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 A B S T R A C T

A scenario-based machine learning framework is presented for long-term, subnational electricity demand 
forecasting, integrating Shared Socioeconomic Pathways (SSPs) with spatially downscaled demographic, 
economic, and climatic variables. Using Turkey as a case study, the framework projects residential electricity 
demand to 2050 across all 81 provinces. The subnational approach enables the use of data-intensive machine 
learning algorithms by expanding the training dataset through the multiplicative effect of combining spatial 
and temporal dimensions. Six machine learning models: tree-based (Random Forest, XGBoost), neural net-
works (Feed-forward Neural Network, Long Short-Term Memory), and kernel-based methods (Support Vector 
Regression, Gaussian Process Regression), are systematically compared against a traditional linear regression 
benchmark. Random Forest achieves the highest accuracy (𝑅2 = 0.9359, MAE = 0.04 TWh), outperforming 
neural and kernel-based models and substantially improving on the linear baseline. Socioeconomic variables, 
especially family households, population, and GDP, have a greater influence on electricity demand than climatic 
indicators such as heating and cooling degree days. Turkey’s residential electricity demand is projected to in-
crease by 78% from 65.5 TWh in 2023 to 116.7±2.9 TWh by 2050, with substantial variation across provinces. 
The spatial variation in demand forecasts highlights the value of subnational modelling for energy planning 
and the limitations of national-level projections. The use of SSPs enables a consistent and policy-relevant 
exploration of plausible long-term demand trajectories. By combining subnational resolution, scenario-based 
inputs, and a structured comparison of algorithm families, the study offers a transferable framework for 
electricity demand forecasting in regionally diverse or data-scarce contexts, supporting infrastructure planning 
and decarbonisation strategies.
1. Introduction

Global electricity use has steadily increased, driven primarily by 
population growth, urbanisation, economic development, and techno-
logical advancements. The International Energy Agency (IEA) reported 
a 2.2% increase in global electricity demand in 2023, accelerating to 
4.3% in 2024 with projections of nearly 4% annual growth through 
2027 [1,2]. The growing demand for energy highlights the need for ac-
curate and reliable long-term electricity demand forecasts for informing 
energy system planning and policy, and sustainability energy transi-
tions [3]. Projections extending up to 2050 are crucial for developing 
robust infrastructure and aligning energy systems with sustainability 
goals, supporting global efforts to transition to resilient energy systems 
and reduce emissions to net zero by 2050 [4].

The residential sector plays a significant role in the global energy 
landscape [5]. In 2019, residential electricity consumption accounted 
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for approximately 27% of total global usage, ranking it the second-
largest sector after industry [6] (Fig.  1). The factors contributing to 
rising electricity demand extend beyond global population growth, with 
the IEA highlighting economic growth, climate conditions, urbanisa-
tion, and increasing access to energy-intensive digital technologies as 
key drivers [2]. Rapid urbanisation, especially in developing countries, 
has led to more densely populated buildings, neighbourhoods, and 
cities, with increased reliance on electricity for cooling and supporting 
urban lifestyles, resulting in higher residential electricity demand [7,8]. 
Additionally, urban households typically consume more electricity than 
their rural counterparts driven by higher income levels and greater 
access to electrical appliances [9].

Turkey (Türkiye) mirrors the global upward trajectory in residen-
tial electricity demand, with energy planning increasingly shaped by 
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Fig. 1. Global electricity consumption by sector from 1974 to 2019. The 
residential sector has consistently remained the second-largest electricity con-
sumer after industry, reflecting its significant share in global demand.
Data source: [6].

Fig. 2. Electricity consumption by sector in Turkey from 2000 to 2023. The 
industrial sector has remained the dominant electricity consumer throughout 
the period. The residential and commercial/government sectors have shown 
a steady increase over time and are closely aligned in recent years, together 
accounting for a significant share of national electricity consumption.
Data source: [11].

climate commitments and the growing role of renewables in national 
policy frameworks [10]. In 2023, the residential sector accounted for 
approximately 23% of the country’s total electricity usage, reaching 
65.5 TWh, as illustrated in Fig.  2 [11]. The country has undergone sig-
nificant population growth, with an increase of 26% from 2000 to 2023, 
resulting in a population of 85.4 million. Along with the increased 
population, rapid urbanisation and economic development have led to a 
rise in residential electricity demand, but the geographical distribution 
of the underlying demand growth factors is not even throughout the 
country [10]. Hence, national estimates often do not account for re-
gional variations in electricity usage, ultimately leading to suboptimal 
energy planning decisions. Therefore, understanding and forecasting 
the regional variations in electricity demand is essential for formu-
lating targeted policy interventions, including region-specific energy 
efficiency programmes and demand-side management strategies [12]. 
Granular demand forecasts are also instrumental in prioritising and ra-
tionalising infrastructure investments across different regions, ensuring 
equitable development [13]. Additionally, detailed projections enable 
the optimal siting and sizing of renewable energy projects, considering 
local demand patterns and resource availability.

Given the significant share of residential electricity consumption 
and Turkey’s diverse geographic, demographic, climatic, and socio-
economic characteristics, accurate demand forecasting is challenging 
at the sub-national level. Traditional electricity demand forecasting 
has relied primarily on statistical models, such as time series analysis, 
regression, and exponential smoothing [14–16]. Techniques such as 
Seasonal Autoregressive Integrated Moving Average (SARIMA) and 
Holt-Winters smoothing have been widely used due to their ability to 
capture seasonal patterns and trends. However, these methods often do 
not fully account for the nonlinear and complex relationships inherent 
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in electricity demand, particularly in contexts where the effects of 
socioeconomic factors are more pronounced and dynamic.

Recent studies have attempted to address these limitations by incor-
porating machine learning (ML) approaches, including Support Vector 
Machines (SVM), Artificial Neural Networks (ANN), and tree-based 
methods such as Random Forest (RF) and Gradient Boosted Regres-
sion Trees (GBRT) [17]. These methods can handle large datasets 
and capture complex interactions between variables, particularly in 
settings characterised by high data variability and complex, nonlinear 
patterns. Their flexibility in integrating multiple features contributes to 
improved forecasting accuracy. However, most ML-based approaches 
to electricity demand forecasting have focused on national-level or 
aggregate predictions, often overlooking subnational variations that are 
important for region-specific planning. Additionally, previous studies 
limit their models to socioeconomic or climate variables, seldom inte-
grating both to capture their combined impact on electricity demand. 
Moreover, existing ML models often address short to medium-term 
horizons, leaving a gap in long-term projections, e.g. those extending to 
2050, which are essential for strategic, long-horizon energy planning.

This research developed an ML-based 2050 sub-national residen-
tial electricity demand forecasting approach using Turkey as a case 
study. The novelty lies in the integration of (a) socioeconomic, demo-
graphic, and climatic factors for improved accuracy, and (b) Shared 
Socioeconomic Pathways (SSPs) for aligning projections with broader 
climate change mitigation and adaptation narratives, enabling consis-
tency in decision-making through the consideration of plausible future 
scenarios. The SSPs, developed by the international scientific commu-
nity and utilised by the Intergovernmental Panel on Climate Change 
(IPCC) in its assessments [18], provide internally consistent narratives 
and quantitative projections for key drivers such as population, eco-
nomic development, and technology, which shape long-term electricity 
demand and are essential inputs for long-term (e.g. 2050) demand 
forecasting models.

In addition, six widely-used ML algorithms from three different 
types: tree-based (Random Forest—RF, Extreme Gradient Boosting—
XGBoost), neural networks (Feed-forward Neural Network—FFNN, Long
Short-Term Memory—LSTM), and kernel-based methods (Support Vec-
tor Regression—SVR, Gaussian Process Regression—–GPR), are system-
atically compared against a traditional linear regression benchmark 
to evaluate their forecasting performance and identify the most suit-
able model for the study’s objectives. This comparison challenges 
the prevailing assumption that linear models are sufficient for long-
term electricity demand forecasting, particularly in heterogeneous sub-
national contexts. Electricity demand projections were generated for all 
81 Turkish provinces to assess regional variation, offering insights for 
targeted policy interventions and infrastructure planning.

2. Past works

Electricity demand forecasting plays a crucial role in energy sys-
tems operation [19], planning and management across diverse ge-
ographical and socio-economic contexts [20]. Countries and regions 
vary significantly in their priorities, with some focusing on decarbon-
isation goals and others emphasising economic development, energy 
security, and operational efficiency [21]. Varying priorities influence 
the approaches taken in electricity demand forecasting and the selec-
tion of methods and variables used in models. Furthermore, the lack 
of comprehensive data—both for present-day conditions and future 
projections—poses additional challenges, especially in rapidly evolving 
energy landscapes [20]. The review of the literature is summarised in 
Table  1, illustrating trends in methods, variable selection, scope and 
forecast horizon.
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2.1. Forecasting methods

Electricity demand forecasting methods range from conventional 
statistical models to advanced machine learning techniques. Classical 
statistical models such as time series analysis, [22] regression [23], 
and exponential smoothing have been used widely. Techniques such 
as SARIMA are widely used for long-term forecasting because of their 
ability to model seasonal consumption trends [24]. Advanced statistical 
methods such as Holt-Winters Seasonal Smoothing (HSS) [25] consider 
growth and seasonality in the forecast by incorporating seasonal lift 
factors in the formulation. HSS has also been found to offer reasonable 
accuracy in the presence of missing or incomplete data [26]. On the 
other hand, decomposition techniques such as Fourier Transform [27] 
and Wavelet Decomposition [28] have improved predictions by cap-
turing multi-scale fluctuations in demand. These approaches provide 
useful insights into complex electricity consumption patterns.

As data availability continues to expand, various machine learning 
methods have gained significant popularity in forecasting electricity 
demand. SVM, which excel at pattern separation in high-dimensional 
spaces, have emerged as a robust solution [29]. ANNs have proven 
valuable due to their automatic feature learning capabilities [30]. Deep 
learning architectures, such as LSTM, Convolutional Neural Network 
(CNN), and Recurrent Neural Network (RNN), have shown strong 
capability in capturing long-term temporal dependencies [31–33]. Ad-
ditionally, tree-based methods such as Decision Trees (DT), RF, and 
GBRT have been widely adopted for their interpretability of feature 
importance [34]. These techniques have collectively demonstrated their 
effectiveness in capturing the nonlinear, complex patterns inherent in 
electricity demand data, offering significant improvements in predictive 
accuracy and efficiency [35].

A notable trend in the field is the adoption of hybrid models that 
combine either statistical and ML approaches or multiple ML methods. 
Such models aim to improve robustness and performance across diverse 
datasets and forecasting horizons by leveraging the complementary 
capabilities of different techniques. For example, hybrid approaches 
often include SARIMA with neural networks [36] to effectively capture 
both linear/seasonal patterns and complex nonlinear relationships, or 
combine Adaptive Neuro-Fuzzy Inference System (ANFIS) with LSTM 
models [37] to harness their respective strengths in handling stable 
versus variable data patterns, or analyse ANN with Multiple Linear Re-
gression (MLR) [38] to validate and compare different methodological 
approaches. Some studies integrate several methods or algorithm types 
into one, often using the outputs of one as inputs to another, others use 
several methods separately, to improve prediction accuracy.

2.2. Factors affecting electricity demand

The literature highlights the importance of incorporating exogenous 
variables in electricity demand forecasting models. These variables can 
be broadly categorised into several key groups: economic variables 
(GDP, electricity prices, imports/exports), demographic factors (popu-
lation, household size, number of consumers), weather-related param-
eters (temperature, humidity, pressure, wind speed, heating/cooling 
degree days (HDD/CDD)), and historical consumption patterns [39].

Economic and demographic variables are particularly crucial but 
manifest differently in developing versus developed contexts. Research 
highlighted that developing countries often exhibit unique energy-
economic dynamics between GDP growth and energy consumption 
and the existence of suppressed demand due to infrastructure limita-
tions [40]. Their analysis revealed that increases in GDP per capita 
often lead to significantly higher electricity consumption in low and 
lower-middle-income countries compared to high-income nations,
where the relationship is more stable. Additionally, demographic fac-
tors such as urbanisation rates and household formation patterns often 
follow different trajectories in developing contexts [40].
3 
Weather-related variables play a vital role in residential electric-
ity demand as they directly influence household energy consumption 
patterns. These include direct measurements such as temperature (af-
fecting heating and cooling needs), humidity (with potential effects on 
cooling demand), atmospheric pressure (correlating with weather sys-
tems that affect energy use), and wind speed (influencing heat exchange 
in buildings and potential renewable energy generation) [41,42]. Addi-
tionally, derived indicators such as HDD and CDD serve as standardised 
measures that capture the cumulative effect of temperature deviations 
from a predefined base temperature threshold [43], thereby quantifying 
the energy needed for space conditioning [44]. Historical consumption 
patterns, form another key category. However, as noted by Sharma 
et al. [45], the reliability and availability of such historical data can 
be particularly challenging in developing regions with inadequate data 
collection infrastructure.

Household size is also a determinant for estimating residential elec-
tricity demand as it directly correlates with the number of occupants 
using electrical appliances, lighting, and energy services simultane-
ously, alongside less common factors such as household expenditure 
(reflecting the economic capacity to own and operate multiple elec-
trical devices) and electricity prices (influencing consumer behaviour 
through price elasticity and potential adoption of energy-efficient alter-
natives) [46]. In recent years, studies have incorporated the impact of 
the COVID-19 pandemic, including lockdown measures and curfews, as 
these restrictions substantially increased residential consumption due 
to extended home occupancy, widespread adoption of work-from-home 
arrangements, and increased use of household appliances for daily 
activities that were previously conducted outside the home [47,48]. 
This adaptation demonstrates the dynamic nature of variable selection 
in electricity demand forecasting and the need for models to remain 
flexible in incorporating new determinants as they become relevant.

