Moreover, a study by Liu et al. (2015) used the 

Table 6 
Application of regression-based TN retrieval models.

RS Data Type Waterbody 
Type

Domain Equation R2 Reference

Landsat 8 OLI
Lake Iran

ln(TN) = − 6.3*
(

B5 − B7

B5 + B7

)2
+ 0.9

(
B5 − B7

B5 + B7

)

+ 0.12 0.67

Karimi et al. (2023)
Sentinel 2 MSI ln(TN) = 0.4*

(
B3 − (B5 + B6 + B7)

B3 + (B5 + B6 + B7

)2
+

(
B3 − (B5 + B6 + B7)

B3 + (B5 + B6 + B7)

)

− 0.12 0.84

Sentinel 2 MSI River China TN = 0.066*
(

B6

B8

)11.165 – Wang et al. (2022)

Landsat 8 OLI Dam Namibia TN = 1.047532 − 54.928(B2) − 46.2947(B3)+ 120.8943(B4) − 19.223(B5) 0.79 Kapalanga et al. (2021)

Landsat 8 OLI Lake China
TN = 0.233*(B4 − B1)

2
+ 1.2714*(B4 − B1)+ 1.3499 (Lake − 1) 0.79

Shang et al. (2021)TN = 0.5914*(B5 + B2)+ 1.1997 (Lake − 2) 0.65
TN = − 3.219*(B3 − B7)+ 5.712 (Lake − 3) 0.75

Landsat 8 OLI Reservoir China TN = 0.11608+ 2.716*
(

B4

B2 + B5

)1.26477
0.58 Li et al. (2017)

IKONOS River and lake China TN = − 276.02*(B2)+ 54.56 0.88 Liu et al. (2015)

Landsat 5 TM 
Landsat 8 
OLI

Bay USA

TNdry season− Landsat 8 OLI = − 4.51 − 5.18*(TP) − 0.01*TUR+ 0.68*
(

B2

B3

)

+ 0.64*
(

B3

B4

)

+

1.67*
(

B3

B2

)

+ 3.02*
(

B4

B2

)

TPdry season− Landsat 5 TM = − 4.51 − 5.18*(TP) − 0.01*TUR+ 0.68*
(

B1

B2

)

+ 0.64*
(

B1

B3

)

+

1.67*
(

B2

B1

)

+ 3.02*
(

B3

B1

)

0.69

Gholizadeh and Melesse 
(2017)

TPwet season− Landsat 8 OLI = 1.35+ 25.6*(TP)+ 0.05*CHL − 12.93*B4 + 25.93*B5 − 2.64*
(

B5

B4

)

TPwet season− Landsat 5 TM = 1.35+ 25.6*(TP)+ 0.05*CHL − 12.93*B3 + 25.93*B4 − 2.64*
(

B4

B3

) 0.74

Landsat 8 OLI River Korea TN = 2.89 − 20.054*(B3)+ 15.137*(B4)+ 8.257*(B5) – Lim and Choi (2015)

Landsat 5 TM Lake China TN = − 275.26(B1) − 6.85(B2)+ 224.43(B3)+ 7.86(B4) + 3.48 0.24 Chen and Quan (2012)

Landsat 5 TM Reservoir China ln(TN) = 4.3907 −
177.9298

B6
− 0.1362

(
B6

B7

)

− 1.211
(

B3

B6

)

0.56 He et al. (2008)

Fig. 13. Performance evaluation results of different DIN inversion models.
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Sentinel 2 MSI and the IKONOS satellite-based regression model, where 
the IKONOS showed high accuracy with R2 = 0.88 (Liu et al., 2015). 
Similarly, the Sentinel 3 OLCI-based TN retrieval regression model 
exhibited a high accuracy with R2 value of 0.73, but the RMSE (4.87) 
value is quite high compared to other regression models (Table S13).

It should be acknowledged that in terms of accuracy, the ML/AI- 
based models performed better than the regression models (Fig. 12). 
For instance, NN-based models, such as BPNN (Cao et al., 2022b; He 
et al., 2021a; Xiao et al., 2022), NN (Zhang et al., 2022a) and ANN 
(Vakili and Amanollahi, 2020), performed notably better with a R2 value 
ranging from 0.96 to 0.73. Although Wang et al. (2018) reported a BPNN 
model with a high RMSE (6.13) compared to other BPNN models (Cao 
et al., 2022b; Sun et al., 2022), but it showed high accuracy with a R2 

