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Abstract

Constructed wetlands have long been recognized as a sustainable, effective and economical
approach for treating acid mine drainage (AMD). The varying components of AMD at different locations
impose significant site-specific constraints on the construction and maintenance of these wetlands.
Herein, machine learning (ML) was utilized to predict and analyze multi-metal removal efficiencies, and
address the complex interactions in constructed wetlands. Five ML models were developed, among
which the XGBoost model achieved high apparent accuracy (R > 0.8) for the removal efficiency of total
iron, manganese, aluminum and zinc in the main pipeline. While model performance generally declined
(R? decreased by approximately 0.2 overall) under leakage-safe out-of-fold (OOF) evaluation and
forward-chaining time-series tests with naive baselines, tree-based models remained dominant, providing
conservative estimates. Detailed feature and sensitivity analyses identified operation Days and inflow
Chemical Oxygen Demand as significant predictors of metal removal efficiency. Furthermore, the
empirical categories for metal removal, ranked by importance, were inflow parameters in first place,
followed by time series, and wetland properties in last place. Partial dependence plots revealed certain
ranges of the significant predictors and systematically illustrated their interactions and contributions to
the metal removal efficiencies. These findings support near-real-time monitoring and short-horizon
operational decisions.

Keywords: Acid mine drainage; Machine learning; Constructed wetland; Metals removal efficiency;

Feature engineering
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1. Introduction

Acid mine drainage (AMD) has been identified as a global environmental challenge (Vasquez et al.,

2022). It arises from mining activities and is distinguished by high metal concentrations and low pH,

carrying a risk of contaminating both surface and groundwater sources (Daraz et al., 2023; She et al.,

2023; Stumm and Morgan, 2013). AMD is generated when sulfide minerals in mine tailings undergo

oxidation due to exposure to water and atmospheric oxygen (Rodriguez-Galan et al., 2019; Wang et al.,

2019), releasing dissolved ferrous iron and acidity into the water, consequently mobilizing additional

metal ions (Naidu et al., 2019; Tabelin et al., 2020). The metal concentrations in site-specific AMD vary

significantly (Nieva et al., 2018; Schaider et al., 2014). Conventional chemical remediation techniques,

such as the addition of limestone, sodium hydroxide, or other alkaline substances, have been employed

to treat existing AMD by increasing its pH and thereby reducing its metal and sulfate concentrations

(Masindi et al., 2017; Masindi et al., 2018; Masindi et al., 2022). However, the limitations and

shortcomings of these traditional methods have promoted a growing body of research and practical

efforts aimed at developing novel, efficient and cost-effective technologies for AMD remediation.

Constructed Wetlands, as a passive treatment comprises natural and biological processes to

remediate AMD pollution (Jouini et al., 2020; Villegas-Plazas et al., 2022), offer an alternative to

conventional chemical methods. The majority of constructed wetlands are largely shallow-water bodies

(<30 cm in depth) rich in limestone gravel, soil and organic matter (Nguegang et al., 2022). Metal

removal in these systems primarily occurs through oxidation, adsorption, and co-precipitation processes

(Batty and Younger, 2002; Sheoran and Sheoran, 2006; Younger et al., 2002). For example, Fe and Mn

are commonly removed as hydroxides or sulfides, while Al and Zn tend to form complexes with organic

matter. These mechanisms have been shown to significantly improve water quality by reducing metal

concentrations and acidity (Chen et al., 2021b; Wang et al., 2021; Wu et al., 2013b). Therefore,

constructed wetlands have been noted for their cost-effectiveness, long-term stability and overall



effectiveness in removing contaminants from AMD, while also providing ecological benefits (Irshad et

al., 2021). However, some studies have revealed that the treatment outcomes in constructed wetlands for

AMD can be unpredictable, influenced by a variety of factors (Mitsch and Wise, 1998).

Traditional statistical methods typically establish linear or quadratic relationships between

individual factors and a target outcome but often fail to capture the complex multivariate interactions

inherent in such systems. In contrast, machine learning (ML) techniques offer a robust alternative to

address this complexity by considering a wider array of influential factors and identifying intricate

relationships, both linear and nonlinear, between features and targets (Palansooriya et al., 2022). Data-

driven ML approaches are effective in dealing with multivariate complexity in environmental

remediation, relying on extensive data retrieved from literatures. Various ML methods, such as Random

Forest (RF), Extreme Gradient Boosting (XGB), k-Nearest Neighbors (kNN) and Neural Networks (NN),

have been utilized to monitor and map contaminants in soil (Wu et al., 2013a) and groundwater (Lopez

et al., 2021). Furthermore, some studies have used ML models to create risk assessment frameworks for

groundwater pollution (Sajedi-Hosseini et al., 2018). In the context of constructed wetlands, the complex

interactions and a lack of systematic datasets, have limited the success of traditional statistical methods

in predicting metal removal efficiency. These challenges have driven the adoption of ML techniques

(Hong et al., 2024a; Song et al., 2022; Zou et al., 2023).

Herein, five ML models, RF, XGB, Support Vector Regression (SVR), kNN and Artificial Neural

Networks (ANN), were developed to predict metal removal efficiencies in AMD treatment by

constructed wetlands. Detailed descriptions of these Traditional models, including their advantages and

disadvantages, can be found in the supplementary material (Text S4: Traditional Machine Learning

Models). As the quality of the dataset brought into a model profoundly affects the validity of the model

(Briscoe and Marin, 2020; Kim et al., 2022), it was crucial to ensure the robustness of the initial datasets.

