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ABSTRACT ARTICLE HISTORY
Volatility forecasting for Bitcoin has garnered increasing attention due to heightened Received 24 July 2024
investment interest and the inherent risks associated with cryptocurrencies. Traditional Accepted 12 August 2025

forecasting models, such as the Generalised Autoregressive Conditional Heteroskedas- KEYWORDS
ticity (GARCH) family models, are widely employed. However, there is a need for careful Bitcoin; volatility; forecasting;
consideration regarding their ability to capture extreme shocks and the long-term LSTM: GARCH
volatile features. In this study, we fit several GARCH models, with the Exponential

GARCH model demonstrating the best goodness of fit. We further utilise their volatil-

ity observations for an automated forecasting solution, using the Long Short-Term

Memory (LSTM) neural network for predictions. Our results indicate a significant clear

improvement in volatility forecasting regarding both the model’s in-sample and out-

of-sample accuracy. Notably, the LSTM model optimises information intake through its

short- and long-memory states. Overall, our novel LSTM neural network model is more

robust in responding to market shocks and regime changes.

1. Introduction

Cryptocurrencies represent the most prominent application of decentralised blockchain technology, charac-
terised by key advantages such as low entry barriers, transparency, and efficient transaction costs. In 2022, over
22,000 different ‘coins’ were traded, including inactive and discontinued ones.! As of December 2023, there are
more than 9, 000 active cryptocurrencies.”> Some market intelligence predicts that overall capitalisation could
reach USD 5.03 trillion by 2028, implying a compound annual growth rate of approximately 30.4%. In light of
these, Bitcoin maintains its leading position with a market capitalisation of around USD 561.3 billion as of 2023.°

The Bitcoin market has proven to be highly speculative and volatile. Many professionals argue that Bitcoin,
along with cryptocurrencies in general, is not isolated from the traditional banking system. For instance, crypto-
focused banks, including Silvergate Bank, Silicon Valley Bank, and Signature Bank, were shut down following
the bankruptcy of the crypto exchange FTX. These failures have been linked to the banks’ crypto holdings and
have significantly distorted financial market stability. Consequently, establishing Bitcoin volatility forecasting
models is a top priority for investors and provides substantial benefits to the economy.

Volatility forecasting and modelling has accumulated a rich literature based on Engle (1982), which intro-
duces the concept of conditional heteroscedasticity and the general ARCH model. Bollerslev (1986) extended
this with half autoregressive conditional heteroscedasticity, leading to the original GARCH model. Together
with various extensions, the GARCH family models have become the most widely used technique to address
three typical properties of financial time series: asymmetric extreme values, heavy tails, and volatility clustering
(see Bollerslev 1986; Engle 1982; Glosten, Jagannathan, and Runkle 1993; Nelson 1991; Zakoian 1994). Efforts
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Figure 1. Bitcoin prices and implied volatility index (2019-2023).

have also been made to improve realised volatility forecasting based on the GARCH framework by considering
intra-day high-frequency price movements. For instance, Hansen, Huang, and Howan Shek (2012) proposed a
realised GARCH model in which the Autoregressive Moving Average (ARMA) representation in the realised
measure enables estimation of both conditional variance and intra-day realised volatility. Applications of this
model to blue-chip stocks and SPDR S&P 500 ETF (SPY) demonstrated superior performance compared to
previous GARCH models. Later, Hansen and Huang (2016) adopted the same idea to construct the realised
Exponential GARCH model and showed that this technique improves volatility model fitting using eight dif-
ferent realised volatility measures, including the realised kernel, the daily range, and realised variance measures
under various sampling frequencies of returns. However, due to microstructure noise, selecting reliable realised
measures for such a framework can be critical and challenging, as documented in Andersen, Bollerslev, and
Meddahi (2011); Hansen and Huang (2016).

In terms of the volatility forecasting for the Bitcoin market, studies using GARCH family models emerged
rapidly. For example, Aras (2021); Dyhrberg (2016); Katsiampa (2017) tested more than 200 variants of GARCH
models, and Bergsli et al. (2022) compared the performance of GARCH models with heterogeneous autoregres-
sive (HAR) models, both suggesting that GARCH models are useful and efficient for forecasting Bitcoin volatility.
However, as with applications in traditional financial markets, their strong performance is theoretically assured
only when the time series do not contain extreme values, as Franses and Van Dijk (1996) suggested. Regu-
lar price jumps, bubbles, and crashes in Bitcoin reveal possible inaccuracies in volatility predictions made by
GARCH models (see Figure 1). Although the Bitcoin return distribution appears symmetric, it clearly exhibits a
high peak, indicating a non-normal, fat-tailed distribution. This is verified by hyperbolic tails in Figure 2(b) and
implies a large kurtosis. These features suggest extreme values in the return time series. Nevertheless, GARCH
remains valuable as a fundamental volatility modelling and forecasting method. In particular, similarity between
the statistical properties of Bitcoin returns and those of classic financial asset returns motivate us to start with
the GARCH framework. We also believe it is meaningful to thoroughly explore this forecasting technique before
moving on to more complex models or additional modifications. Therefore, the objective of this study is to iden-
tify a group of GARCH models that best suit Bitcoin volatility forecasting and bring them together to deliver
improved predictions.
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Figure 2. Statistics of Bitcoin returns. (a) Normal dist. PDF (b) Logarithmic Normal PDF.

To address the challenges in prediction caused by heavy tails and extreme returns, we think deep learning
algorithms should be useful for establishing forecasting models built upon the GARCH framework. Rapidly
developing deep learning techniques inspired applications of neural networks and other learning models for
financial market forecasting. Previous studies have explored hybrid forecasting frameworks such as GARCH-
Support Vector Regression(SVR), GARCH-Artificial Neural Network(ANN), and GARCH-LSTM. For exam-
ple, Li et al. (2009); Peng et al. (2018); Pérez-Cruz, Afonso-Rodriguez, and Giner (2003) replaced the autore-
gressive part with a SVR model to enhance the model fitting and prediction accuracy. However, these methods
introduce a black box into the GARCH framework, which is generally disfavoured in academic finance. A more
efficient approach is to use GARCH-type volatilities as inputs for model training (Fu 2023; Kim and Hyun
Won 2018; Kristjanpoller and Minutolo 2016; Sun and Yu 2020). We find that SVR and ANN, supported by
well-established theoretical foundations, have been extensively explored and have demonstrated practical appli-
cations. But in the context of modelling nuanced time series dynamics and achieving accurate predictions in
financial markets, these algorithms are limited by their memory-less feature (Kristjanpoller and Minutolo 2016;
Sun and Yu 2020).