value of 0.99. In comparison, when evaluating various RS data, the RF 
model exhibited better performance (R2 = 0.62 to 0.88) with the 
Sentinel 2 MSI (Guo et al., 2021a; Li et al., 2022b) than the Landsat 8 OLI 
(R2 = 0.49) for TN estimation. Moreover, the GPR model showed higher 
accuracy (R2 = 0.84) with hyperspectral RS data than the Landsat 8 OLI 
(R2 = 0.63) in TN estimation (Liu et al., 2022c). In addition to stand
alone models, numerous studies have assessed the efficacy of various 
hybrid/DL models in TN retrieval (Table S13). For instance, Guo et al. 
(2022b) utilized the Landsat series data coupled with the MDL model to 
estimate long-term TN in lakes and achieved excellent results compared 
to other DL, ML/AI and EM algorithms (Table S13). Additionally, hybrid 
models, such as the SMPE-GCN (Zhang et al., 2023b), GA-XGB (Chen 
et al., 2021), BPNN-RF (Fu et al., 2022), and LOOCV-GB (Fu et al., 
2022), showed high accuracy than standalone models in the RS-based 
TN retrieval processes (Table S13).

5.5.4. TN algorithm optimization techniques
Several studies have considered ML/AI algorithm parameter tuning 

to enhance accuracy and prediction results (Table S14). Table S14 
provides the hyperparameters discussed in different studies. For 
instance, to optimize the performance of the BPNN model, Cao et al. 
(2022b) and He et al. (2021a) set the hidden layer to 5 and 10 neuron 
nodes, respectively, while setting the input layer to 1221 and 7 nodes, 
respectively. Similarly, a high processing power-based Levenberg-Mar
quardt training algorithm was employed in the ANN model to achieve 
high accuracy in TN estimation models utilizing the Landsat 8 OLI and 
the IKONOS imagery (Liu et al., 2015; Vakili and Amanollahi, 2020). 
Furthermore, in the GPR model, the maximum livelihood kernel func
tion is used as a hyperparameter value because this function performed 
better with medium-sized datasets (Liu et al., 2022c). Additionally, Guo 
et al. (2022b, 2021a) and Li et al. (2022a) showed the effectiveness of 
hyperparameter tuning in model performance (Table S14).

5.5.5. Limitations

• The efficacy of TN retrieval models is constrained by the range of TN 
concentrations used in the model training, leading to high un
certainties when these models are applied to different waterbodies 
with varying TN concentrations.

• Most researchers have not focused on the physical and chemical 
processes of waterbodies, which produced high uncertainties in TN 
retrieval models.

• Existing studies show that publicly accessible RS data such as the 
Landsat, the Sentinel, etc. are not suitable for retrieving TN con
centrations from narrow waterbodies.

• Accuracy of the TN retrieval model is constrained by the limited 
sample size.

• No optimal RS wavelengths have been suggested by any studies in 
order to retrieve TN from different waterbodies.

• Lack of comparative studies of different RS data for retrieving TN 
from different waterbodies.

5.6. Dissolved inorganic nitrogen (DIN)

DIN is comprised of nitrite (NO2), nitrate (NO3) and ammonia (NH3) 
(Louis et al., 2015). However, obtaining continuous long-term DIN 
concentration data is costly (Wu et al., 2022). Furthermore, researchers 
have noted that, due to their complex nature, nutrient-based numerical 
models are also unsuitable for DIN prediction (Liu et al., 2022a). In 
comparison, RS-based technology is becoming an alternative solution 
for monitoring DIN concentration across larger waterbodies (Huang 
et al., 2021). A detailed description of DIN, its impact on aquatic eco
systems, and its measurement approaches can be found in the supple
mentary materials as a continuation of Section 5.6.

5.6.1. RS data and bands (wavelength) used for DIN retrieval models
There are relatively few articles that are involved with DIN con

centration estimation using ML/AI and RS imageries (Table S15). 
Generally, WQ indicators such as TEMP, SAL, and CHL are often used to 
estimate DIN concentrations in combination with RS data (Huang et al., 
2021; Liu et al., 2022a; Wu et al., 2022; Xu et al., 2010; Yu et al., 2016). 
Moreover, most of the current literature on RS-based DIN models in
vestigates long-term trends in DIN concentrations in various water
bodies (Table S15). Therefore, RS data such as the Aqua/Terra (MODIS) 
and the Landsat series, which have continuity in constant satellite 
observation and historical data records, are used for DIN estimation 
(Huang et al., 2021; Liu et al., 2022a; Wu et al., 2022; Xu et al., 2010; Yu 
et al., 2016). Fig. 5f shows different RS data utilized in various studies, 
whereas Fig. 6 presents the wavelength utilized to assess DIN concen
trations in various waterbodies. For instance, many recent studies have 
identified a positive correlation between DIN concentration and the 
MODIS-Aqua/Terra B1-B7 (655 nm – 2130 nm) bands to retrieve time 
series data of DIN from saline waterbodies (Wu et al., 2022; Xu et al., 
2010; Yu et al., 2016). In contrast, coastal, red, green, blue, and NIR 
bands of the Landsat series satellites are frequently utilized to retrieve 
DIN concentrations from coastal waterbodies (Huang et al., 2021; Zhu 
et al., 2022b).