2.3. Modelling horizon and scope

The temporal horizon and resolution are key considerations in 
electricity demand forecasting. Different stakeholders in the energy 
sector—ranging from utility companies to policymakers—require fore-
casts with varying prediction horizons and temporal resolutions. For 
prediction horizons, these range from short-term such as a few hours
[51] to long-term extending to two or three decades [54]. Short-
term forecasts with typically hourly or daily resolution are essential 
for operational planning, grid management, economic dispatch, and 
unit commitment, as they enable real-time balancing of supply and 
demand [61]. Medium-term forecasts spanning a week to a year, of-
ten with monthly resolution are crucial for fuel purchase planning 
and maintenance scheduling, as they help optimise resource alloca-
tion and operational costs [62]. Long-term forecasts extending be-
yond a year, typically with annual resolution are critical for strategic 
decision-making, infrastructure development, capital planning, and pol-
icy formation, as they guide substantial investments and shape future 
energy systems [63]. The spatial scope of forecasting studies also varies 
considerably, ranging from focused analyses of single provinces [52] 
to nationwide assessments [53,58,60]. This variability in geograph-
ical scope serves different planning needs: local-level forecasts help 
optimise distribution networks and address region-specific demand 
patterns, while national-level projections support macro-level policy 
decisions, grid infrastructure planning, and energy security strategies.

3. Methodology

This study develops and validates a structured methodology for 
long-horizon, province-level electricity demand forecasting, designed 
to account for evolving socioeconomic and climatic factors through 
2050. The methodology is applied to the residential sector in Turkey 
as a case study to demonstrate its implementation and effectiveness. 
The integration of SSPs allows for scenario-based analyses, offering 
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Table 1
Summary of studies on electricity consumption forecasting in Turkey: Methodologies, variables, and forecasting horizon.
 Methods Independent variables Target variables Scope Data period Forecast 

horizon
Ref  

 HSS Annual income, expenditures, 
age, education level, marital 
status, heating, house 
ownership and appliances

Household consumption National 2019 NA [26]  

 MNN, WOA, SVM Imports, exports, GDP, 
population

Demand forecast National 1980–2019 Up to 2040 [49]  

 DT, RF, GBRT Household size, income, 
heating type, housing Traits

Household consumption National 2019 NA [34]  

 LSTM, SARIMA Monthly electricity 
consumption, seasonal changes

Consumption National 1975–2021 2022–2031 [24]  

 Novel Approach HDD, CDD, electricity 
consumption

Residential 
consumption

1 district 2017 Real-time [44]  

 MRAM Hourly temperature, time of 
day

Hourly consumption 1 province 2017 1 week [42]  

 ANN, PSO, MLR Population, imports, ex-
ports, cars and passenger 
numbers

Monthly consumption 1 district 2014–2020 Up to 2040 [38]  

 ANN GDP, electricity prices, im-
ports, population, temperature

Consumption National 1970–2020 2021–2025 [50]  

 LSTM, ANFIS Daily energy production Production from hydro National 2016–2020 1-day [31]  
 LSTM, ANFIS Daily electricity consumption Consumption National 2016–2019 1-day [32]  
 CNN Hourly electricity consumption Consumption National 2020–2021 1-2-3 h [51]  
 GA, GWO, HHO, 
SCM

Regional load characteristics, 
municipality development 
plan, subscriber profiles

Electricity load 1 province 2004–2018 2019–2024 [52]  

 NARX ANN, LSTM Date (day, week, month), 
temperature, COVID-19 
pandemic precautions, last 
month’s daily consumption

Daily consumption National 2019 2020 [47]  

 FNN Average daily - pressure, 
temperature, wind speed, 
humidity, day of the week, 
previous days consumption

Consumption 1 province 2000–2020 Daily [41]  

 GPR, SMO, LR, 
XNV, REP, M5P

Daily consumption and 
temperature, holidays, curfews 
during lockdown, 
time-dependent attributes

Daily demand National 2020 Daily [48]  

 ARIMA, LSSVM Installed capacity, electricity 
generation, population, total 
subscribers, export, import

Consumption National 1970–2017 2019–2022 [29]  

 LSTM, ANFIS Daily electricity generation Daily renewable 
generation

National 2016–2019 1-day [37]  

 Empirical, LE Annual electricity demand per 
capita, population growth

Consumption National 1975–2016 Up to 2023 [53]  

 LM, FS Daily, weekly, seasonal 
variations

Hourly demand National 2012–2014 1-year [27]  

 DGM, ODGM, 
NDGM

Annual electricity consumption Annual consumption National 1970–2013 2014–2030 [54]  

 ARIMA, PDM, SPDM Electricity consumption per 
capita, regional characteristics, 
time series data

Regional demand National 1986–2013 2014–2018 [55]  

 ANN, MLR Population, GDP per capita, 
inflation ratio, average 
summer and winter 
temperature, unemployment 
ratio

Annual demand National 1975–2013 2014–2028 [56]  

 SARIMA, NARANN Electricity production, 
electricity imports, transmitted 
electricity, electricity exports

Consumption National up to 2010 2010–2020 [36]  

 LSSVM, ANN, MLR Electricity generation, 
installed capacity, total 
subscribers, population

Annual consumption National 1970–2009 NA [30]  

 (continued on next page)
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Table 1 (continued).
 Methods Independent variables Target variables Scope Data period Forecast 

horizon
Ref  

 LGCT, NDPC Total consumption along with 
sectoral breakdown

Consumption in sectors National 1945–2006 NA [57]  

 OGM(1,1) Annual electricity consumption Annual consumption National 1945–2010 2013–2025 [58]  
 LR, NLR, ANN Installed capacity and genera-

tion, population, subscribers
Sectoral consumption National 1990–2007 2008–2015 [23]  

 SVR Population, GNP, imports, 
exports

Annual consumption National 1975–2006 2007–2026 [59]  

 STSM Household expenditure, 
electricity prices

Residential 
consumption

National 1960–2008 2009–2020 [46]  

 STSM GDP, real average electricity 
prices,

Demand National 1960–2008 2009–2020 [22]  

 GP Electricity consumption Consumption National 1983–2007 2008–2020 [60]  
Abbreviations: ARIMA: autoregressive integrated moving average, DGM: discrete grey model, FS: fourier series, GA: genetic algorithm, GP: genetic programming, GWO: grey wolf 
optimisation, HHO: harris hawk optimisation, HSS: heckman sample selection model, LE: linear extrapolation, LGCT: linear granger causality test, LM: linear model, LR: linear 
regression, LSSVM: least-square support vector machine, M5P: M5P model tree, MNN: medium neural networks, MRAM: multiple regression analysis method, NARANN: nonlinear 
autoregressive neural network, NARXANN: nonlinear autoregressive with exogenous inputs neural network, NDGM: nonhomogeneous discrete grey model, NDPC: nonparametric 
diks and panchenko causality test, NLR: nonlinear regression, ODGM: optimised discrete grey model, OGM: optimised grey model, PDM: panel data models, PSO: particle swarm 
optimisation, REPTree: reduced error pruning tree, SCM: S-curve model, SMOReg: sequential minimal optimisation regression, SPDM: spatial panel data models, STSM: structural 
time series model, WOA: whale optimisation algorithm, XNV: correlated Nyström views.
a consistent framework to define key variables such as population 
and economic activity far into the future, enabling the exploration of 
electricity demand trajectories under diverse long-term contexts. The 
methodology comprises several key stages: selection and justification 
of input variables, data collection and preprocessing, evaluation of ma-
chine learning algorithms, and extensive model validation. Each stage 
is detailed in subsequent sections, providing justifications for method-
ological choices and highlighting their relevance to long-horizon energy 
forecasting.

3.1. Shared socioeconomic pathways

The SSP framework, originally developed to explore global socioe-
conomic and climate futures [18], is applied in this study to assess how 
long-term demographic and economic developments may influence res-
idential electricity demand. The SSPs offer a set of internally consistent 
and policy-relevant scenarios that characterise alternative futures based 
on coherent narratives and quantitative projections of key drivers such 
as population, economic growth, and technological advancement [64].

While conventional sensitivity analysis—where individual param-
eters such as population or GDP are perturbed independently—can 
provide insights into model responsiveness, such approaches often lack 
the internal consistency and plausibility required for policy-relevant 
long-term assessments [65,66]. Arbitrary or isolated variations in single 
parameters may fail to capture the complex interdependencies and 
socio-political dynamics that shape real-world development trajecto-
ries [67]. In contrast, the SSP framework addresses this limitation 
by offering integrated storylines that are widely used by the climate 
and energy modelling communities, including by the IPCC, to inform 
global and national policy analyses [68]. Moreover, the SSPs provide 
a standardised reference that enables comparability across studies and 
alignment with national and international policy benchmarks, such 
as Nationally Determined Contributions [64,69]. This makes the SSP 
framework not only a scientifically robust but also a practically relevant 
tool for informing evidence-based decision-making [70]. We implement 
all five SSP narratives to systematically capture a broad spectrum of 
plausible futures. SSP1 describes a sustainable development pathway 
with low challenges to mitigation and adaptation. SSP2 represents a 
‘middle of the road’ trajectory with moderate challenges. SSP3 re-
flects a fragmented world with high socio-political barriers to both 
mitigation and adaptation. SSP4 highlights an unequal world where 
adaptation remains difficult despite relatively low mitigation barriers. 
SSP5 envisions fossil-fuel-driven economic growth with high mitigation 
challenges but fewer adaptation difficulties. Importantly, the SSPs do 
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not prescribe specific climate outcomes or policies; rather, they offer a 
socioeconomic baseline that can be combined with climate and policy 
scenarios to develop comprehensive future assessments [18].

3.2. Variable selection

The variables commonly used to model electricity demand typi-
cally include factors such as population [23,29,30,38,49,50,53,56,59,
71], GDP [22,49,50,56,71], energy imports [36,38,49,50,59] and ex-
ports [36,38,49,59], household data [26,34,46], and weather data [41,
42,44,47,48,50] such as HDD and CDD. We used population, GDP, 
household count (three types of households: single, family, and multi-
person), HDD, and CDD as input variables. Initial tests identified the 
‘extended family’ household type as inconsistent, leading to its ex-
clusion. The selection process ensured the inclusion of variables that 
capture Turkey’s socioeconomic and climatic diversity, as well as re-
gional disparities. Initial model performance metrics and feature im-
portance guided our final variable selection. The complete integration 
of these variables into the modelling framework is illustrated in Fig.  3, 
highlighting the data sources, input variables, model tuning, and the 
scenario-based prediction outputs.

3.3. Data sources and preprocessing

Electricity consumption: Province-level residential electricity con-
sumption data were obtained from the Turkish Statistical Institute 
(TURKSTAT) for 2008–2023 [11].

Heating and cooling degree-days: A gridded temperature dataset, 
with a spatial resolution of 0.25◦—following the Representative Con-
centration Pathway (RCP) 2.6 [72] scenario, using the ‘r1i1p1’ en-
semble member of the HadGEM2-ES global climate model [73]—was 
obtained from the Copernicus Climate Change Service (C3S) [74] in 
NetCDF (.nc) format. Data processing was carried out in Python using 
the xarray, numpy, and pandas libraries. Daily maximum, minimum, 
and average temperatures were calculated by resampling the original 
3-hourly temperature data into daily values. Annual HDD and CDD for 
each province over the 2008–2050 period were calculated following 
the UK Met Office methodology [75], as detailed in Eqs.  (1) and (2). 

HDD =

⎧

⎪

⎪

⎨

⎪

⎪

𝑇b − 𝑇avg, if 𝑇max ≤ 𝑇b
𝑇b−𝑇min

2 − 𝑇max−𝑇b
4 , if 𝑇avg ≤ 𝑇b < 𝑇max

𝑇b−𝑇min
4 , if 𝑇min < 𝑇b < 𝑇avg

(1)
⎩

0, if 𝑇min ≥ 𝑇b
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Fig. 3. Overview of the research framework. There are two main components: (a) model development that includes training data collection (2008–23), feature 
engineering, model training and validation, and final evaluation; and (b) 2050 projections that employ SSP-aligned inputs (2025–50) to generate subnational 
electricity demand forecasts. The approach integrates observed and scenario-based data to inform long-term energy planning at the provincial level.
CDD =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, if 𝑇max ≤ 𝑇b
𝑇max−𝑇b

4 , if 𝑇max > 𝑇b ≥ 𝑇avg
𝑇max−𝑇b

2 − 𝑇b−𝑇min
4 , if 𝑇avg > 𝑇b > 𝑇min

𝑇avg − 𝑇b, if 𝑇min ≥ 𝑇b

(2)

Here, 𝑇avg denotes the average daily temperature, 𝑇min and 𝑇max
represent the daily minimum and maximum temperatures, respectively, 
and 𝑇b is the base temperature used in the calculation (15.5 ◦C for HDD 
and 22 ◦C for CDD).

Population: Historical province-level population data covering the 
period 2008–2024 were obtained from TURKSTAT [76]. We utilised 
global gridded population distribution datasets aligned with the SSPs 
developed by Wang et al. [77], provided at five-year intervals (2020–
6 
2100) with a spatial resolution of 1 km (30 arc-seconds). Using Python-
based spatial analysis packages: rasterio [78], geopandas [79], and 
rasterstats [80], we aggregated gridded population data along Turkish 
provincial administrative boundaries, converting pixel-level popula-
tion counts to province-level totals for each SSP scenario at five-
year intervals. To achieve annual resolution projections for the years 
2025 through 2050, we calculated province-specific compound annual 
growth rates from the five-yearly SSP gridded population data [77]. 
These growth rates were computed separately for each province and 
each SSP scenario, ensuring that distinct provincial demographic trends 
were individually captured. Calculated growth rates were then ap-
plied to the latest officially reported population data (2024) from 
TURKSTAT, enabling consistent annual projections starting from a reli-
able baseline. Although TURKSTAT provides national-level population 
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Fig. 4. Comparison of population projections for Turkey (2025–2050). SSP-
based population projections used in this study are compared against 
TURKSTAT’s official projections, illustrated as shaded area.

projections up to 2100, the lack of official provincial-level projec-
tions beyond 2030 makes it challenging to incorporate or benchmark 
TURKSTAT’s data at the subnational level. However, at the national 
level, Fig.  4 illustrates that four of our five SSP scenarios (SSP1, 
SSP2, SSP4, and SSP5) closely align within TURKSTAT’s nationally 
projected ranges [81], thus supporting the validity and plausibility 
of our SSP-based approach. The SSP3 scenario, however, indicates 
significantly higher population growth, serving as an upper-bound 
projection reflecting more extreme demographic outcomes. Moreover, 
TURKSTAT’s projection methodology lacks transparency, limiting de-
tailed methodological comparisons, whereas our SSP-based approach 
explicitly incorporates internationally recognised scenario assumptions, 
demographic drivers, and transparent analytical steps.