In recent years, the Long Short-Term Memory (LSTM) architecture introduced by Hochreiter and Schmid-
huber (1997) has gained widespread use for handling memory in time series modelling. This training technique
is recognised for its capability to adapt to various memory lengths and decay rates, making it particularly useful
for financial data. Similar to other neural networks and general deep learning architectures, it also facilitates
learning from features that present different memory and statistical properties. For example, an LSTM model
can be constructed using volatility estimates, trading volumes, gold prices, bond yields, and various other time
series inputs (see Fu 2023; Garcia-Medina and Aguayo-Moreno 2023; Kim and Hyun Won 2018; Wu et al. 2018).
Hybrid models combining classic time series models (e.g. AR, ARIMA, GARCH) and LSTM have demonstrated
superior performance in numerous financial forecasting studies, particularly in their ability to adapt to extreme
return values (Bergsli et al. 2022; Caporale and Zekokh 2019; Katsiampa 2017; Wang, Andreeva, and Martin-
Barragan 2023; Zahid, Igbal, and Koutmos 2022). Some specific examples are the use of GARCH-LSTM to
forecast prices, value-at-risks, volatilities, and portfolio risks across various financial markets, including the
crypto market (AlMadany et al. 2024; Nsengiyumva, Mung’atu, and Ruranga 2025). For volatility predictions,
although most of these studies are interested in realised volatility, Christensen and Prabhala (1998) argue that
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implied volatility is a better indicator after addressing overlapping and high autocorrelation issues in the data
sampling procedure (also see Canina and Figlewski 1993). We believe that implied volatility is especially impor-
tant for Bitcoin, given its highly volatile price history and the relative lack of supportive indicators in its derivative
markets. Hence, in this paper, we propose to focus on implied volatility forecasting for Bitcoin. This technique
will also benefit Bitcoin option investors by assisting with pricing and hedging, as well as providing additional
tools to enhance their investment strategies.

Leveraging deep learning architectures to design forecasting models is currently favoured, but it always
involves challenges in finding reliable input features. In the examples mentioned above, model inputs typically
involve various prices and volatility estimates. Sometimes multi-layered learning architecture is employed, while
trade-offs between computational complexity and accuracy are consistently present. Choices can be arbitrary,
as we see studies involving rather complex and higher-order models to showcase enhanced forecast accu-
racy (e.g. Gao, He, and Engin Kuruoglu 2021; Kim and Hyun Won 2018). The advantages and disadvantages
of different models add challenges in designing an effective learning architecture. For example, range-based
models (e.g. Garman and Klass 1980; Parkinson 1980) only offer effective volatility estimations when lever-
aging high-frequency data or at least intraday data. The same issues arise for realised variance calibrations
(see Barndorft-Nielsen et al. 2011). In this study, we aim to avoid inputs that are overly data-intensive or require
high liquidity and trading volumes, enabling broader applications in the cryptocurrency market. Hence, we
choose to use GARCH models to provide volatility estimates as input features, which are then refined using
LSTM. This is also a commonly used GARCH-LSTM hybrid framework which takes advantage of both the ana-
lytical strengths of GARCH-type models and the adaptability of advanced deep learning techniques. We also
avoid using higher-order architectures that introduce greater computational complexity and time costs. Given
the need for high-quality inputs in such a design, we conducted a careful analysis of GARCH model fitting to
produce reliable input generation. The use of widely adopted GARCH-type models and a relatively simple model
architecture ensures that our proposed model provides a foundation for future developments in both academia
and industry.

To summarise, our study addresses two gaps in Bitcoin volatility forecasting. First, we design a model to pre-
dict implied volatility, particularly useful for Bitcoin derivative investments. Our forecasting target is the Bitcoin
Implied Volatility Index(BitVol) index,> produced by T3 Index, and derived from the prices of tradable Bitcoin
options. Second, we introduce a GARCH-LSTM hybrid model with straightforward GARCH-type inputs and
manageable computational complexity, showing promise for further applications. We build two GARCH-LSTM
models for 1-day and 5-day implied volatility forecasting, respectively. Both models outperform the GARCH
family models for in-sample and out-of-sample performance. In particular, as evidenced by the out-of-sample
testing dataset, we successfully reduced the prediction percentage error from over 10% (across all GARCH-type
models) to 5.70% for the 1-day forecasting and 8.22% for the 5-day forecasting.

The literature has rapidly grown to combine a machine learning model, such as LSTM, with a traditional
volatility estimation method like GARCH(1, 1) (Fu 2023; Garcia-Medina and Aguayo-Moreno 2023; Kim and
Hyun Won 2018; Wu et al. 2018). However, the common approach is to take a selected GARCH model esti-
mation and plug it into a LSTM model to forecast volatility. This would have several issues on both GARCH
and LSTM sides. For the former, there would be concerns of the right choice of a GARCH model that fits the
empirical data; market extreme events and so on. For the latter, potential issues include input sensitivity, com-
plexity of LSTM structure, interpretability, life span (shelf life), model accuracy, etc. To best mitigate these issues
efficiently and effectively, we adopt this popular hybrid (GARCH-LSTM) structure but with our own innovative
twists that bring multiple contributions to the current literature. First, it accounts for computational efficiency
as both GARCH models and the LSTM are quick to compute and run. Second, forecasting accuracy is improved
due to the reliable ‘preliminary’ forecasting results generated by well-fitted GARCH models, coupled with the
proficiency of LSTM in handling sequential data. Third, our model is straightforward for traders to understand,
accept, and adopt due to its use of predictions from GARCH-type models and the simplicity of a linear-like,
single-layer LSTM neural network. More importantly, compared to previous studies that use endogenous indexes
or GARCH parameters as LSTM inputs, our approach builds a stronger theoretical foundation and achieves a
better balance between predictability and model complexity, delivering robust predictions with a single-layer
LSTM model.
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The rest of this paper is organised as follows: Section 2 provides an overview of the volatility research for
Bitcoin. Sections 3 and 4 present the data and methods used. Section 5 shows the results, Section 6 discusses the
model interpretations, and Section 7 draws the conclusion and discusses future research.