Therefore, we devoted much effort to the construction of the dataset. The complete dataset was defined



as dataset A, and based on feature importance and hierarchical clustering, crucial factors were extracted

as dataset B. Subsequently, further feature engineering was performed considering practical requirements

(Briscoe and Marin, 2020) and tractability, to obtain a practice-oriented dataset C. The specific tasks are:

(1) to select the optimal model by evaluating and comparing the models using multiple performance

metrics; (2) to identify significant predictors by conducting feature importance analysis and Shapley

additive explanation (SHAP) analysis based on the optimal model and dataset C; (3) to quantify the

importance of empirical categories through comprehensive analysis; and (4) to reveal the interactional

impact between significant predictors on predicting multi-metal removal efficiency using partial

dependence plots. This data-driven ML approach elucidated the complex interactions in constructed

wetlands, providing a deeper understanding of how varying parameters affect the removal efficiency of

metals in AMD treatment.

2. Materials and methods

2.1 Data collection and data preprocessing

Data for this study were collected from published papers (from 2006 to 2023) by searching through

Google Scholar databases and Web of Science using “constructed wetlands” and “acid mine drainage”

as keywords. Initially, 31 studies were that pertained to the treatment of AMD using constructed wetlands

and included available monitoring data. However, only a subset of these studies reported comprehensive

and standardized monitoring data, which are essential for ML model development. To ensure data

consistency and comparability, the largest subset of studies (five wetlands and the detailed attributes are

shown in Table S1) that shared common monitoring parameters (e.g., pH, COD, metal concentrations)

was ultimately selected (Chen et al., 2021b; Singh and Chakraborty, 2020; Singh and Chakraborty, 2021).

This approach allowed us to construct a robust dataset for model training and analysis, despite the

inherent variability in data reporting across the literature. 31 parameters from five wetlands were obtained



from tables or extracted from figures in the papers as dataset variables using Origin 2021 (OriginLab
Corporation, 2021), resulting in 354 data points for ML exploration. The features in datasets for ML
models development include 4 categories: wetland properties (length, width, height, plant), inflow water
parameters (pH, COD, acidity, TDS, EC, SO4*, concentrations of Total Fe, Mn, Al, Zn, Ni, Co and Cr),
outflow water parameters corresponding the inflow ones, and time series (Table S2). The “Day”
parameter represents the continuous operation time (in days) since the initiation of the constructed
wetland, with all data aligned to this timeline to ensure consistency across different studies. Given the
inherent one-to-one relationship between inflow and outflow water parameters, the dataset utilizes the
notation “i_X” to denote inflow parameters and “o_X" to denote outflow parameters. The metal removal
efficiency were calculated as a percentage using eq 1.

Metal removal efficiency (100%) = % x (100%) (1)
where C; x refers to the inflow concentration of a certain metal, and C, x is the outflow concentration of
the same metal. The concentrations are expressed in mg-L™".

Metals (Total Fe, Mn, Al, Zn, Ni, Co and Cr) removal efficiencies was considered as the target
variables. The detailed process of ML exploration associated with the metal removal efficiencies during
the treatment of AMD using constructed wetlands is illustrated in Figure 1. In the main pipeline, RF was
identified as the primary imputation method by comparing the performance of different imputation
methods (RF, Bagging, Histogram Gradient Boosting Regression (HGBR), DecisionTree,
RegressionTree, AdaBoost, MICE, KNN, MLP, SVR) in a five-fold cross-validation for missing data in
the initial dataset (Figure S1 and Table S3) (Liu et al., 2022). HGBR (see Text S4 for details) and Hot
deck imputation (see Text S1 for details) were applied to specific variables. Due to the high proportion
of missing data (29.7%) (Zhu et al., 2023), outflow TDS was removed after a series of attempts, along

with its corresponding inflow TDS. After pre-processing, the final dataset contained 29 features, 7 targets

and 354 data points. Leakage control for imputation, including the leakage-safe out-of-fold (OOF)



pipeline and sensitivity analysis of the imputation strategies are described in Section 2.3.2 Controls for

data leakage.
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Figure 1. The flowchart provides a detailed overview of the strategy employed for predicting the
efficiencies of metals removal in AMD treated by constructed wetlands using a machine learning
framework. During the first step, data were collected from the literature and subjected to data
preprocessing. Subsequently, feature engineering was applied to extract and optimize features from the
full dataset, which was then utilized for model development and comparative evaluation. Finally, impact
factor analysis was conducted based on the optimal model and dataset to investigate the influence of
different input features on the prediction target variables. Note: FCC: feature correlation and clustering;

MFI: model-based feature importance; FE: feature engineering; TFe: total Fe.

2.2 ML-based feature engineering

Principal component analysis (PCA) was first performed to visualize and assess the diversity and



distribution of input features across all wetland samples. To simplify the ML model and improve its

performance, feature filtering was performed based on feature correlation and ML-based feature

importance analysis (Palansooriya et al., 2022). The correlation analyses between different variables

were conducted using Pearson correlation coefficient (PCC), and the results were visualized in the form

of a heatmap (Figure S2). Hierarchical clustering was then implemented, utilizing Pearson rank-order

correlations to group highly correlated features based on calculated similarities or distances between data

points (Johnson, 1967). Further, feature importance analysis was conducted with ML-based model to

determine the significance of each feature in predicting the target variable (Zhu et al., 2019a). By

integrating results from feature importance and correlation analysis, the most important feature within a

cluster was selected as input features to simplify the dataset and reduce the complexity of model

execution.

