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Abstract 

Constructed wetlands have long been recognized as a sustainable, effective and economical 

approach for treating acid mine drainage (AMD). The varying components of AMD at different locations 

impose significant site-specific constraints on the construction and maintenance of these wetlands. 

Herein, machine learning (ML) was utilized to predict and analyze multi-metal removal efficiencies, and 

address the complex interactions in constructed wetlands. Five ML models were developed, among 

which the XGBoost model achieved high apparent accuracy (R2 > 0.8) for the removal efficiency of total 

iron, manganese, aluminum and zinc in the main pipeline. While model performance generally declined 

(R2 decreased by approximately 0.2 overall) under leakage-safe out-of-fold (OOF) evaluation and 

forward-chaining time-series tests with naive baselines, tree-based models remained dominant, providing 

conservative estimates. Detailed feature and sensitivity analyses identified operation Days and inflow 

Chemical Oxygen Demand as significant predictors of metal removal efficiency. Furthermore, the 

empirical categories for metal removal, ranked by importance, were inflow parameters in first place, 

followed by time series, and wetland properties in last place. Partial dependence plots revealed certain 

ranges of the significant predictors and systematically illustrated their interactions and contributions to 

the metal removal efficiencies. These findings support near-real-time monitoring and short-horizon 

operational decisions.  

Keywords: Acid mine drainage; Machine learning; Constructed wetland; Metals removal efficiency; 

Feature engineering 



 

  



1. Introduction 

Acid mine drainage (AMD) has been identified as a global environmental challenge (Vasquez et al., 

2022). It arises from mining activities and is distinguished by high metal concentrations and low pH, 

carrying a risk of contaminating both surface and groundwater sources (Daraz et al., 2023; She et al., 

2023; Stumm and Morgan, 2013). AMD is generated when sulfide minerals in mine tailings undergo 

oxidation due to exposure to water and atmospheric oxygen (Rodríguez-Galán et al., 2019; Wang et al., 

2019), releasing dissolved ferrous iron and acidity into the water, consequently mobilizing additional 

metal ions (Naidu et al., 2019; Tabelin et al., 2020). The metal concentrations in site-specific AMD vary 

significantly (Nieva et al., 2018; Schaider et al., 2014). Conventional chemical remediation techniques, 

such as the addition of limestone, sodium hydroxide, or other alkaline substances, have been employed 

to treat existing AMD by increasing its pH and thereby reducing its metal and sulfate concentrations 

(Masindi et al., 2017; Masindi et al., 2018; Masindi et al., 2022). However, the limitations and 

shortcomings of these traditional methods have promoted a growing body of research and practical 

efforts aimed at developing novel, efficient and cost-effective technologies for AMD remediation.  

Constructed Wetlands, as a passive treatment comprises natural and biological processes to 

remediate AMD pollution (Jouini et al., 2020; Villegas-Plazas et al., 2022), offer an alternative to 

conventional chemical methods. The majority of constructed wetlands are largely shallow-water bodies 

(<30 cm in depth) rich in limestone gravel, soil and organic matter (Nguegang et al., 2022). Metal 

removal in these systems primarily occurs through oxidation, adsorption, and co-precipitation processes 

(Batty and Younger, 2002; Sheoran and Sheoran, 2006; Younger et al., 2002). For example, Fe and Mn 

are commonly removed as hydroxides or sulfides, while Al and Zn tend to form complexes with organic 

matter. These mechanisms have been shown to significantly improve water quality by reducing metal 

concentrations and acidity (Chen et al., 2021b; Wang et al., 2021; Wu et al., 2013b). Therefore, 

constructed wetlands have been noted for their cost-effectiveness, long-term stability and overall 



effectiveness in removing contaminants from AMD, while also providing ecological benefits (Irshad et 

al., 2021). However, some studies have revealed that the treatment outcomes in constructed wetlands for 

AMD can be unpredictable, influenced by a variety of factors (Mitsch and Wise, 1998).  

Traditional statistical methods typically establish linear or quadratic relationships between 

individual factors and a target outcome but often fail to capture the complex multivariate interactions 

inherent in such systems. In contrast, machine learning (ML) techniques offer a robust alternative to 

address this complexity by considering a wider array of influential factors and identifying intricate 

relationships, both linear and nonlinear, between features and targets (Palansooriya et al., 2022). Data-

driven ML approaches are effective in dealing with multivariate complexity in environmental 

remediation, relying on extensive data retrieved from literatures. Various ML methods, such as Random 

Forest (RF), Extreme Gradient Boosting (XGB), k-Nearest Neighbors (kNN) and Neural Networks (NN), 

have been utilized to monitor and map contaminants in soil (Wu et al., 2013a) and groundwater (Lopez 

et al., 2021). Furthermore, some studies have used ML models to create risk assessment frameworks for 

groundwater pollution (Sajedi-Hosseini et al., 2018). In the context of constructed wetlands, the complex 

interactions and a lack of systematic datasets, have limited the success of traditional statistical methods 

in predicting metal removal efficiency. These challenges have driven the adoption of ML techniques 

(Hong et al., 2024a; Song et al., 2022; Zou et al., 2023).  

Herein, five ML models, RF, XGB, Support Vector Regression (SVR), kNN and Artificial Neural 

Networks (ANN), were developed to predict metal removal efficiencies in AMD treatment by 

constructed wetlands. Detailed descriptions of these Traditional models, including their advantages and 

disadvantages, can be found in the supplementary material (Text S4: Traditional Machine Learning 

Models). As the quality of the dataset brought into a model profoundly affects the validity of the model 

(Briscoe and Marin, 2020; Kim et al., 2022), it was crucial to ensure the robustness of the initial datasets. 