2. Literature review

As one of the most important problems in investment research, volatility forecasting has been extensively
studied since 1990s (Canina and Figlewski 1993; Engle and Patton 2001). Literature suggests that volatility is
technically more predictable than daily returns (Fassas and Siriopoulos 2021; McAleer and Medeiros 2008).
GARCH family models are probably the most commonly used methods to estimate and forecast volatility
due to their ability to cope with properties of financial data such as volatility clustering, mean-reversion, and
asymmetric influence of returns. Alternatively, stochastic volatility (SV) models and heterogeneous autore-
gressive (HAR) models like the one seen in Corsi (2009); Taylor (2004) can be used. Since Engle (1982)
proposed the ARCH model in 1982 and Bollerslev (1986) established the original GARCH model, a wide range
of variants of this modelling framework have emerged, including the Glosten-Jagannathan-Runkle GARCH
(GJR-GARCH) (Glosten, Jagannathan, and Runkle 1993), threshold GARCH(TGARCH) (Zakoian 1994), Expo-
nential GARCH(EGARCH) (Nelson 1991) and so on, aiming to capture volatility clustering, heteroskedasticity,
asymmetric shocks and leverage effects.

The growing interest in managing crypto investments risks has naturally popularised the applications of
GARCH models into widespread use. For example, Katsiampa (2017) applies 11 types of GARCH models to
estimate Bitcoin’s volatility using a sample from 2010 to 2016 and finds that the Autoregressive-GARCH model
fits the best. Caporale and Zekokh (2019) examine applying over 1000 GARCH-type models across four cryp-
tocurrencies to generate one-step predictions for Value-at-Risk and Expected Shortfall. Volatility, by definition,
is a ’hidden’ measure, which is not directly observable. The two most popular volatility measures are implied
volatility and realised volatility. Bergsli et al. (2022) compare prediction accuracy between GARCH-type and
HAR models for realised volatility of Bitcoin and conclude that HAR models demonstrate superior forecast
power over GARCH-type models. On the contrary, Hoang and Baur (2020) verify that GARCH predictions
align better with Bitcoin implied volatility derived from option prices than HAR models. Christensen and Prab-
hala (1998); Hoang and Baur (2020) argue that the former is more insightful as it is derived from option prices
and reflects the market’s expectations in the near future. However, most existing literature on Bitcoin volatility
focuses on realised volatility, as the Bitcoin options market is relatively new and its associated implied volatility
index is just developed in recent years.

In general, relying solely on GARCH models does not yield strong performance. A modified or hybrid frame-
work that integrates GARCH with asymmetry models or regime-switching techniques (e.g. Markov-Switching)
appears more effective (for example, Ardia et al. 2018; Charles and Darné 2019; Haas, Mittnik, and Paolella 2004).
Moving forward, a growing number of studies have begun incorporating deep learning methods into volatil-
ity forecasting models. Aras (2021) suggests a hybrid approach that integrates the GARCH framework with
Support Vector Machine after evaluating the forecasting performance of 110 different GARCH-type models.
Similar techniques are applied by Kristjanpoller and Minutolo (2016); Sun and Yu (2020) who use GARCH
model fitting results as inputs for SVR and ANN, respectively. Seo and Kim (2020) employ a more advanced
Higher Order Neural Network (HONN) learning technique to train predictions based on past volatility and
GARCH-type volatilities. Due to their memoryless nature, these learning algorithms are not well-suited for han-
dling sequential data and long-term dependencies. This might explain why some of the aforementioned studies
prefer using features such as model parameters and prediction errors, which exhibit less memory, as learn-
ing inputs. However, as Shen, Wan, and Leatham (2021) pointed out, constructing of learning inputs is crucial
for advanced deep learning techniques to achieve effective model training. This argument is supported by the
poorer performance of GARCH-recurrent neural network(RNN) models compared to a simple GARCH(1, 1)
when realised volatility, derived from daily squared returns, and historical Garman-Klass volatility are used as
inputs. Given the current advancements in deep learning algorithms, LSTM is undeniably the most effective
approach to tackling this issue. For example, Fu (2023); Garcia-Medina and Aguayo-Moreno (2023); Kim and
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Hyun Won (2018); Zahid, Igbal, and Koutmos (2022) investigate a range of large-scale, multi-layered GARCH-
LSTM models and demonstrate their enhanced accuracy in predicting volatility compared to using GARCH
models alone. In particular, Garcia-Medina and Aguayo-Moreno (2023) develop a cryptocurrency portfolio
strategy where volatility estimation relies on GARCH-LSTM, highlighting the potential of this hybrid framework
for more complex applications in the cryptocurrency market. Zahid, Igbal, and Koutmos (2022) demonstrate the
success of integrating a well-fitted GARCH model into LSTM to generate realised volatility predictions; Amir-
shahi and Lahmiri. (2023) test across 27 cryptocurrencies using the GARCH-LSTM and the GARCH-Feed
Forward Neural Networks(DFFNN) hybrid frameworks, observing improved volatility prediction in both.

In cryptocurrency, other studies have applied a similar hybrid architecture of deep learning models to
address market predictions, including price movements, market volatility, tail risks, sentiment impact, etc. Wu
et al. (2018) combine AR and LSTM models to predict the Bitcoin price movements, followed by Gao, He, and
Engin Kuruoglu (2021) who find that including GARCH volatility in LSTM model training helps improving Bit-
coin price predictions. When Wang, Andreeva, and Martin-Barragan (2023) consider exogenous factors such as
the US daily news index, they conclude that a similar hybrid model outperforms traditional forecasting methods.

