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Abstract

What makes the human brain special? Human neurons, glia cells, and cortical circuits have been shown to be significantly differ-
ent from those of other species, including mammals. This has led to a massive effort by the neuroscience community to directly
study these differences in a multimodal approach. The studies conducted include single-cell and network recordings of human
tissue samples, single-cell transcriptomics, and morphological analysis of the distinct cells to better understand the underlying
differences from the cellular to the systems level. Furthermore, to overcome the translational gap from animal studies to patient
care, the development of disease modeling in human tissue samples is of utmost interest. Here, we review and highlight
research that focuses on the specialization of the human brain from molecular expression, cellular properties, to the challenges
and promises of clinical translation.
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INTRODUCTION

Neuroscientific research is motivated by the hope that a
better understanding of the cellular and systems-level mech-
anisms of the nervous system will help to explain human
behavior, brain function, and pathogenesis, ultimately facili-
tating the development of effective treatments and cures of
neurological and psychiatric diseases. Model systems, such
as nematodes, insects, crustaceans, rodents, and certain cell
lines and expression systems, have proven to be critical for
providing fundamental insights into molecular, cellular,
and systems neuroscience that also apply to other organ-
isms. Yet, there is an increased realization that mechanistic
insights into neuronal functions obtained in nonhuman

organisms often fail to translate to the human brain. This
becomes obvious in the failure rates of trials aimed at cur-
ing or treating human neurological disorders (1). However,
it is important to emphasize that translational hurdles are
not limited to the trial stage. For many conditions, cur-
rently approved treatments remain insufficient even after
successful clinical implementations. For instance, in
epilepsy, approximately one-third of the patients do not
respond to existing antiseizure medications (ASMs), high-
lighting a persistent gap between mechanistic insight and
therapeutic efficacy (2).

Although significant progress has been made in under-
standing the cellular mechanisms underlying brain tumors
(3), neurodegenerative diseases such as Alzheimer’s disease
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and Parkinson’s disease (4–6), neurological disorders such as
Rett Syndrome (7–9) and epilepsy (10), as well as the detri-
mental consequences of spinal cord injury or stroke (11, 12),
there has been limited success in translating therapies or
cures that are effective in model organisms (13, 14). The lim-
ited success of translating mechanistic insights obtained in
animal models to the human brain and neurological and
psychiatric diseases contrasts with the transformative results
seen in other organs and diseases, such as many types of
cancers (15, 16). There are multiple reasons for the challenges
in translating findings from model systems to the human
clinic, in particular with regard to neurological and psychiat-
ric diseases (17–23). As for neurological and psychiatric disor-
ders, a major contributing factor is the unique complexity of
the brain. Unlike other organs, the brain consists of thou-
sands of specialized neuronal and glial subtypes (24, 25).
These subtypes possess specialized cellular properties and
precise, context-dependent connectivity patterns. Neuronal
activity is state-dependently modulated, context-specifically
excited or inhibited, and homeostatically regulated. The cel-
lular- and systems-level characteristics of all brains must be
uniquely adapted to the animal’s behavioral, developmental,
and environmental needs and thus differ from species to
species.

In humans, this has given rise to particularly specialized
traits, including complex language with syntax and gram-
mar, advanced forms of self-reflection, long-term planning,
and autobiographical memory (26–28). Although elements
of symbolic thought and social cognition are clearly present
in other species (29, 30), humans display a unique integra-
tion and expression of these capabilities, such as in the crea-
tion of representational art in the form of paintings and
music, and abstract scientific reasoning. Thus, it should
come as no surprise that many aspects of the human brain
differ from those of even their closest relatives.

Features observed specifically in humans have been identi-
fied across all levels of neuronal organization, frommolecular
and cellular properties to large-scale systems architecture.
These differences have direct practical consequences. For
example, viral vectors that have been developed to specifi-
cally target certain cellular subtypes in a nonhuman primate
(NHP) may fail to recognize this cellular subtype in the
human brain (31–33). It is also unclear to what extent a given
cellular subtype in a rodent or nonhuman primate even exists
in the human brain (34, 35). Moreover, even if disease-driving
cellular or molecular mechanisms have been identified in
human patients, it is far from obvious how thesemechanisms
will impact neuronal subtypes and circuit interactions in the
human brain. A lack of subtype specificity is a major chal-
lenge when attempting to apply precisionmedicine that relies
on targeting specific inhibitory or excitatory neuronal sub-
types implicated in a human disease. Insufficient specificity
can lead to off-target effects and severe side effects. These
unknowns and uncertainties are major obstacles in the devel-
opment of effective treatment strategies, such as gene therapy
that targets diseases of the human central nervous system
(CNS).

To gain an understanding of humans’ unique cognitive
capabilities, such as human intelligence, global connectivity
studies using fMRI technology have been successfully imple-
mented. In addition, to bridge all levels of integration, it is

also important to study cellular properties in human tissue.
Only in humans it is feasible to show that in brain regions
associated with cognition, cellular properties can vary indi-
vidually with intelligence. This is reflected, for example, in
differences in the rise speed of action potentials (APs) and
the dendritic morphology of pyramidal neurons (36, 37).

Also, when it comes to understanding human disease,
such as seizure dynamics underlying human epilepsy, it is
critical to bridge cellular-, network-, and system-level prop-
erties that span from in-depth analysis of resected human
tissue to EEG characterizations, whichmay vary individually
from patient to patient (38, 39). These differences may be
critical to explain the variability in the clinical response to
ASMs. This requires a personalized approach in which data
from measurements in vivo are combined and compared
with the cellular properties determined ex vivo from the
same individual.