5.6.2. Performance of various RS data in retrieving DIN concentration
A comparison between in-situ and RS-retrieved DIN concentrations 

from different RS data is presented in Fig. 7f. Among the RS data, the 
MODIS-Aqua satellite showed high accuracy in retrieving DIN 

Table 7 
Application of regression-based DIN retrieval models.

RS data type Waterbody 
type

Domain Equation R2 Reference

MODIS-Aqua Level 
2

Sea China

DINEntire Bohai Sea = − 69.562+ 0.008*F20(8, 10)+ 0.044*F20(1, 20) 0.68

Yu et al., 2016

DINBohai− laizhou Bay = − 4.514+ 0.011*F20(8, 10) − 0.159*F20(3, 4)+ 0.008*F20(14,21) −
0.001*F20(12,15)

0.82

DINBLiaodong Bay = 30.960+ 0.0000009199*F20(11,12) 0.99
DINInner sea = 13.532+ 0.160*F20(1, 5) − 0.007*F20(8, 19) 0.79

MODIS (Aqua/ 
Terra) Sea China DINall = 7.86

(
R3 + R4

R3 − R4

)

+ 9.83 0.87 Xu et al. 
(2010)
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concentrations compared to the Landsat 8 OLI. For example, the dif
ference between in-situ measured and retrieved DIN concentrations was 
±0.63 mg/L for the Landsat 8 OLI, and whereas it was only ±0.13 mg/L 
for the MODIS-Aqua/Terra-based DIN retrieval model (Huang et al., 
2021; Wu et al., 2022).

5.6.3. Comparison of various RS models for retrieving DIN
Nutrients, such as DIN, are OI-WQ indicators. In order to estimate 

DIN concentrations using satellite data, many studies have emphasized 
the development of empirical models that correlate DIN value with OI- 
WQ indicators such as CHL, CDOM, and TSS (Yu et al., 2016). Thus far, 
there has been notable progress made in quantifying DIN values in 
waterbodies using RS technology. For instance, combinations of visible 
and near-infrared bands from the MODIS-Aqua/Terra data have been 
analysed with the SMLR model to determine DIN concentrations in 
China (Xu et al., 2010; Yu et al., 2016). The performance of the different 
DIN retrieval models is illustrated in Fig. 13, whereas the DIN retrieval 
model equations are presented in Table 7. The R2 value of these studies 
range between 0.68 and 0.99 (Fig. 13).

Table S15 represents the WQ indicators and RS parameters utilized 
to develop the DIN retrieval models. It can be seen from Table S15 that 
ML/AI models provide a sophisticated solution to develop the DIN 
retrieval models using RS technology. For example, Zhu et al. (2022b)
developed a DIN retrieval model for Yueqing Bay, China, by employing 
the SVM model. In this study, time series of in-situ (e.g., TEMP and DIN) 
and the Landsat 8 OLI satellite data (e.g., B2, B5, and B6 bands) were 
used as input data. Consequently, this model showed high accuracy with 
a R2 value exceeding 0.80 for both the training and validation phases. 
Furthermore, this study examined the spatio-temporal fluctuations and 

key influential factors of DIN concentrations in the bay over the past 
seven years (from 2013 to 2020). Similarly, Liu et al. (2022a) estab
lished a ML approach to reconstruct monthly sea-surface DIN and other 
nutrients in the Chinese sea waters from 2003 to 2019. In this study, a 
large dataset of in-situ and environmental data (including SST, SAL, 
CHL, and Kd490) was utilized to train ML/AI models (SVR, RF, and ANN 
models) in order to select the optimal ML/AI model and accurately 
predict DIN concentrations (Table S15). The study identified that 
changes in SST and SAL influenced the surface DIN concentration 
differently in nearshore and offshore waters. Prior to these studies, 
Huang et al. (2021) and Wu et al. (2022) utilized the ML/AI and RS 
reflectance data to retrieve DIN concentrations for estuary and bay 
waters. Particularly, Huang et al. (2021) employed two ML/AI models 
(BPNN and SVM) to develop DIN retrieval models and track 32-years 
(from 1988 to 2020) of changes in DIN concentration at Shenzhen 
Bay, China. In this study, the BPNN (R2 = 0.90) based model performed 
better than the SVM model (R2 = 0.66). Moreover, DL models also 
performed better in RS-based DIN retrieval. For example, Wu et al. 
(2022) proposed a ST-DBN model that reduces estimation errors above 
40 % compared to other ML/AI models, such as MLR, MPNN, GRNN, 
DBN, ST-MLR, ST-MPNN, ST-GRNN, and ST-DBN.