Therefore, we devoted much effort to the construction of the dataset. The complete dataset was defined 



as dataset A, and based on feature importance and hierarchical clustering, crucial factors were extracted 

as dataset B. Subsequently, further feature engineering was performed considering practical requirements 

(Briscoe and Marin, 2020) and tractability, to obtain a practice-oriented dataset C. The specific tasks are: 

(1) to select the optimal model by evaluating and comparing the models using multiple performance 

metrics; (2) to identify significant predictors by conducting feature importance analysis and Shapley 

additive explanation (SHAP) analysis based on the optimal model and dataset C; (3) to quantify the 

importance of empirical categories through comprehensive analysis; and (4) to reveal the interactional 

impact between significant predictors on predicting multi-metal removal efficiency using partial 

dependence plots. This data-driven ML approach elucidated the complex interactions in constructed 

wetlands, providing a deeper understanding of how varying parameters affect the removal efficiency of 

metals in AMD treatment. 

2. Materials and methods 

2.1 Data collection and data preprocessing  

Data for this study were collected from published papers (from 2006 to 2023) by searching through 

Google Scholar databases and Web of Science using “constructed wetlands” and “acid mine drainage” 

as keywords. Initially, 31 studies were that pertained to the treatment of AMD using constructed wetlands 

and included available monitoring data. However, only a subset of these studies reported comprehensive 

and standardized monitoring data, which are essential for ML model development. To ensure data 

consistency and comparability, the largest subset of studies (five wetlands and the detailed attributes are 

shown in Table S1) that shared common monitoring parameters (e.g., pH, COD, metal concentrations) 

was ultimately selected (Chen et al., 2021b; Singh and Chakraborty, 2020; Singh and Chakraborty, 2021). 

This approach allowed us to construct a robust dataset for model training and analysis, despite the 

inherent variability in data reporting across the literature. 31 parameters from five wetlands were obtained 



from tables or extracted from figures in the papers as dataset variables using Origin 2021 (OriginLab 

Corporation, 2021), resulting in 354 data points for ML exploration. The features in datasets for ML 

models development include 4 categories: wetland properties (length, width, height, plant), inflow water 

parameters (pH, COD, acidity, TDS, EC, SO4
2-, concentrations of Total Fe, Mn, Al, Zn, Ni, Co and Cr), 

outflow water parameters corresponding the inflow ones, and time series (Table S2). The “Day” 

parameter represents the continuous operation time (in days) since the initiation of the constructed 

wetland, with all data aligned to this timeline to ensure consistency across different studies. Given the 

inherent one-to-one relationship between inflow and outflow water parameters, the dataset utilizes the 

notation “i_X” to denote inflow parameters and “o_X” to denote outflow parameters. The metal removal 

efficiency were calculated as a percentage using eq 1. 

 Metal removal efficiency (100%) = 
(𝐶𝑖_𝑋−𝐶𝑜_𝑋)

(𝐶𝑖_𝑋)
 × (100%) (1) 

where Ci_X refers to the inflow concentration of a certain metal, and Co_X is the outflow concentration of 

the same metal. The concentrations are expressed in mg·L−1. 

Metals (Total Fe, Mn, Al, Zn, Ni, Co and Cr) removal efficiencies was considered as the target 

variables. The detailed process of ML exploration associated with the metal removal efficiencies during 

the treatment of AMD using constructed wetlands is illustrated in Figure 1. In the main pipeline, RF was 

identified as the primary imputation method by comparing the performance of different imputation 

methods (RF, Bagging, Histogram Gradient Boosting Regression (HGBR), DecisionTree, 

RegressionTree, AdaBoost, MICE, KNN, MLP, SVR) in a five-fold cross-validation for missing data in 

the initial dataset (Figure S1 and Table S3) (Liu et al., 2022). HGBR (see Text S4 for details) and Hot 

deck imputation (see Text S1 for details) were applied to specific variables. Due to the high proportion 

of missing data (29.7%) (Zhu et al., 2023), outflow TDS was removed after a series of attempts, along 

with its corresponding inflow TDS. After pre-processing, the final dataset contained 29 features, 7 targets 

and 354 data points. Leakage control for imputation, including the leakage-safe out-of-fold (OOF) 



pipeline and sensitivity analysis of the imputation strategies are described in Section 2.3.2 Controls for 

data leakage. 

 

Figure 1. The flowchart provides a detailed overview of the strategy employed for predicting the 

efficiencies of metals removal in AMD treated by constructed wetlands using a machine learning 

framework. During the first step, data were collected from the literature and subjected to data 

preprocessing. Subsequently, feature engineering was applied to extract and optimize features from the 

full dataset, which was then utilized for model development and comparative evaluation. Finally, impact 

factor analysis was conducted based on the optimal model and dataset to investigate the influence of 

different input features on the prediction target variables. Note: FCC: feature correlation and clustering; 

MFI: model-based feature importance; FE: feature engineering; TFe: total Fe. 

2.2 ML-based feature engineering  

Principal component analysis (PCA) was first performed to visualize and assess the diversity and 



distribution of input features across all wetland samples. To simplify the ML model and improve its 

performance, feature filtering was performed based on feature correlation and ML-based feature 

importance analysis (Palansooriya et al., 2022). The correlation analyses between different variables 

were conducted using Pearson correlation coefficient (PCC), and the results were visualized in the form 

of a heatmap (Figure S2). Hierarchical clustering was then implemented, utilizing Pearson rank-order 

correlations to group highly correlated features based on calculated similarities or distances between data 

points (Johnson, 1967). Further, feature importance analysis was conducted with ML-based model to 

determine the significance of each feature in predicting the target variable (Zhu et al., 2019a). By 

integrating results from feature importance and correlation analysis, the most important feature within a 

cluster was selected as input features to simplify the dataset and reduce the complexity of model 

execution.  