Although human brain tissue models offer promising ave-
nues for studying disease mechanisms and drug responses,
several limitations remain. These include a lack of knowl-
edge regarding cellular integrity and viability in slice
cultures over extended periods, cellular and molecular
heterogeneity within tissue samples, and limited scalability
due to restricted availability of humanmaterial. In addition,
variability among patient-derived samples poses challenges
for reproducibility and control comparisons.

A limited number of studies have already used human
organotypic slice cultures to study network function (40, 41),
but further studies will be necessary to determine the valid-
ity and stability of the approach.

Importantly, the validity of ex vivo human brainmodels for
assessing preclinical drug efficacy needs to be tested with
known compounds before its use for novel candidates.
Moreover, testing ASMs in vitro will only test its efficacy
against induced or spontaneous “seizure-like activity,”which
differs fundamentally from seizures in a whole organism.
This discrepancy may result in false negatives or false posi-
tives, as exemplified by levetiracetam, which shows limited
efficacy in some in vitro seizuremodels (42).

Although this review emphasizes the importance of study-
ing the human brain, ultimately, it comes down to finding
the rightmodel system for the right question. Clearly, animal
models also have their unique advantages. In many situa-
tions, a simple model can be highly useful to answer fun-
damental questions, as has been shown many times in
invertebrates (43).

Yet, the outlook to ultimately translate mechanistic cellular
insights to the human brain and treat neurological or psychi-
atric disorders is not as bleak as these general considerations
may suggest. There has been progress in developing gene
therapy for several diseases, andmuch has been learned from
the positive and negative experiences with targeted viral vec-
tor technologies (44–47). In addition, there are renewed
efforts to focus on the study of the cellular and molecular
properties that are specific to the human brain. This review
cannot cover all aspects of human uniqueness and the
approaches used to study the human brain. Although we
focus on the cellular and clinical translation of human brain
research, we recognize that ethical considerations are critical
to this field. Issues such as informed consent, ethical procure-
ment of human tissue, donor privacy, and compliance with
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regulatory standards underpin all human studies andmust be
rigorously respected. For a comprehensive discussion of these
topics, we refer readers to specialized literature focused on
research ethics in human neuroscience. Our review will focus
primarily on the cellular basis of the human brain and serves
as a conceptual framework for a call for papers on the unique-
ness of the human brain to be published in the Journal of
Neurophysiology.

WHAT IS SO SPECIAL ABOUT THE HUMAN
BRAIN?

Human Evolution and Specialized Genes

The human brain has undergone a striking evolutionary
transformation that affected not only the neocortex but also
areas such as the cerebellum. Various mechanisms, includ-
ing the process of indirect neurogenesis, have been attrib-
uted to the development of the increased complexity of the
human brain (48). An interesting concept is that the process
of brain development and maturation is progressively
slowed in the human lineage (“bradychrony”), which allows
for an increased complexity and diversification of the cellu-
lar progenitor pool, increased brain size, cell number, sub-
type diversity, and connectivity (Fig. 1) (50). Several features
in the three-dimensional (3-D) architecture of the human
genome have undergone specialization. Human-specific
topologically associated domains and human-specific loops
seem to play a role in the subplate of the developing human
brain (51). The genome of humans has been extensively
altered by duplications, deletions, inversions, and transloca-
tions (52), and a recent study identified�17,000 human-spe-
cific structural variants (53). Specific gene variants have
been associated with human cognition, and many of those
variants are expressed in higher-order cortical areas such as
themiddle temporal gyrus (36). Interestingly, the expression
pattern of these variants can be correlated with intelligence
quotient scores. Changes in expression patterns are also
important for understanding human diseases, such as schiz-
ophrenia (54). Importantly, not only neurons but also the
development of glial cells shows distinct differences in
humans, and human-specific astrocyte genes have been
described (35, 55, 56). For instance, WNT inhibitory factor 1
(WIF1), peripheral myelin protein 2 (PMP2), and glutathione
S-transferase mu 2 (GSTM2) are astrocyte-enriched genes in
humans but are not expressed inmouse astrocytes (35).

Finally, humans have evolved to use very specific and
complex cognitive functions as compared with other mam-
mals. Cognition and empathy are vastly amplified in the
human brain compared with other species (57), as are lan-
guage and the use of tools (58, 59). Some cognitive abilities,
such as abstract thinking, are uniquely attributed to humans
(60). Since all such activities rely on the core functions
exerted by the cerebral cortex, specialized mechanisms are
involved in its development.

The Development of the Human Brain

Across metazoans, tissues and organs develop in a way that
enables specific functions. For example, compared with slow-
running animals, muscles of fast-running animals develop
differently to ensure explosive movements and accelerations

(61). This also applies to the brain; however, its functions are
ensured by an extremely complex interplay of different cell
types and areas that are simultaneously recruited. Such com-
plexity is extensively found in the human brain and is
ensured bymechanisms of development that are not found in
any other animal.

The cerebral cortex arises during embryonic life from two
main categories of progenitors, radial glial cells (RGs) and
intermediate progenitor cells (IPs) (48). Both progenitor
types proliferate and differentiate in the process of cortico-
genesis. Two identical RGs are generated from replicative
mitotic divisions of RGs, the stem cell reservoir of the cortex.