Households: Household composition data for each province in 
three categories: single, multi-person, family, were obtained from TURK-
STAT for the period 2014–2024, and calculated based on published 
household sizes for the period 2008–2013 [82]. In order to obtain fu-
ture data for households beyond 2024, we employed province-specific 
linear trend models, which showed strong statistical fit, as illustrated 
in the histograms and kernel density estimates of 𝑅2 distribution of 81 
province for 3 household types in Fig.  5.

Linear fit of single households has 𝑅2> 0.9 for 99% of the provinces, 
with only one province having 𝑅2 between 0.8 and 0.9. The trend is 
similar for other household types. Household data from 2014 to 2024 
was the foundation for estimating household counts for 2025–2050. 
While linear regression assumes a constant rate of change and may not 
fully capture fluctuations due to various external factors, the strong 
𝑅2 values suggest that this method offers a reliable framework for 
our projections. It is worth noting that this approach was conducted 
separately for each province and did not account for inter-provincial 
relationships or trends, which is beyond the scope of the study.

Gross domestic product: Historical provincial-level GDP data cov-
ering 2008–2023 were obtained from TURKSTAT [83–86] in Turkish 
lira (TRY) and converted to US dollars using annual exchange rates 
from the World Bank [87]. We utilised a global gridded GDP dataset 
of Murakami et al. [88], which comes with projections under all 
five SSP scenarios at 1/12◦ (≈ 5 arc-minutes) spatial resolution in 
decadal steps up to 2050. Python is used together with the raste-
rio [78], geopandas [79], and rasterstats [80] libraries to compute 
zonal statistics, aggregating the gridded projections into provincial-
level GDP totals under five SSP scenarios. To interpolate annual values 
from decadal figures, we calculated compound annual growth rate 
for each province and SSP, then applied them to the official 2023 
GDP baseline. This procedure yielded annual, province-specific GDP 
trajectories to 2050 that reflect the spatially explicit growth patterns 
of each SSP while remaining anchored to the most recent official 
economic data.
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Fig. 5. 𝑅2 distribution of provincial household trends. Histograms illustrate 
the distribution of 𝑅2 values (along with kernel density estimate line) for 
household trends from 2014 to 2024, conducted for each of Turkey’s 81 
provinces.

COVID-19 impact: During the COVID-19 pandemic, residential 
energy consumption increased significantly as people spent more time 
at home due to lockdowns and remote activities [89]. Therefore, this 
study incorporated COVID-19 as a variable to include its impact on 
electricity demand forecasts in Turkey. The first case of COVID-19 was 
announced in Turkey on 11 March 2020, followed by the government 
declaring a school holiday starting on 14 March 2020, which lasted 
until 6 September 2021 [90,91]. We quantified the COVID-19 variable 
as a fraction between 0 and 1, representing the proportion of the year 
when schools were on holiday or conducting remote education. This 
approach allowed us to account for years with normal schooling (0), 
full-year school closures/remote education (1), or partial periods of 
altered school schedules (fractional values).

4. Model development

4.1. Comparison of ML algorithms

We evaluated six machine learning algorithms of three different 
types: tree-based (RF and XGBoost), neural networks (FFNN and LSTM), 
and kernel-based (SVR and GPR), known for their effectiveness in 
handling time series data and complex nonlinear relationships. The 
selection of these methods was based on their demonstrated capabil-
ities in handling temporal dependencies, computational efficiency, and 
widespread adoption in relevant literature [92], as well as their distinct 
algorithmic approaches which allow for a comprehensive comparison 
of different modelling paradigms. FFNN was included because neural 
network approaches are widely used in electricity demand forecasting 
literature, and its architecture is a suitable candidate for annual time 
series data [93]. XGBoost, an advanced implementation of gradient 
boosting, was included for its high performance in various prediction 
tasks and its ability to handle complex relationships in data [94]. 
SVR was included as a robust, non-parametric alternative that often 
performs well in forecasting scenarios [95]. LSTM was included given 
its widely reported strength in managing temporal dependencies within 
sequential data [96]. RF was included for its ability to handle nonlinear 
relationships and its generally strong performance in diverse applica-
tions [97]. GPR was included as a second kernel-based method due to 
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Table 2
Comparison of forecasting algorithm performance. Metrics shown are the mean across the two 
test folds.
Category Algorithm MAE (GWh) RMSE (GWh) MAPE (%) R2 EV
Tree-based RF 42.5 55.5 17.4 0.9359 0.9403
Tree-based XGBoost 47.8 64.7 16.7 0.9191 0.9254
Kernel-based SVR 50.1 71.7 15.5 0.9004 0.9218
NN-based FFNN 64.9 86.1 23.5 0.8585 0.8813
Linear Linear(Global) 68.2 91.4 30.9 0.8423 0.8481
Kernel-based GPR 72.4 116.3 23.7 0.7340 0.7399
NN-based LSTM 117.7 169.2 51.2 0.4617 0.6389
its suitability for small-to-medium-sized datasets and its flexibility in 
modelling complex functional dependencies [98].

Additionally, two linear regression approaches were included as 
benchmark models to serve as baselines for evaluating the added 
value of more complex machine learning methods. The first was a 
global linear model trained using pooled Ordinary Least Squares on 
panel data combining all provinces, where a single model was fitted 
across all province-year observations without accounting for province-
specific effects. The second approach involved training separate linear 
regression models for each of Turkey’s 81 provinces individually, al-
lowing for localised fitting specific to the historical patterns of each 
province. Including both global and individual linear models provided a 
comparative foundation to assess whether the use of more sophisticated 
algorithms yields substantial predictive improvements over simpler, 
traditional modelling techniques.

The evaluation and selection of forecasting models requires care-
ful consideration of appropriate performance metrics. In established 
forecasting practice, several studies [99–101] have demonstrated the 
importance of employing multiple decision criteria for comprehensive 
assessment such as Mean Absolute Error (MAE), Root Mean Squared 
Error (RMSE), Mean Absolute Percentage Error (MAPE), the coefficient 
of determination (𝑅2)— moving beyond single-metric evaluations to 
capture different aspects of model performance. Some research priori-
tise RMSE minimisation using other metrics as secondary criteria [35], 
while 𝑅2 is consistently used as a supplementary metric rather than 
a standalone decision criterion [102,103]. The importance of MAPE 
in model selection is emphasised in studies due to its interpretability 
and utility in aiding comparison between different models [104,105]. 
Our approach combines established practices by prioritising MAE as 
the primary indicator due to its interpretability and practical rele-
vance to electricity generators, who require explicit error margins 
for operational readiness and strategic planning [106–108]. Although 
𝑅2 is frequently reported as a measure of fit quality, it may some-
times present overly optimistic interpretations when values approach 
unity [109], thereby obscuring meaningful differences in forecasting 
performance. Hence, we rely primarily on MAE, complemented by 
RMSE, MAPE, explained variance (EV), and cautiously interpreted 𝑅2, 
to ensure a comprehensive and practically meaningful evaluation.

All ML methods were trained using pooled panel data combining all 
provinces, allowing each model to capture inter-regional variation and 
shared temporal dynamics. Provincial forecasts were generated from 
globally trained ML models. Both global and individual linear models 
were also assessed as benchmarks. We also briefly tested province-
specific ML models trained separately for each region, but these models 
consistently underperformed, often producing flat or unrealistic trends, 
likely due to insufficient data available at the provincial level. This 
suggests that localised ML models suffer from limited data diversity and 
volume, limiting their ability to generalise beyond observed patterns. 
As a result, we used a single global modelling strategy.

Each ML algorithm was subjected to comprehensive hyperparameter 
tuning via grid search with cross-validation (CV). We used Time-
SeriesSplit rather than traditional k-fold CV, as standard k-fold 
fails to preserve temporal dependencies in time-series data and can 
introduce data leakage by allowing future observations to inform the 
training process [110]. TimeSeriesSplit maintains temporal in-
tegrity by ensuring each training set contains only historical data 
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relative to its corresponding validation set, thereby preventing infor-
mation leakage [111,112]. Following the tuning phase, the optimal 
hyperparameter configurations—identified based on the lowest mean 
MAE across validation folds—were used to retrain each model on the 
full training set. All analyses were conducted using Python’s scikit-
learn library [113]. Final model performance was also evaluated using 
a time-aware cross-validation approach to preserve temporal dependen-
cies in the data. Accordingly, we conducted a two-split evaluation with 
a test size of 162 instances (corresponding to 2 years × 81 provinces), 
generating the following sequential train-test partitions over the full 
time span (2008–2023):

• Split 1:
– Training: 2008–2019
– Testing: 2020–2021

• Split 2:
– Training: 2008–2021
– Testing: 2022–2023

Comparative results indicated the RF model—an ensemble learning 
method that utilises multiple decision trees to generate a more accurate 
and stable prediction [97]—consistently delivered superior forecasting 
accuracy, achieving the lowest MAE and RMSE (42.5, and 55.5 GWh 
respectively) and the highest 𝑅2 value (0.9359), as summarised in 
Table  2. SVR, XGBoost, FFNN, LSTM, and the global LR model—
all exhibited higher prediction errors and lower stability in forecasts. 
Furthermore, the outputs generated by these models were visually 
aberrant, suggesting a poorer fit to the complex dynamics of the 
dataset.

Analysis of the individually trained LR models (one per province) re-
vealed significant variability in performance, with only nine provinces 
achieving 𝑅2 scores above 0.9, while fifteen provinces exhibited neg-
ative 𝑅2 values (Fig.  6). These findings emphasise the limitations of 
individually trained models and the benefit of developing a global 
modelling approach to capture shared patterns and enhance forecast 
reliability across provinces. While RF demonstrated better performance 
in our specific context, it is important to note that model perfor-
mance can vary significantly depending on the specific characteristics 
of the region and data being analysed, with recent studies showing 
how different algorithms can outperform each other under varying 
circumstances [114].

Consequently, the RF model, trained globally on panel data from 
all provinces for the period 2008–2023, was selected as the primary 
forecasting method for residential electricity demand across Turkey’s 
81 provinces up to 2050, based on its strong performance across all 
evaluation metrics and demonstrated stability in long-term forecasting. 
The following sections present the setup, tuning process, evaluation, 
and forecasting outcomes of the RF model.

4.2. Technical setup of the RF model

The hyperparameters for the RF model was tuned for optimal per-
formance. Effective tuning has been shown to improve forecasting 
accuracy by up to 10% [115]. The hyperparameter ranges were selected 
based on empirical evidence from literature and theoretical foundations 
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Fig. 6. Distribution of 𝑅2 scores across 81 independently trained linear regression models, each fitted to data from a single province. (a) The histogram highlights 
the wide variability in local model performance. Fifteen provinces have negative 𝑅2 values, indicating models that perform worse than a horizontal mean. Only 
nine province exceed 𝑅2 > 0.9. (b) The empirical cumulative distribution function (CDF) of 𝑅2 values quantifies this disparity, showing that 18.5% of models 
have 𝑅2 <  0, 30.9% have 𝑅2 ≤ 0.5, and 75.3% fall below 𝑅2 = 0.9. Together, these results illustrate the limitations of localised linear models in capturing the 
complex, nonlinear dynamics of residential electricity demand when trained on limited data from individual provinces.
(Table  3). Similar studies typically employ 100–500 trees [116–118]; 
we tested up to 1000 trees based on Breiman’s demonstration that 
random forests converge to a limiting generalisation error and ‘‘do not 
overfit as more trees are added’’, ensuring stable model performance 
without overfitting risk [97].

The maximum depth parameter was explored across a broad range 
of values (2, 5, 8, 10, 12, 14, 15, 20) to ensure adequate representation 
of both shallow and deeper tree structures. This range was selected to 
balance model complexity and computational efficiency, while captur-
ing potential nonlinear interactions at varying depths. The inclusion 
of depths from very shallow (2) to deep (20) allowed us to assess 
underfitting and overfitting behaviours in a controlled manner during 
grid search. To better understand the effect of key hyperparameters on 
model performance, we conducted sensitivity analyses on the number 
of trees and maximum depth, as illustrated in Fig.  7.

Fig.  7(a) shows the effect of the number of estimators on RF per-
formance, with all other hyperparameters held constant (max. depth: 
15, min. samples split: 2, min. samples per leaf: 1). For ensemble sizes 
below 250 trees, both MAE and 𝑅2 exhibit substantial fluctuations, 
indicating an unstable region. Beyond this point, the curves stabilise, 
with MAE showing a steady decline and 𝑅2 gradually increasing after 
approximately 400 trees. Grid search up to 1,000 estimators revealed 
that the lowest mean MAE is achieved at 810 trees. This value was 
therefore selected as the optimal number of estimators.

Fig.  7(b) presents the results of the max depth sensitivity analysis, 
where the number of estimators was fixed at 810 and other parameters 
kept constant (min. samples split: 2, min. samples leaf: 1). The maxi-
mum depth parameter was systematically increased from 1 to 20, and 
the corresponding training and test MAE values were recorded. Both 
training and test errors decreased sharply for depths up to around 5, 
after which the test error curve plateaued. The first local minimum in 
test MAE was observed at a depth of 15, which was therefore selected 
as the optimal value. Notably, no signs of overfitting were detected 
within this range, as the gap between training and test errors remained 
consistent up to 20, indicating strong generalisation.

The ranges for minimum samples to split (2, 5, 10) and minimum 
samples at a leaf (1, 2, 4) were set to explore various levels of tree prun-
ing, aiming to control overfitting while maintaining sufficient detail in 
the model structure. These ranges were selected to facilitate a thorough 
grid search, enabling the identification of an optimal configuration for 
the specific characteristics of the provincial-level residential electricity 
demand forecasting task [119].