To compare the predictive performance of the same model when facing different input datasets, 

three distinct datasets, A, B and C, were delineated based on domain expertise and results of feature 

engineering. Dataset A comprised all features and all target variables from the full dataset. Dataset B was 

determined by the evaluation of feature importance and correlation, resulting in the selection of the six 

most important features and all target variables. Dataset C was crafted with consideration of monitoring 

difficulty and cost, as well as domain expertise (Daraz et al., 2023; Mayes et al., 2009; Pat-Espadas et 

al., 2018; Sheoran and Sheoran, 2006), alongside the assessment of feature importance and correlation, 

leading to the selection of six features (inflow COD: selected based on feature engineering; inflow pH: 

selected based on feature engineering; inflow acidity: selected based on feature engineering and 

monitoring difficulty; inflow EC: selected based on feature engineering and monitoring difficulty; Day: 

a monitoring indicator that is considered by almost all wetlands; Height: considering the importance of 

wetland properties for selection). After finalizing the selection of six key input features for dataset C, 

boxplots were generated to visualize their distributions among different wetlands.  



2.3 Model development and evaluation  

2.3.1 Model development of the main pipeline  

To improve the training process of ML models for rapid convergence, the input features were 

standardized using StandardScaler in Scikit-Learn (version 1.4.1.post1) (Pedregosa et al.) with Python 

3.9.7 to obtain a similar scale and approximate a normal distribution. Following data standardisation, 80% 

of data were randomly extracted from each input dataset and used for model training, while the remaining 

20% were used for testing in the main pipeline (Yin et al., 2024; Zhang et al., 2023b). Based on the 

dataset size, data type and existing research, five widely applied models, namely RF (Zhao et al., 2023), 

Extreme Gradient Boosting (XGB) (Sun et al., 2022), Support Vector Regression (SVR) (Palansooriya 

et al., 2022; Zhang et al., 2020), k-Nearest Neighbors (kNN) (Yin et al., 2024) and Artificial Neural 

Network (ANN) (Zhang et al., 2020), were selected for this study. The method of grid search with cross-

validation was employed during the initial training process to conduct hyperparameter tunning, aiming 

to enhance the accuracy of model learning and generalization (Bergstra and Bengio, 2012; Zhu et al., 

2023; Zhu et al., 2019b). It is implied that each input dataset will be fed into the five models, with each 

model being run once using default parameters and once using optimized parameters for comparative 

analysis. All models were validated using 5-fold cross-validation in the training process to achieve more 

stable predictive performance and mitigate overfitting (Yan et al., 2021).  

The coefficient of determination (R2), root-mean-square error (RMSE) and mean absolute error 

(MAE) were utilized to compare the prediction accuracy and quantify the prediction performance (Hu 

et al., 2022). R2, RMSE and MAE values were calculated by using eqs 2and 3, respectively. 

 R2 =1- 
∑  (𝑦𝑖

𝑎−𝑦𝑖
𝑝

)2𝑛
𝑖=1

∑  (𝑦𝑖
𝑎−𝑦̅𝑖

𝑎)2𝑛
𝑖=1

 (2) 

 RMSE = √
∑  (𝑦𝑖

𝑎−𝑦
𝑖
𝑝

)2𝑛
𝑖=1

𝑛
 (3) 

 MAE =
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖̂|

𝑛
𝑖=1  (4)where 𝑦𝑖

𝑎 is the predicted value of the output, 𝑦𝑖
𝑝

 is the true value 

of the output collected from the literature on experimental research, 𝑦̅𝑖
𝑎 is the mean value of all output 



values, 𝑦𝑖  is the true value of the 𝑖th sample, 𝑦𝑖̂ is the predicted value of the 𝑖th sample, and n is the 

number of data samples in the training or testing datasets.  

2.3.2 Controls for data leakage and generalization stability evaluation 

To eliminate imputation-order leakage (i.e., imputing before splitting), we also conducted a OOF 

evaluation in addition to the main pipeline, where the imputation and all transformers were fitted only 

on training folds within a scikit-learn pipeline, and the OOF predictions were then concatenated for 

evaluation (Lones, 2024). In addition, we further performed sensitivity checks using global, group-wise, 

and group-wise K-fold imputations. To assess temporal leakage and genuine forecasting skill, expanding-

window (forward-chaining) TimeseriesSplit and naive persistence baselines (last-value and short 

moving-average) were employed (details in Text S2) (Megahed et al., 2024; Schroer and Just, 2024). 

Leave-one-wetland-out (LOGO) cross-validation further rigorously assessed the generalization of 

models across different wetland systems. In addition, to evaluate the engineering reliability and 

robustness of the optimal model, a systematic ±10% input perturbation sensitivity analysis was conducted 

on each key input feature in dataset C. 

2.4 Influential factors analysis  

Two types of feature analysis methods were employed to assess the importance of features and the 

correlation with metal removal efficiencies. One analysis method was conducted based on the optimal 

model of dataset C to analyze feature importance. The other analysis method utilized the SHAP method, 

which is widely employed in ML models explanation and feature analysis (Li et al., 2020; Li et al., 2022). 

The marginal effects of each feature on predicted outputs were determined by using ML models and the 

relevance between input features and target variables (such as linear, monotonic, or even more complex 

relationships) (Palansooriya et al., 2022). Two-dimensional (feature interaction) partial dependence plots 

were utilized to visually interpret the optimal model, and systematically expressing the correlation 

between the interaction of two features and the target variables.  