Figure 1. Man vs. mouse comparison of neuronal properties, size, and
complexity. A: schematic overview of differences and evolutionary con-
served properties comparing the human brain with the rodent brain.
B: comparison of size and structure between a mouse and a human
pyramidal neuron, apical tuft colored in violet, apical obliques in blue, api-
cal main trunk in yellow, and basal dendrites in red. Scale bar ¼ 100 μm.
C: comparison of total dendritic length of neurons located in L2/3 of the
temporal cortex between the human, the mouse,Macaca fascicularis, and
Macaca mulatta (Kruskal–Wallis test, ���P< 0.0001). Figure adapted from
Ref. 49; used with permission from Oxford University Press. Figure, in part,
created with a licensed version of BioRender.com.
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Differentiative divisions, instead, produce a new RG and
either a newly born neuron or an IP. Unlike RGs, IPs are com-
mitted to giving rise to neurons exclusively and have a much
lower proliferative potential, as they will self-replicate only
two or three times. Although RGs and IPs are the two main
progenitor types of the cortex in a variety of species, in
higher-order animals, including humans, RGs’ proliferative
potential largely exceeds that of other animals. Consequently,
the size of the cerebral cortex of higher-order animals is
expanded and therefore folded to accommodate its expan-
sion, thus differing from other (lower order) animals, where it
is smooth (lissencephalic). As a consequence, areas assigned
to different functions aremore likely to be closer in proximity
in folded brains, which may favor their connectivity (62).
However, whether and how thismay contribute to higher cog-
nitive functions is difficult to determine.

Considering that upper cortical layers are the last to be
established during corticogenesis, the largest differences in
size and cell type heterogeneity aremostly detected in human
upper cortical layers. It is, in fact, in these layers that most of
the differences in human progenitors’ proliferation will even-
tually accumulate (60). Importantly, many of the human-spe-
cific functions are exerted by upper cortical layers. Upper
cortical layers are implicated in cortico-cortical connectivity
(63), which contributes to integrated processing of sensory
input, memory, abstract thought, and, in frontal cortical
regions, higher-order cognitive functions. Large-scale MRI
“brain charts” are able to quantify how these developmental
programs diverge across primates. In humans, cortical gray
matter volume continues to expand until middle childhood
(�6 yr), whereas the total surface area peaks only in late child-
hood to early adolescence. White matter growth, on the other
hand, stretches well into the third decade. Rhesusmacaques,
in contrast, reach peak gray matter volume at �9 mo, with
cortical thickness and surface area plateauing within the first
postnatal year. As a result, they are born withmore than 50%
of their adult brain size, whereas human life starts with barely
25%–30%. This prolonged human expansion lengthens the
window during which activity-dependent processes can
sculpt association circuits and may underlie our exceptional
cognitive plasticity (64, 65).

In recent years, our understanding of themolecular special-
ization of mechanisms underpinning human brain develop-
ment has grown exponentially. Specifically, the discovery of
human-specific gene sets expressed solely in the developing
human brain has helped to elucidate the molecular basis
of human-specific features, such as increased brain volume
being attributed to an extended period of cell division and the
increased complexity in short and long connectivity within
the cortex and with subcortical brain areas (66). Furthermore,
human-specific mechanisms of corticogenesis drive cortical
progenitors to produce not only glutamatergic projection neu-
rons but also GABAergic inhibitory interneurons (67). This
may contribute to enhanced cognitive abilities by supporting
a finely tuned balance between excitation (facilitating integra-
tion) and inhibition (providing modulation). Notably, the
overall ratio of excitatory to inhibitory neurons in the cortex
is 4:1 (68, 69), although this can vary between species and
cortical regions. For example, higher-order associative areas,
such as the prefrontal cortex, may contain a relatively higher
proportion of inhibitory interneurons, potentially reflecting

the greater demand for information gating and cognitive con-
trol in humans compared with rodents (70).

Overall, specialized developmental processes specific to
human brain development contribute to the production of
the anatomical substrate on which the human brain’s func-
tions will rely in adulthood. Yet, our description of themech-
anisms through which such substrate is created is far from
being complete. Nevertheless, there has beenmuch effort to
identify cellular properties and subtypes that are exclusively
found in humans, which substantially contribute to the
uniqueness of our brains.

Human Neuron Morphology and Specialization

During evolution, the adult human cortex has expanded
not only in surface area but also in its layer thickness. Layers
2 and 3 (L2/L3) have increased disproportionally compared
with other mammalian species (71, 72). Supragranular layer
thickness is largest in humans (�50%) and other primates
(46%), followed by carnivores (36%), and then rodents (19%),
suggesting a distinct difference in the proportion of cortex
devoted to corticocortical connectivity (71). With cortical
expansion, properties of cortical cells have also changed: the
human cortex contains more cells (73), many of these cells
are larger, with larger protrusions coveringmore area (Fig. 1)
(49, 74–77). As neurons increase in size, they require more
space for larger dendrites and axons, and this process goes
hand-in-hand with a decrease in neuronal densities. In the
human cortex, neuronal size increases from upper L2 to
deep L3 neurons, whereas the neuronal density decreases
(37, 78). In addition, thicker cortical layers L2/L3 in different
cortical areas and subjects generally contain larger neurons
at lower densities (37). This holds for pyramidal neurons,
interneurons and astrocytes in the human cortex (37, 75–77,
79, 80). The larger human pyramidal neurons carry more
dendritic spines that are larger, longer, and more densely
distributed along the dendrite (81, 82). Human pyramidal
neurons receive more synapses than in other species (83),
particularly in L2/L3, suggesting that they integrate more
synaptic information (84).