5.6.4. DIN algorithm optimization techniques
Numerous published studies, including Huang et al. (2021), Liu et al. 

(2022a), and Wu et al., 2022) have explored optimal hyperparameter 
values to retrieve better accuracy from the DIN retrieval models (Table 
S16). For example, Huang et al. (2021) employed the RF algorithm with 
500 trees to develop a Landsat series RS-based DIN retrieval model. 
Moreover, the performance of ML models can be estimated using a cross- 

Fig. 14. Relationship between Sentinel 3 OLCI bands, in-situ and RS-derived WQ indicators.
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validation approach (Sajib et al., 2023). Specifically, Wu et al. (2022)
utilized a 10-fold cross-validation approach to assess the model’s per
formance. Similarly, Liu et al. (2022a) set 4-10 hidden layers and 
Levenberg-Marquardt activation functions to achieve high performance 
from the BPNN-based DIN retrieval model (Table S16).

5.6.5. Limitations

• Lack of performance evaluation of different satellites based on DIN 
retrieval results.

• The accuracy of DIN retrieval models was challenging due to limited 
validation datasets.

• Lack of uncertainty determination of DIN retrieval models.
• Lack of recommended RS wavelengths for determining DIN con

centrations from different waterbodies.
• Lack of attention to the spatio-temporal variability of DIN concen

trations when developing DIN retrieval models.

5.7. Relationship between RS bands and in-situ WQ indicators

In order to develop RS-driven retrieval model(s), it is essential to 
explore the interactions and relationships among WQ indicators with 
different RS bands and their combinations (Diganta et al., 2024; Sajib 
et al., 2024). To the best of the author’s knowledge, most RS-driven 
retrieval model(s) have been developed based on the correlation be
tween specific WQ indicators and various RS bands. For instance, 
numerous studies have employed these approaches to assess OI-WQ 
indicators, such as DOX (Kim et al., 2020; Sharaf El Din and Zhang, 
2017), pH (Mohandas and Brema, 2023; Rahul and Brema, 2023), and 
TN (Chen and Quan, 2012; Isenstein and Park, 2014). However, several 
studies indicate that these models often exhibit poor prediction when 
employed in different regions (Cao et al., 2023; Hajigholizadeh et al., 
2021). Nevertheless, a number of studies successfully utilized similar 
processes along with different band combinations to develop various 
OI-WQ retrieval models and obtained high accuracy (Arias-Rodriguez 
et al., 2023; Du et al., 2022; Jiang et al., 2022; Lyu et al., 2022; Padil
la-Mendoza et al., 2023; Qiao et al., 2021; Soomets et al., 2022).

In this study, we explored the relationship between different multi- 
spectral satellite surface reflectance’s and OI-WQ indicators using 
Pearson correlation. As a case study, we selected Cork Harbour, Ireland, 
for its dynamics and anthropogenic pressures. Details of the utilized in- 
situ and satellite data are available in Table S17 and Table S18. The 
correlation assessment revealed that there is no notable relationship 
between in-situ pH and surface reflectance of the Landsat 8/9 OLI and 
the Sentinel 3 OLCI, except for the Sentinel 2 MSI bands B1 to B8A (r ≥
0.5) (Fig. 14; Fig. S1-S2). For the Sentinel 3 OLCI, in-situ DOX concen
tration showed a strong negative correlation with Band 1 to Band 6 in 
March and July 2022 (Fig. 14a, c) and a strong positive correlation (r ≥
0.5) was shown in August 2022 (Fig. 14d). However, no notable rela
tionship was found in May 2022 (Fig. 14b). Similarly, Bands B3 to B8A 
of the Sentinel 2 MSI showed a strong positive relationship with DOX in 
July 2022 (r ≥ 0.5), whereas s strong negative relationship was found for 
Band B1 to B5 in March 2022 (Fig. S1). Additionally, DOX concentration 
showed a strong positive relationship with the Landsat 8/9 OLI Bands B1 
to B5 in February and March 2022 (Fig. S2).

