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Abstract  

The Oral Minimal Model (OMM) is an insightful method for assessing 

glucose–insulin regulation during glucose challenges. However, its 

manual, test-by-test implementation limits scalability in large studies. We 

introduce the Automated Oral Minimal Model (AOMM), a tool that 

streamlines and automates the entire OMM workflow while preserving 

analytical fidelity, enabling efficient batch processing of large datasets. 

Built using SAAM II software, AOMM was validated against manually 

extracted results from Sunehag et al. (Obesity, 2008), accurately 

reproducing key parameters such as insulin sensitivity (Si) and beta-cell 

responsivities (Φ) with high precision and substantial time savings. 

AOMM, with its user-friendly interface, empowers broader application of 

minimal modeling in research and clinical studies. 
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Introduction 

 An individual's metabolic health is determined by how effectively their body regulates 

blood glucose; a process primarily managed by insulin. Key metrics such as insulin sensitivity 

(Si) and beta-cell responsivity (Φ) are derived from oral glucose tolerance tests (OGTT) or 

meal tolerance tests using oral minimal model (OMM) analysis. These metrics provide deeper 

insights into how well insulin is functioning and its overall effectiveness in maintaining blood 

glucose levels [1]. 

 OMMs are mechanistic (first-principles) mathematical models designed to analyze the 

glucose-insulin-C-peptide system [1]. The glucose OMM estimates insulin sensitivity (Si), 

which reflects how efficiently the body manages external glucose. The C-peptide OMM 

provides beta-cell metrics (Φ), quantifying the efficiency of insulin secretion in response to 

external glucose [1]. OMMs have proven to be reliable predictors compared to the more labor-

intensive Intravenous Glucose Tolerance Test (IVGTT) [2], and potentially, more informative 

than other oral glucose tolerance indices [3]. 

The minimal model analysis has been in use for over 40 years, with more than 500 

publications [4]. Initially focused on pathophysiological studies in clamps, it later expanded to 

oral tests (Oral Minimal Model, OMM), with or without tracers (e.g., [5]). Its applications now 

encompass nutrition research (e.g., [6]), clinical trial evaluations and staging (e.g., [7–9]), and 

diabetes progression studies (e.g., [10]). In essence, in any metabolic status assessment via a 

meal or OGTT is needed, OMM metrics can be applied [11]. As tolerance tests data collection 

becomes more widespread, the demand from stakeholders for efficient software to support 

OMM analysis has grown substantially. 
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 Unlike other indices that can be calculated using simple spreadsheet computations, 

OMM analysis requires specialized software. Only a few software tools have been validated by 

the community for minimal model analysis [12,13]. Among these, SAAM II gained popularity for 

its proven reliability in analyzing minimal models, including the oral minimal model analysis and 

the user-friendly graphical interface. All users can perform OMM analyses eliminating the need 

for coding [12,14,15]. 

Despite its intuitive interface, lack of coding requirements, and established role in OMM, 

previous versions of SAAM II still required users to manually create two separate files per 

tolerance test—one for glucose and one for C-peptide and run model identification on a one-

by-one basis. This involved entering various parameters, including glucose dose, sampling 

times, plasma concentrations, and patient characteristics such as body weight and age as well 

as tuning modelling variables on an individual basis to optimize the accuracy of the parameters 

estimates. While manageable in small studies, this “manual” setup can become tedious, slow, 

and error-prone in larger cohorts, significantly limiting the scalability and usability of OMM, for 

example, in clinical trials, diabetes progression studies, or prevention research. As a result, 

groups using minimal model analysis stand to benefit significantly from the adoption of an 

automated tool, the Automated Oral Minimal Model (AOMM). 

To support AOMM, we expand on the original manual OMM setup in SAAM II and 

upgrade the software to allow high-throughput parameter extraction. First, a new 

preprocessing tool is introduced to automatically convert spreadsheet data into SAAM II 

format, eliminating the time-consuming steps of manual copying, pasting, and formatting. A key 

addition in preprocessing is the automatic calculation of the glucose first derivative, which is 

required for the OMM analysis. Previously, this step was left to the users who relied on 
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external, non-standard scripts and using various methods—leading to numerical errors when 

computing secretion Φ parameters. Now, the derivative is computed within the preprocessing 

stage using the regularized deconvolution method [16], ensuring consistency and good 

practice with OMM theory [1]. 