3. Results and discussion 

3.1 Dataset formation and feature engineering  

Across the initial dataset, missing data were identified for 20 variables. Subsequent RF model-based 

imputation successfully addressed a majority of these missing data (Figure 2a, 2b). However, it is 

important to note that imputation may introduce some uncertainty into the dataset. Nevertheless, cross-

validation results demonstrated the robustness of RF model to potential noise, with R² fluctuations 

remaining below 5% across different imputation scenarios. In addition, three variables (outflow COD, 

outflow TDS and outflow acidity) persisted with suboptimal performance in missing data prediction. 

Following a second round of imputation, where the HGBR model was selected for its precise in imputing 

missing data for outflow acidity (Figure 2c). Upon examining the proportion of missing data for the 

remaining two variables (4.5% for outflow COD and 29.7% for outflow TDS), hot-deck imputation was 

applied to outflow COD. The Kolmogorov-Smirnov test(KS test) (Berger and Zhou, 2014; Kini et al., 

2024) was used to compare the cumulative distribution functions (CDFs) (Hong et al., 2024b; Ransom 

et al., 2017) before and after imputation, validating the imputation effectiveness. According to the KS 

test evaluation results for this hot-deck imputation, the KS statistic is 0.02, and the p-value is 0.99. Since 

the p-value is much greater than the commonly used significance level (0.05), indicating that the 

distributions of the data before and after imputation are consistent. This suggests that there is no 

significant difference in distribution between the data imputed using hot-deck imputation and the original 

data, demonstrating the effectiveness of the imputation method in this aspect (Figure 2d). Due to the high 

proportion of missing values for outflow TDS (exceeding 10%), which rendered the variable unsuitable 

for imputation methods and resulted in suboptimal model fitting and prediction, the decision was made 

to remove this variable alongside its corresponding inflow TDS variable. Although TDS is an important 

parameter in water quality monitoring, its exclusion was necessary to avoid introducing significant 

uncertainty into the model.  



 

Figure 2. Results of (a) the RF model for predicting missing data in inflow COD, (b) the RF model for 

predicting missing data in outflow Zn concentrations, (c) the actual values and predictions of outflow 

acidity by the HGBR model, and (d) the comparison of the frequency distribution of outflow COD before 

and after hot-deck imputation. 

 

Following the completion of dataset filling, PCA was performed to visualize the distribution and 

heterogeneity of the input features of the five wetlands (Figure S3) (Wang et al., 2025). The principal 

component analysis results show that samples from the five wetlands form distinct clusters in the 

principal component space. Although some overlap exists, the overall pattern highlights substantial inter-

wetland differences as well as partial shared variability within the dataset. Subsequently, an extensive 

feature analysis ensued, which included the generation of a heatmap illustrating feature correlations 

based on PCC (Figure S2). Hierarchical clustering was performed by calculating the similarity between 

inputs and converting it into distances. Features with distances below a threshold (0.4) were divided into 

one cluster, with closer distances indicating closer relationships in the dendrogram (Figure 3a). Figure 

3b displays the importance of each feature for predicting the target variables, computed using the RF 

model. Inflow COD was discovered to be the most important feature for predicting metal removal 



efficiencies. Figure 3a delineates distinct clusters of features using varied colors, yet it is noteworthy that 

the trio of blue features doesn't constitute a single cluster but rather represents three distinct clusters. To 

refine the dataset and enhance model generalization while reducing computational complexity, a feature 

filtering process which involved integrating the outcomes of hierarchical clustering with feature 

importance assessments was conducted. 

 

Figure 3. Input feature analysis: (a) hierarchical clustering and (b) feature importance from the XGBoost 

model. A total of 354 data points were utilized for model development. In panel (a), clusters are shown 

in different colors and hierarchical levels, derived from the Pearson rank-order correlations depicted in 

Figure S2 using a hierarchical clustering algorithm. A distance threshold of 0.4 was chosen to evaluate 

feature similarity. Features converging into the same cluster at this threshold indicate high similarity, 

simplifying the model by postextraction of important features. Note: the prefix “i_” represents inflow 

parameters, while the prefix “o_” represents outflow parameters. 

 

Figure 3a illustrates that length and inflow COD were clustered together, and according to the 

feature importance ranking (Figure 3b), inflow COD is the more critical feature. Hence, inflow COD was 

selected as the representative feature for this cluster input into the model. Furthermore, the clustering 

identified distinct groupings: the green cluster is characterized by the inflow pH; the red cluster embodies 

outflow EC; the purple cluster represents outflow Mn concentration; the brown cluster encapsulates 

outflow Total Fe (TFe) concentration, and the pink cluster epitomizes outflow SO4
2-. Additionally, due 

to their lower importance, features from the remaining three blue clusters were omitted. Consequently,  

dataset B (inflow COD, inflow pH, outflow EC, outflow Mn concentration, outflow TFe concentration 



and outflow SO4
2-) was constructed for model development.  

Despite the apparent optimality of dataset B from an ML perspective, it is crucial to acknowledge 

that the selection of input features based solely on their correlation and importance may not consistently 

adhere to domain expertise and real-world necessities. The features within dataset B comprise two inflow 

parameters and four outflow parameters, eschewing wetland and time series variables. Upon scrutiny, it 

becomes evident that monitoring the outflow concentrations of TFe and Mn poses considerable 

challenges; therefore, non-metallic parameters emerge as a more pragmatic choice. Similarly, focusing 

solely on either inflow or outflow parameters can streamline monitoring efforts and mitigate associated 

costs. However, from a pragmatic perspective, integrating wetland and time series variables into the 

predictive framework offers superior guidance for developing constructed wetlands and managing AMD. 