Both neuronal and glial cells, which outnumber neurons
2:1 in human neocortex (70, 85), show specialized physiologi-
cal properties. The human cortex contains several types of
astrocytes, some of which are projecting protrusions to other
layers, which is not the case in the rodent cortex. Human
astrocytes are 10 times larger and more complex than their
rodent counterparts, calcium waves generated in astrocytes
are more pronounced, have faster rise time kinetics, and
propagate five times faster (76). Several primate-specialized,
and even human-specialized, interneuron types have been
described, each with morphological and physiological adap-
tations not found in rodents (75, 79, 83, 86, 87). Ramon y
Cajal identified the double-bouquet interneuron with its
characteristic horsetail axons that are prominent in primate
cortex, generating structural “microcolumns,” but whose
function is still elusive (75, 88). Human and macaque corti-
ces contain Somatostatin (SST)-positive interneurons with
intrinsic persistent activity that could be triggered by single
action potentials (APs) and which was associated with a
depolarizing plateau potential induced by the activation of
persistent Naþ currents (87). In layer 1, the human-special-
ized Rosehip interneuron was identified that predominantly
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targets apical dendritic shafts of layer 3 pyramidal neurons
and inhibits backpropagating pyramidal action potentials in
microdomains of the dendritic tuft, potentially controlling of
distal dendritic computation in cortical pyramidal neurons
(79, 86). These specialized interneuron typesmay provide the
human cortex with specificmicrocircuit elements relevant for
human brain function. But not only does the human central
nervous system harbor unique cellular subtypes, it also dis-
plays very specific properties in terms of connectivity, con-
ductivity, and network dynamics. Mesoscale functional brain
dynamics underscore the unique systems-level context in
which specialized human neurons operate. Dynamic coacti-
vation modes from resting-state fMRI scans in awake mice,
macaques, and humans demonstrate a conserved repertoire
of brain-wide states. However, humans dwell disproportion-
ately longer in an integrative, default-like state that bridges
sensorimotor and transmodal cortices, whereas macaques
andmice favor a segregated sensory state (89).

Neuronal Connectivity and Electrophysiological
Properties of the Human Brain

In contrast to rodent L2/L3 pyramidal neurons, human
pyramidal neurons robustly express hyperpolarization-acti-
vated cyclic nucleotide-gated (HCN1) channels in soma and
dendrites (90). Activation of dendritic Ih currents can facilitate
the transfer of synaptic inputs received on distal dendrites to
the soma. Changes in HCN properties, such as phosphoryla-
tion signaling, can contribute to human epileptogenesis (91).
Increased neuronal size in general may result in other com-
pensatory mechanisms that ensure fast and efficient informa-
tion transfer. Large dendrites impose a substantial impedance
load onto the axon initial segment, resulting in faster action
potential (AP) onset and, consequently, increased capability of
timing action potential firing relative to high-frequency inputs
(92). Rapid AP initiation properties facilitate information proc-
essing by neurons (93). Fast AP onset kinetics allows human
pyramidal neurons to time action potential firing to synaptic
inputs at considerably higher frequencies, with reliable input-
to-output conversion of subthresholdmembrane potential fre-
quencies up to 1,000Hz, five times faster than rodent pyrami-
dal neurons (94). Properties of voltage-gated sodium channels
in human pyramidal neurons support fast AP onset kinetics
and stability, with shifted voltage dependence, and reduced
inactivation properties (95). Fast AP onset kinetics in human
pyramidal neurons are also more stable during high-fre-
quency action potential firing, suggesting that human neu-
rons maintain fast processing properties when neurons are
engaged in cognitive tasks (96–98). Fast action potential
kinetics are linked to human cognitive ability. L2/L3 pyrami-
dal neurons from individuals with higher IQ scores are much
more able to maintain fast action potential kinetics during
persistent firing than in individuals with lower IQ scores, sup-
porting the importance of fast signaling for human cognition
(37, 99).

Action potentials in human L2/L3 pyramidal neurons not
only have faster kinetics but also have a prominent afterde-
polarization, distinguishing them from those in rodents (94,
100). This afterdepolarization reflects active dendritic prop-
erties and depends on the activation of dendritic L-type volt-
age-gated Ca2þ channels. These dendritic properties set the
rules for spike timing-dependent synaptic plasticity (STDP)

in human neurons, which are different from rodent STDP
rules: human pyramidal neurons associate inputs arriving
during larger temporal windows (94, 100). Dendrites of L2/
L3 pyramidal neurons are more excitable than those in
rodents, and this increased excitability is mediated by den-
dritic calcium action potentials (dCaAPs) (101). In contrast
to typical all-or-nothing APs, human dendritic CaAPs are
graded, with maximal amplitude at threshold stimuli, but
tapering off for stronger stimuli (101). They might therefore
act as an anticoincidence detector, enabling human pyrami-
dal neurons to perform the exclusive-or (XOR) operations,
previously thought to require multiple neurons, and contrib-
uting to nonlinear dendritic computations of single pyrami-
dal neurons acting as a multilayer network (102).

In contrast, human L5 pyramidal neurons fall into distinct
types based on their transcriptome that differ in dendritic
excitability. Extratelencephalic (ET) projecting L5 pyramidal
neurons express HCN channels and have electrogenic den-
drites firing all-or-nothing dendritic action potentials, like
rodent L5 pyramidal neurons (103). In contrast, intratelence-
phalic (IT) projecting L5 pyramidal neuron dendrites were
much less excitable. In studies that did not distinguish L5
human pyramidal neurons based on transcriptomics, these
neurons were reported to have reduced dendritic excitability
compared with rodents and eight other species (104, 105). In
nonhuman species, conductance densities of voltage-gated
potassium and HCN channels in layer 5 cortical pyramidal
neurons seem to follow conserved allometric rules (105).
Species with larger neurons had higher membrane conduct-
ance, with a conserved conductance per unit brain volume.
Human L5 pyramidal neurons did not obey this allometric
relationship, exhibiting much lower voltage-gated potassium
and HCN conductance (105).This results in a larger compart-
mentalization of human L5 pyramidal neuron dendrites, cre-
ating more independently acting computational units (104,
106). At present, it is not settled whether this holds only for
IT-projecting L5 pyramidal neurons in human cortex or also
for ET-projecting pyramidal neurons.