We identified the optimal configuration for the model with an 
ensemble of 810 trees, max. depth: 15, min. split: 2, and min. leaf: 1. 
This setup is used to train the final model and cross-validation resulted 
mean MAE of 42.5 GW, RMSE of 55.5 GWh, MAPE of 17.4%, 𝑅2 score 
of 0.9359 (Table  2).
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Table 3
Tuning ranges and step sizes.
 Parameter Range/Steps  
 Number of trees (estimators) 10 to 1000 (steps of 10)  
 Maximum depth of the trees 2, 5, 8, 10, 12, 14, 15, 20 
 Minimum samples to split 2, 5, 10  
 Minimum samples at a leaf 1, 2, 4  

4.3. Feature importance analysis

We conducted a feature importance analysis (Fig.  8) using two com-
plementary methods: standard feature importance and permutation-
based importance.

As illustrated in Fig.  8(a), the RF model assigns the highest im-
portance to family households, followed closely by population and 
GDP, indicating these socio-demographic and economic factors are 
the most influential drivers of electricity consumption in the dataset. 
Multi-person households and single-person households contribute mod-
erately, suggesting the relevance of household structure beyond just 
family units. In contrast, HDD, CDD, and COVID-19 have compara-
tively low importance scores, indicating a limited role in the model’s 
predictive performance.

Fig.  8(b) presents permutation-based feature importance, which 
quantifies the influence of each variable by measuring how much 
the model’s performance deteriorates when that variable’s values are 
randomly shuffled. This method reveals the features most essential to 
accurate prediction by their impact on the model’s 𝑅2 score. The largest 
decreases in 𝑅2 are observed when population and family households 
are permuted, confirming their importance in the model’s predictive 
structure. GDP, multi-person, and single-person households also result 
in moderate performance drops, indicating they play a secondary but 
meaningful role. In contrast, climate-related variables (HDD and CDD) 
and the COVID-19 indicator produce minimal change when shuffled, 
suggesting they contribute relatively less to the model’s forecasting 
capability.

These results support the assertion that residential electricity de-
mand is driven primarily by demographic and economic trends, while 
the influence of climate and short-term disruptions remains marginal 
in long-term forecasting

5. Results and discussions

5.1. Partial dependence

Partial dependence plots simplify a model’s complexity by holding 
other features constant at their average values and isolate the effects 
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Fig. 7. Random Forest hyperparameter optimisation and complexity analysis. (a): Effect of number of estimators on MAE and 𝑅2 performance, showing optimal 
selection at 810 trees where the model achieves stability. (b): Training and test error curves as a function of maximum tree depth, with the first local minimum 
at depth 15 indicating optimal complexity without overfitting.
Fig. 8. Feature importance analysis for residential electricity demand prediction. (a) Standard feature importance scores from the Random Forest model, showing 
households, population, and GDP as the primary drivers of electricity consumption, while climate variables (HDD, CDD) and COVID-19 show minimal influence.
(b) Permutation-based feature importance measured by decrease in 𝑅2 score when features are randomly shuffled, confirming population and family households 
as the most critical predictors for model performance.
of specific features, as shown in Fig.  9, allowing us to observe how 
changes in the variables shift the predictions within the given data 
range.

As HDD increases, there could be a shift from electric to more 
cost-effective heating options such as gas or central heating due to 
rising heating demands. Conversely, at lower HDD levels with minimal 
heating needs, electricity consumption rises, reflecting a preference for 
electric heating for light demands [120]. At very low CDD values, elec-
tricity usage remains unchanged, suggesting that mild temperatures do 
not trigger significant cooling-related electricity demand, possibly due 
to moderate cooling needs being met through passive or less electricity-
intensive means. However, as CDD values continue to increase, there is 
a notable rise in electricity consumption driven by an increased reliance 
on electricity-intensive cooling solutions such as air conditioning. This 
pattern of higher electricity consumption during warmer periods aligns 
with expectations, reflecting electricity’s significant role in cooling in 
Turkey [121]. These pronounced and nonlinear changes in electricity 
consumption, especially the sharper increases associated with higher 
CDD compared to HDD, could be driven by the greater sensitivity of 
cooling demand to increases in temperatures and by behavioural or 
technological thresholds that trigger increased electricity use for cool-
ing [122,123]. As Turkey experiences varying climate conditions across 
regions, energy efficiency measures and building standards should 
ideally be tailored to local climate patterns.
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Population has a positive relationship with energy consumption, 
which increases gradually until reaching a threshold, after which pre-
dictions sharply increase, indicating a nonlinear response. Beyond a 
critical point, energy consumption increases significantly, possibly due 
to changes in behaviour at higher population densities [124]. Sud-
den shift around 2.2 million may reflect a structural transition in 
electricity usage patterns as provinces reach larger urban scales. Pre-
vious research has shown that urbanisation and electricity demand 
relationships exhibit nonlinear scaling behaviour, with super-linear 
consumption increases emerging beyond certain population thresholds, 
likely driven by increased social interactions, economic activities, and 
infrastructure demands that scale faster than population growth [125].

Family households result in a linear rise in energy usage as their 
numbers increase, indicating a direct correlation with higher energy 
consumption. Multi-person households exhibit a gradual steady in-
crease with sharp rises at certain thresholds, suggesting varied elec-
tricity consumption profiles or a complex relationship with house-
hold size that requires further investigation. This step-wise increase 
aligns with empirical evidence showing that economic scale effects 
in electricity consumption only emerge for households with three or 
more members, while smaller households exhibit different consumption 
dynamics [126]. Single-person households exhibit a smoother, more 
gradual increase in electricity consumption, with smaller increments 
spread over a wider range, suggesting a more consistent scaling effect 
that possibly reflects stable consumption behaviour across different 
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Fig. 9. Partial dependence plots showing the effect of features on the model’s predictions. The plot visualises how changes in feature values influence the predicted 
outcome, with rug marks along the 𝑥-axis indicating the distribution of data points in the training set.
household counts. The strong influence of population and household 
composition on electricity consumption emphasises the importance 
of integrating demographic projections into long-term energy plan-
ning [127]. These findings indicate that different household structures 
could uniquely impact electricity usage patterns, making a nuanced 
approach to demographic data valuable in forecasting and planning 
efforts [128].

As GDP rises, energy consumption increases, possibly because in-
creased wealth leads to larger homes and more energy-demanding 
appliances [129,130]. The positive relationship between GDP and 
electricity consumption suggests that economic development policies 
should be coupled with energy efficiency initiatives to manage increas-
ing demand sustainably [131]. The sharp threshold increases observed 
in GDP predictions might reflect super-linear scaling behaviour typ-
ical of emerging economies, where cities become powerful drivers 
of economic activity that disproportionately attract population and 
investment [132].

The linear trend of COVID-19 indicates that the model predicts 
an increase in residential electricity consumption due to lockdown 
measures, as people typically consume more electricity while staying 
at home [133]. This consistent upward slope suggests a proportional 
relationship between lockdown presence and increased residential elec-
tricity usage. Although the pandemic’s effect appears limited within our 
model, the observed rise in residential consumption during lockdowns 
points to the importance of developing flexible energy systems that can 
quickly adapt to such sudden shifts in consumption patterns [134].
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5.2. 2050 electricity demand projections

5.2.1. National outlook
Fig.  10 presents the national outlook for residential electricity de-

mand projections in Turkey across five SSPs from 2025 to 2050. All 
SSP trajectories closely align with historical consumption trends up to 
the early 2030s, after which their paths diverge modestly, reflecting 
differences inherent in each SSP’s socioeconomic assumptions. By 2050, 
SSP5 projects the highest residential electricity demand, consistent with 
its narrative of fossil-fuel-intensive economic growth and high GDP 
increases, followed by SSP1, which, despite emphasising sustainable de-
velopment, still anticipates substantial electricity demand growth. SSP2 
and SSP3 projections closely track each other, illustrating moderate 
electricity demand growth. Their similar outcomes reflect the offsetting 
influences of slower economic growth coupled with higher popula-
tion increases in SSP3, versus the more balanced middle-of-the-road 
assumptions in SSP2. SSP4, characterised by pronounced inequality and 
regional disparities, yields the lowest electricity demand projection, 
likely due to restrained GDP growth and limited economic activity in 
many regions.

It is important to note that scenario differentiation in this model 
arises solely from variations in GDP and population projections. The 
remaining independent variables in the model (e.g. household com-
position, cooling and heating degree days, COVID-19 impacts) remain 
constant across scenarios. Thus, the observed divergence between SSP 
trajectories primarily reflects changes driven by economic and demo-
graphic assumptions alone, contributing to the relatively limited range 
of outcomes between scenarios by 2050.
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Fig. 10. Total national electricity demand projections with five SSP scenarios 
up to 2050.

Table 4
Projected residential electricity demand (TWh) in Turkey (2025–2050) under 
five SSP scenarios.
 Year SSP1 SSP2 SSP3 SSP4 SSP5 Mean ± SD
 2025 69.8 69.5 69.6 69.5 69.9 69.7 ± 0.2  
 2030 80.9 80.6 80.8 80.3 81.3 80.8 ± 0.4  
 2035 90.8 90.7 88.9 88.4 91.5 90.1 ± 1.3  
 2040 99.4 98.5 98.2 97.5 100.7 98.9 ± 1.2  
 2045 109.3 108.4 107.7 106.7 112.6 108.9 ± 2.3 
 2050 118.3 115.8 115.2 113.4 120.9 116.7 ± 2.9 

Table  4 summarises the projections at five-year intervals from 2025 
to 2050. Initially, the projected demand in 2025 is nearly identical 
across all scenarios (approximately 69.7 TWh), indicating minimal di-
vergence at this early stage due to the short-term predictability and nar-
row differences in near-future GDP and population estimates. By 2035, 
however, noticeable divergence begins to emerge albeit modestly, with 
SSP5 projecting the highest demand (91.5 TWh) and SSP4 the lowest 
(88.4 TWh). This variation expands further by 2050, highlighting dif-
ferentiated long-term outcomes linked to scenario assumptions: SSP5, 
characterised by high economic growth and resource-intensive develop-
ment, projects the highest demand (120.9 TWh), while SSP4, reflect-
ing greater socioeconomic inequalities and slower economic growth, 
anticipates the lowest demand level (113.4 TWh). SSP1, despite its 
sustainability-driven focus, predicts substantial demand (118.3 TWh) 
by 2050, demonstrating a moderate yet consistent upward trajectory 
with an average quinquennial increase of approximately 9.7 TWh, 
underlining the significant role electrification may play in sustainable 
economic growth scenarios. It may be that despite its green growth 
orientation, electricity demand in SSP1 remains substantial, largely 
due to deep decarbonisation strategies prioritising clean electricity as 
a substitute for fossil fuels across sectors [135]. This could highlight 
that even under environmentally progressive scenarios, significant in-
vestment in low-carbon electricity infrastructure might still be required 
to meet future demand while supporting sustainable development ob-
jectives. SSP2 and SSP3 yield very similar intermediate projections 
(115.8 and 115.2 TWh, respectively), illustrating that demographic fac-
tors in SSP3 partially compensate for its lower economic assumptions 
compared to SSP2. The total range of scenario projections by 2050 
is relatively narrow—approximately a 6.6% difference between the 
highest (SSP5) and lowest (SSP4) outcomes. Additionally, the standard 
deviation (±0.2 TWh in 2025 to ±2.9 TWh by 2050) across scenarios 
highlights uncertainty stays narrow over time, albeit still modest.

The consistent upward trend across all scenarios, with demand 
roughly doubling from 2025 to 2050, points to the crucial need for 
infrastructure expansion regardless of the development pathway. This 
growth trajectory raises important questions about grid capacity, en-
ergy security, and the necessity of diversifying energy sources to meet 
increasing demand while maintaining system reliability [3,10,136].
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Fig. 11. Validation of model projections against Turkey’s National Energy 
Plan (NEP). Projected residential electricity demand (TWh) from 2025 to 2050 
under five SSP scenarios compared with official NEP projections (shown in 
red) [137].

5.2.2. Comparison with the national energy plan
To validate our model’s projections, we compared our results with 

Turkey’s official national energy plan. This comparison provides im-
portant insights into our model’s performance and its alignment with 
existing projections. The Turkish national energy plan is a compre-
hensive strategic document published by the Ministry of Energy and 
Natural Resources in Turkey [137]. This plan was developed in 2022 
to outline the country’s energy strategy up to 2035, aiming to support 
Turkey’s net zero emission target. The plan covers various aspects of 
the energy sector, including primary energy consumption, electricity 
demand and generation, installed capacity projections, and the in-
tegration of renewable energy sources. It takes into account factors 
such as population growth, economic development, and fuel prices to 
project sectoral energy demands across industry, residential, services, 
agriculture, and transportation sectors.

In evaluating the efficacy of our model for projecting residential 
electricity demand in Turkey, we compared our results with the official 
residential electricity demand projections up to 2035 from Turkey’s 
national energy plan. For 2025, our model’s projections range from 
69.5 to 69.9 TWh, which closely align with the official estimate of 
69.2 TWh. In 2030, our model projects demand between 80.3 and 81.3 
TWh, again very similar to the official 83.1 TWh estimate. For 2035, 
our model’s range of 88.4 to 91.5 TWh slightly exceeding the official 
projection of 85.6 TWh. Overall, our model matches the official figures 
with 99.3% agreement in 2025, 97.2% in 2030, and 94.7% in 2035, 
indicating high consistency across all compared years.

The close alignment between our model’s outputs and the official 
projection figures, particularly for the near-term years of 2025 and 
2030, suggests a strong predictive capability of our approach. Official 
estimates only extend up to 2035, which limits direct comparison for 
projections for 2040 and beyond. This similarity lends credibility to our 
approach and indicates that our model effectively captures the underly-
ing trends and factors influencing residential electricity consumption in 
Turkey. These comparisons are illustrated in Fig.  11, which shows the 
alignment between our model’s five scenarios and the official national 
energy plan projections.

The methodology presented in this study highlights the importance 
of granular, sub-national forecasts in energy planning. We recommend 
that official energy planning bodies in Turkey consider applying similar 
approaches to provincial-level forecasting. By leveraging their access 
to more extensive datasets and resources, they could further refine 
and enhance the accuracy of these projections, providing an even 
more reliable groundwork for regional energy policy and infrastructure 
planning.

These findings show the potential of machine learning techniques, 
specifically random forest models, in energy demand forecasting [138]. 
The integration of shared socioeconomic pathways into our model 
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framework provides a nuanced and potentially more comprehensive 
projection of future electricity demand scenarios compared to single-
point estimates in the National Energy Plan. This alignment with 
official projections, particularly in the near term, validates the robust-
ness of our methodology and its potential applicability in energy policy 
planning and decision-making processes.