Through the integration of particle experiment conditions and feature analysis, inflow COD, inflow pH, 

inflow acidity, inflow EC, wetland Height and operation Day as inputs for dataset C in model 

development. Boxplots of the six selected input features for dataset C (Figure S4) reveal distinct 

distribution patterns among the five wetlands, further supporting the presence of inter-wetland 

heterogeneity in the final modeling dataset. Notably, Wetlands 1 and 2 exhibit much higher influent pH 

and COD values, while Wetlands 3, 4, and 5 have higher influent acidity and electrical conductivity. 

There are also significant differences in wetland height among the groups. These observations highlight 

the necessity of considering wetland-specific input conditions when developing and deploying predictive 

models (Reed et al., 2020). Finally, in assessing the fundamental predictive performance of different 

models, dataset A, encompassing all inputs from the full dataset was utilized. This strategy aimed to 

mitigate the potential reduction in predictive accuracy resulting from the exclusion of valuable features 

by datasets B and C. However, given that the target (metal removal efficiency) is calculated according to 

eq 1, datasets A and B containing outflow variables have the risk of target leakage. Therefore, the model 

performance of these two datasets is only used as a theoretical upper limit reference, and the final model 



evaluation and interpretation are based on dataset C. 

3.2 ML model development and evaluation  

3.2.1 Model development and comparison 

In the main pipeline, five established and widely utilized ML models (RF, XGB, SVR, ANN and 

kNN) were employed. Each model underwent a comparison between two configurations: default 

parameters and optimized parameters from GridSearchCV (Table S4). 5-fold cross-validation was 

employed to enhance the generalization ability of model, reduce the risk of overfitting, and obtain robust 

model, while the test dataset was utilized to test the model performance. Following the model 

development, 30 prediction results were obtained (Table S5 and 6), and model comparison was conducted 

using R2 as the main evaluation metric.  

In accordance with previously published research, both Fe and Mn were identified as two key heavy 

metals requiring particular attention in the treatment of AMD using constructed wetlands (Chen et al., 

2023; Singh and Chakraborty, 2020; Wang et al., 2021). They were commonly encountered in AMD and 

were frequently found to exceed standard concentration levels. During the process of Fe conversion to 

hydroxides, the transformation of aluminum often accompanies (Singh and Chakraborty, 2020). 

Additionally, research indicated that aluminum played a significant role in plant growth and can mitigate 

the toxicity of metals such as Fe, Mn and H+ in acidic soils (Muhammad et al., 2019; Nguegang et al., 

2022). Furthermore, it was found that the concentration of Zn significantly exceeds the standard limits. 

Therefore, this study focuses on predicting the removal efficiency and analyzing the influential factors 

of TFe, Mn, Al and Zn. This aligns with the emphasis on key pollutant metals in relevant published 

studies (Daraz et al., 2023; Singh and Chakraborty, 2020; Wang et al., 2021). 

Figure 4 depicts the apparent predictive performance of three models (RF, XGB and kNN) 

concerning the removal efficiency of four different metals (TFe, Mn, Al and Zn) when faced with varying 

datasets (A, B and C). SVR and ANN were excluded due to their relatively lower apparent predictive 



performance compared to the other tree-based models. The decision to focus on the three better-

performing models was made to emphasize the most effective approaches. The detailed performance 

metrics for SVR and ANN are provided in the supplementary material (Tables S4 and S5) for reference. 

The exceptional analytical capabilities were demonstrated by all three models on dataset A, yielding 

precise apparent predictive results (R2 = 0.94-1.00). This aligns with the diverse and comprehensive 

feature characteristics of dataset A, indicating that the abundant relevant features and sample data can 

effectively predict the removal efficiency. Compared to dataset A, the apparent predictive performance 

of the three models deteriorated when applied to datasets B (R2 = 0.80-1.00) and C (R2 = 0.53-0.99). This 

decline can be attributed to the feature selection process applied to datasets B and C, resulting in the loss 

of some valuable information. In predicting the removal efficiencies of TFe, Mn and Al, datasets B and 

C exhibit similar performances across different models. However, in predicting the removal efficiency 

of Zn, dataset B outperforms dataset C in the RF and kNN models, whereas dataset C performs better in 

the XGB model. Overall, dataset C shows a certain decline in performance compared to dataset B, which 

is consistent with the feature selection criteria applied to these two datasets.  

 

Figure 4. The comparative predictive performance of different models across varied input datasets for 



(a) TFe%, (b) Mn%, (c) Al% and (d) Zn%, assessed using R2 as the evaluation metric. 

 

Compared to the feature selection in dataset B, the slight performance decrease observed in dataset 

C is acceptable because it includes less important but more easily monitored features. Therefore, model 

evaluation based on dataset C identified the optimized model as the XGB model with tuned 

hyperparameters, and the optimal parameters settings were shown in Figure S5. Figure 5 illustrates the 

predictive results and performance of the optimal model XGB based on dataset C for removal efficiencies 

of TFe, Mn, Al and Zn. The prediction results and model evaluation metrics for Ni, Co and Cr are 

presented in Figure S6. The XGB model demonstrated excellent predictive performance on all target 

variables in the training set (R2 >0.93). However, there was a general decline in performance on the test 

set, particularly for the prediction of Zn removal efficiency (R2 = 0.87). Nonetheless, this level of 

accuracy is deemed acceptable.  

 

Figure 5. The predictive performance demonstration of the optimal model XGB for (a) TFe removal 



efficiency, (b) Mn removal efficiency, (c) Al removal efficiency, and (d) Zn removal efficiency based on 

dataset C, evaluated using R2 and RMSE as assessment metrics. RMSE = root-mean-square error. 