Furthermore, similar to pH, in-situ BOD5 showed no notable rela
tionship with the Sentinel 3 OLCI and the Sentinel 2 MSI bands (Fig. 14; 
Fig. S1); however, an exception was observed for B1 to B3 bands of the 
Landsat 8/9 OLI (Fig. S2). Several studies utilized the correlation process 
with RS-based surface reflectance with CHL and TSM to estimate nu
trients like TP, TN, and DIN (Gao et al., 2015; Hajigholizadeh et al., 
2021; Lu et al., 2020; Peterson et al., 2020). Moreover, a very strong 
relationship (r ≥ 0.7) with in-situ TN and DIN shows for TSM obtained 
from the Sentinel 3 OLCI (May and August 2020) bands Oa08 to Oa11 
(Fig. 14). Similarly, a strong relationship (r ≥ 0.5) was found for the 
Sentinel 2 MSI and the Landsat 8/9 OLI bands B1 to B3 (See Fig. S1; Fig. 

S2). On the other hand, TP did not show any notable relationship with 
any of the bands. In summary, the relationship between the OI-WQ in
dicator and surface reflectance of RS data varies over time and space.

6. Discussion

Since the development of the RS technique, its application has 
increased tremendously in various fields, including water resource 
management and aquatic environmental monitoring. As a result, 
numerous successive applications of the RS technique exist in the field of 
OA-WQ indicators, such as TSM, CHL, CDOM, etc. (Ansper-Toomsalu 
et al., 2024; Concha et al., 2021; Diganta et al., 2024; Frouin et al., 2019; 
Gleratti et al., 2024; González Vilas et al., 2023; Kutser, 2012; Pahlevan 
et al., 2021a; Vanhellemont and Ruddick, 2018; Zibordi et al., 2022). In 
contrast, there is a lack of successive retrieval models for OI-WQ in
dicators. To address this knowledge gap, the study comprehensively 
reviews the current global trends and research progress in using RS 
technologies for retrieving OI-WQ indicators, such as pH, DOX, BOD5, 
TP, TN, and DIN across various waterbodies. The current research 
analysed 105 research papers based on OI-WQ indicators to identify the 
various RS data utilized in different waterbodies, including rivers, lakes, 
TrC waters, etc. Additionally, the study summarizes various retrieval 
models, their limitations and explores the potential of available tools 
and techniques to improve the existing general monitoring programs.

Typically, in order to maintain “Good” WQ status in all forms of 
waterbodies within the EU regions, it is required to regularly monitor 
eleven WQ indicators (WFD, 2000). Among them, pH is one of the most 
important chemical properties of water. According to NOAA (2020), 
ocean acidification is significantly affecting fish and seaweed habitats. 
Therefore, several studies have focused on developing pH retrieval al
gorithms (Batur and Maktav, 2019; Pereira et al., 2020; Qian et al., 
2022). The shortcomings of these retrieval models are that they are not 
suitable for long-term prediction and require more parameterizations 
and algorithm tuning based on region. Additionally, the uncertainty of 
these retrieval models remains unquantified. In the pH retrieval process, 
compared to ML/AI-based models, EM techniques showed high accuracy 
in small-sized waterbodies (Krishnaraj and Honnasiddaiah, 2022; 
Mohandas and Brema, 2023; Pereira et al., 2020). However, the accu
racy level decreases as the size of the waterbodies increases. Further
more, regarding satellite wavelengths for retrieving pH from different 
waterbodies, no standardized wavelength has been suggested by re
searchers. On the other hand, in terms of RS data performance, high- 
resolution satellite data (e.g., Gokturk-2) and hyperspectral data 
(ground and ship-borne) showed the utmost performance in pH retrieval 
(Batur and Maktav, 2019; Cao et al., 2022a; Rahul and Brema, 2023). 
Nevertheless, it should be noted that in most cases, processing and 
acquiring ground and shipborne hyperspectral data is quite complex and 
costly.