To compare the predictive performance of the same model when facing different input datasets,

three distinct datasets, A, B and C, were delineated based on domain expertise and results of feature

engineering. Dataset A comprised all features and all target variables from the full dataset. Dataset B was

determined by the evaluation of feature importance and correlation, resulting in the selection of the six

most important features and all target variables. Dataset C was crafted with consideration of monitoring

difficulty and cost, as well as domain expertise (Daraz et al., 2023; Mayes et al., 2009; Pat-Espadas et

al., 2018; Sheoran and Sheoran, 2006), alongside the assessment of feature importance and correlation,

leading to the selection of six features (inflow COD: selected based on feature engineering; inflow pH:

selected based on feature engineering; inflow acidity: selected based on feature engineering and

monitoring difficulty; inflow EC: selected based on feature engineering and monitoring difficulty; Day:

a monitoring indicator that is considered by almost all wetlands; Height: considering the importance of

wetland properties for selection). After finalizing the selection of six key input features for dataset C,

boxplots were generated to visualize their distributions among different wetlands.



2.3 Model development and evaluation
2.3.1 Model development of the main pipeline

To improve the training process of ML models for rapid convergence, the input features were
standardized using StandardScaler in Scikit-Learn (version 1.4.1.postl) (Pedregosa et al.) with Python
3.9.7 to obtain a similar scale and approximate a normal distribution. Following data standardisation, 80%
of data were randomly extracted from each input dataset and used for model training, while the remaining
20% were used for testing in the main pipeline (Yin et al., 2024; Zhang et al., 2023b). Based on the
dataset size, data type and existing research, five widely applied models, namely RF (Zhao et al., 2023),
Extreme Gradient Boosting (XGB) (Sun et al., 2022), Support Vector Regression (SVR) (Palansooriya
et al., 2022; Zhang et al., 2020), k-Nearest Neighbors (kNN) (Yin et al., 2024) and Artificial Neural
Network (ANN) (Zhang et al., 2020), were selected for this study. The method of grid search with cross-
validation was employed during the initial training process to conduct hyperparameter tunning, aiming
to enhance the accuracy of model learning and generalization (Bergstra and Bengio, 2012; Zhu et al.,
2023; Zhu et al., 2019b). It is implied that each input dataset will be fed into the five models, with each
model being run once using default parameters and once using optimized parameters for comparative
analysis. All models were validated using 5-fold cross-validation in the training process to achieve more
stable predictive performance and mitigate overfitting (Yan et al., 2021).

The coefficient of determination (R?), root-mean-square error (RMSE) and mean absolute error
(MAE) were utilized to compare the prediction accuracy and quantify the prediction performance (Hu

etal., 2022). R?, RMSE and MAE values were calculated by using eqs 2and 3, respectively.

T, of-vD)? @)
I, -T2

n a_,,Py2
RMSE = [Zi= 000" (32 ) 3)

MAE =% ~yi =% (4where y{* is the predicted value of the output, yl.p is the true value

R?=1-

of the output collected from the literature on experimental research, y; is the mean value of all output



values, y; is the true value of the ith sample, ¥, is the predicted value of the ith sample, and n is the

number of data samples in the training or testing datasets.

2.3.2 Controls for data leakage and generalization stability evaluation

To eliminate imputation-order leakage (i.e., imputing before splitting), we also conducted a OOF

evaluation in addition to the main pipeline, where the imputation and all transformers were fitted only

on training folds within a scikit-learn pipeline, and the OOF predictions were then concatenated for

evaluation (Lones, 2024). In addition, we further performed sensitivity checks using global, group-wise,

and group-wise K-fold imputations. To assess temporal leakage and genuine forecasting skill, expanding-

window (forward-chaining) TimeseriesSplit and naive persistence baselines (last-value and short

moving-average) were employed (details in Text S2) (Megahed et al., 2024; Schroer and Just, 2024).

Leave-one-wetland-out (LOGO) cross-validation further rigorously assessed the generalization of

models across different wetland systems. In addition, to evaluate the engineering reliability and

robustness of the optimal model, a systematic +£10% input perturbation sensitivity analysis was conducted

on each key input feature in dataset C.

2.4 Influential factors analysis

Two types of feature analysis methods were employed to assess the importance of features and the

correlation with metal removal efficiencies. One analysis method was conducted based on the optimal

model of dataset C to analyze feature importance. The other analysis method utilized the SHAP method,

which is widely employed in ML models explanation and feature analysis (Li et al., 2020; Li et al., 2022).

The marginal effects of each feature on predicted outputs were determined by using ML models and the

relevance between input features and target variables (such as linear, monotonic, or even more complex

relationships) (Palansooriya et al., 2022). Two-dimensional (feature interaction) partial dependence plots

were utilized to visually interpret the optimal model, and systematically expressing the correlation

between the interaction of two features and the target variables.



3. Results and discussion

3.1 Dataset formation and feature engineering

Across the initial dataset, missing data were identified for 20 variables. Subsequent RF model-based

imputation successfully addressed a majority of these missing data (Figure 2a, 2b). However, it is

important to note that imputation may introduce some uncertainty into the dataset. Nevertheless, cross-

validation results demonstrated the robustness of RF model to potential noise, with R? fluctuations

remaining below 5% across different imputation scenarios. In addition, three variables (outflow COD,

outflow TDS and outflow acidity) persisted with suboptimal performance in missing data prediction.