 

3.2.2 Controls for data leakage and generalization stability evaluation 

To quantify the optimism that can arise from imputing on the full table before splitting, we re-

evaluated the pipeline using the OOF protocol. Relative to the main pipeline, OOF scores decreased as 

expected (median ΔR2 = -0.163 and mean = -0.198), but the relative model ranking was preserved (Figure 

S7a and b). In particular, RF achieves the highest mean R2 across models and wins 6/7 targets (kNN wins 

Ni once), XGB ranks next, SVR followed, whereas ANN was unstable (Figure S7c and d). This indicates 

that while absolute scores are lower under OOF (as expected), the substantive conclusion that tree-based 

models are best for this task is robust. For completeness, sensitivity analyses including global imputation 

and group-wise imputation (with/without K-fold) were conducted. The results showed a conservative 

downward shift in absolute R² (down 0.064 ~ 0.309 compared to the main pipeline), but do not change 

the qualitative ranking (tree-based models are the strongest). Bland-Altman views indicate penalties 

concentrate on lower-baseline metals, with less detrimental bias at higher performance levels (Figure S8). 

Table S7 lists the best per-metal model under each strategy. With forward-chaining TimeseriesSplit and 

naive baselines, learned models won 5/7 metals for one-step-ahead, but only 3/7 under a ~10-sample 

window, indicating discernible short-term skill but limited long-horizon skill (Table S8 and 9). Moreover, 

as shown in Figure S9, the multi-horizon fold-median error analysis showed similar findings, with 

varying variability for each metal. Together, these results outline the boundaries of generalization ability 

and reinforce that our primary contribution relates to static conditional response estimation and near-

real-time operational support, rather than long-term forecasting.  



Furthermore, to evaluate the representativeness and diversity of the full dataset and its impact on 

model generalizability, LOGO cross-validation was performed using all available input features. The 

LOGO results (Table S10) indicate that the model achieves R2 values above 0.5 for most target metals 

and wetlands, with a few cases of reduced performance reflecting the high heterogeneity among wetlands. 

These findings confirm that, while high predictive accuracy can be achieved in most scenarios, cross-

wetland prediction remains challenging for certain systems, underscoring the importance of dataset 

diversity and realistic model evaluation in environmental applications. To further assess the engineering 

reliability and robustness of the optimal model, we conducted a systematic ±10% perturbation sensitivity 

analysis for each input feature in dataset C (Figure S10). The results demonstrated that model 

performance for most metals removal efficiency was relatively robust to moderate input fluctuations, 

with only a small number of cases (e.g., perturbations to i_COD, i_acidity, or height for certain metals) 

resulting in notable declines in prediction accuracy. This highlights both the practical stability of the 

modeling approach and the critical importance of certain key input features in real-world monitoring 

scenarios.  

Overall, these results suggest that the removal of TFe, Mn, Al and Zn in the treatment of AMD by 

constructed wetlands can be effectively predicted using a basic ML model with well-designed feature 

engineering. The reduction in input features not only lowered the computational and time costs of model 

development but also accelerated the analysis process. By selecting input features that were more relevant 

in practical terms while maintaining a high level of predictive accuracy, this approach holds valuable 

implications for the monitoring and management of constructed wetlands. However, it is also necessary 

to strictly control the risk of data leakage and improve the generalization ability and actual engineering 

reliability of the model.  

3.3 Key influential factor analysis  

To quantitatively decipher the factors influencing the prediction of metal removal efficiencies, we 



employed the SHAP analysis on optimal model to reflect the importance of these factors (Figure 6a, b). 

The comparison of feature importance rankings between the two analysis methods reveals discrepancies. 

While the XGB-based feature importance analysis indicated that inflow COD held the highest 

significance, followed by operation Day, the SHAP explanation method suggested that operation Day 

took precedence, followed by inflow COD. Furthermore, to ensure the robustness of our interpretability 

results, three other mainstream feature importance analyses (permutation importance, feature ablation, 

and LIME) were performed (Altmann et al., 2010; Garreau and Luxburg, 2020; Ribeiro et al., 2016). All 

three methods consistently identified i_COD and day as the most important features, further supporting 

the reliability of our main conclusions (Figure S11). Feature importance and cross-fold stability of 

response shapes were verified under leak safety assessment using XGB in the same OOF protocol. The 

results of permutation importance (top-ranks) showed that day is the most stable driver (Top 1 in 

4/7 targets and Top 3 in 7/7), followed by i_COD (Top 1 in 2/7 and Top 3 in 5/7) and height (Top 1 

in 1/7 and Top 3 in 4/7), i_pH and i_EC are secondary, and i_acidity rarely makes it into the top 

three (Figure S12a and b). Results from PDP cross-fold similarity indicated that the dominant 

drivers (day and i_COD) exhibit stable response shapes across folds (Figure S12c). The results of 

SHAP with permutation agreement confirmed high concordance between two explanation methods 

on the key drivers (Figure S12d). Together, these results show that the main interpretation (day and 

i_COD as primary drivers) is stable under a leakage-safe evaluation, reinforcing our original 

mechanistic reading while providing more conservative performance estimates.  



 

Figure 6. Influential factors analysis based on dataset C and the optimal XGB model: (a) feature 

importance assessment based on XGB model and (b) Shapley additive explanation method.  

 

Afterwards, each feature in dataset C was analyzed separately for its impact on the removal 

efficiency of different metals (Figure S13). Figure S13 illustrates that the removal efficiency of different 

metals decreases with the increase in AMD entering the wetland, and the timing of the decline varies for 

each metal (approximately 85 days for TFe, 65 days for Mn, 40 days for Al, and 100 days for Zn). 