Synaptic connectivity in the human cortex also shows sev-
eral substantial adaptations compared with rodents and other
species. In addition to triggering monosynaptic postsynaptic
responses, single action potentials of human L2/L3 pyramidal
neurons can trigger complex events, i.e., long-lasting sequen-
ces of events in the cortical network consisting of alternating
glutamatergic and GABAergic postsynaptic potentials (107).
These complex events rely on particularly strong excitatory
synapses terminating on fast spiking interneurons (108),
which contain five timesmore vesicle release sites than rodent
excitatory presynaptic terminals (109). Excitatory synapses
formed between L2/L3 pyramidal neurons are also larger in
strength and reliability than in rodent cortex (110). Although
rodent glutamatergic synapses fail to release every fourth pre-
synaptic action potential (25% failure rate), human glutama-
tergic synapses do not fail; every action potential results in
glutamate release (110). Moreover, human glutamatergic syn-
apses recover four times faster from depression (94), which
considerably shortens the time window of loss of information
transfer of the synapse in the depressed state during repeated
action potential firing. Thereby, synaptic signal propagation
in human cortical networks is substantially more efficient. As
amatter of fact, several adaptations in feedforward and lateral
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inhibition circuitries in human cortex ensure fast signaling
and synchronization of activity, despite larger neuron-to-neu-
ron distances and larger neuronal dimensions (77). The large
glutamatergic synapses on fast spiking interneurons enable
them to rapidly fire an action potential in response to single
pyramidal neuron action potentials with short delay (108).
Larger dendrite diameters and HCN channel expression in
both human pyramidal neurons and fast spiking interneurons
facilitate rapid signal propagation within neuronal dendrites
for fast input-output processing (90, 92, 95, 111). The synaptic
delay of inhibitory transmission between fast spiking inter-
neurons and pyramidal neurons is shorter in human cortex
than in rodent cortex (77). Together, these adaptations enable
short delays in lateral and feedforward inhibition of human
pyramidal neurons through fast spiking interneurons.

As in the rodent cortex, synaptic properties in human cor-
tex are cell-specific (112, 113). Although excitatory synapses on
parvalbumin-positive interneurons are depressing, excitatory
synapses onto human somatostatin-positive interneurons are
facilitating (77, 113, 114). Human pyramidal neuron networks
do not show an overrepresentation of reciprocal connections,
but network connectivity in human cortex exhibits a directed
topology (115). Although connection probability decreased
with increasing lateral distance and toward the apical den-
drite, the connection probability between pyramidal neurons
increased when the postsynaptic soma was located at deeper
positions along the vertical axis (115). This could be a shared
principle across species, as it was also found in the rodent cor-
tex (116). Recent electron microscope-based connectomics
studies of human neocortex reveal that connectivity between
interneurons is strongly increased, resulting in a 10-fold
expansion of interneuron-to-interneuron networks in human
cortex (117). Moreover, some neurons made exceptionally
powerful connections with neighboring neurons, consisting
of more than seven contact points, ranging up to more than
50 contact points between two neurons (85). These powerful
connections could be formed between excitatory and inhibi-
tory neurons alike and occurred far more often than expected
by chance (85). But the exact role of these powerful connec-
tions remains to be elucidated. Connectomics has just begun
to address the human cortex, and adult human synaptic con-
nectivity function has been addressed in very few studies, so
many properties of human cortical circuitry remain unex-
plored and to be discovered. However, cross-species align-
ments of resting-state functional connectomes situate human
and macaque brains along a common unimodal-to-transmo-
dal axis. Homology is highest in primary visual and somato-
motor territories but declines sharply toward association
cortices, with the deepest gulf surrounding posterior default-
mode, temporoparietal, and anterior-cingulate hubs, regions
that also underwent the greatest areal expansion during pri-
mate evolution. Within individual sensory hierarchies, a simi-
lar pattern emerges: in the auditory system, nonprimary belt
and parabelt fields vary more across humans and show
stronger long-range coupling to associative networks than
their macaque counterparts (118). Together, these observa-
tions suggest that human association networks are not
simply scaled-up versions of those in other primates but
have been functionally retuned, with default-mode hubs
occupying the most recent tip of an ancestral sensorimo-
tor-to-transmodal gradient.

Molecular Properties and Transcriptomic Signatures of
the Human Brain

Another powerful tool to shed light on cellular identities
and interspecies differences can be found in rising technol-
ogies, such as single-cell genomics and transcriptomics.
Single-cell genomics have dramatically expanded our under-
standing of the human brain’s cellular complexity, unveiling
a wide variety of distinct cell types and states characterized
by their unique gene expression profiles. Advances in this
technology have led to the creation of a comprehensive atlas
of more than 5,000 distinct cellular clusters in the mouse
(25), whereas a draft human brain atlas described more than
3,000 transcriptomic cell types across a sampling of 100
brain regions (24). Studies of the human cortex have revealed
that each cortical area comprises �100 transcriptomically
defined cell types (68, 119–121). Cytoarchitecturally distinct
cortical areas can be defined by their unique proportional
composition of cell types, with human primary visual cortex
standing out as particularly distinct from other cortical areas
in its cellular composition (121).