Following a second round of imputation, where the HGBR model was selected for its precise in imputing

missing data for outflow acidity (Figure 2¢). Upon examining the proportion of missing data for the

remaining two variables (4.5% for outflow COD and 29.7% for outflow TDS), hot-deck imputation was

applied to outflow COD. The Kolmogorov-Smirnov test(KS test) (Berger and Zhou, 2014; Kini et al.,

2024) was used to compare the cumulative distribution functions (CDFs) (Hong et al., 2024b; Ransom

et al., 2017) before and after imputation, validating the imputation effectiveness. According to the KS

test evaluation results for this hot-deck imputation, the KS statistic is 0.02, and the p-value is 0.99. Since

the p-value is much greater than the commonly used significance level (0.05), indicating that the

distributions of the data before and after imputation are consistent. This suggests that there is no

significant difference in distribution between the data imputed using hot-deck imputation and the original

data, demonstrating the effectiveness of the imputation method in this aspect (Figure 2d). Due to the high

proportion of missing values for outflow TDS (exceeding 10%), which rendered the variable unsuitable

for imputation methods and resulted in suboptimal model fitting and prediction, the decision was made

to remove this variable alongside its corresponding inflow TDS variable. Although TDS is an important

parameter in water quality monitoring, its exclusion was necessary to avoid introducing significant

uncertainty into the model.
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Figure 2. Results of (a) the RF model for predicting missing data in inflow COD, (b) the RF model for
predicting missing data in outflow Zn concentrations, (c) the actual values and predictions of outflow
acidity by the HGBR model, and (d) the comparison of the frequency distribution of outflow COD before
and after hot-deck imputation.

Following the completion of dataset filling, PCA was performed to visualize the distribution and
heterogeneity of the input features of the five wetlands (Figure S3) (Wang et al., 2025). The principal
component analysis results show that samples from the five wetlands form distinct clusters in the
principal component space. Although some overlap exists, the overall pattern highlights substantial inter-
wetland differences as well as partial shared variability within the dataset. Subsequently, an extensive
feature analysis ensued, which included the generation of a heatmap illustrating feature correlations
based on PCC (Figure S2). Hierarchical clustering was performed by calculating the similarity between
inputs and converting it into distances. Features with distances below a threshold (0.4) were divided into
one cluster, with closer distances indicating closer relationships in the dendrogram (Figure 3a). Figure
3b displays the importance of each feature for predicting the target variables, computed using the RF

model. Inflow COD was discovered to be the most important feature for predicting metal removal



efficiencies. Figure 3a delineates distinct clusters of features using varied colors, yet it is noteworthy that
the trio of blue features doesn't constitute a single cluster but rather represents three distinct clusters. To
refine the dataset and enhance model generalization while reducing computational complexity, a feature
filtering process which involved integrating the outcomes of hierarchical clustering with feature

importance assessments was conducted.
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Figure 3. Input feature analysis: (a) hierarchical clustering and (b) feature importance from the XGBoost
model. A total of 354 data points were utilized for model development. In panel (a), clusters are shown
in different colors and hierarchical levels, derived from the Pearson rank-order correlations depicted in
Figure S2 using a hierarchical clustering algorithm. A distance threshold of 0.4 was chosen to evaluate
feature similarity. Features converging into the same cluster at this threshold indicate high similarity,

simplifying the model by postextraction of important features. Note: the prefix “i ” represents inflow

>

parameters, while the prefix “o_” represents outflow parameters.

Figure 3a illustrates that length and inflow COD were clustered together, and according to the
feature importance ranking (Figure 3b), inflow COD is the more critical feature. Hence, inflow COD was
selected as the representative feature for this cluster input into the model. Furthermore, the clustering
identified distinct groupings: the green cluster is characterized by the inflow pH; the red cluster embodies
outflow EC; the purple cluster represents outflow Mn concentration; the brown cluster encapsulates
outflow Total Fe (TFe) concentration, and the pink cluster epitomizes outflow SO4>. Additionally, due
to their lower importance, features from the remaining three blue clusters were omitted. Consequently,

dataset B (inflow COD, inflow pH, outflow EC, outflow Mn concentration, outflow TFe concentration



and outflow SO4>) was constructed for model development.

Despite the apparent optimality of dataset B from an ML perspective, it is crucial to acknowledge
that the selection of input features based solely on their correlation and importance may not consistently
adhere to domain expertise and real-world necessities. The features within dataset B comprise two inflow
parameters and four outflow parameters, eschewing wetland and time series variables. Upon scrutiny, it
becomes evident that monitoring the outflow concentrations of TFe and Mn poses considerable
challenges; therefore, non-metallic parameters emerge as a more pragmatic choice. Similarly, focusing
solely on either inflow or outflow parameters can streamline monitoring efforts and mitigate associated
costs. However, from a pragmatic perspective, integrating wetland and time series variables into the
predictive framework offers superior guidance for developing constructed wetlands and managing AMD.
Through the integration of particle experiment conditions and feature analysis, inflow COD, inflow pH,
inflow acidity, inflow EC, wetland Height and operation Day as inputs for dataset C in model
development. Boxplots of the six selected input features for dataset C (Figure S4) reveal distinct
distribution patterns among the five wetlands, further supporting the presence of inter-wetland
heterogeneity in the final modeling dataset. Notably, Wetlands 1 and 2 exhibit much higher influent pH
and COD values, while Wetlands 3, 4, and 5 have higher influent acidity and electrical conductivity.
There are also significant differences in wetland height among the groups. These observations highlight
the necessity of considering wetland-specific input conditions when developing and deploying predictive
models (Reed et al., 2020). Finally, in assessing the fundamental predictive performance of different
models, dataset A, encompassing all inputs from the full dataset was utilized. This strategy aimed to
mitigate the potential reduction in predictive accuracy resulting from the exclusion of valuable features
by datasets B and C. However, given that the target (metal removal efficiency) is calculated according to
eq 1, datasets A and B containing outflow variables have the risk of target leakage. Therefore, the model