Second, the built-in batch processor is made more flexible for AOMM. Earlier versions 

of the SAAM II’s batch processor were designed for strict pharmacokinetic models, where the 

process would stop if any warning or error occurred [14]. For instance, in OMM analysis, 

estimation issues arose when insulin sensitivity (Si) approached zero in subjects with severely 

impaired glucose utilization. Previously, SAAM II would flag Si as unprecise and therefore the 

tests was skipped or halted; now, AOMM handles this as physiologically valid and either 

accepts the result or reassigns it using the GEZI method [17]. Finally, postprocessing is now 

streamlined: AOMM generates a single spreadsheet with results from all subjects, avoiding the 

need to open and extract each file manually. 

In this paper, we show that AOMM gives the same results as the manual method, with 

the same level of accuracy, but much faster, effectively leading to a validation for usage at 

larger scale.  
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Methods 

The streamlined workflow for automated minimal model (AOMM) analysis is illustrated 

in Figure 1. Assuming N tolerance tests (assuming OGTT here) are recorded in a spreadsheet 

(e.g., in .csv or .xls format), the process involves the following steps: 

1. Files Creation (preprocessing): Generate 2xN SAAM II files from the N OGTT 

records. Specifically, N files are used for the glucose AOMM to compute insulin 

sensitivity values (Si), and the other N files are used for the C-peptide AOMM to derive 

beta-cell responsivity values (Φ).  

2. Parameter Extraction (new batch function): Use the SAAM II engine's "batch" 

function to extract OMM parameters (described in detail in [11]). 

3. Result Export (postprocessing): Export the results in a spreadsheet format (e.g., .csv 

or .xls) for further analysis. OMM parameters are automatically tabulated.  

To validate the AOMM implementation, we compared its outcomes with data from 

reference data from Sunehag et al. [5], who conducted OGTT studies on 11 healthy 

participants (Table A1 in Supplementary), collecting 25 samples in the -30–420 minutes range, 

per test (Supplementary S1). These data had been validated using triple-tracer studies and 

anchored on IVGTT, ensuring approximation to “true” insulin sensitivity and insulin secretion . 

Mathematical derivation of insulin sensitivity Si and insulin responsivity (Φ) indices are 

reported in the Supplementary S2. Insulin responsivities include the response to a change in 

glucose concentration Φd (dynamic), the response to a given glucose concentration Φs 

(static), and the total response to the glucose stimulus Φtot, as defined in Equations in 

Supplementary S2 and illustrated in Figure S1. AOMM’s estimate precision, calculated using 
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SAAM II’s asymptotic parameter precisions based on the Fisher Information Matrix method 

[14], was expressed as coefficient of variation (CV) and evaluated against the 25% threshold 

defined by the reference work [5]. To assess agreement between two methods, manual OMM 

vs AOMM, we performed Bland–Altman analyses for each index. For each participant, the 

average and difference between methods were calculated and plotted. Bias (mean difference) 

and 95% limits of agreement (mean ± 1.96 SD) were derived to evaluate systematic and 

random discrepancies.  

Both automated and manual methods used the same modeling conditions, where 

sometimes not fully stated in [5], we tracked down other assumptions, or initial and boundary 

conditions from references listed in [5], i.e., [18,19]. Briefly, basal values were averaged from -

30, -20, -10 and 0 min samples; Population parameters such as glucose effectiveness was set 

to 0.035 min-1, and glucose volume to 2.40 dl/kg [5]; The dynamic rate of insulin action p2 was 

set to Bayesian conditions (prior mean 0.002 with CV=20%); Measurement errors were 

assumed independent, zero-mean normal: 2% for glucose, and 2000 + 0.001×[C-peptide]² for 

C-peptide. AOMM was run and validated using SAAM II v2.4 (Nanomath LLC, Spokane, WA, 

www.nanomath.us/saam2) on a Windows 11 laptop (Alienware M15 R7, Intel i9 14-core CPU, 

32 GB RAM). 
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Results 

AOMM ran successfully on the entire cohort, with no fitting issues and good parameter 

precision. AOMM indices were compared to the manual reference OMM and are summarized 

in Table 1. Insulin sensitivity (Si) and beta-cell responsivity parameters (Φ) showed identical 

estimates, supporting AOMM’s validity. The Bland–Altman analysis across all parameters — 

insulin sensitivity (Si), dynamic response (Φd), static response (Φs), and total response (Φtot) 

— showed zero bias and no dispersion, with all differences as zero. This indicates agreement 

between OMM and AOMM methods in this dataset (Bland–Altman plots in Supplementary 

Figure S2). No fitting errors or warnings were returned. 