Similarly, the removal efficiency of different metals decreases with the increase in inflow COD. This 

could be attributed to the prioritization of microbial degradation and oxidation reactions of organic 

compounds in wastewater over the oxidation-reduction of metals when the COD in the influent water is 

high (Li et al., 2015; Lu et al., 2016). Elevated levels of COD may also affect the normal absorption and 

transport functions of plant roots, reducing their ability to absorb metals and thus impacting metal 

removal efficiency (Sharma et al., 2021; Zhang et al., 2023a). After a period of time following the entry 

of AMD which exhibits high COD concentration into the constructed wetland, as microbial populations 

increase and organic matter is removed, the COD concentration in the wetland water decreases, and the 

functionality of plants becomes more active, facilitating the oxidation, precipitation and absorption of 

metals, thereby enhancing metal removal efficiency (Chen et al., 2021b).  

However, the threshold points of inflow COD that affect the removal efficiency of the four metals 

are not the same (approximately 300 mg/L for TFe, 650 mg/L for Mn, 60 mg/L for Al and 300 mg/L for 



Zn), indicating that in the operation and management of the wetland, COD regulation needs to be 

comprehensively determined considering the influence of other input features. In general, the COD 

concentration in typical AMD is relatively low (below 50 mg/L). However, three constructed wetlands 

have added domestic wastewater or plant litter leachate to increase the inflow COD, thereby enhancing 

microbial activity and promoting plant growth (Chen et al., 2021b). Additionally, a layer of organic 

substrate is incorporated into the wetland bed to promote plant growth, provide a carbon and nitrogen 

source for microorganisms, and improve heavy metals retention (Choudhary and Sheoran, 2012).  

The influence of inflow pH on the removal efficiency of the four metals also follows a similar trend, 

decreasing with increasing inflow pH (TFe is approximately 2.8 and 5.7, Mn is approximately 2.9 and 4, 

Al is 3, and Zn is approximately 3.5 and 4). The presence of different inflow pH threshold points for the 

removal efficiency of a metal may indicate varying removal mechanisms for that metal. For example, Fe 

may be removed as sulfides or hydroxides (Oldham et al., 2019), or it may be adsorbed and enriched by 

plants and constructed wetland substrates (Singh and Chakraborty, 2020). Changes in pH can also affect 

the microbial diversity in wetlands, thereby influencing the removal of metals (She et al., 2021; Sun et 

al., 2020). In general, as acidic AMD enters the constructed wetland and pH gradually increases over 

time, the removal efficiencies of different metals tend to decrease. This is due to the increased pH causing 

some metal precipitates to become less stable, resulting in re-dissolution or further dissolution (Rodrigues 

et al., 2019). Additionally, plants may experience toxic effects after absorbing significant amounts of 

metals, leading to a decrease in their ability to absorb heavy metals. As pH increases, the solubility of 

some metal ions may decrease, making them more difficult to be captured and removed by adsorbents or 

precipitates in the wetland (Sheoran et al., 2010). The effects of these three features on the removal 

efficiency of the four metals vary, indicating differences in their underlying mechanisms. Therefore, we 

further analyze the interactions between features to understand their combined impact on the removal 

efficiency of different metals.  



 

Figure 7. The interaction between inflow COD and operation Day was analyzed to assess its impact on 

the (a) TFe removal efficiency, (b) Mn removal efficiency, (c) Al removal efficiency, and (d) Zn removal 

efficiency. 

 

The influence of the interactions between these variables (inflow COD and operation Day) on 

predicting the removal efficiencies of TFe, Mn, Al and Zn were depicted in Figure 7 (Ni, Co and Cr in 

Figure S14). For TFe removal, three distinct regions were delineated in Figure 7a by the inflow COD. 

When the inflow COD was below 300 mg/L, the TFe removal efficiency was close to 100%, with little 

impact by the operation Day. In the range of inflow COD between 300-800 mg/L, there was a significant 

decline in TFe removal efficiency, reaching its lowest point (below 20%) between 0-80 days. In the 

region where inflow COD exceeded 800 mg/L, the TFe removal efficiency fluctuated between 20%-80%. 

The results suggest that inflow COD is a more significant factor than operation Day in influencing TFe 

removal efficiency.  

For Mn removal, the interaction between inflow COD and operation Day was more pronounced. 



When inflow COD was below 300 mg/L, Mn removal efficiency was generally observed to be close to -

120%, with a peak noted when inflow COD was below 50 mg/L in the 0-80 days. This specific region 

likely corresponds to the changes in Mn removal efficiency in wetlands where the inflow COD 

concentration was not altered. In the range of inflow COD between 300-800 mg/L, significant declines 

in Mn removal were observed over time, with Mn removal efficiency dropping below -600% after 100 

days. The occurrence of negative Mn removal efficiency has been reported in many previous studies 

(Wang et al., 2021), possibly due to manganese remaining in the Mn2+ state under anaerobic/oxic 

conditions, making it more soluble and difficult to remove (Singh and Chakraborty, 2020). Additionally, 

the formation of insoluble manganese sulfide precipitates is challenging, making it prone to release.  

For Al removal efficiency, the influence of operation Day was more pronounced, with 50 days and 

80 days serving as clear boundaries. From 0 to 50 days, Al removal efficiency was controlled by inflow 

COD, with the highest efficiency observed when inflow COD was below 300 mg/L (exceeding 90%). 

From 50 to 80 days, Al removal efficiency was generally low (less than 20%), but exceeded 80% in areas 

where inflow COD was below 30 mg/L. Similar trends were observed after 80 days, with overall Al 

removal efficiency below 50%, but exceeding 50% in areas where inflow COD was below 30 mg/L. 