performance of these two datasets is only used as a theoretical upper limit reference, and the final model



evaluation and interpretation are based on dataset C.
3.2 ML model development and evaluation
3.2.1 Model development and comparison

In the main pipeline, five established and widely utilized ML models (RF, XGB, SVR, ANN and
kNN) were employed. Each model underwent a comparison between two configurations: default
parameters and optimized parameters from GridSearchCV (Table S4). 5-fold cross-validation was
employed to enhance the generalization ability of model, reduce the risk of overfitting, and obtain robust
model, while the test dataset was utilized to test the model performance. Following the model
development, 30 prediction results were obtained (Table S5 and 6), and model comparison was conducted
using R? as the main evaluation metric.

In accordance with previously published research, both Fe and Mn were identified as two key heavy
metals requiring particular attention in the treatment of AMD using constructed wetlands (Chen et al.,
2023; Singh and Chakraborty, 2020; Wang et al., 2021). They were commonly encountered in AMD and
were frequently found to exceed standard concentration levels. During the process of Fe conversion to
hydroxides, the transformation of aluminum often accompanies (Singh and Chakraborty, 2020).
Additionally, research indicated that aluminum played a significant role in plant growth and can mitigate
the toxicity of metals such as Fe, Mn and H* in acidic soils (Muhammad et al., 2019; Nguegang et al.,
2022). Furthermore, it was found that the concentration of Zn significantly exceeds the standard limits.
Therefore, this study focuses on predicting the removal efficiency and analyzing the influential factors
of TFe, Mn, Al and Zn. This aligns with the emphasis on key pollutant metals in relevant published
studies (Daraz et al., 2023; Singh and Chakraborty, 2020; Wang et al., 2021).

Figure 4 depicts the apparent predictive performance of three models (RF, XGB and kNN)
concerning the removal efficiency of four different metals (TFe, Mn, Al and Zn) when faced with varying

datasets (A, B and C). SVR and ANN were excluded due to their relatively lower apparent predictive



performance compared to the other tree-based models. The decision to focus on the three better-
performing models was made to emphasize the most effective approaches. The detailed performance
metrics for SVR and ANN are provided in the supplementary material (Tables S4 and S5) for reference.
The exceptional analytical capabilities were demonstrated by all three models on dataset A, yielding
precise apparent predictive results (R*> = 0.94-1.00). This aligns with the diverse and comprehensive
feature characteristics of dataset A, indicating that the abundant relevant features and sample data can
effectively predict the removal efficiency. Compared to dataset A, the apparent predictive performance
of the three models deteriorated when applied to datasets B (R? = 0.80-1.00) and C (R>=0.53-0.99). This
decline can be attributed to the feature selection process applied to datasets B and C, resulting in the loss
of some valuable information. In predicting the removal efficiencies of TFe, Mn and Al, datasets B and
C exhibit similar performances across different models. However, in predicting the removal efficiency
of Zn, dataset B outperforms dataset C in the RF and kNN models, whereas dataset C performs better in
the XGB model. Overall, dataset C shows a certain decline in performance compared to dataset B, which

is consistent with the feature selection criteria applied to these two datasets.
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Figure 4. The comparative predictive performance of different models across varied input datasets for



(a) TFe%, (b) Mn%, (c) Al% and (d) Zn%, assessed using R? as the evaluation metric.

Compared to the feature selection in dataset B, the slight performance decrease observed in dataset

C is acceptable because it includes less important but more easily monitored features. Therefore, model
evaluation based on dataset C identified the optimized model as the XGB model with tuned
hyperparameters, and the optimal parameters settings were shown in Figure S5. Figure 5 illustrates the
predictive results and performance of the optimal model XGB based on dataset C for removal efficiencies
of TFe, Mn, Al and Zn. The prediction results and model evaluation metrics for Ni, Co and Cr are
presented in Figure S6. The XGB model demonstrated excellent predictive performance on all target
variables in the training set (R? >0.93). However, there was a general decline in performance on the test

set, particularly for the prediction of Zn removal efficiency (R?> = 0.87). Nonetheless, this level of

accuracy is deemed acceptable.
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Figure 5. The predictive performance demonstration of the optimal model XGB for (a) TFe removal



efficiency, (b) Mn removal efficiency, (c) Al removal efficiency, and (d) Zn removal efficiency based on

dataset C, evaluated using R? and RMSE as assessment metrics. RMSE = root-mean-square error.