These studies provide conceptual design and important modelling development of hybrid frameworks, such
as GARCH-LSTM. However, we think several fundamental challenges remain unresolved. Existing studies show
that multi-layered architectures tend to overfit when the market is highly volatile and exposed to frequent regime
shifts, raising concerns about their robustness in real-world applications (Seo and Kim 2020). This point is
also supported by Ardia et al. (2018); Haas, Mittnik, and Paolella (2004), which observe a rapid decline in
the forecasting accuracy of such complex hybrid models when market conditions change. Several compara-
tive studies (Bergsli et al. 2022; Franses and Van Dijk 1996; Hoang and Baur 2020) have found that traditional
GARCH models can outperform more complex, yet poorly specified, alternatives in highly volatile environ-
ments, such as the cryptocurrency market. Additionally, many complex deep learning models require large-scale
datasets and intricate hyperparameter tuning, which can be impractical or infeasible for practitioners dealing
with fast-evolving markets and limited computational resources (Shen, Wan, and Leatham 2021).

In response to these unsolved issues in hybrid deep learning design, we propose a GARCH-LSTM architec-
ture suited for practical applications. We bridge the gap in current hybrid model designs through two distinct
innovations. The first involves screening, selecting, and calibrating a set of GARCH-type models with a more
appropriate distribution (e.g. t-distribution vs. Normal) to ensure optimal input quality. The second is the use of
a single-layer architecture to reduce computational intensity and the need for large datasets. It would also have
better interpretability and shelf life. Regarding literature contribution, this study establishes a foundation for
improving forecast accuracy through the from GARCH-type models to GARCH-LSTM hybrids. Our proposed
single-layer architecture provides a solid baseline for the integration of traditional models with deep learning
techniques. Moreover, as the Bitcoin options market is still developing, research on implied volatility in the Bit-
coin market is still limited, with only a few studies addressing valuation (Hoang and Baur 2020; Zulfiqar and
Gulzar 2021). This paper adds to the growing literature on this emerging field.

3. Methodology

We explore the implementation and performance of implied volatility forecasting using GARCH family models.
To enhance the forecasting results, we build a Long Short-Term Memory (LSTM) neural network model in
which the predictions from GARCH family models and historical implied volatility data are set as features.

3.1. GARCH family models

The GARCH family models are constructed to introduce mathematical techniques that deal with stochastic
volatility:

&t = O'tZt, (1)
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where &, represents the return residuals, o; denotes the stochastic volatility term, and Z; is the noise term with
mean zero, variance one. The innovation distribution of Z; is usually selected from a normal distribution or a
Student’s t distribution.

The standard GARCH model is defined by Bollerslev (1986). See below for GARCH(1, 1):

2 _ 2 2
o =w+as_ +foiy,

>0, a>0, pf>0. (2)

Glosten, Jagannathan, and Runkle (1993) argue that volatility responds to positive and negative residuals at
varying levels. Hence, they propose the Glosten-Jagannathan-Runkle GARCH (GJR-GARCH) model by adding
a term for negative residuals. We employ the GJR-GARCH(1, 1) version in this paper:

o'tz =w+ (ZS?_I + ygtz_lﬂ{gt_1<0} + ﬂo-tz—l’

w>0, a>0 pf>0 1yekR, (3)

where 14 is an indicator function such that 14 = 1if A is satisfied, otherwise 14 = 0. The GJR-GARCH model
reduces to the GARCH model if y is zero.

To model the asymmetric volatility responses, Zakoian (1994) introduces an alternative method to model
the asymmetric responses of positive and negative return shocks, which is the Threshold GARCH (TGARCH)
model. In this model, volatility responds to absolute residuals rather than squared residuals, as shown in
Equation (4) for TGARCH(1, 1).

o} = o+ aler—1] + 7 lecm1l e, <o) + Boi

w>0, a>0 pf>0 1yekR (4)

The Exponential GARCH (EGARCH) proposed by Nelson (1991) models the logarithmic variance. This model
ensures that the variance remains non-negative. In this paper, we use the symmetric version of EGARCH(1, 1):

lng'tz =w+ 0((th—1| - ]E|Zt—1|) + ﬁln Jtz—l’
w>0, a>0 pg>0 ®)

3.2. Long short-term memory (LSTM) neural network model

While GARCH family models provide valuable volatility forecasts, gaps and flaws still require addressing.
Observing the variations in the models above, we conclude that no universal form that suits every situation.
This presents the first challenge when applying these classic models to a new market like Bitcoin. Moreover, even
though we select a model using mathematical techniques, the return time series properties may change over time
as the market evolves. To address these issues and build an accurate and sustainable volatility forecasting model,
we employ a neural network, called LSTM, to combine outcomes from different GARCH models.

The LSTM model is a type of recurrent neural network (RNN) designed explicitly for sequential data inputs.
RNNs are distinguished by their ‘memory’ - they take information from prior inputs to current nodes, making
them effective at dealing with temporal problems. LSTM enhances basic RNNs by involving a forget gate, which
discards ’outdated’ information from prior nodes (see Figure 3).

In the LSTM, an input X« is constructed by T look-back timesteps and N features. On each timestep, the
LSTM cell generates a hidden state (H)1xm, where m is the number of units in the LSTM layer. By processing
X; from the earliest to the latest timesteps, information flows through the cell state {(C¢)1xm : t = 1,2,..., T}.
From prior time ¢t—1 to f, the current cell state takes information from the previous cell state and new input:

C=/i®Ci_1 +itQNy, (6)

where ® denotes the Hadamard product, f; € [0, 1]™ is the forget gate such that f; = 0 means removing every-
thing in C;—1, N; is new information given by new input and memory carried from previous hidden state,
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ir € [0, 1]™ is the input gate such that iy = 1 means taking all information in Ny. The new information carries
the previous hidden state H;_; and the new input X;:

Ny = L(X; - uc + Hiq - we + by), (7)

where (1) Nxm and (Wc) mxm are weights of the current input and the previous hidden state, respectively, (b:)1xm
is a bias parameter. The activation function £(x) introduces a scaling of the addition and subtraction of infor-
mation. Now, we focus on the most important part in the LSTM, the output H;. It is given by an output gate
ot € [0,1]™ and the cell state C;:

H; = 0; ® L(Cy). (8)

If o; = 1, the LSTM cell sends out all information in the cell state as a prediction; otherwise, ‘discounted’ infor-
mation is used as a forecast result. Note that the same activation function should be used for the new information
N; and the output H;.