5.2.3. Provincial forecasts
The projected province-level residential electricity demand from 

2025 to 2050 is presented in Fig.  12, showing significant variations 
across provinces and scenarios. Since displaying plots for all 81
provinces is impractical, the trends for 27 major cities (by population) 
are displayed, arranged in rows of similar 2050 projections, to facilitate 
a visually meaningful comparison.

Across most provinces, the SSP trajectories evolve in close align-
ment, with no substantial divergence between scenarios, indicating 
broadly consistent expectations for residential demand growth across 
socioeconomic pathways. In Ankara, projections begin to diverge
markedly after 2030, suggesting that different SSP narratives could 
exert more pronounced effects in highly urbanised and populated 
provinces. In contrast, Izmir exhibits a stable projection over the next 
decade, with nearly flat growth across all scenarios. This apparent 
stagnation is consistent with observed trends. Izmir’s residential elec-
tricity demand has shown relatively minimal variation since 2017, 
supporting the plausibility of the model’s subdued forecasts. Similarly, 
projections for Antalya suggest that demand will stabilise beyond 
2030, potentially indicating a saturation point in residential demand 
or plateauing population growth. For the remaining provinces, de-
mand is projected to increase gradually and steadily over time, with 
consistent upward trends across all scenarios. Projections support a 
broader narrative of uniform national growth in residential electricity 
demand, punctuated by a few provincial deviations likely linked to 
region-specific demographic, economic, or climatic factors.

The provincial estimates for SSP2 are presented in Table  5, as 
this scenario provides a balanced middle-of-the-road projection in-
corporating moderate challenges to both climate change mitigation 
and adaptation, thus serving as a pragmatic ‘business as usual’ base-
line [18]. The projections for the remaining four scenarios: SSP1, 
SSP3, SSP4, and SSP5, are documented in Appendix  A.1. Under the 
SSP2 scenario, substantial increases in residential electricity demand 
are projected across most provinces by 2050. Istanbul, functioning as 
Turkey’s primary economic and demographic centre [139], demon-
strates the highest demand, with projections indicating an increase 
from 12.8 TWh in 2023 to 22.4 TWh in 2050. Similarly, significant 
growth is anticipated in other major urban centers, with Ankara and 
Izmir projected to reach 7.2 TWh and 5.9 TWh, respectively, by 2050.

Tables  6 and 7 shows the provinces which had more than 150% and 
less than 40% increases between 2023 and 2050. The most dramatic 
increase is observed in Yalova under all scenarios, with a more than 
270% rise in projected electricity demand. This substantial increase 
aligns with earlier scenario-based planning studies of Yalova, which 
identified the province as highly sensitive to alternative development 
trajectories involving rapid urbanisation, demographic shifts, and eco-
nomic transformation [140], representing the highest increase across 
all provinces and scenarios. Other notable high increases are observed 
in Tunceli and Eskisehir, both showing consistent growth of around 
170% across all SSP scenarios, and Erzincan exhibiting a significant rise 
of approximately 155% under SSP5.

Agri and Artvin consistently show increases between 30% and 40% 
across all five scenarios, indicating a persistently slow growth trajectory 
in residential energy demand. This trend may reflect limited population 
growth, economic stagnation, or already-saturated demand levels in 
these regions. Rize and Sivas also exhibit similarly low increases across 
most scenarios, showing a pattern of subdued residential electricity 
expansion in certain eastern and northeastern provinces. İzmir, despite 
being a major urban centre, appears in the low-growth category under 
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SSP2, SSP3, and SSP4, with increases not exceeding 28%, suggesting a 
potential plateau in residential demand that may be linked to mature 
infrastructure and stabilised demand levels. Additionally, Bayburt and 
Çanakkale join this group under SSP3 and SSP4 respectively, high-
lighting the scenario-specific variation in regional energy trajectories. 
Findings suggest that in contrast to high-growth provinces requiring 
infrastructure expansion, the provinces listed here may benefit more 
from strategies focused on maintaining system resilience, improving 
energy efficiency, and addressing regional disparities in development.

Differentiated growth in residential electricity demand indicates 
the necessity for region-specific policies [141]. For provinces such as 
Bursa, residential demand is expected to rise from 2,405 GWh in 2023 
to 4,319 GWh by 2050, marking a 79.5% increase. Bursa’s projected 
increase in electricity demand reflects its role as one of Turkey’s leading 
industrialised cities, where economic growth, urbanisation, and domes-
tic migration—driven by employment opportunities, a high quality of 
life, and strong infrastructure—collectively fuel residential electricity 
consumption alongside industrial demand [142]. Additionally, Bursa’s 
per capita electricity demand has consistently exceeded national aver-
ages, driven by both population density and strong industrial presence, 
making it critical to address the city’s residential infrastructure needs 
to meet rising demand sustainably [41]. Similarly, Kocaeli is projected 
to experience a surge from 1,449 GWh to 3,151 GWh, reflecting a 
117.5% increase. Kocaeli’s rapid urbanisation, marked by substantial 
conversion of agricultural lands to urban areas to accommodate ex-
panding residential and industrial zones, reinforces our findings and 
aligns with other studies documenting these shifts as critical factors 
driving increased energy demands in the province [143]. These regions 
would benefit from proactive investments in renewable energy and 
energy efficiency enhancements to mitigate potential environmental 
and economic impacts of increased fossil fuel consumption.

Several provinces are projected to have low levels of residential 
electricity demand in 2050, with Bayburt at 67 GWh, Ardahan at 78 
GWh, Tunceli at 129 GWh, G’́um’́uşhane at 127 GWh, Iğdır at 162 GWh, 
and Artvin at 178 GWh. For these provinces the focus might be on 
understanding the various factors influencing their electricity demand. 
In Gumushane, climate-related events—such as storms, floods, and 
other extreme weather conditions—are noted as recurring issues that 
may disrupt local infrastructure and economic activities, potentially im-
pacting demand growth [144]. Given these climate-related challenges, 
policies in Gumushane could prioritise resilience-building measures 
that address both disaster preparedness and sustainable energy prac-
tices. Moreover, a separate study highlights that Artvin and Gumushane 
have among the lowest solar radiation and sunshine duration values 
across Turkey, limiting the feasibility of photovoltaic (PV) electricity 
generation in these areas [145]. This limitation could further dis-
courage investments in renewable infrastructure, thereby influencing 
local demand. Recognising these unique regional constraints, targeted 
policies might focus on stimulating economic growth through resilient 
infrastructure improvements, while also exploring alternative energy 
sources suited to the local context.

To support accessibility and exploration of the model outputs, an 
interactive dashboard was developed, allowing users to visualise the 
projected residential electricity demand across Turkey from 2025 to 
2050 under five SSP scenarios at both national and provincial levels. 
It also features a spatial mapping interface for exploring provincial 
demand distributions in 2050 under a selected scenario. The tool is 
publicly available at: https://2050-demand-turkey.streamlit.app/

5.2.4. Implications of SSP scenarios
Studies using SSPs mostly focus on national or global scales [146–

148]. Our application of SSPs at the provincial level aimed to capture 
subnational dynamics. Study findings show that most provinces ex-
hibit broadly consistent electricity demand trajectories across scenarios, 
with relatively modest divergences. As illustrated in Fig.  12, the SSP 

https://2050-demand-turkey.streamlit.app/
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Fig. 12. Residential electricity demand projections up to 2050 for 27 major provinces. The figure illustrates historical data alongside forecasts under five SSP 
scenarios, with end-year bars indicating scenario ranges and means.
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Table 5
Projected annual residential electricity demand (GWh) in Turkish provinces between 2025 and 2050 under SSP2 scenario.
 Province 2025 2030 2035 2040 2045 2050  
 Adana 2209 2413 2642 2942 3467 3532  
 Adiyaman 350 396 426 511 554 667  
 Afyonk. 462 467 523 535 600 713  
 Agri 218 229 249 280 319 332  
 Aksaray 281 322 397 395 405 481  
 Amasya 230 256 278 304 326 340  
 Ankara 5595 5626 7023 6997 7178 7126  
 Antalya 3257 4597 4635 5040 5084 5237  
 Ardahan 52 54 60 67 72 78  
 Artvin 130 141 149 167 173 178  
 Aydin 1167 1517 1582 1828 1874 2054  
 Balikesir 1401 1441 1494 1574 1915 2062  
 Bartin 145 170 195 206 221 235  
 Batman 346 379 414 485 571 659  
 Bayburt 45 49 51 55 59 68  
 Bilecik 152 183 199 221 319 346  
 Bingol 159 195 214 256 275 300  
 Bitlis 177 198 214 253 275 308  
 Bolu 237 272 372 384 394 392  
 Burdur 201 234 248 264 280 296  
 Bursa 2609 3411 3729 3830 4319 4252  
 Canakkale 495 557 549 600 637 712  
 Cankiri 141 161 187 203 236 259  
 Corum 327 368 406 454 471 479  
 Denizli 958 1171 1517 1563 1767 1788  
 Diyarbakir 1134 1352 1511 1650 2005 2111  
 Duzce 263 309 401 398 413 434  
 Edirne 323 380 440 452 510 519  
 Elazig 388 496 492 510 532 627  
 Erzincan 155 174 199 220 233 251  
 Erzurum 433 480 501 523 568 602  
 Eskisehir 950 1139 1609 1624 1663 1755  
 Gaziantep 1617 1742 2077 2149 2442 3027  
 Giresun 343 434 418 451 495 514  
 Gumushane 81 98 110 119 124 127  
 Hakkari 128 145 166 186 211 222  
 Hatay 1258 1674 1872 2089 2249 2469  
 Igdir 96 110 119 134 142 162  
 Isparta 316 346 404 414 428 444  
 Istanbul 13106 15006 16803 18632 20591 22441 
 Izmir 4684 4605 5721 5682 5701 5932  

 Province 2025 2030 2035 2040 2045 2050 
 K.maras 754 859 975 1135 1489 1575 
 Karabuk 182 240 258 284 311 309  
 Karaman 166 186 214 225 239 336  
 Kars 132 143 158 167 187 193  
 Kastamonu 268 307 339 352 428 412  
 Kayseri 1061 1199 1510 1594 1728 1913 
 Kilis 122 131 137 160 184 196  
 Kirikkale 201 242 257 284 292 396  
 Kirklareli 284 398 397 411 445 455  
 Kirsehir 160 186 212 240 248 272  
 Kocaeli 1560 2264 2340 2641 2984 3151 
 Konya 1838 2101 2200 2529 2845 3240 
 Kutahya 378 447 464 465 482 514  
 Malatya 486 514 536 615 701 871  
 Manisa 1208 1563 1664 1755 1976 2102 
 Mardin 572 643 739 820 900 1035 
 Mersin 2039 2175 2324 2611 3349 3432 
 Mugla 1508 1760 1844 1902 2088 2156 
 Mus 176 202 216 245 262 284  
 Nevsehir 211 246 274 286 312 354  
 Nigde 233 263 284 311 329 390  
 Ordu 595 699 831 1150 1185 1193 
 Osmaniye 365 433 491 514 611 698  
 Rize 260 270 291 335 364 373  
 Sakarya 905 1073 1349 1612 1678 1807 
 Samsun 1068 1581 1635 1713 1939 2002 
 Sanliurfa 1354 1610 1700 1812 2090 2311 
 Siirt 162 192 209 241 255 272  
 Sinop 169 189 205 220 241 263  
 Sirnak 246 294 415 460 483 554  
 Sivas 396 452 452 463 486 493  
 Tekirdag 946 1086 1229 1561 1868 2090 
 Tokat 360 434 459 482 516 525  
 Trabzon 655 761 1017 1299 1600 1557 
 Tunceli 55 76 83 94 99 129  
 Usak 270 302 316 343 420 440  
 Van 578 700 768 799 888 1019 
 Yalova 280 313 449 832 882 928  
 Yozgat 278 301 320 337 350 425  
 Zonguldak 445 516 542 551 589 596  
  
Table 6
Projected increases in electricity demand (2023–2050) for provinces with the highest changes (≥ 150%) under multiple SSP scenarios.
 SSP1 SSP2 SSP3 SSP4 SSP5

 Province Increase Province Increase Province Increase Province Increase Province Increase 
 Eskisehir 168% Eskisehir 169% Eskisehir 167% Eskisehir 168% Erzincan 155%  
 Tunceli 178% Tunceli 174% Tunceli 168% Tunceli 172% Eskisehir 168%  
 Yalova 272% Yalova 273% Yalova 273% Yalova 272% Tunceli 201%  
 Yalova 273%  
Table 7
Projected increases in electricity demand (2023–2050) for provinces with the lowest changes (≤ 40%) under multiple SSP scenarios.
 SSP1 SSP2 SSP3 SSP4 SSP5

 Province Increase Province Increase Province Increase Province Increase Province Increase 
 Agri 38% Agri 40% Agri 40% Agri 37% Agri 39%  
 Artvin 34% Artvin 30% Artvin 27% Artvin 30% Artvin 38%  
 Rize 36% Izmir 28% Bayburt 28% Bayburt 31%  
 Sivas 34% Rize 36% Canakkale 37% Canakkale 37%  
 Sivas 33% Izmir 26% Izmir 25%  
 Rize 33% Rize 36%  
 Sivas 33% Sivas 32%  
15 
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trajectories exhibit close alignment, indicating that the impact of SSP-
specific socioeconomic assumptions—implemented through GDP and 
population variations—was relatively limited especially in small cities.

Although the majority of provinces exhibited limited divergence 
in residential electricity demand across SSP scenarios, major urban 
centers, such as Istanbul, Ankara, and Izmir, did show notable dif-
ferences in their projected trajectories. This suggests that SSP-based 
scenario analysis were most pronounced in large urban provinces where 
higher population densities and economic activity appear to amplify the 
influence of SSP-specific socioeconomic trajectories.