3.2.2 Controls for data leakage and generalization stability evaluation

To quantify the optimism that can arise from imputing on the full table before splitting, we re-

evaluated the pipeline using the OOF protocol. Relative to the main pipeline, OOF scores decreased as

expected (median AR’ =-0.163 and mean = -0.198), but the relative model ranking was preserved (Figure

S7a and b). In particular, RF achieves the highest mean R? across models and wins 6/7 targets (kNN wins

Ni once), XGB ranks next, SVR followed, whereas ANN was unstable (Figure S7¢ and d). This indicates

that while absolute scores are lower under OOF (as expected), the substantive conclusion that tree-based

models are best for this task is robust. For completeness, sensitivity analyses including global imputation

and group-wise imputation (with/without K-fold) were conducted. The results showed a conservative

downward shift in absolute R? (down 0.064 ~ 0.309 compared to the main pipeline), but do not change

the qualitative ranking (tree-based models are the strongest). Bland-Altman views indicate penalties

concentrate on lower-baseline metals, with less detrimental bias at higher performance levels (Figure S8).

Table S7 lists the best per-metal model under each strategy. With forward-chaining TimeseriesSplit and

naive baselines, learned models won 5/7 metals for one-step-ahead, but only 3/7 under a ~10-sample

window, indicating discernible short-term skill but limited long-horizon skill (Table S8 and 9). Moreover,

as shown in Figure S9, the multi-horizon fold-median error analysis showed similar findings, with

varying variability for each metal. Together, these results outline the boundaries of generalization ability

and reinforce that our primary contribution relates to static conditional response estimation and near-

real-time operational support, rather than long-term forecasting.



Furthermore, to evaluate the representativeness and diversity of the full dataset and its impact on
model generalizability, LOGO cross-validation was performed using all available input features. The
LOGO results (Table S10) indicate that the model achieves R? values above 0.5 for most target metals
and wetlands, with a few cases of reduced performance reflecting the high heterogeneity among wetlands.
These findings confirm that, while high predictive accuracy can be achieved in most scenarios, cross-
wetland prediction remains challenging for certain systems, underscoring the importance of dataset
diversity and realistic model evaluation in environmental applications. To further assess the engineering
reliability and robustness of the optimal model, we conducted a systematic +10% perturbation sensitivity
analysis for each input feature in dataset C (Figure S10). The results demonstrated that model
performance for most metals removal efficiency was relatively robust to moderate input fluctuations,
with only a small number of cases (e.g., perturbations to i_COD, i_acidity, or height for certain metals)
resulting in notable declines in prediction accuracy. This highlights both the practical stability of the
modeling approach and the critical importance of certain key input features in real-world monitoring
scenarios.

Overall, these results suggest that the removal of TFe, Mn, Al and Zn in the treatment of AMD by
constructed wetlands can be effectively predicted using a basic ML model with well-designed feature
engineering. The reduction in input features not only lowered the computational and time costs of model
development but also accelerated the analysis process. By selecting input features that were more relevant
in practical terms while maintaining a high level of predictive accuracy, this approach holds valuable
implications for the monitoring and management of constructed wetlands. However, it is also necessary
to strictly control the risk of data leakage and improve the generalization ability and actual engineering
reliability of the model.

3.3 Key influential factor analysis

To quantitatively decipher the factors influencing the prediction of metal removal efficiencies, we



employed the SHAP analysis on optimal model to reflect the importance of these factors (Figure 6a, b).
The comparison of feature importance rankings between the two analysis methods reveals discrepancies.
While the XGB-based feature importance analysis indicated that inflow COD held the highest
significance, followed by operation Day, the SHAP explanation method suggested that operation Day
took precedence, followed by inflow COD. Furthermore, to ensure the robustness of our interpretability
results, three other mainstream feature importance analyses (permutation importance, feature ablation,
and LIME) were performed (Altmann et al., 2010; Garreau and Luxburg, 2020; Ribeiro et al., 2016). All
three methods consistently identified i COD and day as the most important features, further supporting
the reliability of our main conclusions (Figure S11). Feature importance and cross-fold stability of
response shapes were verified under leak safety assessment using XGB in the same OOF protocol. The
results of permutation importance (top-ranks) showed that day is the most stable driver (Top 1 in
4/7 targets and Top 3 in 7/7), followed by i_COD (Top 1 in 2/7 and Top 3 in 5/7) and height (Top 1
in 1/7 and Top 3 in 4/7), i pH and i EC are secondary, and i_acidity rarely makes it into the top
three (Figure S12a and b). Results from PDP cross-fold similarity indicated that the dominant
drivers (day and i_COD) exhibit stable response shapes across folds (Figure S12c¢). The results of
SHAP with permutation agreement confirmed high concordance between two explanation methods
on the key drivers (Figure S12d). Together, these results show that the main interpretation (day and
i COD as primary drivers) is stable under a leakage-safe evaluation, reinforcing our original

mechanistic reading while providing more conservative performance estimates.
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Figure 6. Influential factors analysis based on dataset C and the optimal XGB model: (a) feature
importance assessment based on XGB model and (b) Shapley additive explanation method.

Afterwards, each feature in dataset C was analyzed separately for its impact on the removal
efficiency of different metals (Figure S13). Figure S13 illustrates that the removal efficiency of different
metals decreases with the increase in AMD entering the wetland, and the timing of the decline varies for
each metal (approximately 85 days for TFe, 65 days for Mn, 40 days for Al, and 100 days for Zn).
Similarly, the removal efficiency of different metals decreases with the increase in inflow COD. This
could be attributed to the prioritization of microbial degradation and oxidation reactions of organic
compounds in wastewater over the oxidation-reduction of metals when the COD in the influent water is
high (Liet al., 2015; Lu et al., 2016). Elevated levels of COD may also affect the normal absorption and
transport functions of plant roots, reducing their ability to absorb metals and thus impacting metal
removal efficiency (Sharma et al., 2021; Zhang et al., 2023a). After a period of time following the entry
of AMD which exhibits high COD concentration into the constructed wetland, as microbial populations
increase and organic matter is removed, the COD concentration in the wetland water decreases, and the
functionality of plants becomes more active, facilitating the oxidation, precipitation and absorption of
metals, thereby enhancing metal removal efficiency (Chen et al., 2021b).