In the case of DOX-based studies, the current review identified a lack 
of consideration of the spatio-temporal variability of DOX in retrieval 
models. As a result, the uncertainty of these retrieval model(s) can vary 
seasonally. To address this issue and mitigate model(s) uncertainties, 
especially seasonal variability of retrieval results, a few studies have 
recommended considering the wavelength range of 400 nm–800 nm for 
hyperspectral RS data (Li et al., 2023d; Yang et al., 2023). However, no 
specific wavelength for multi-spectral images was suggested or proposed 
in any studies. Regarding the retrieval models, the regression-based 
models yielded more favourable outcomes than ML/AI algorithms 
(Batur and Maktav, 2019; Karaoui et al., 2019; Mohandas and Brema, 
2023; Sharaf El Din and Zhang, 2017). Additionally, most DOX retrieval 
models were developed based on regional aspects. As a result, it is quite 
complex and challenging to utilize these models in a global context. 
According to the basic principles of the RS technology, numerous 
physical and anthropogenic factors affect the accuracy of the satellite 
sensors. Therefore, it is assumed that the RS technology may not be 
suitable across the globe due to the imbalance of the physical attributes 
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of the atmosphere (Arias-Rodriguez et al., 2023). Despite these chal
lenges, several recent studies have emphasized that it is essential to 
develop a DOX retrieval model focused on global configurations that can 
be utilized across different geographical contexts (Arias-Rodriguez et al., 
2023; Sajib et al., 2024). Furthermore, it is also important to acknowl
edge that most of the developed DOX algorithms have not been vali
dated across different geographical regions. Therefore, when applying 
these algorithms in other waterbodies, it is necessary to recalibrate the 
model using different datasets specific to the local region.

In the BOD5 retrieval process, DL models showed high accuracy 
compared to other standalone ML/AI models. However, the primary 
drawbacks of DL models include a slow training rate, their complex 
nature, overfitting and underfitting issues (Arias-Rodriguez et al., 2023; 
Zhang et al., 2021b; Zhang et al., 2022a). In the BOD5 retrieval process, 
ground-based and UAV hyperspectral data performed better than multi- 
spectral satellite data. Nevertheless, this type of hyperspectral data re
quires preprocessing with domain expertise, and representative samples 
are essential for effective model training in order to capture spectral 
features accurately (Zhang et al., 2023b). Furthermore, numerous 
studies have hypothesized that it is possible to estimate BOD5 based on 
its relationship with OA-WQ indicators (Fu et al., 2022; Zhang et al., 
2022a; Zhang et al., 2023b). However, no studies have yet assessed 
BOD5 using OA-WQ indicators. Additionally, a notable limitation of RS- 
based BOD5 studies is that most focus on smaller waterbodies while 
large waterbodies, such as estuaries, coastal waters, or seas, remain 
unexplored.

In the case of TP, a number of models have been developed to 
retrieve TP from different waterbodies (Table S11). However, no re
searchers have suggested any ideal wavelength range to retrieve TP 
concentrations. Additionally, several studies hypothesize that there is a 
strong correlation between TP and OA-WQ indicators (Fang et al., 2024; 
Yuan et al., 2022; Zhang et al., 2023b), but there is a lack of studies 
utilized OA-WQ indicators to develop RS-based TP retrieval algorithms. 
A notable drawback for developing TP algorithms for the sea is a limi
tation of in-situ monitoring datasets (Soomets et al., 2022). Moreover, 
most of the ML/AI-based TP models showed high accuracy in retrieving 
TP across different waterbodies (Fig. 11). However, these models often 
fail to provide an optimal result when applied in other waterbodies. 
Moreover, while DL models demonstrated high accuracy in TP retrieval 
models (Fig. 11); they are highly susceptible to overfitting problems due 
to their complex nature.

In RS-based TN retrieval studies, ML/AI and DL algorithms demon
strated higher accuracy than EM techniques (Fig. 12). However, the 
limited size of training and validation datasets limits the use of ML/AI 
and DL models in RS-based TN retrieval. Additionally, the limited 
sample size introduces significant uncertainty into the model results. 
Although most developed models exhibited high accuracy in the local 
domain(s) but requires additional band selection and hyperparameter 
tuning when applied to the global domain(s). Furthermore, the output 
TN inversion models were constrained by the TN concentration range, 
and there were notable uncertainties observed when applying the 
developed model(s) to a global scale. Additionally, frequently used 
satellite data, such as the Landsat series, the Sentinel series, etc., have 
failed to achieve high accuracy for narrow waterbodies (Liu et al., 
2015). Finally, the complexity of the physical and chemical processes of 
waterbodies further contributes to notable uncertainty in estimating TN 
concentration using RS-based retrieval model(s).

For the purposes of DIN retrieval, several researchers utilize various 
band combinations from different RS data (Table S15). However, these 
models are constrained within the seawater. Additionally, a significant 
drawback of the DIN retrieval models is that most of the developed 
models are based on the Chinese marine waters. As a result, these model 
(s) are not suitable for global applications. Furthermore, in the DIN 
retrieval process, retrieval models were developed using continuous 
satellite observation and historical data records (Huang et al., 2023; 
Huang et al., 2021; Xu et al., 2010). Nevertheless, the comparative 

performance of various satellites in terms of DIN retrieval results has not 
been explored in any study.