Under conditions of low COD concentration, microbial activity might be reduced, leading to a greater 

reliance on physical and chemical processes for Al removal. Simultaneously, high removal efficiency of 

TFe and Mn was noted, with the hydroxides and oxides generated potentially serving as secondary 

adsorbents for co-precipitation with Al, thereby facilitating its removal (Singh and Chakraborty, 2020). 

Furthermore, robust growth and development of plants and root systems were observed, favoring Al 

absorption and transportation by plants, consequently enhancing Al removal (Nguegang et al., 2022).  

The higher removal efficiencies of Mn and Al were both exhibited in a low concentration (below 

50 mg/L) inflow COD region (Figure 7b, c). However, in the low inflow COD region, the Mn removal 

efficiency was optimal, whereas the Al removal efficiency did not reach its peak. This suggests that 



increasing inflow COD is not effective for Mn removal but has a positive effect on Al removal.  

Under conditions where inflow COD was less than 300 mg/L, the influence of operation Day was 

negligible, with Zn removal efficiency remaining close to 100% throughout the entire period, decreasing 

to approximately 80% after 150 days. Conversely, when inflow COD exceeded 300 mg/L, the effect of 

operation Day became more pronounced. In the initial 0-5 day, Zn removal efficiency was lower than 

60% within 75 days, and subsequently increasing to 70%-80% beyond 75 days. Zn exhibits elevated 

mobility and potential bioavailability, predominantly occupying the exchangeable fraction. Moreover, 

Zn demonstrates similar coprecipitation and adsorption/complexation interactions with iron-manganese 

oxides/hydroxides as Al (Chen et al., 2021b). 

3.4 Environmental implications  

This study highlights the potential of ML to offer  more accurate predictions and interpretable 

understanding of multi-metal removal efficiencies and their determinants in constructed wetlands. Within 

the leakage-aware and interpretable ML pipelines, imputation is coupled with learning, models are 

evaluated under out-of-fold and forward-chaining protocols, and explanatory tools are cross-validated, 

thereby turning heterogeneous monitoring records into actionable condition response insights. The 

approach quantifies relative importance and interactions among routinely measured parameters, with 

consistent patterns across methods, thereby informing near-real-time monitoring, anomaly screening, and 

operational tuning. Taken together, the framework underscores the value of embedding advanced data 

analytics in environmental research and provides a basic pipeline for future studies. 

However, due to limitations imposed by both the quality and quantity of published literature, this 

study was subject to certain constraints. Owing to the diversity in research objectives, methodologies and 

experimental settings across different wetlands, the data types for certain input features and prediction 

targets were inconsistent. Such variations could introduce uncertainties into prediction outcomes and 

may not precisely reflect real-world scenarios. To address these challenges, future research should aim 



to utilize a more extensive and standardized database to develop ML models. This database should 

encompass studies with clearly defined scientific objectives and employ similar methodologies under 

standardized experimental conditions. Particularly noteworthy are the absence of certain data types in 

this study, such as quantified parameters of wetland substrates (Singh et al., 2023), quantitative 

parameters of wetland microorganisms (Chen et al., 2020; Chen et al., 2021a) and plants (Shen et al., 

2023), and water quality parameters like dissolved oxygen (DO) (Oldham et al., 2019) and hydraulic 

retention times (HRTs) (Demir et al., 2021). These types of data are crucial for a comprehensive analysis 

of the removal mechanisms of metals in wetlands. Numerous studies indicate that the physical adsorption 

of metals by wetland substrates is a highly significant removal pathway (Lizama-Allende et al., 2021; 

Nguyen et al., 2021). Incorporating more valuable features would enhance accuracy and provide deeper 

insights into the mechanisms and pathways of metal removal in constructed wetlands from a data 

analytics perspective.  

4. Conclusion 

In this study, we utilized ML to predict and analyze multi-metal removal efficiencies in constructed 

wetlands treating AMD and systematically audited risks of data leakage. The main findings are 

summarized as follows: 

·Five ML models were developed in the main pipeline, with the XGBoost model emerging as the 

most effective, achieving high apparent predictive accuracy (R² > 0.8) for the removal efficiency of total 

iron, manganese, aluminum and zinc. 

·Under leakage-safe out-of-fold evaluation, absolute scores decreased as expected (median ΔR2≈

-0.16), yet tree-based models remained the most reliable class, with RF strongest overall. Forward-

chaining, multi-horizon tests against naive baselines showed discernible short-term skill (one-step wins 

in 5/7 metals) but limited long-horizon skill (~10-sample windows win in 3/7), defining a realistic 



boundary of generalizability. 

·Detailed feature analysis using the optimal model combined with fold aggregation and dual 

explainers under the leakage-safe out-of-fold protocol identified operation Days (1-185) and inflow COD 

(6.523-1027.631 mg/L) as stable and dominant predictors of metal removal efficiency.  

·Leave-one-wetland-out validation indicated moderate cross-wetland generalization (R2 > 0.5 in 

most metal–wetland pairs) with a few degraded cases reflecting site heterogeneity. The ±10% input-

perturbation test on dataset C features showed predictions were broadly stable (occasional sensitivity to 

i_COD, i_acidity, height), evidencing engineering robustness. 

·Partial dependence plots elucidated the non-linear relationships between key predictors and metal 

removal efficiencies. This analysis revealed that specific ranges of operation Days and inflow COD levels 

are critical for optimizing the removal processes, providing actionable insights for the monitoring and 

management of constructed wetlands. 

This work establishes a leakage-aware and interpretable machine-learning framework, coupling 

imputation with learning and systematically documenting sensitivity to methodological choices. Overall, 

the framework and findings offer a foundation for further research and practice, while warranting 

attention to temporal-scale bounds, cross-site extrapolation limits, and constraints of data and feature.  
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