However, the threshold points of inflow COD that affect the removal efficiency of the four metals

are not the same (approximately 300 mg/L for TFe, 650 mg/L for Mn, 60 mg/L for Al and 300 mg/L for



Zn), indicating that in the operation and management of the wetland, COD regulation needs to be

comprehensively determined considering the influence of other input features. In general, the COD

concentration in typical AMD is relatively low (below 50 mg/L). However, three constructed wetlands

have added domestic wastewater or plant litter leachate to increase the inflow COD, thereby enhancing

microbial activity and promoting plant growth (Chen et al., 2021b). Additionally, a layer of organic

substrate is incorporated into the wetland bed to promote plant growth, provide a carbon and nitrogen

source for microorganisms, and improve heavy metals retention (Choudhary and Sheoran, 2012).

The influence of inflow pH on the removal efficiency of the four metals also follows a similar trend,

decreasing with increasing inflow pH (TFe is approximately 2.8 and 5.7, Mn is approximately 2.9 and 4,

Alis 3, and Zn is approximately 3.5 and 4). The presence of different inflow pH threshold points for the

removal efficiency of a metal may indicate varying removal mechanisms for that metal. For example, Fe

may be removed as sulfides or hydroxides (Oldham et al., 2019), or it may be adsorbed and enriched by

plants and constructed wetland substrates (Singh and Chakraborty, 2020). Changes in pH can also affect

the microbial diversity in wetlands, thereby influencing the removal of metals (She et al., 2021; Sun et

al., 2020). In general, as acidic AMD enters the constructed wetland and pH gradually increases over

time, the removal efficiencies of different metals tend to decrease. This is due to the increased pH causing

some metal precipitates to become less stable, resulting in re-dissolution or further dissolution (Rodrigues

et al., 2019). Additionally, plants may experience toxic effects after absorbing significant amounts of

metals, leading to a decrease in their ability to absorb heavy metals. As pH increases, the solubility of

some metal ions may decrease, making them more difficult to be captured and removed by adsorbents or

precipitates in the wetland (Sheoran et al., 2010). The effects of these three features on the removal

efficiency of the four metals vary, indicating differences in their underlying mechanisms. Therefore, we

further analyze the interactions between features to understand their combined impact on the removal

efficiency of different metals.
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Figure 7. The interaction between inflow COD and operation Day was analyzed to assess its impact on
the (a) TFe removal efficiency, (b) Mn removal efficiency, (c) Al removal efficiency, and (d) Zn removal

efficiency.

The influence of the interactions between these variables (inflow COD and operation Day) on
predicting the removal efficiencies of TFe, Mn, Al and Zn were depicted in Figure 7 (Ni, Co and Cr in
Figure S14). For TFe removal, three distinct regions were delineated in Figure 7a by the inflow COD.
When the inflow COD was below 300 mg/L, the TFe removal efficiency was close to 100%, with little
impact by the operation Day. In the range of inflow COD between 300-800 mg/L, there was a significant
decline in TFe removal efficiency, reaching its lowest point (below 20%) between 0-80 days. In the
region where inflow COD exceeded 800 mg/L, the TFe removal efficiency fluctuated between 20%-80%.
The results suggest that inflow COD is a more significant factor than operation Day in influencing TFe
removal efficiency.

For Mn removal, the interaction between inflow COD and operation Day was more pronounced.



When inflow COD was below 300 mg/L, Mn removal efficiency was generally observed to be close to -
120%, with a peak noted when inflow COD was below 50 mg/L in the 0-80 days. This specific region
likely corresponds to the changes in Mn removal efficiency in wetlands where the inflow COD
concentration was not altered. In the range of inflow COD between 300-800 mg/L, significant declines
in Mn removal were observed over time, with Mn removal efficiency dropping below -600% after 100
days. The occurrence of negative Mn removal efficiency has been reported in many previous studies
(Wang et al., 2021), possibly due to manganese remaining in the Mn?* state under anaerobic/oxic
conditions, making it more soluble and difficult to remove (Singh and Chakraborty, 2020). Additionally,
the formation of insoluble manganese sulfide precipitates is challenging, making it prone to release.

For Al removal efficiency, the influence of operation Day was more pronounced, with 50 days and
80 days serving as clear boundaries. From 0 to 50 days, Al removal efficiency was controlled by inflow
COD, with the highest efficiency observed when inflow COD was below 300 mg/L (exceeding 90%).
From 50 to 80 days, Al removal efficiency was generally low (less than 20%), but exceeded 80% in areas
where inflow COD was below 30 mg/L. Similar trends were observed after 80 days, with overall Al
removal efficiency below 50%, but exceeding 50% in areas where inflow COD was below 30 mg/L.
Under conditions of low COD concentration, microbial activity might be reduced, leading to a greater
reliance on physical and chemical processes for Al removal. Simultaneously, high removal efficiency of
TFe and Mn was noted, with the hydroxides and oxides generated potentially serving as secondary
adsorbents for co-precipitation with Al, thereby facilitating its removal (Singh and Chakraborty, 2020).
Furthermore, robust growth and development of plants and root systems were observed, favoring Al
absorption and transportation by plants, consequently enhancing Al removal (Nguegang et al., 2022).