In terms of precision, AOMM consistently achieved coefficients of variation (CV) below 

the reference threshold of 25%, for all the parameters (Figure 2). On average, CV was 7.5, 7.5, 

3.8, and 3.3% for Si, Φd, Φs, Φtot, respectively.  

In terms of computational performance, AOMM extracted Si and Φ parameters in a 

fraction of a second on the test machine—approximately 5 Si and 3 Φ estimates per second—

compared to days usually required with manual OMM analysis (personal communication from 

original paper [5]).  

In summary, AOMM produced results identical to the manual method with good 

precision, confirming that automation introduced no errors. All components of the AOMM 

workflow—preprocessing (including automatic derivative computation), upgraded batch 

processing, and postprocessing tabulation—were thus successfully validated. 
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Discussion 

 Despite the use of tools like SAAM II, minimal model analysis has remained time-

consuming due to manual processing such as data cleaning, derivative calculation, and 

parameter extraction. As a result, OMM studies are typically limited to small cohorts (10–30 

participants), creating a major barrier for large-scale or longitudinal studies. In settings like 

Phase 2 trials with 100–300 subjects, manual analysis becomes impractical and could take 

months. The need for automation was clear and driven by stakeholders’ demand. 

In this study, we propose AOMM, the first automated tool that could be used at scale. 

The users will only have to prepare the spreadsheets with their tolerance tests and feed them 

into the AOMM (see in Figure 1) where a table with parameters is returned for analysis. Based 

on the results here, computational time could potentially extract parameters in 100 tests under 

few minutes with good precision. 

SAAM II was chosen for developing AOMM – not only for continuity with its established 

use in manual OMM analysis – but also for its unique advantages: the Bayesian Maximum A 

Posteriori (MAP) estimator, the forcing function method, and a modified extended least 

squares algorithm, all of which support fast and reliable parameter identifiability in OMM 

[14,15,20]. 

However, automation introduces challenges that must be continuously addressed to 

sustain the performance reported here. It can amplify minor issues typically corrected 

manually, such as unit mismatches, outliers, missing data, tolerance tests with fewer 

timepoints, misreported demographics (e.g., implausible BMI), and variability in baseline 

values. A fully automated AOMM system must be capable of handling edge cases, such as 

Si~0, which might occur in large tolerance test datasets. Consequently, future updates may be 

necessary to address additional automation issues that did not emerge during this validation. 
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Moreover, since the reference data used for validation involved young adults without diabetes, 

further optimization might be required when applying AOMM to other populations, such as 

individuals at different stages of diabetes. 

Conclusion 

 The first fully Automated Oral Minimal Model (AOMM) was successfully developed, 

delivering accurate and precise results compared to reference data. AOMM allows minimal 

model parameters to be extracted at scale, in a fraction of the time required by manual 

methods. This advancement could enhance the wider use of OMM in larger studies, where its 

physiological insights can be especially valuable. 
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Figures and Tables 

 

 

Figure 1. The Automated Oral Minimal Model (AOMM) framework enables fast and automated 

extraction of Oral Minimal Model parameters. By organizing tolerance tests (e.g., OGTT) 

datasets into spreadsheets, SAAM II processes the entire cohort in batch mode, automatically 

extracting parameters and compiling them into spreadsheets for further analysis. 
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Figure 2. AOMM estimate precision expressed as coefficient of variation (CV%), compared to 

the 25% threshold defined by the reference OMM study. Symbols indicate CVs for different 

parameters: circles for Si; left-pointing triangles for Φd, right-pointing triangles for Φs, and 

squares for Φtot.  
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Table 1. Comparison of parameter estimates between the manual reference OMM and the automated AOMM. 

Participant 
Insulin Sensitivity Si 
(10-4 dl/kg/min per pmol/l) 

Dynamic Response Φd, 
(10-9) 

Static Response Φs, 

(10-9 min-1) 
Total Response Φtot 

(10-9 min-1) 

 OMM AOMM OMM AOMM OMM AOMM OMM AOMM 

1 19 19 210 210 44 44 44 44 
2 14 14 550 550 20 20 25 25 
3 4.5 4.5 870 870 48 48 64 64 
4 14 14 2300 2300 81 81 140 140 
5 30 30 660 660 16 16 17 17 
6 31 31 2500 2500 29 29 95 95 
7 4.6 4.6 2100 2100 59 59 80 80 
8 7.3 7.3 890 890 38 38 48 48 
9 9.2 9.2 900 900 37 37 51 51 
10 14 14 2500 2500 100 100 220 220 
11 9.3 9.3 2000 2000 100 100 120 120 

Mean 14 14 1400 1400 52 52 82 82 

 