The forget, input and output gates all consider both the new input X; and the prior output H;_:

fi = ©(X; - up + Hy_y - wy + by), )
it = O(X; - uj + He—1 - wi + by), (10)
0 = O(X; - uo + Hi1 ‘Wo+bo)) (11)

where (”f)Nxma (Wf)mxrm (Ui)Nsm> (Wi)mxm> (o)Nxm and (Wo)mxm are weights; (bf)lxm’ (bi)1xm> (bo)1xm
are bias parameters; and @ (-) is the Sigmoid function below:

1

Y e

(12)
The advantage of LSTM lies in its ability to learn how much old information should be stored in the long memory
state Cy, and what can be ignored. Hence, the hidden state H; indicates short memory. The structure of the LSTM
cell is shown in Figure 3.

We utilise a simple LSTM neural network architecture. The sequential input X; is constructed from a 30-day
look-back period of five features: 1-day forecasts given by GARCH(1, 1), GJR-GARCH(1, 1), TGARCH(1, 1)



THE EUROPEAN JOURNAL OF FINANCE . 9

} Feature

/ ) Timesteps

Batch size

o e e

; Sequential Input E E LSTM Layer ‘E i Dense layer E
| Timesteps = 30; i E # of units = m; E I Fully connected; !
E_#f_o_f_f_e_a_ty_rgff_s_.___i E Activation function: Linear; E i # of Nodes = 1: Output the E
! Loss Function: MSE; i i exact/averaged value E
E Optimizer: Adam. i i Activation function: Linear. |

Figure 4. LSTM neural network architecture.

and EGARCH(1, 1), along with past Bitcoin implied volatility (BitVol) values from t—30 to t—1. The target Y,
is the BitVol at t. Other technical specifics are summarised in Figure 4. Here, it is worth noting that we use a
linear activation function, instead of the common non-linear activators like tanh and ReLU. This is because all
our input features are on the same scale as the target and should not deviate significantly from the target. Thus,
training will be more efficient without scaling or shape changes. After comprehensive empirical testing, a 30-
day look-back period was selected to determine the optimal length for capturing sufficient temporal information
while avoiding excessive noise. We tested several look-back periods, including 7, 14, 30, and 60 days (the results
are shown in Appendix), to evaluate their impact on model accuracy and training stability. Among these, the 30-
day period consistently provided the best results, balancing the trade-off between capturing relevant volatility
patterns and avoiding redundancy or overfitting. Shorter look-back periods, such as 7 and 14 days, lacked suffi-
cient temporal information to identify key trends, resulting in underfitting and limited predictive performance.
In contrast, longer periods, such as 60 days, introduced excessive noise and reduced the model’s responsiveness
to recent market dynamics. Furthermore, the 30-day look-back period aligns naturally with the target variable
in our model. Since the implied volatility is derived from 30-day option prices, ensuring that the input features
effectively correspond to the output data enhances the model’s predictive performance.
The LSTM model optimisation followed a two-step process:

(1) Random Search: We first conducted a random search to explore general hyperparameter ranges and
efficiently identify promising configurations.

(2) Grid Search: Using the ranges determined in the random search, we systematically evaluated all possi-
ble hyperparameter combinations through grid search. This approach allowed us to select the optimal
configuration based on model performance on the validation set.

Table 1 summarises the final hyperparameters chosen for the LSTM model and the ranges tested during
tuning.

e Number of Units: A total of 8 units provided an optimal trade-off between computational efficiency and the
ability to capture complex temporal patterns.
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Table 1. LSTM hyperparameter tuning results.

Hyperparameter Optimal value Tested Range
Number of Units 8 8,16, 32,64
Batch Size 32 8,16,32,64
Validation Split 0.2 0.2,0.15,0.25
Early Stopping Patience 10 5,10,15
Epochs 200 50 to 300
Layers 1 1,2,3,4,5
Time Steps 30 7,14,30,60
Learning Rate 0.01 0.001, 0.01, 0.05
Dropout Rate 0.2 0.2,03,05

e Batch Size: A batch size of 32 balanced training speed and performance, avoiding convergence issues
associated with larger or smaller sizes.

e Validation Split: A 20% validation split ensured sufficient data for both training and validation while
mitigating overfitting.

e Early Stopping Patience: A patience value of 10 epochs prevented unnecessary training while ensuring
convergence.

e Epochs: Training for up to 200 epochs allowed sufficient passes through the data while avoiding overfitting
due to early stopping.
Layers: A single-layer LSTM architecture balanced simplicity, efficiency, and performance.
Time Steps: A look-back period of 30 time steps provided sufficient historical context without introducing
noise.

o Learning Rate: A learning rate of 0.01 ensured stable and efficient weight updates.

e Dropout Rate: A 20% dropout rate improved generalisation by reducing overfitting.

We employed a random search strategy to identify suitable training parameters and used the grid search
method to derive the optimal hyperparameters.

3.3. Performance metrics

To examine the forecasting results of the models introduced in previous sections, we utilise the performance
metrics in Equations (13) and (14), respectively. Recall that we use Mean Squared Error (MSE) as the loss func-
tion, which is the square Root of Mean Squared Error(RMSE). Hence, RMSE is theoretically minimised when
training the model.

(13)

(14)

where {Y; : i = 1,2,...,n} represents the forecast values and {Yi:i=1,2,...,n} denotes the target values.

Root Mean Squared Percentage Error(RMSPE) would be more effective than other measures in capturing the
degree of errors in relation to the desired target values. Additionally, RMSPE would penalise significant errors
more severely than standard RMSE, which this paper requires. Therefore, RMSPE takes precedence in this paper
when comparing the performance of model predictions.
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Autocorrelation Function

Figure 5. ACF and PACF of returns.

4. Data

Bitcoin daily prices are obtained from Yahoo Finance.® We choose the Bitcoin Implied Volatility (BitVol) index
as the outcome for our targeted volatility predictions. BitVol, produced by the T3 Index,” is a daily updated index
tracking expected 30-day implied volatility in Bitcoin. Our data spans from 7 January 2019 to 17 October 2023,
in total 1745 trading days. The Bitcoin market opens 24/7 and does not close on weekends or public holidays.
The Bitcoin daily closing price in U.S. dollars is recorded in the GMT zone.