These studies have enabled comparative transcriptomic
approaches that have facilitated direct comparisons of
conserved cell types across humans, nonhuman primates
(NHPs), and rodents (34, 68, 121–123). Such studies highlight
a broadly conserved hierarchy of cell types across species
while also revealing notable differences in cellular makeup
and gene expression. For instance, in the primary motor cor-
tex (M1), the ratio of glutamatergic to GABAergic neurons var-
ied between species, with humans exhibiting a 2:1 ratio,
marmosets exhibiting a 3:1 ratio, and mice exhibiting a 5:1
ratio (34). Interestingly, the proportions of GABAergic sub-
classes and cell types were similar across species in M1, sug-
gesting a global increase in GABAergic types in humans
compared with marmosets and mice rather than a specific
increase in certain subclasses. A recent study comparing cel-
lular diversity and gene expression in the middle temporal
gyrus (MTG) demonstrated striking similarities in cellular
architecture across humans, other great apes (chimpanzees
and gorillas), macaques, and marmosets (121). Notably,
humans and other great apes shared nearly identical propor-
tions and laminar distributions of conserved cell types.
However, many differences in gene expression were found
across species. For example, although cell subclasses had a
similar number of marker genes across species, only 10%–

20% of these genes showed strong conservation of expression
specificity. Notably, chimpanzee neuronal subclasses were
found to be more similar to gorilla than to human, despite
chimpanzees sharing a more recent common ancestor with
humans, suggesting that neurons in the human lineage
have changed more rapidly since the evolutionary diver-
gence of humans from chimpanzees. Interestingly, glial
cells, apart from oligodendrocyte precursor cells (OPCs),
exhibited greater expression changes between species com-
pared with neurons. Expression changes were more pro-
nounced in oligodendrocytes, astrocytes, andmicroglia than
in neurons. Human astrocytes showed increased expression
of genes involved in synaptic signaling and protein transla-
tion, such as SPARC (osteonectin) and SPARCL1 (hevin).
Expression differences in extracellular matrix (ECM)-related
proteins like brevican, neurocan, and phosphacan were also
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apparent in human astrocytes compared with nonhuman
primates. Furthermore, human-specific transcriptional dif-
ferences were marked by substantial alterations in isoform
usage, even in genes with conserved expression levels across
species. Genes exhibiting human-specific switches in iso-
form usage included genes involved in axon guidance and
chromatin remodeling that may contribute to the molecular
and functional specializations of the human brain (121).

VALIDATION OF PRECLINICAL STUDIES
In the last decades, basic research and preclinical studies

have focused on identifying novel and improved treatment
options for human diseases (124). Preclinical studies tradi-
tionally rely on cell culture systems or animal models and
aim to unravel themechanisms of pathology to identify new
therapeutic targets that may lead to advanced treatments in
humans (125). However, as previously mentioned, transla-
tional failures occur frequently (126–129). To validate pre-
clinical studies, expensive and elaborate clinical trials in
patients are required, often costing millions of dollars per
trial. In particular, clinical phase 3 trials carry a high risk of
failure (1, 125, 130, 131). This risk is especially pronounced in
CNS-related drugs compared with non-CNS-related drugs,
with nearly half of CNS drug trial failures attributed to a lack
of efficacy in patients (Fig. 2) (1).

The limited success in translating findings from cell cul-
ture, rodent, and other animal models into effective treat-
ments for human neurological diseases underscores the
urgent need to examine the functional properties of the
human brain at the resolution of specific cell types and neuro-
nal circuits (132). Although animal and in vitro models have
provided invaluable insights into fundamental neurobiologi-
cal mechanisms, their predictive validity for human clinical
outcomes remains limited due to species-specific differences
in brain architecture, gene expression, and circuit organiza-
tion. Consequently, there is a critical need for complementary
approaches that leverage human brain tissue to model neuro-
logical diseases such as epilepsy, neurodegenerative diseases,
and brain tumors. Although challenges such as tissue avail-
ability and heterogeneity persist, these human-basedmodels
offer more relevant platforms to evaluate drug efficacy,

identify novel therapeutic targets, and understand dis-
ease-specific pathophysiology within the native cellular
and circuit context. Integrating human tissue models with
traditional preclinical systems represents a promising
strategy to improve translational success and accelerate
the development of effective treatments.

InHuman-Specific Experimental Platforms, we will review
the opportunities and limitations to study these questions in
acute human brain slices, human organotypic slice cultures,
and human organoids to overcome the problems of transla-
tion to the human brain (Fig. 3).

Human-Specific Experimental Platforms

Human brain tissue and derived models provide invalu-
able tools for validating findings from animal models in a
human-specific system before progressing to clinical studies.
Two primary approaches include the use of human acute or
organotypic brain slices and three-dimensional cerebral
organoids. These models enable the study of human brain
physiology, pathology, and drug responses, offering comple-
mentary platforms for preclinical research.

Human brain tissue can be obtained from neurosurgical
cases, such as tumor and epilepsy resections (Fig. 3A). These
slices, either of pathological origin or as healthy access tis-
sue, can be used directly for various experimental applica-
tions (133, 134). Culturing human organotypic brain slices
enables long-term observation and manipulation, such as
the introduction of reporters, gene-modulatory elements, or
molecular tools via viral transduction (135–139) (Fig. 3B).