The above discussion highlights a continuum of uncertainty factors 
in developing RS-based retrieval model(s) for various OI-WQ indicators. 
To enhance the reliability of these retrieval models, future studies 
should consider the holistic approaches that incorporate EM with 
advanced ML/AI techniques. Furthermore, for the purposes of the global 
configuration of these retrieval models, the developed algorithms should 
be tested and validated using completely independent datasets that 
represent the global attributes of WQ. Therefore, to develop global 
model(s), the researchers should not only focus on the tools, techniques 
and RS data but also consider the quality of RS and WQ data in terms of 
the geospatial-temporal resolution of domains. To address the chal
lenges outlined above, future studies could incorporate the following 
considerations.

6.1. Improve the performance of retrieval algorithms in terms of model 
sensitivity and uncertainty

Several factors may contribute to high uncertainty in RS-based 
retrieval models. These factors include the physico-chemical processes 
of waterbodies, the insignificant performance of retrieval models, 
atmospheric-derived errors in RS data, non-continuous datasets, and the 
low temporal resolution of RS data. As a result, various studies have 
observed the occurrence of both over- and underestimation of OI-WQ 
indicator concentrations (Zhang et al., 2022b; Sun et al., 2022). To 
address these challenges, continuous atmospherically corrected RS 
datasets, such as Level 3 and Level 4 data of the Sentinel 3 OLCI and the 
Multi-Sensors (comprised of SeaWIFS, MERIS, MODIS-Aqua/Terra, 
VIIRS-SNPP, JPPS1, Sentinel 3 A OLCI & Sentinel 3B OLCI) from the 
Copernicus Marine Service (https://marine.copernicus.eu/) can be uti
lized in developing models. Among these, Level 3 is a daily atmo
spherically corrected grid-based RS data, whereas Level 4 is monthly 
interpolated atmospherically corrected data. A detailed description of 
these data can be found in Garnesson et al. (2024) and Colella et al. 
(2024). The availability of continuous RS data will not only contribute to 
developing a robust model but also to assessing its reliability with 
different datasets from other regions. Additionally, researchers can 
assess the model sensitivity and uncertainty by using independent 
datasets during model validation. This type of framework may help the 
researchers to develop a novel retrieval algorithm for each OI-WQ in
dicator on a global scale with high sensitivity.

6.2. Develop OI-WQ retrieval indicators model for transitional and 
coastal (TrC) waters

Estuaries or TrC waters are complex ecological systems that act as the 
last filter for the transfer of dissolved and particulate matter between 
freshwater and the open coast (Uddin et al., 2023a). The dynamics of 
WQ indicators in TrC waters exhibit distinct characteristics compared to 
other waterbodies (Uddin et al., 2022a). Additionally, sediment and 
nutrient loadings, such as DIN, TP, and TN, are high in this area (Li et al., 
2022a; Soomets et al., 2022). Consequently, these nutrients are the 
primary contributors to coastal eutrophication, which leads to reduced 
water transparency and hypoxic conditions (Wang et al., 2023b; Yuan 
et al., 2022). In order to conserve the marine environment effectively, it 
is essential to maintain “Good” WQ status in the TrC zone. Since regular 
in-situ WQ monitoring in the TrC zone is challenging due to its complex 
nature, integrating RS and ML/AI techniques could be an alternative 
solution for regular monitoring and sustainable WQ management in this 
region. However, current research findings reveal that only 18 % of 
studies are focused on developing OI-WQ indicator models for the TrC 
waters (Fig. 2). Therefore, more emphasis is required on TrC water
bodies by utilizing RS techniques to ensure good WQ and conserve 
marine species in these waters.
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6.3. Generalized OI-WQ indicator model(s) using ML/AI technique(s)

Based on the literature review conducted in this study, less than 2 % 
of the literature focused on developing RS-based global OI-WQ indicator 
retrieval models (Fig. 2). In order to implement a sustainable WQ 
monitor system globally, generalized retrieval algorithms are required 
for each WQ indicator. Additionally, not every country has the capacity 
to monitor WQ regularly, as it requires significant time, financial re
sources, well-equipped laboratories, and expert individuals. In this case, 
RS and cutting-edge ML/AI techniques offer a sustainable solution, 
enabling long-term, rapid, and online monitoring facilities for WQ 
assessment. Although developing a global algorithm is very challenging 
in the field of RS-based WQ quantification due to the limited in-situ data 
available for validation. Therefore, it is noteworthy that researchers 
from different countries may collaborate in this crucial area to effec
tively optimize this challenge.