Previous studies have investigated the quantification of SSP narra-
tives [69] and their regional extensions [149]; Building on this, our 
findings suggest that the effectiveness of SSPs in subnational elec-
tricity demand forecasting can be strengthened by broadening the 
range of scenario variables considered. Our approach implemented 
SSPs by varying only two variables—population and GDP—while other 
inputs remained constant across scenarios. Since only GDP and pop-
ulation projections were varied, the SSP framework could be more 
effective if expanded to include additional factors. The SSP frame-
work provides a robust foundation for scenario-based forecasting and 
highlights the value of long-term planning under uncertainty [150]. 
Even with converging projections across SSPs, long-term infrastructure 
planning benefits from identifying areas—such as Bursa and Kocaeli—
where growth is consistently high and relatively insensitive to specific 
scenario assumptions. In such cases, targeted investments can be con-
sidered ‘no-regret’ strategies, offering value across a range of plausible 
futures [151]. This illustrates how even modest scenario differentiation 
can still inform spatially nuanced energy planning decisions.

Our study contributes to the broader SSP literature by highlighting 
both the potential and limitations of downscaling global narratives to 
the provincial level. While regional heterogeneity can influence the 
expression of global pathways [152,153], its impact depends strongly 
on how comprehensively the scenarios are implemented. Strengthening 
this alignment can enable scenario-based modelling to more effectively 
support resilient, adaptive, and regionally tailored energy strategies for 
Turkey and other countries with high spatial variability.

5.2.5. Regional outliers
The projections for Istanbul, Turkey’s economic and demographic 

hub, presented unique challenges in this study due to its signifi-
cantly higher population and household numbers compared to other 
provinces. While the RF model demonstrated excellent performance 
across the remaining eighty provinces, its outputs for Istanbul’s elec-
tricity demand exhibited notable deviations from observed trends. This 
anomaly was predominantly due to Istanbul being an outlying case 
due to its considerable population and household numbers and higher 
relative electricity usage, which made it challenging to effectively 
capture its features within a single modelling framework.

A hybrid modelling approach was implemented to address the 
anomaly. FFNN was employed specifically for Istanbul, as it produced 
more coherent and rational projections for this province. The remaining 
eighty provinces were modelled using RF, ensuring consistency and 
reliability across the broader dataset. The hybrid approach enabled the 
integration of FFNN’s strengths in handling large and complex datasets 
with RF’s performance, thus accommodating Istanbul’s unique profile 
without compromising the study’s overall methodological framework. 
This case highlights the importance of considering the distinct char-
acteristics of outlier regions, particularly in studies that aim to cap-
ture regional heterogeneity. Using two models not only demonstrates 
the complexity of forecasting electricity demand in highly urbanised 
and economically active areas, but also validates the adaptability and 
reliability of the methodological approach proposed in this research.
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5.3. Limitations and future research

This study has some limitations that present opportunities for future 
research. Our projections may not fully capture the impact of potential 
technological disruptions. One example is the increasing adoption of 
electric vehicles, a large number of which are expected to be pre-
dominantly charged from residential connections, potentially leading 
to significant changes in household electricity demand. According to 
TURKSTAT, electric vehicles represented only 1.2% of Turkey’s total 
vehicle fleet in 2023 [154], indicating minimal current impact on resi-
dential electricity demand. While EV adoption is expected to accelerate 
and significantly influence future residential consumption patterns, the 
current penetration rates were insufficient to meaningfully affect our 
historical training data or near-term projections. The growing use of 
rooftop photovoltaic (PV) systems represents another factor that may 
reduce grid-observed residential demand; however, province-level PV 
adoption data—such as household penetration or installed residential 
capacity—remains unavailable despite the introduction of enhanced 
feed-in tariffs for systems installed between 2021-2030 [155].

Future studies could develop scenarios that explicitly model these 
technological shifts and their implications for residential electricity 
demand such as incorporating PV trends when such data becomes 
accessible. The methodology could also be extended to other sectors 
such as commercial and industrial, providing a more comprehensive 
view of future electricity demand. In addition, future work should 
explore more holistic integration of SSP elements—beyond population 
and GDP—into machine learning frameworks to better capture local 
dynamics and regional disparities. Addressing these areas in future 
research will enhance our understanding of long-term electricity de-
mand trends, contributing to more comprehensive energy planning and 
policy-making.

6. Conclusion

This study developed a machine learning model to forecast long-
horizon residential electricity demand at the provincial level in Turkey 
through 2050. The model integrates socioeconomic and climatic vari-
ables and analyses the impact of SSPs on future demand patterns.

The selection of the ML algorithm was based on the evaluation of 
prediction performance of six algorithms: FFNN, XGBoost, SVR, LSTM, 
GPR and RF, against a global linear regression model. RF emerged as 
the most effective model, achieving an 𝑅2 score of 0.9359, MAE of 42.5 
GWh, and RMSE of 55.5 GWh. By incorporating key factors such as 
population, GDP, household types, and climate data—aligned with SSPs 
to reflect projected socioeconomic and environmental trajectories—
the model provides a perspective not only on the present drivers of 
residential electricity demand but also on how these drivers may evolve 
in the future.

The findings indicate that Turkey’s residential electricity demand 
is likely to increase from 65.5TWh in 2023 to between 113.4TWh and 
120.9TWh by 2050, depending on socioeconomic pathways. This high-
lights the substantial impact of demographic and economic changes on 
future energy needs. Analysis at the provincial level revealed marked 
disparities: while provinces such as Yalova, Tunceli, and Eskisehir may 
see demand increases exceeding 150%, others, including Agri, Artvin, 
and Izmir, may experience more modest growth, often below 40%. Such 
insights highlight the importance of regional forecasting in informing 
targeted policy interventions and infrastructure planning. 

This study makes several novel contributions to energy forecast-
ing. First, it demonstrates the suitability of the Random Forest algo-
rithm for long-horizon, provincial-level electricity demand forecasting, 
showing improved accuracy and adaptability over traditional statis-
tical methods. Second, by incorporating SSPs, the model provides a 
holistic, scenario-based approach that accounts for diverse socioeco-
nomic futures, offering a more comprehensive picture than a single-
scenario analysis. Third, the comprehensive sub-national focus in a 
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Table A.1
Projected annual residential electricity demand (GWh) in Turkish provinces between 2025 and 2050 under SSP1 scenario.
 Province 2025 2030 2035 2040 2045 2050  
 Adana 2208 2399 2674 3049 3479 3498  
 Adiyaman 353 397 433 506 552 666  
 Afyonk. 461 463 479 532 599 839  
 Agri 218 225 249 278 312 327  
 Aksaray 281 325 396 393 408 480  
 Amasya 230 257 278 305 321 382  
 Ankara 5595 5626 7023 6997 7202 7151  
 Antalya 3257 4602 4635 5036 5074 5215  
 Ardahan 52 54 62 70 73 81  
 Artvin 130 141 153 169 178 183  
 Aydin 1168 1557 1586 1828 1883 2057  
 Balikesir 1401 1443 1501 1565 1912 2052  
 Bartin 145 170 196 210 221 244  
 Batman 346 381 414 514 563 654  
 Bayburt 45 49 51 56 64 74  
 Bilecik 152 182 197 220 327 343  
 Bingol 159 189 210 253 273 300  
 Bitlis 177 198 217 257 273 306  
 Bolu 237 272 382 385 396 393  
 Burdur 202 225 245 262 277 357  
 Bursa 2609 3400 3518 3796 4320 4314  
 Canakkale 495 557 551 601 708 718  
 Cankiri 141 160 188 210 236 259  
 Corum 327 367 406 448 470 483  
 Denizli 957 1176 1525 1566 1775 1795  
 Diyarbakir 1134 1369 1501 1647 2013 2099  
 Duzce 263 315 397 397 414 433  
 Edirne 323 380 450 452 507 523  
 Elazig 388 498 492 508 531 630  
 Erzincan 155 174 201 222 236 251  
 Erzurum 435 468 476 507 564 598  
 Eskisehir 953 1144 1603 1627 1659 1749  
 Gaziantep 1615 1724 2070 2201 2420 3017  
 Giresun 343 435 418 441 482 564  
 Gumushane 81 98 111 120 126 128  
 Hakkari 127 148 167 192 210 220  
 Hatay 1258 1674 1856 2058 2247 2449  
 Igdir 96 110 119 136 142 164  
 Isparta 315 346 410 413 423 443  
 Istanbul 13332 15350 17324 19368 21452 23441 
 Izmir 4682 4609 5724 5699 5827 7403  

 Province 2025 2030 2035 2040 2045 2050 
 K.maras 755 859 965 1130 1492 1583 
 Karabuk 181 239 258 284 309 313  
 Karaman 166 186 213 225 249 341  
 Kars 132 144 157 169 189 194  
 Kastamonu 268 308 338 410 426 408  
 Kayseri 1060 1194 1509 1590 1714 1922 
 Kilis 122 131 138 161 183 197  
 Kirikkale 199 242 257 284 352 397  
 Kirklareli 284 398 398 414 444 457  
 Kirsehir 160 190 214 238 244 274  
 Kocaeli 1560 2260 2340 2630 2967 3128 
 Konya 1838 2093 2200 2543 2861 3232 
 Kutahya 378 447 463 468 488 520  
 Malatya 485 507 513 567 677 851  
 Manisa 1208 1564 1669 1747 1970 2329 
 Mardin 572 640 725 815 868 1025 
 Mersin 2038 2174 2310 2770 3100 3109 
 Mugla 1517 1760 1848 1907 2108 2151 
 Mus 176 205 219 246 261 283  
 Nevsehir 211 247 273 288 312 406  
 Nigde 235 263 283 310 377 394  
 Ordu 581 697 781 1103 1135 1145 
 Osmaniye 365 434 499 518 611 699  
 Rize 260 273 291 342 365 375  
 Sakarya 905 1073 1344 1613 1683 1807 
 Samsun 1069 1585 1630 1716 1936 1997 
 Sanliurfa 1353 1578 1620 1704 1973 2120 
 Siirt 162 192 215 241 255 269  
 Sinop 169 194 206 220 242 264  
 Sirnak 245 292 419 460 484 558  
 Sivas 397 450 451 469 490 496  
 Tekirdag 946 1079 1228 1568 2115 2092 
 Tokat 360 434 455 476 494 501  
 Trabzon 653 742 1002 1284 1593 1584 
 Tunceli 56 76 84 96 103 131  
 Usak 270 302 316 392 413 435  
 Van 577 707 773 798 891 1022 
 Yalova 283 313 455 832 881 927  
 Yozgat 278 301 320 337 351 434  
 Zonguldak 456 517 541 551 595 604  
  
geographically and socioeconomically diverse country such as Turkey 
provides valuable insights for regional energy policy, often overlooked 
in national-level studies. Lastly, this research shows that socioeconomic 
factors such as population growth and GDP are stronger predictors 
of residential electricity demand in Turkey than climate variables, as 
supported by both internal feature importance and permutation-based 
model analyses.

Beyond its academic contributions, this research has practical im-
plications. The granular, long-term projections are highly beneficial 
for guiding region-specific energy policies, optimising infrastructure 
investments, and supporting sustainable energy transitions in Turkey. It 
also supports strategic decisions around renewable energy deployment, 
especially in provinces where demand is projected to rise rapidly and 
where local generation can be aligned with demand growth.

The methodological approach developed in this study has broader 
implications. It provides a framework that can be adapted to other 
countries or regions encountering similar challenges in energy demand 
forecasting and management. As countries around the globe face the 
challenge of meeting increasing energy demands while transitioning to 
more sustainable systems, the approach and findings presented in this 
study serve as a valuable resource for informed decision-making and 
strategic planning in the energy sector.
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Appendix

A.1. Provincial electricity demand projections

The following tables present detailed projections of provincial elec-
tricity demand under SSP1 (Table  A.1), SSP3 (Table  A.2), SSP4 (Table 
A.3), and SSP5 (Table  A.4) scenarios for all 81 provinces of Turkey, at 
5-year intervals. These scenarios supplement the SSP2 results discussed 
in Section 5.2.3.
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Table A.2
Projected annual residential electricity demand (GWh) in Turkish provinces between 2025 and 2050 under SSP3 scenario.
 Province 2025 2030 2035 2040 2045 2050  
 Adana 2210 2378 2669 2867 3292 3529  
 Adiyaman 350 395 423 480 591 721  
 Afyonk. 464 498 523 565 680 812  
 Agri 219 231 249 281 319 333  
 Aksaray 281 322 339 399 413 485  
 Amasya 230 254 274 307 325 345  
 Ankara 5595 5626 5628 6997 7178 7106  
 Antalya 3270 4593 4637 5052 5242 5393  
 Ardahan 52 54 57 61 63 75  
 Artvin 130 140 147 166 170 174  
 Aydin 1164 1511 1584 1806 1866 2055  
 Balikesir 1402 1434 1502 1574 1935 2080  
 Bartin 145 170 185 202 217 234  
 Batman 346 377 416 491 568 715  
 Bayburt 45 49 51 55 58 60  
 Bilecik 151 182 202 234 252 262  
 Bingol 159 201 217 252 279 296  
 Bitlis 177 199 212 252 275 304  
 Bolu 237 274 320 384 396 390  
 Burdur 201 235 250 263 279 296  
 Bursa 2606 3607 3740 3871 4437 4434  
 Canakkale 495 555 550 599 633 638  
 Cankiri 141 159 179 197 224 257  
 Corum 328 370 408 431 472 484  
 Denizli 957 1124 1519 1550 1769 1783  
 Diyarbakir 1134 1357 1513 1652 2019 2269  
 Duzce 262 308 358 405 415 439  
 Edirne 323 379 386 447 511 522  
 Elazig 387 462 493 512 536 632  
 Erzincan 155 174 196 219 231 248  
 Erzurum 433 505 531 562 596 630  
 Eskisehir 944 1151 1605 1634 1649 1742  
 Gaziantep 1652 1750 2089 2138 2197 2733  
 Giresun 343 436 425 461 506 518  
 Gumushane 82 103 110 121 125 127  
 Hakkari 128 150 170 193 206 229  
 Hatay 1259 1706 1890 2081 2389 2677  
 Igdir 96 109 118 135 142 160  
 Isparta 316 346 363 413 434 449  
 Istanbul 13138 14945 16625 18294 20066 21691 
 Izmir 4683 4605 5647 5678 5706 5854  