The BitVol index is sourced from the T3 Index. We split the dataset into training and test data using an 80-20
ratio. The training period runs from 7 January 2019 to 1 November 2022, comprising 1395 observations. The
testing period is from 2 November 2022 to 16 October 2023, with 349 observations. Note that the training period
for the LSTM is 30 days shorter, as we take sequential inputs with 30 timesteps.

The BitVol index contains missing data on some weekends and holidays before June 2020. The missing values
constitute a small portion of the entire dataset (i.e. 5.57%) and are only present in the first half of our training
dataset. We expect them to have minimal impact on our model training. Therefore, we adopt a simple and
effective method - linear interpolation — to fill in the missing values. The completed BitVol index series is used as
the target. This treatment is also based on the assumption that market perception of volatility evolves sequentially
during periods when options are not tradable.

To ensure consistent data input for the LSTM model, we used conditional variance from GARCH models and
the BitVol index, which are on the same scale. The data was converted into a percentage format to avoid issues
caused by differing scales during model training.

5. Results

We first determine the mean process for return residuals ;. We examine the autocorrelation function (ACF)
and partial autocorrelation function (PACF) in Figure 5, confirming no autocorrelations in returns and return
residuals. Hence, we find return residuals through demeaning: ¢; = x; — u, where 1 is the average return in the
training dataset.

The calibration results of GARCH family models, and the degrees of freedom of the Student-T innovation
distribution of each model are presented in Table 2. We use these models to conduct 1-day volatility forecasts
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Table 2. Calibration results of GARCH family models.

Model ® o s y v

GARCH 0.236 0.070 0.930 2.0961

GJR-GARCH 0.191 0.077 0.937 —0.028 2.994

TGARCH 0.095 0.079 0.927 —0.012 3.154

EGARCH 0.066 0.166 0.988 2.805

1-Day Forecast 5-Day Forecast
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[0 Predicted Values [0 Predicted Values
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Figure 6. Comparison of target and predicted value distributions.

5 ,
and 5-day average volatility forecasts (i.e. @). The 1-day ahead volatility o,y is computed using &; and

o which is known at t. However, volatility from 2 days ahead will require non-observable noise terms. Two
techniques are used to address this issue: one is the simulation technique that draws Z; from corresponding
innovation distributions; the other is the bootstrap technique that draws noise terms from random sampling
based on the training dataset. Although these techniques can yield further volatility forecasting, we do not expect
either to produce a reliable result in the long-run. Hence, we limit the experiment to a short term of 5 days. It is
worth noting that bootstrap results are not available for the training dataset due to the lack of random samples.

The GARCH family models exhibited poor performance in some cases due to their inability to adapt to sud-
den shifts in volatility, particularly during high-stress market periods. The reliance of GARCH models on linear
relationships and past variance often leads to underestimation or overestimation of volatility during sharp mar-
ket movements. The LSTM model, however, demonstrated significant improvements, especially in long-term
(5-day) forecasts. This improvement can be attributed to the LSTM’s ability to capture short-term dependen-
cies through its gate mechanism and long-term memory states. These features enable it to retain relevant recent
information from historic volatility while linking it within extended volatility patterns from GARCH models.
This dual capability allows the model to dynamically adjust to evolving market conditions, unlike the static
assumptions of GARCH models.

To further justify the superiority of the GARCH-LSTM model beyond traditional loss function metrics, we
compared the distributions of the predicted and target volatility values. Figure 6 illustrates the density estimates
for 1-day and 5-day forecast horizons. In the 1-day forecast, the distribution of the predicted values aligns closely
with the target distribution, effectively capturing both skewness and kurtosis. This suggests that the model is
well-suited for short-term volatility predictions and retains the ability to represent the underlying data accu-
rately. In the 5-day forecast (right panel), the predicted distribution also matches the target values with slightly
increased deviations, which are expected due to the compounding uncertainties in large forecast horizons.
Nevertheless, the overlap between the predicted and target distributions remains substantial, highlighting the
robustness of the model even in extended forecasts. This analysis demonstrates that the GARCH-LSTM model
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Table 3. 1-day implied volatility forecast performance.

Training dataset Testing dataset
RMSPE RMSE RMSPE RMSE
GARCH 16.22% 15.86 12.71% 6.96
GJR-GARCH 16.01% 14.88 10.90% 6.02
TGARCH 16.85% 15.26 10.51% 5.83
EGARCH 14.30% 12.61 12.49% 7.28
LST™M 5.13% 5.08 5.70% 3.3

Table 4. 5-day average implied volatility forecast performance.

Training dataset Testing dataset
RMSPE RMSE
RMSPE RMSE Sim. Boot. Sim. Boot.
GARCH 15.79% 15.67 14.76% 14.35% 8.09 7.91
(8.63 x 1073) (6.83 x 1071) (5.73 x 1073) (3.62 x 107%) (335x 1071 (230 x 1072%)
GJR-GARCH 15.65% 14.68 12.51% 12.24% 6.99 6.88
(7.14 x 1073) (5.15 x 1071 (861 x 1073) (2.86 x 107%) (470 x 1071 (1.70 x 1072)
TGARCH 16.49% 15.18 11.22% 11.17% 6.19 6.18
(146 x 10™%) (9.12 x 1073) (135 x 1073) (1.24 x 107%) (7.16 x 1072) (6.75 x 1073)
EGARCH 188791% 142 x 10° 1518.46% 13.27% 8.53 x 102 7.97
(1.26 x 10'8) (1.03 x 10'19) (1.83 x 10%) (2.04 x 107%) (8.45 x 10%%) (132 x 1072)
LSTM 6.46% 6.22 8.22% 447

Note: The values in the table are the median and standard deviation of performance metrics, with the latter in parentheses.

not only achieves lower error metrics but also accurately reproduces the distributional properties of the target
data. This distributional fit further supports the model’s ability to effectively capture the underlying dynamics
of market volatility, making it a reliable tool for financial forecasting.