In contrast, human cerebral organoids are three-dimen-
sional cultures of pluripotent stem cells differentiated into neu-
ral tissue that mimic the human brain (140, 141). Organoids
recapitulate features of in vivo cell growth, allowing self-orga-
nization, differentiation, and heterogeneity within the culture
environment (140, 141). They have been used to study a variety
of neurological and developmental conditions, including
microcephaly (139), Alzheimer’s disease (142, 143), Parkinson’s
disease (144), amyotrophic lateral sclerosis (ALS) (145), tuber-
ous sclerosis (146), autism (147), and Rett syndrome (148).
Recent advancements have increased organoid complexity to
include microglia (149, 150) and vasculature (151). However,
important limitations remain, such as incomplete maturation,

Figure 2. From preclinical studies to novel
treatments. A: many promising novel ther-
apy options arise from preclinical model
systems. B: 46% of phase 3 clinical trials
failed to prove efficiency in humans. Data
adapted from Kesselheim et al. (1) (from
the 132 initiated phase 3 studies, 70 were
discontinued for the depicted reasons).
Figure, in part, created with a licensed ver-
sion of BioRender.com.
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limited cellular diversity, reduced synaptic connectivity com-
pared with in vivo tissue, and challenges in recapitulating
long-term disease progression and brain-wide network interac-
tions, which currently restrict their ability to fully model
human brain physiology and pathology (152, 153).

Standardization of methods and analytical techniques
across laboratories is critical for maximizing the utility of
these human-specific models. Significant progress has
already been made in defining neuronal cell types through
transcriptomic, morphological, and electrophysiological anal-
yses. These efforts facilitate direct comparisons of preclinical
data obtained from human brain tissue across different
research groups (68, 154, 155). Moreover, such standardization
could include the collection and shared analysis of tissue
banks that provide data from distinct and rare pathologies.

These human-specific systems, whether based on slices or
organoids, can be applied to a multitude of experimental
applications, including electrophysiological recordings, tran-
scriptomics, histology, and imaging (Fig. 4). Recent advance-
ments have expanded this toolbox to include two-photon
microscopy, which enables high-resolution imaging of neuro-
nal morphology and activity in intact tissue, and multipatch
electrophysiology, which allows simultaneous recordings
from multiple neurons to assess local synaptic connectivity

and microcircuit dynamics (115, 156, 157). Moreover, multio-
mics approaches, such as single-cell and single-nucleus RNA
sequencing, proteomics, and metabolomics, are increasingly
used to dissect the molecular and cellular complexity of
human brain tissue in both health and disease (158–161).
Combining in vivo measurements from patients with subse-
quent ex vivo recordings and analyses of tissue samples from
the same individuals holds great promise for identifying novel
biomarkers and therapeutic targets (132). These approaches
not only help to resolve interindividual variability but also
facilitate the development of personalized strategies for diag-
nostics and therapy. Furthermore, they can be adapted to
model specific diseases and investigate pathogenesis, disease
progression, and potential therapeutic targets or compounds
(162–164). In the following section, we will elaborate on how
disease can bemodeled in human tissue, focusing on epilepsy
and glioblastoma (GBM).

HumanModel Systems to Study Epilepsy

Despite the development of many new drugs, treatment
with antiseizure medications (ASMs) has not resulted in a
significant improvement in therapeutic outcomes. Although
ASMs achieve seizure freedom in �60% of treated patients
(2), they generally reduce excitability in all neurons, leading

Figure 3. Toolbox to study research questions using surgically resected human brain tissue. A: access tissue or tissue with underlying pathology can be
used for experiments in acute slice preparations. B: human organotypic brain slice cultures and human organoids allow targeted investigations such as
viral labeling of specific cells, gene modulation, and induction of pathology. Figure, in part, created with a licensed version of BioRender.com.
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to a range of side effects, including drowsiness, irritability,
mood changes, weight gain or loss, dizziness, sleep distur-
bances, nausea, blurred vision, hair loss or unwanted hair
growth, swollen gums, and shaking hands (165). Therefore,
alternative and more precise treatment options and signifi-
cant advancements in epilepsy research are urgently needed.

Numerous mechanisms underlying the development of
epilepsy have been identified, ranging from genetic variants
to immune-related processes and disturbances in brain
development to traumatic brain injury. Initially, the investi-
gation of acute brain slices of epilepsy patients after resec-
tive epilepsy surgery was successfully used to identify and
further investigate cellular and molecular mechanisms that
participate in ictogenesis (166–170). However, to what extent
the activity in the slices might be in part physiological in
nature is not entirely clear and is still under debate (170).
Most likely, the same circuits that underlie seizure genera-
tion are also part of physiological behavior, such as slow-
wave sleep and memory formation (171, 172). Although
studies in acute slices are essential to understand the basic
principles of the human brain, novel protocols that allow
stable human organotypic slice cultures with intact cellular

and network function open novel experimental paradigms
that are not possible in the acute preparations (135, 138,
164, 173).

Gene therapy using adeno-associated viruses (AAVs), her-
alded for its cell-specific precision, has shown promising
effects in rodent models of epilepsy (174). However, our
understanding of pathological hyperexcitability in the
human brain and the potential for cell-specific modulatory
techniques remains limited. The primary goal is to geneti-
cally target andmodify the activity of specific subsets of cells
in the human brain. In recent years, several successful
attempts have been reported in achieving highly specific,
viral vector-mediated expression in selected cell types in
nonhuman primates (175) and human slice cultures (75, 173,
176, 177). This approach offers the potential to target cells
within epileptic foci using novel genetic strategies to mini-
mize side effects and optimize therapy. For instance, the
overexpression of genes to reduce seizure activity has been
validated in preclinical studies using animal models (178–
181) and was, in parts, validated in human organoids (180).