 Province 2025 2030 2035 2040 2045 2050 
 K.maras 753 865 966 1137 1479 1565 
 Karabuk 182 236 259 278 311 314  
 Karaman 165 188 216 236 250 268  
 Kars 133 143 159 169 190 196  
 Kastamonu 268 308 339 355 376 415  
 Kayseri 1058 1199 1510 1594 1729 1918 
 Kilis 122 127 135 154 176 194  
 Kirikkale 201 244 257 283 296 333  
 Kirklareli 284 385 396 411 445 453  
 Kirsehir 160 187 212 232 254 280  
 Kocaeli 1563 2276 2346 2651 3020 3173 
 Konya 1838 2107 2205 2388 2634 3208 
 Kutahya 377 450 465 461 480 509  
 Malatya 485 520 560 619 731 953  
 Manisa 1207 1563 1684 1769 2000 2125 
 Mardin 572 647 740 834 901 1012 
 Mersin 2039 2152 2470 2766 3099 3420 
 Mugla 1505 1754 1839 1902 2090 2148 
 Mus 176 200 215 242 262 285  
 Nevsehir 211 246 276 287 311 356  
 Nigde 233 263 284 311 330 343  
 Ordu 596 706 835 1152 1236 1260 
 Osmaniye 365 434 448 515 611 699  
 Rize 260 268 290 336 357 366  
 Sakarya 867 1076 1351 1602 1674 1822 
 Samsun 1062 1585 1628 1722 1953 2034 
 Sanliurfa 1362 1555 1715 1804 2118 2347 
 Siirt 161 189 209 237 252 269  
 Sinop 169 188 207 224 254 272  
 Sirnak 246 290 355 463 505 592  
 Sivas 396 447 451 464 480 493  
 Tekirdag 947 1091 1227 1564 1854 1833 
 Tokat 360 433 474 507 561 587  
 Trabzon 655 830 1035 1314 1586 1542 
 Tunceli 55 77 80 93 97 126  
 Usak 270 302 313 346 371 396  
 Van 578 700 776 805 901 1023 
 Yalova 278 315 348 832 882 929  
 Yozgat 278 300 317 334 354 375  
 Zonguldak 442 518 543 552 594 610  
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Table A.3
Projected annual residential electricity demand (GWh) in Turkish provinces between 2025 and 2050 under SSP4 scenario.
 Province 2025 2030 2035 2040 2045 2050  
 Adana 2209 2399 2645 2848 3432 3473  
 Adiyaman 350 395 423 496 553 663  
 Afyonk. 462 468 510 528 589 691  
 Agri 218 228 246 278 317 326  
 Aksaray 281 322 390 394 409 474  
 Amasya 230 255 277 303 318 339  
 Ankara 5595 5626 5628 6997 7178 7106  
 Antalya 3257 4599 4637 5039 5079 5217  
 Ardahan 52 54 58 63 71 77  
 Artvin 130 140 149 166 172 178  
 Aydin 1169 1514 1582 1811 1876 2046  
 Balikesir 1403 1436 1495 1571 1912 2050  
 Bartin 144 169 189 205 216 233  
 Batman 346 379 405 462 557 657  
 Bayburt 45 49 51 55 57 61  
 Bilecik 152 182 198 219 245 332  
 Bingol 159 193 213 249 274 286  
 Bitlis 177 198 214 252 272 304  
 Bolu 237 272 322 386 394 386  
 Burdur 201 226 246 261 277 295  
 Bursa 2607 3404 3726 3834 4324 4251  
 Canakkale 495 556 550 599 634 639  
 Cankiri 141 160 185 197 231 257  
 Corum 327 368 403 450 472 482  
 Denizli 958 1167 1519 1562 1766 1784  
 Diyarbakir 1134 1351 1510 1636 2000 2089  
 Duzce 263 308 392 397 412 428  
 Edirne 323 379 387 455 507 522  
 Elazig 388 462 493 511 527 626  
 Erzincan 155 174 195 220 232 248  
 Erzurum 433 475 492 513 560 587  
 Eskisehir 949 1136 1601 1623 1660 1749  
 Gaziantep 1616 1741 2072 2130 2188 3000  
 Giresun 343 434 415 446 484 503  
 Gumushane 81 98 109 119 123 126  
 Hakkari 128 144 161 185 204 219  
 Hatay 1258 1672 1862 2060 2247 2435  
 Igdir 96 110 119 134 141 161  
 Isparta 316 346 364 418 428 446  
 Istanbul 13120 14901 16527 18170 19891 21460 
 Izmir 4682 4608 5715 5699 5704 5820  

 Province 2025 2030 2035 2040 2045 2050 
 K.maras 754 854 970 1128 1485 1573 
 Karabuk 182 234 254 279 309 308  
 Karaman 165 186 213 223 237 256  
 Kars 133 142 155 165 185 188  
 Kastamonu 268 307 338 350 418 412  
 Kayseri 1059 1193 1505 1588 1725 1913 
 Kilis 122 129 136 154 183 195  
 Kirikkale 200 242 257 282 291 328  
 Kirklareli 284 387 394 410 443 456  
 Kirsehir 160 185 211 233 245 269  
 Kocaeli 1560 2264 2338 2632 2972 3124 
 Konya 1838 2103 2189 2379 2832 3214 
 Kutahya 377 448 465 461 478 507  
 Malatya 485 511 514 592 694 855  
 Manisa 1207 1563 1665 1738 1961 2073 
 Mardin 572 643 734 821 888 1005 
 Mersin 2039 2153 2319 2612 3058 3343 
 Mugla 1508 1759 1842 1901 2087 2138 
 Mus 176 201 217 244 262 284  
 Nevsehir 211 245 273 283 310 353  
 Nigde 233 263 284 310 327 340  
 Ordu 582 697 806 1148 1182 1188 
 Osmaniye 365 433 451 518 611 696  
 Rize 260 270 290 334 356 372  
 Sakarya 904 1070 1350 1606 1675 1804 
 Samsun 1062 1583 1626 1712 1936 1995 
 Sanliurfa 1353 1530 1675 1773 2069 2283 
 Siirt 162 191 211 238 251 267  
 Sinop 169 189 202 218 240 254  
 Sirnak 246 294 363 462 483 549  
 Sivas 396 450 452 461 485 488  
 Tekirdag 946 1081 1228 1562 1854 1850 
 Tokat 360 433 458 473 500 512  
 Trabzon 654 763 1011 1285 1588 1547 
 Tunceli 55 76 83 94 98 128  
 Usak 270 301 316 341 366 438  
 Van 577 698 766 804 888 1019 
 Yalova 280 313 350 834 881 926  
 Yozgat 278 300 319 335 350 371  
 Zonguldak 442 517 542 551 589 589  
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Table A.4
Projected annual residential electricity demand (GWh) in Turkish provinces between 2025 and 2050 under SSP5 scenario.
 Province 2025 2030 2035 2040 2045 2050  
 Adana 2209 2407 2673 3066 3482 3495  
 Adiyaman 353 398 490 507 554 674  
 Afyonk. 460 462 481 543 721 855  
 Agri 218 223 249 278 315 331  
 Aksaray 282 330 394 397 409 486  
 Amasya 230 258 279 306 372 391  
 Ankara 5595 5626 7023 6997 7231 7154  
 Antalya 3257 4599 4636 5037 5074 5234  
 Ardahan 52 54 67 71 76 81  
 Artvin 130 141 154 172 186 189  
 Aydin 1168 1564 1598 1836 1889 2075  
 Balikesir 1402 1444 1500 1567 1918 2060  
 Bartin 145 170 198 212 231 248  
 Batman 345 381 428 515 560 657  
 Bayburt 45 49 51 59 72 77  
 Bilecik 152 184 198 308 328 345  
 Bingol 159 192 212 256 281 304  
 Bitlis 177 198 218 259 275 307  
 Bolu 237 274 379 386 402 401  
 Burdur 202 226 246 262 341 369  
 Bursa 2609 3400 3489 3805 4355 4314  
 Canakkale 495 559 553 656 716 728  
 Cankiri 141 161 189 211 238 264  
 Corum 327 367 433 447 474 485  
 Denizli 959 1168 1528 1572 1778 1802  
 Diyarbakir 1134 1436 1514 1653 2018 2098  
 Duzce 263 321 397 402 418 440  
 Edirne 324 380 450 450 511 524  
 Elazig 391 504 489 517 533 643  
 Erzincan 155 177 201 226 236 334  
 Erzurum 435 466 478 511 570 690  
 Eskisehir 961 1144 1602 1631 1656 1751  
 Gaziantep 1615 1722 2073 2373 2424 3042  
 Giresun 343 435 425 443 551 562  
 Gumushane 81 101 112 123 128 135  
 Hakkari 127 149 167 198 212 225  
 Hatay 1258 1674 1859 2075 2247 2685  
 Igdir 96 112 120 136 148 169  
 Isparta 315 347 408 410 426 450  
 Istanbul 13411 15540 17671 19932 22257 24536 
 Izmir 4677 4609 5724 5808 7156 7403  

 Province 2025 2030 2035 2040 2045 2050 
 K.maras 755 861 966 1133 1499 1588 
 Karabuk 182 240 264 283 316 313  
 Karaman 167 187 214 231 325 343  
 Kars 132 144 158 169 192 195  
 Kastamonu 268 309 341 409 424 414  
 Kayseri 1061 1200 1509 1589 1722 2105 
 Kilis 122 131 141 162 185 205  
 Kirikkale 199 242 259 292 360 398  
 Kirklareli 284 399 399 414 446 485  
 Kirsehir 160 191 222 239 250 276  
 Kocaeli 1560 2260 2339 2636 2979 3128 
 Konya 1838 2093 2271 2568 2859 3237 
 Kutahya 378 448 468 474 495 619  
 Malatya 485 504 512 572 732 934  
 Manisa 1207 1565 1679 1746 2215 2348 
 Mardin 571 640 728 817 896 1036 
 Mersin 2037 2184 2342 2790 3104 3104 
 Mugla 1515 1759 1848 1904 2102 2174 
 Mus 176 205 224 248 261 285  
 Nevsehir 211 247 274 288 360 410  
 Nigde 238 264 284 314 389 396  
 Ordu 581 697 783 1104 1139 1151 
 Osmaniye 365 436 498 519 616 715  
 Rize 259 274 292 342 365 435  
 Sakarya 906 1076 1355 1618 1678 1810 
 Samsun 1076 1586 1630 1720 1937 1994 
 Sanliurfa 1353 1584 1636 1727 1975 2129 
 Siirt 163 192 220 244 260 336  
 Sinop 169 196 209 224 248 267  
 Sirnak 246 293 420 462 492 570  
 Sivas 397 448 451 474 496 580  
 Tekirdag 946 1080 1229 1618 2117 2118 
 Tokat 360 435 456 474 491 505  
 Trabzon 653 741 1002 1283 1630 1584 
 Tunceli 56 79 84 101 106 142  
 Usak 270 302 316 400 413 442  
 Van 576 708 771 798 897 1063 
 Yalova 283 317 453 832 881 928  
 Yozgat 278 302 320 337 399 433  
 Zonguldak 457 517 543 554 596 694  
  
References

[1] IEA. Electricity 2024: Analysis and forecast to 2026. Technical report, Paris, 
France: International Energy Agency (IEA); 2024, https://www.iea.org/reports/
electricity-2024.

[2] IEA. Electricity 2025: Analysis and forecast to 2027. Technical report, Paris, 
France: International Energy Agency (IEA); 2025, https://www.iea.org/reports/
electricity-2025.

[3] IEA. Developing capacity for long-term energy policy planning: A roadmap. 
Technical report, Paris, France: International Energy Agency (IEA); 2024, 
https://www.iea.org/reports/developing-capacity-for-long-term-energy-policy-
planning-a-roadmap.

[4] IEA. Net zero by 2050: A roadmap for the global energy sector. Technical 
report, Paris, France: International Energy Agency (IEA); 2021, https://www.
iea.org/reports/net-zero-by-2050.

[5] Amin Amin, Mourshed Monjur. Community stochastic domestic electricity fore-
casting. Appl Energy 2024;355:122342. http://dx.doi.org/10.1016/j.apenergy.
2023.122342.

[6] IEA. World electricity final consumption by sector, 1974–2019. Paris, 
France: International Energy Agency (IEA); 2021, https://www.iea.org/data-
and-statistics/charts/world-electricity-final-consumption-by-sector-1974-2019.

[7] Gu Chaolin, Ye Xinyue, Cao Qiwen, Guan Weihua, Peng Chong, Wu Yutong, 
et al. System dynamics modelling of urbanization under energy constraints in 
China. Sci Rep 2020;10:9956. http://dx.doi.org/10.1038/s41598-020-66125-3.

[8] Can Trong Nguyen Diem Kieu Phan. Factors affecting urban electricity con-
sumption: a case study in the Bangkok Metropolitan Area using an integrated 
approach of earth observation data and data analysis. Environ Sci Pollut Res 
2021;28:12056–66. http://dx.doi.org/10.1007/s11356-020-09157-6.

[9] Yuchen Guo Ze Zhang. Reducing carbon emissions through green renewal: 
insights from residential energy consumption in Chinese urban inventory 
districts from an evidence-based decision-making perspective. Humanit Soc Sci 
Commun 2024;11:54. http://dx.doi.org/10.1057/s41599-023-02417-z.
20 
[10] Gulaydin Oguzhan, Mourshed Monjur. Net-zero Turkey: Renewable energy 
potential and implementation challenges. Energy Sustain Dev 2025;87:101744. 
http://dx.doi.org/10.1016/j.esd.2025.101744.

[11] Turkstat. Energy statistics. Ankara, Türkiye: Turkish Statistical Institute 
(TURKSTAT); 2024, https://biruni.tuik.gov.tr/medas/.

[12] Ugbehe Prosper O, Diemuodeke Ogheneruona E, Aikhuele Daniel O. Electricity 
demand forecasting methodologies and applications: a review. Sustain Energy 
Res 2025;12(1):19. http://dx.doi.org/10.1186/s40807-025-00149-z.

[13] Allen Melissa R, Fernandez Steven J, Fu Joshua S, Olama Mohammed M. 
Impacts of climate change on sub-regional electricity demand and distribution 
in the southern United States. Nat Energy 2016;1(8). http://dx.doi.org/10.
1038/nenergy.2016.103.