The performance metrics are in Tables 3 and 4. For the 5-day forecasting, we carry out 1000 runs to examine
the robustness of the methods. The values in Table 4 represent the median and standard deviation of perfor-
mance metrics, with the latter in parentheses. We do not find clear differences in 1-day forecasting using these
GARCH-type models. EGARCH performs best for the training dataset, but does not stand out in the testing
stage. We observed an unusual result where all models exhibit much better performance in testing, particularly
with regard to the RMSE metric. In Figure 7, we examine the error Y; — Y; for each target Y; and confirm that
the ‘better’ performance results from coincidentally avoiding high volatility levels during the testing period. All
four models ‘fail’ when volatility exceeds 120(%), with GARCH, GJR-GARCH and EGARCH either over- or
under-predicting the volatility. TGARCH exhibits an even more harmful systemic error, primarily producing
under-predictions; moreover, as volatility increases, so does the bias. We believe the same explanation applies
to the performance of 5-day forecasting, although we cannot observe it due to the unstable outcomes resulting
from the simulation method. Another important observation is that, in the 5-day forecasting given by simula-
tion methods, EGARCH becomes unstable, the instability in multi-step EGARCH forecasts is primarily driven
by the interaction between the model’s high persistence (f ~ 1) and moderate shock sensitivity (), combined
with the random sampling of residuals from a heavy-tailed Student’s t distribution. Extreme values drawn dur-
ing simulation lead to exponentially amplified volatility due to the EGARCH model’s logarithmic variance
formulation. This effect compounds over 5 steps of forecasting, resulting in significant deviations. In contrast,
bootstrap-based forecasting methods and 1-day forecasts avoid this instability. Bootstrap methods resample his-
torical residuals, limiting extreme values to those observed in historical data and preventing the introduction of
artificial outliers. The 1-day forecasting results do not suffer from compounding effects, as they involve only a
single residual draw.

To further validate the forecasting performance, we also assess the statistical differences between models
using the Diebold-Mariano (DM) test (Diebold and Mariano 1995; Harvey, Leybourne, and Newbold 1997).
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Figure 7. GARCH family 1-day errors vs. Implied volatility.

The Diebold-Mariano test evaluates the null hypothesis that two forecasting models have equal predictive
accuracy, based on a user-specified loss function (here, the mean squared error, MSE). For two sets of fore-
cast errors, the DM test constructs the loss differential series d; = L(ea) — L(ep,), where L(-) denotes the loss
function (MSE in this study), and e4 ¢ and ep; are the forecast errors from models A and B at time t, respectively.

The DM test statistic is given by:

pM= 4 (15)

where d is the mean of the loss differential series, T is the sample size, and 27 fd (0) is a consistent estimate of
the spectral density of d; at frequency zero, adjusted for autocorrelation as proposed by Harvey, Leybourne, and
Newbold (1997).
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Table 5. Diebold-Mariano test results.

1-Day 5-Day

Model In-sample Out-of-Sample In-sample Out-of-Sample

GARCH 5.41*** (3.21e—08) 6.92*** (2.07e—11) 6.12*** (4.91e—09) 5.76*** (1.83e—08)
GJR-GARCH 5.58*** (1.76e—08) 7.00%** (1.25e—11) 5.21%** (2.35e—07) 4.63*** (4.99e—06)
EGARCH 6.03*** (4.95e—09) 8.62*** (2.31e—16) 6.45%** (1.08e—09) 5.99*** (5.33e—09)
TGARCH 5.77*** (9.80e—09) 7.85*** (5.22e—14) 3.11*** (1.85e—04) 1.94* (5.30e—02)

Note: This table reports both DM statistics and their p-values to demonstrate both in-sample and out-of-sample
forecasting performance at 1-day and 5-day levels. *, **, and *** denote significance at the 10%, 5%, and 1%
levels, respectively.

w— Target

= = Training
180 == Testing
160
140 [
120
100

ol
80 ]
60
40 -
T T T T
2019 2020 2021 2022 2023 2024

Figure 8. LSTM 1-day implied volatility forecasting.

We compare the four fitted GARCH models to our hybrid models in pairs and for both 1-and 5-day forecasts.
Table 5 reports the DM statistics and their p-values for both in-sample and out-of-sample forecasting at 1-day
and 5-day levels.

A higher positive value of the DM statistic indicates a higher forecast error variance of the tested model.
We obtain positive and significant DM statistics across all pairwise comparisons, which suggests that our
LSTM-based hybrid model outperforms all four GARCH models with better forecast accuracy. In addition,
the significance levels of DM statistics are strong (at 1% level) in most cases, further indicating that the hybrid
model is consistently better than the GARCH models in forecasting Bitcoin volatility.

In comparison, we also investigate the errors produced by the LSTM model and GARCH-type models (see
Figures 7 and 9). The deep learning technique effectively eliminates systemic errors introduced in the inputs
and ensures a more accurate prediction close to the target values. In Figures 8 and 10, we find that, overall, the
forecasting provided by the LSTM models is accurate. While it is challenging to train a 5-day forecasting model
as effectively as the 1-day model. Lacking updated information, the model shows signs of deviating from the
target shortly within a year of testing. Also, the model may fail to catch up with the market fluctuations even
in the short term. For example, we observed some unstable predictions in 2021 due to abrupt market changes
triggered by external events, which were not well represented in the training dataset. To mitigate such occur-
rences, expanding the training dataset to include more extreme market events could improve the robustness
of the model. Furthermore, an attention mechanism could help the model focus on significant market events,
enhancing accuracy during anomalies.
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180

w— Target

== Training
== Testing
160

140

120

100

T
2019 2020 2021 2022 2023 2024

Figure 10. LSTM 5-day implied volatility forecasting.

6. Discussion

In studies on deep learning applications, we notice little focus on interpreting how models work. Due to the
model’s complexity, extracting the impact of a feature or delineating the memory decaying patterns for LSTM
is challenging. However, we still believe exhibiting deeper insights into our model is worthwhile. We examine
the weights u, that carry input X; to new information in each LSTM unit (see Figures 11 and 12). We observe
that each LSTM unit handles a specific linear combination of the inputs. In Figure 11(a), the 1st and 7th units
primarily focus on positive and negative weighted averages, respectively. We note that the 1-day forecasting
model applies ‘strong’ negative weights to the GJR-GARCH input (e.g. the 2nd, 7th, and 8th units), whereas
this is not the case for the 5-day forecasting model. Another noteworthy finding is that the weights in the 5-day
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Figure 11. LSTM new information weights on inputs. (a) 1-day forecasting model (b) 5-day forecasting model.