The higher removal efficiencies of Mn and Al were both exhibited in a low concentration (below
50 mg/L) inflow COD region (Figure 7b, c). However, in the low inflow COD region, the Mn removal

efficiency was optimal, whereas the Al removal efficiency did not reach its peak. This suggests that



increasing inflow COD is not effective for Mn removal but has a positive effect on Al removal.

Under conditions where inflow COD was less than 300 mg/L, the influence of operation Day was

negligible, with Zn removal efficiency remaining close to 100% throughout the entire period, decreasing

to approximately 80% after 150 days. Conversely, when inflow COD exceeded 300 mg/L, the effect of

operation Day became more pronounced. In the initial 0-5 day, Zn removal efficiency was lower than

60% within 75 days, and subsequently increasing to 70%-80% beyond 75 days. Zn exhibits elevated

mobility and potential bioavailability, predominantly occupying the exchangeable fraction. Moreover,

Zn demonstrates similar coprecipitation and adsorption/complexation interactions with iron-manganese

oxides/hydroxides as Al (Chen et al., 2021b).

3.4 Environmental implications

This study highlights the potential of ML to offer more accurate predictions and interpretable

understanding of multi-metal removal efficiencies and their determinants in constructed wetlands. Within

the leakage-aware and interpretable ML pipelines, imputation is coupled with learning, models are

evaluated under out-of-fold and forward-chaining protocols, and explanatory tools are cross-validated,

thereby turning heterogeneous monitoring records into actionable condition response insights. The

approach quantifies relative importance and interactions among routinely measured parameters, with

consistent patterns across methods, thereby informing near-real-time monitoring, anomaly screening, and

operational tuning. Taken together, the framework underscores the value of embedding advanced data

analytics in environmental research and provides a basic pipeline for future studies.

However, due to limitations imposed by both the quality and quantity of published literature, this

study was subject to certain constraints. Owing to the diversity in research objectives, methodologies and

experimental settings across different wetlands, the data types for certain input features and prediction

targets were inconsistent. Such variations could introduce uncertainties into prediction outcomes and

may not precisely reflect real-world scenarios. To address these challenges, future research should aim



to utilize a more extensive and standardized database to develop ML models. This database should
encompass studies with clearly defined scientific objectives and employ similar methodologies under
standardized experimental conditions. Particularly noteworthy are the absence of certain data types in
this study, such as quantified parameters of wetland substrates (Singh et al., 2023), quantitative
parameters of wetland microorganisms (Chen et al., 2020; Chen et al., 2021a) and plants (Shen et al.,
2023), and water quality parameters like dissolved oxygen (DO) (Oldham et al., 2019) and hydraulic
retention times (HRTs) (Demir et al., 2021). These types of data are crucial for a comprehensive analysis
of the removal mechanisms of metals in wetlands. Numerous studies indicate that the physical adsorption
of metals by wetland substrates is a highly significant removal pathway (Lizama-Allende et al., 2021;
Nguyen et al., 2021). Incorporating more valuable features would enhance accuracy and provide deeper
insights into the mechanisms and pathways of metal removal in constructed wetlands from a data

analytics perspective.

4. Conclusion

In this study, we utilized ML to predict and analyze multi-metal removal efficiencies in constructed
wetlands treating AMD and systematically audited risks of data leakage. The main findings are
summarized as follows:

* Five ML models were developed in the main pipeline, with the XGBoost model emerging as the
most effective, achieving high apparent predictive accuracy (R? > 0.8) for the removal efficiency of total
iron, manganese, aluminum and zinc.

* Under leakage-safe out-of-fold evaluation, absolute scores decreased as expected (median AR?~
-0.16), yet tree-based models remained the most reliable class, with RF strongest overall. Forward-
chaining, multi-horizon tests against naive baselines showed discernible short-term skill (one-step wins

in 5/7 metals) but limited long-horizon skill (~10-sample windows win in 3/7), defining a realistic



boundary of generalizability.

* Detailed feature analysis using the optimal model combined with fold aggregation and dual
explainers under the leakage-safe out-of-fold protocol identified operation Days (1-185) and inflow COD
(6.523-1027.631 mg/L) as stable and dominant predictors of metal removal efficiency.

* Leave-one-wetland-out validation indicated moderate cross-wetland generalization (R’ > 0.5 in
most metal-wetland pairs) with a few degraded cases reflecting site heterogeneity. The £10% input-
perturbation test on dataset C features showed predictions were broadly stable (occasional sensitivity to
i COD, i acidity, height), evidencing engineering robustness.

* Partial dependence plots elucidated the non-linear relationships between key predictors and metal
removal efficiencies. This analysis revealed that specific ranges of operation Days and inflow COD levels
are critical for optimizing the removal processes, providing actionable insights for the monitoring and
management of constructed wetlands.

This work establishes a leakage-aware and interpretable machine-learning framework, coupling
imputation with learning and systematically documenting sensitivity to methodological choices. Overall,
the framework and findings offer a foundation for further research and practice, while warranting

attention to temporal-scale bounds, cross-site extrapolation limits, and constraints of data and feature.
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