Furthermore, viral delivery of genetic tools may enable
advanced, on-demand activation or inhibition of cells through

Figure 4. Experimental readouts in human tissue samples. A: electrophysiological recordings using whole cell patch-clamp recordings and measure-
ment of active and passive properties of the neurons, synaptic and synchronous multiunit activity (MUA), cellular activity, and spatial-temporal network
assessment using multielectrode array (MEA) recordings. B: morphological analysis of neurons and dendritic spines, as well as spatial transcriptomics,
complement the electrophysiological measurements. Parts of the figure were adapted from Refs. 138 and 140 used with permission under CC-BY
license. Figure, in part, created with a licensed version of BioRender.com.
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optogenetics (opsins) (182–184) or chemogenetics (185).
Several of these tools have already been tested in human
organotypic slice cultures and proven to be functional (177,
186). However, further refining the recording electrodes and
coupling these tools to closed-loop systems for in vivo use
remain a significant technical challenge that must be
addressed before they can be applied in clinical settings (187,
188).

HumanModel Systems to Study Glioblastoma

Glioblastoma (GBM) is the most common primary brain
cancer, with a dismal prognosis. Despite maximal surgical
resection, chemotherapy, and radiation, recurrence and
mortality are inevitable. GBM is shaped by developmental
programs, genetic drivers, and, importantly, the tumor
microenvironment (TME) (189–193). Recent work has shed
light on the importance of interactions of glioma cells with
the normal brain’s neurons, glia, and immune cells (191,
194–196). Although several novel therapies, such as immu-
notherapies, angiogenesis inhibitors, and alternative drug
delivery methods, have been explored (197–199), these
approaches have failed to significantly extend overall sur-
vival, highlighting a critical translational gap between pre-
clinical research and clinical efficacy (200).

One of the main issues lies in the use of animal models,
such as genetically modified rodents or xenografts, which
do not fully replicate the complex tumor microenvironment,
cellular heterogeneity, and immune landscape of human
GBMs (201, 202), leading to species mismatch (203). Although
these models have been valuable for understanding tumor
biology and testing treatments, they lack the ability to accu-
rately mimic human GBM pathogenesis, progression, and
therapy resistance (204, 205). For instance, rodent models
often fail to reproduce the dynamics of blood-brain barrier
(BBB), which play a crucial role in therapeutic delivery (206,
207). Moreover, the discrepancy in immune system responses
and CNS-specific interactions between animal models and
humans presents challenges in translating promising preclin-
ical results to clinical settings. The failure to consider these
factors results in a significant gap in translating new thera-
pies from bench to bedside. Thus, there is a need for more
advanced and representative models that better mimic
human GBM, such as organotypic brain slice cultures, which
have shown promise inmore closelymodeling tumor growth,
immune environment, and therapeutic responses observed
in humans (205, 208, 209).

Organoid technology also holds promise for GBM research.
Although only�5% of traditional GBM culture models can be
correctly classified as brain tumors, all tested GBM organoid
models can be transcriptionally classified as GBM with high
confidence (210). Organoids may overcome the limitations of
traditional 2-D and tumor sphere cultures bymaintaining cel-
lular diversity seen in patient tumors and modeling the TME
and its microenvironmental gradients (211–213). HumanGBM
cancer stem cells have been cocultured with human cerebral
organoids, allowing for interactions between cancer and non-
cancer cells without species mismatch (212, 214). Indeed, such
cocultured organoids form microtubule transport networks
mimicking GBM invasion (212). Single-cell RNA sequencing of
GBM organoids shows that an appropriate diversity of cell
types is recreated compared with sets of patient-derived GBM

tissue and glioma spheres (215) Furthermore, recent evidence
has demonstrated the ability of GBM tissue to transfermRNA
to nonmalignant organoid cells through an extracellular vesi-
cle-mediated process (216). By using the patient’s own tumor
tissue in a cerebral organoid, it is possible to take advantage
of patient-specific genetic information and construct a per-
sonalized precisionmedicine platform for drug screening.

CONCLUSIONS AND OUTLOOK
Over millions of years, the human brain has evolved dis-

tinct features, particularly within the neocortex, resulting in
increased size, complexity, and unique cellular composition
due to specialized molecular expressions and intricate con-
nectivity. Human neurons are notably larger with extensive
dendritic branches, enhancing synaptic connections and
information processing capabilities. These structural and
functional specializations give rise to the ability to engage in
abstract thinking, express empathy, use complex language,
and create sophisticated tools.

Recent single-cell genomic studies have uncovered a
diverse array of brain cell types, further highlighting the
functional specialization of the human brain. Moreover,
glial cells have emerged as active contributors to neuronal
function, influencing synaptic activity and neural circuitry
beyond their traditional supportive roles. Despite these
advances, the full extent of cellular functional specialization
and its implications for cognition and disease remain areas to
be explored.

Future research should focus on further elucidating how
specific cellular properties contribute to higher cognitive
functions and exploring their roles in neurological disorders.
Using integrative approaches that combine genomics, tran-
scriptomics, electrophysiology, and advanced imaging in
human tissue samples will be crucial. Comparative studies
across species will enable us to investigate evolutionary
developments leading to our unique cognitive abilities.
Importantly, bridging the translational gap through the
development of human-specific disease models holds prom-
ise for transforming these insights into clinical applications.
Continued research into the human brain’s complexities will
deepen our understanding of its unparalleled capabilities
and inform strategies to address its vulnerabilities.
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