Table 6. LSTM features impact.

Hist. BitVol GARCH GJR-GARCH TGARCH EGARCH
1-day model 0.7133 0.2638 —0.0427 —0.0645 0.1642
5-day model 0.7231 0.1382 0.1621 0.1232 0.0073

forecasting model are much smaller than those in the 1-day forecasting model, indicating that the former ‘tunes’
the inputs more conservatively.

According to this observation, we run a rough analysis of the feature impact by multiplying u.—excluding the
columns of units that only give outputs equal to or close to 0 by the dense layer weights of the same units. We
obtained the overall feature weights in Table 6. We conclude that the forecasting results are mainly driven by the
historical BitVol index. Minor adjustments are made using different GARCH family models, with GARCH con-
tributing the most. In the 1-day forecasting model, GJR-GARCH and TGARCH are used as a kind of ‘reversal
indicator. EGARCH shows almost no impact in the 5-day forecasting model, indicating that it is unsuitable for
long-run predictions.

7. Conclusion

This paper combines deep learning techniques with classic GARCH-type models to develop a hybrid forecasting
model that offers more accurate volatility predictions in the Bitcoin market. Among various time series mod-
els, the GARCH family is widely used for volatility forecasting due to their stable performance and efficiency.
However, our application results for GARCH(1, 1), GJR-GARCH(1, 1), TGARCH(1, 1) and EGARCH(1, 1)
demonstrate that these models do not yield accurate forecasting results and often exhibit systemic errors. Conse-
quently, we involve the LSTM model to enhance forecasting precision. By training a model capable of selectively
retaining and discarding memories, our LSTM neural network reduces the 1-day and 5-day forecasting errors
from over 10% to 5.70% and 8.22%, respectively. This improvement significantly enhances overall forecast-
ing performance and provides an effective solution to the GARCH model’s tendency to under-predict extreme
volatility.
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Figure 12. LSTM layer outputs of training dataset. (a) 1-day forecasting model (b) 5-day forecasting model.

We conclude with three key findings from our experiment. Firstly, the Bitcoin market exhibits similar time
series properties to the stock market, indicating that classic modelling techniques such as GARCH models are
applicable. However, the performance of these models for volatility forecasting varies. Moreover, GARCH-type
models do not effectively manage the more frequent high-volatility conditions in the Bitcoin market. Secondly,
although none of the GARCH-type models we applied are adaptive to extreme market shocks, they can serve as
stable input features in deep learning models. Our model demonstrates superior performance compared to most
previous literature addressing similar forecasting issues, attributed to the effective input from GARCH models
and historical BitVol. Lastly, the LSTM neural network possesses advantages in financial time series forecasting
due to its inherent design for handling sequential data. As the market absorbs shocks and information from the
past, a model that strategically builds long and short memories is beneficial for forecasting. This explains why the
LSTM can refine inaccurate and outdated volatility from various sources into more accurate and robust predic-
tions. The findings suggest several promising avenues for future research. Extending the hybrid GARCH-LSTM
approach to other financial instruments, such as different cryptocurrencies or exchange markets, could pro-
vide valuable insights into its generalisation across different asset classes and volatility regimes. Techniques such
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as differencing or integrating ARIMA models could help manage trends and seasonality, enabling the hybrid
model to address the challenge of non-stationary time series data. However, our study also reveals certain lim-
itations. Traditional GARCH models struggle to adapt to sudden, extreme market movements, highlighting
their limitations during high-stress periods. The LSTM model also requires high-quality input data and is prone
to overfitting if not optimised. Consequently, while the hybrid model is effective, it relies heavily on the qual-
ity of GARCH inputs and may exhibit reduced robustness when faced with unpredictable market shocks. To
enhance the model, high-frequency data that capture rapid market fluctuations could be particularly valuable
for short-term forecasting, enabling more responsive and actionable predictions. Moreover, incorporating alter-
native features such as trading volume or sentiment indicators derived from social media and news could enrich
the model’s understanding of market dynamics, especially in the highly reactive Bitcoin markets. Another key
area for improvement is the integration of exogenous variables. Including macroeconomic indicators such as
interest rates, inflation, and regulatory developments could provide a broader context for volatility predictions,
thereby improving the robustness and accuracy of the model. Techniques such as feature selection or atten-
tion mechanisms could dynamically assess the importance of these variables to refine the model’s predictive
performance. Additionally, incorporating explainable AI frameworks could enhance the interpretability of the
model, allowing investors and researchers to better understand the relationship between Bitcoin market condi-
tions and predicted volatility. Thus, our study contributes to developing more robust forecasting models capable
of addressing the unique challenges of cryptocurrency markets. By bridging the gap between traditional econo-
metric methods and modern machine learning approaches, the proposed hybrid model sets the stage for further
advances in financial modelling and offers a versatile framework that can be adapted to a wide range of market
conditions.
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Appendix. Look-back period testing results
Table A1 presents the performance metrics for various look-back periods tested during the empirical evaluation. The model tuning

process was conducted consistently across all models, following the same process described in the Methodology section.

Table A1. Performance metrics for different look-back periods.

1-Day Forecast 5-Day Forecast
Look-Back Period RMSE RMSPE (%) RMSE RMSPE (%)
7 days 0.079 11.34 0.156 14.67
14 days 0.066 9.89 0.138 12.82
30 days 0.056 823 0.112 10.45
60 days 0.072 11.67 0.145 13.79

The table highlights the superior performance of the 30-day look-back period for both 1-day and 5-day forecasts. Shorter periods,
such as 7 and 14 days, fail to capture sufficient temporal context, resulting in underfitting and poor predictive accuracy. Conversely,
longer periods, such as 60 days, introduce excessive noise and redundancy, reducing responsiveness to recent market changes.
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