6.4. Performance evaluation of the RS data in retrieving OI-WQ 
indicators

Overall, a series of customized bands or band combinations of 
various satellites, including the MODIS-Aqua/Terra, the Envisat, the 
Sentinel 3 OLCI, the GOCI, etc., could be effective for developing the OA- 
WQ indicators (Yang et al., 2022a). However, developing retrieval 
model(s) for OI-WQ indicators requires further investigation. To the best 
of the author’s knowledge, no prior research has investigated the suit
ability of the various RS data, along with their associated tools and 
techniques, for developing OI-WQ indicator model(s) across different 
waterbodies. As a result, this study emphasizes that in order to improve 
model(s) performance, it is necessary to validate the developed model(s) 
in terms of spatio-temporal resolution of the domain for different pub
licly available RS data. Additionally, incorporating image fusion systems 
into the performance evaluation process can be advantageous because it 
can reduce data volume and improve data quality for both human and 
machine perception.

7. Conclusions

The current study has explored the significant advances in the 
development of OI-WQ indicator retrieval models, particularly pH, DOX, 
BOD5, TP, TN, and DIN, using RS technology, while also identifying 
limitations of the models. These OI-WQ indicators are often utilized for 
broad-spectrum WQ monitoring and were selected for this study in 
accordance with EU-WFD regulations. In this review, the study focused 
on identifying the suitable RS data in terms of area of interest (AOI), key 
spectral bands, and various tools and techniques that can be employed in 
the development of OI-WQ indicator retrieval models. The main findings 
of this study are summarized as follows: 

• Among the RS data utilized for OI-WQ indicator assessment, the 
Landsat and the Copernicus missions stand out as particularly suit
able RS data for developing retrieval models. Their open distribution 
policy, multispectral resolution, and broad spatial and temporal 
coverage make them suitable for all researchers. Additionally, 
hyperspectral RS data (ground- and shipborne) are gaining popu
larity in the OI-WQ indicator retrieval field due to their spectral 
resolution and narrowband data acquisition system.

• The research has identified that, generally, spectral reflectance 
indices (e.g., RI, NDI, and SI) derived from the red, green, blue, and 
NIR (400-700 nm) bands are prevalent in the assessment of OI-WQ 
indicators across various satellites. Nevertheless, reaching a 
consensus or unified conclusion in this regard continues to pose a 
challenge.

• Researchers widely utilize EM, SEM, ML/AI, and DL-based models to 
develop RS-based OI-WQ indicator retrieval models. Among them, 
ML/AI-based models received notable attention due to their cost- 

effectiveness and higher accuracy in estimating pH, DOX, BOD5, 
TP, TN, and DIN. Although EM and SEM methods have shown less 
accuracy and high uncertinity, several studies have used these 
models for OI-WQ retrieval. However, most studies overlooked the 
retrieval model(s) uncertainty and sensitivity, which directly affects 
their reliability.

• The estimation of WQ using RS data is susceptible to various inter
fering factors related to the surface and atmosphere, such as gaseous 
absorption, molecular scattering, aerosol scattering, absorption, and 
cloud droplets. These surface-atmosphere effects can be mitigated 
through different AC methods, such as C2RCC, ACOLITE, POLYMER, 
and L2gen. However, the effectiveness of these AC methods varies in 
terms of space and time. On the other hand, high cloud cover is 
another major challenge in the field of optical RS.

This study lays a foundation for future research on OI-WQ indicators 
and serves as a valuable resource for future studies that seek to deepen 
their understanding of the relationship between OI-WQ indicators and 
various wavelengths in different waterbodies in order to improve OI-WQ 
retrieval algorithms. Notably, this study systematically presents all 
relevant RS data, appropriate wavelengths, and algorithms for retrieving 
OI-WQ indicators in diverse waterbodies, including lakes, rivers, reser
voirs, estuaries, seas, and more. Furthermore, the study provides a 
comprehensive analysis that not only emphasizes effectiveness but also 
acknowledges the limitations associated with each approach. Conse
quently, these valuable insights will play a critical role in guiding future 
researchers, organizations, and institutions towards selecting the most 
suitable tools, techniques, and parameters, such as RS wavelengths and 
WQ indicators, while simultaneously considering the inherent con
straints of OI-WQ determination in different aquatic environments. 
Additionally, it is noteworthy that this comprehensive assessment will 
significantly advance typical monitoring programs that utilize RS data. 
Furthermore, this research will contribute to achieving Sustainable 
Development Goal (SDG-6), which further emphasizes the importance of 
preserving “Good” WQ status in all types of waterbodies and improving 
sustainable WQ monitoring systems for a sustainable future.
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