[14] Chen Gang, Hu Qingchang, Wang Jin, Wang Xu, Zhu Yuyu. Machine-learning-
based electric power forecasting. Sustain (Switzerland) 2023;15(14). http://dx.
doi.org/10.3390/su151411299.

[15] Zhou Datong, Balandat Maximilian, Tomlin Claire. Residential demand response 
targeting using machine learning with observational data. In: 2016 IEEE 55th 
conference on decision and control. 2016, p. 6663–8. http://dx.doi.org/10.
1109/CDC.2016.7799295.

[16] Srinivasan Dipti. Energy demand prediction using GMDH networks. Neu-
rocomputing 2008;72(1):625–9. http://dx.doi.org/10.1016/j.neucom.2008.08.
006.

[17] Michalski Ryszard Stanislaw, Carbonell Jaime Guillermo, Mitchell Tom M. 
Machine learning: An artificial intelligence approach. Springer Science & 
Business Media; 2013.

[18] O’Neill Brian C, Kriegler Elmar, Riahi Keywan, Ebi Kristie L, Halle-
gatte Stephane, Carter Timothy R, et al. A new scenario framework for climate 
change research: the concept of shared socioeconomic pathways. Clim Change 
2014;122(3):387–400. http://dx.doi.org/10.1007/s10584-013-0905-2.

[19] Kuster Corentin, Rezgui Yacine, Mourshed Monjur. Electrical load forecasting 
models: A critical systematic review. Sustain Cities Soc 2017;35:257–70. http:
//dx.doi.org/10.1016/j.scs.2017.08.009.

https://www.iea.org/reports/electricity-2024
https://www.iea.org/reports/electricity-2024
https://www.iea.org/reports/electricity-2024
https://www.iea.org/reports/electricity-2025
https://www.iea.org/reports/electricity-2025
https://www.iea.org/reports/electricity-2025
https://www.iea.org/reports/developing-capacity-for-long-term-energy-policy-planning-a-roadmap
https://www.iea.org/reports/developing-capacity-for-long-term-energy-policy-planning-a-roadmap
https://www.iea.org/reports/developing-capacity-for-long-term-energy-policy-planning-a-roadmap
https://www.iea.org/reports/net-zero-by-2050
https://www.iea.org/reports/net-zero-by-2050
https://www.iea.org/reports/net-zero-by-2050
http://dx.doi.org/10.1016/j.apenergy.2023.122342
http://dx.doi.org/10.1016/j.apenergy.2023.122342
http://dx.doi.org/10.1016/j.apenergy.2023.122342
https://www.iea.org/data-and-statistics/charts/world-electricity-final-consumption-by-sector-1974-2019
https://www.iea.org/data-and-statistics/charts/world-electricity-final-consumption-by-sector-1974-2019
https://www.iea.org/data-and-statistics/charts/world-electricity-final-consumption-by-sector-1974-2019
http://dx.doi.org/10.1038/s41598-020-66125-3
http://dx.doi.org/10.1007/s11356-020-09157-6
http://dx.doi.org/10.1057/s41599-023-02417-z
http://dx.doi.org/10.1016/j.esd.2025.101744
https://biruni.tuik.gov.tr/medas/
http://dx.doi.org/10.1186/s40807-025-00149-z
http://dx.doi.org/10.1038/nenergy.2016.103
http://dx.doi.org/10.1038/nenergy.2016.103
http://dx.doi.org/10.1038/nenergy.2016.103
http://dx.doi.org/10.3390/su151411299
http://dx.doi.org/10.3390/su151411299
http://dx.doi.org/10.3390/su151411299
http://dx.doi.org/10.1109/CDC.2016.7799295
http://dx.doi.org/10.1109/CDC.2016.7799295
http://dx.doi.org/10.1109/CDC.2016.7799295
http://dx.doi.org/10.1016/j.neucom.2008.08.006
http://dx.doi.org/10.1016/j.neucom.2008.08.006
http://dx.doi.org/10.1016/j.neucom.2008.08.006
http://refhub.elsevier.com/S0360-5442(25)03837-X/sb17
http://refhub.elsevier.com/S0360-5442(25)03837-X/sb17
http://refhub.elsevier.com/S0360-5442(25)03837-X/sb17
http://refhub.elsevier.com/S0360-5442(25)03837-X/sb17
http://refhub.elsevier.com/S0360-5442(25)03837-X/sb17
http://dx.doi.org/10.1007/s10584-013-0905-2
http://dx.doi.org/10.1016/j.scs.2017.08.009
http://dx.doi.org/10.1016/j.scs.2017.08.009
http://dx.doi.org/10.1016/j.scs.2017.08.009


O. Gulaydin and M. Mourshed Energy 336 (2025) 138195 
[20] Debnath Kumar Biswajit, Mourshed Monjur. Forecasting methods in energy 
planning models. Renew Sustain Energy Rev 2018;88:297–325. http://dx.doi.
org/10.1016/j.rser.2018.02.002.

[21] IEA. World energy outlook 2024. Technical report, Paris, France: International 
Energy Agency (IEA); 2024, https://www.iea.org/reports/world-energy-outlook-
2024.

[22] Dilaver Zafer, Hunt Lester C. Turkish aggregate electricity demand: An 
outlook to 2020. Energy 2011;36(11):6686–96. http://dx.doi.org/10.1016/j.
energy.2011.07.043.

[23] Bilgili Mehmet, Sahin Besir, Yasar Abdulkadir, Simsek Erdogan. Electric energy 
demands of Turkey in residential and industrial sectors. Renew Sustain Energy 
Rev 2012;16(1):404–14. http://dx.doi.org/10.1016/j.rser.2011.08.005.

[24] Bilgili Mehmet, Pinar Engin. Gross electricity consumption forecasting us-
ing LSTM and SARIMA approaches: A case study of Türkiye. Energy 
2023;284:128575. http://dx.doi.org/10.1016/j.energy.2023.128575.

[25] Hussain Anwar, Rahman Muhammad, Memon Junaid Alam. Forecasting elec-
tricity consumption in Pakistan: the way forward. Energy Policy 2016;90:73–80. 
http://dx.doi.org/10.1016/j.enpol.2015.11.028.

[26] Yarbaşı Îkram Yusuf, Çelik Ali Kemal. The determinants of household electricity 
demand in Turkey: An implementation of the heckman sample selection model. 
Energy 2023;283:128431. http://dx.doi.org/10.1016/j.energy.2023.128431.

[27] Yukseltan Ergun, Yucekaya Ahmet, Bilge Ayse Humeyra. Forecasting electricity 
demand for Turkey: Modeling periodic variations and demand segregation. Appl 
Energy 2017;193:287–96. http://dx.doi.org/10.1016/j.apenergy.2017.02.054.

[28] Li Bowen, Zhang Jing, He Yu, Wang Yang. Short-term load-forecasting method 
based on wavelet decomposition with second-order gray neural network model 
combined with ADF test. IEEE Access 2017;5:16324–31. http://dx.doi.org/10.
1109/ACCESS.2017.2738029.

[29] Kaytez Fazil. A hybrid approach based on autoregressive integrated moving 
average and least-square support vector machine for long-term forecasting 
of net electricity consumption. Energy 2020;197:117200. http://dx.doi.org/10.
1016/j.energy.2020.117200.

[30] Kaytez Fazil, Taplamacioglu M Cengiz, Cam Ertugrul, Hardalac Firat. Fore-
casting electricity consumption: A comparison of regression analysis, neural 
networks and least squares support vector machines. Int J Electr Power Energy 
Syst 2015;67:431–8. http://dx.doi.org/10.1016/j.ijepes.2014.12.036.

[31] Bilgili Mehmet, Keiyinci Sinan, Ekinci Firat. One-day ahead forecasting of 
energy production from run-of-river hydroelectric power plants with a deep 
learning approach. Sci Iran 2022;29(4):1838–52. http://dx.doi.org/10.24200/
sci.2022.58636.5825.

[32] Bilgili Mehmet, Arslan Niyazi, Şekertekin Aliihsan, Yaşar Abdulkadir. Applica-
tion of long short-term memory (LSTM) neural network based on deep learning 
for electricity energy consumption forecasting. Turkish J Electr Eng Comput Sci 
2022;30(1):140–57. http://dx.doi.org/10.3906/elk-2011-14.

[33] Zeng Guozhi, Wei Ziqing, Yue Bao, Ding Yunxiao, Zheng Chunyuan, Zhai Xi-
aoqiang. Energy consumption prediction of office buildings based on CNN-RNN 
combined model. Shanghai Jiaotong Daxue Xuebao/J Shanghai Jiaotong Univ 
2022;56(9):1256–61. http://dx.doi.org/10.16183/j.cnki.jsjtu.2021.192.

[34] Guven Denizhan, Kayalica M Ozgur. Analysing the determinants of the turkish 
household electricity consumption using gradient boosting regression tree. 
Energy Sustain Dev 2023;77:101312. http://dx.doi.org/10.1016/j.esd.2023.
101312.

[35] Ahmad Muhammad Waseem, Mourshed Monjur, Rezgui Yacine. Trees vs 
neurons: Comparison between random forest and ANN for high-resolution 
prediction of building energy consumption. Energy Build 2017;147:77–89. http:
//dx.doi.org/10.1016/j.enbuild.2017.04.038.

[36] Tutun Salih, Chou Chun-An, Canıyılmaz Erdal. A new forecasting framework 
for volatile behavior in net electricity consumption: A case study in Turkey. 
Energy 2015;93:2406–22. http://dx.doi.org/10.1016/j.energy.2015.10.064.

[37] Bilgili Mehmet, Yildirim Alper, Ozbek Arif, Celebi Kerimcan, Ekinci Firat. 
Long short-term memory (LSTM) neural network and adaptive neuro-fuzzy 
inference system (ANFIS) approach in modeling renewable electricity generation 
forecasting. Int J Green Energy 2021;18(6):578–94. http://dx.doi.org/10.1080/
15435075.2020.1865375.

[38] Saglam Mustafa, Spataru Catalina, Karaman Omer Ali. Electricity demand 
forecasting with use of artificial intelligence: The case of gokceada island. 
Energies 2022;15(16):4499. http://dx.doi.org/10.3390/en15165950.

[39] Mir Aneeque A, Alghassab Mohammed, Ullah Kafait, Khan Zafar A, Lu Yuehong, 
Imran Muhammad. A review of electricity demand forecasting in low and 
middle income countries: The demand determinants and horizons. Sustain 
(Switzerland) 2020;12(15). http://dx.doi.org/10.3390/SU12155931.

[40] Debnath Kumar Biswajit, Mourshed Monjur. Challenges and gaps for 
energy planning models in the developing-world context. Nat Energy 
2018;3(3):172–84. http://dx.doi.org/10.1038/s41560-018-0095-2.

[41] Duman Serhat, Dalcalı Adem, Özbay Harun. Manta ray foraging optimization 
algorithm–based feedforward neural network for electric energy consumption 
forecasting. Int Trans Electr Energy Syst 2021;31(9):e12999. http://dx.doi.org/
10.1002/2050-7038.12999.

[42] Yildiriz Gülsüm, Öztürk Ali. Electrical energy consumption forecasting using re-
gression method considering temperature effect for distribution network. Electr 
Eng 2022;104(5):3465–76. http://dx.doi.org/10.1007/s00202-022-01559-8.
21 
[43] Meng Qinglong, Mourshed Monjur. Degree-day based non-domestic building 
energy analytics and modelling should use building and type specific base tem-
peratures. Energy Build 2017;155:260–8. http://dx.doi.org/10.1016/j.enbuild.
2017.09.034.

[44] Yurtsever Özlem. A practical methodology for predicting electricity con-
sumption of urban residential buildings. Environ Prog Sustain Energy 
2022;41(5):e13901. http://dx.doi.org/10.1002/ep.13901.

[45] Sharma Megha, Mittal Namita, Mishra Anukram, Gupta Arun. Survey of 
electricity demand forecasting and demand side management techniques in 
different sectors to identify scope for improvement. Smart Grids Sustain Energy 
2023;8(2). http://dx.doi.org/10.1007/s40866-023-00168-z.

[46] Dilaver Zafer, Hunt Lester C. Modelling and forecasting turkish residential 
electricity demand. Energy Policy 2011;39(6):3117–27. http://dx.doi.org/10.
1016/j.enpol.2011.02.059.

[47] Özbay Harun, Dalcalı Adem. Effects of COVID-19 on electric energy consump-
tion in Turkey and ANN-based short-term forecasting. Turkish J Electr Eng 
Comput Sci 2021;29(1):78–97. http://dx.doi.org/10.3906/elk-2006-29.

[48] Ceylan Zeynep. The impact of COVID-19 on the electricity demand: a case study 
for Turkey. Int J Energy Res 2021;45(9):13022–39. http://dx.doi.org/10.1002/
er.6631.

[49] Saglam Mustafa, Spataru Catalina, Karaman Omer Ali. Forecasting electricity de-
mand in Turkey using optimization and machine learning algorithms. Energies 
2023;16(11):4499. http://dx.doi.org/10.3390/en16114499.

[50] Demircioğlu Mert, Eşiyok Sevgi. Energy consumption forecast of Turkey using 
artificial neural networks from a sustainability perspective. Int J Sustain Energy 
2022;41(8):1127–41. http://dx.doi.org/10.1080/14786451.2022.2026357.

[51] Atik Ipek. A new CNN-based method for short-term forecasting of electrical 
energy consumption in the Covid-19 period: The case of Turkey. IEEE Access 
2022;10:22586–98. http://dx.doi.org/10.1109/access.2022.3154044.

[52] Şeker Mustafa. Long term electricity load forecasting based on regional load 
model using optimization techniques: A case study. Energy Sources, Part A: 
Recover Util Environmental Eff 2022;44(1):21–43. http://dx.doi.org/10.1080/
15567036.2021.1945170.

[53] Melikoglu Mehmet. Vision 2023: Scrutinizing achievability of Turkey’s elec-
tricity capacity targets and generating scenario based nationwide electricity 
demand forecasts. Energy Strat Rev 2018;22:188–95. http://dx.doi.org/10.
1016/j.esr.2018.09.004.

[54] Ayvaz Berk, Kusakci Ali Osman. Electricity consumption forecasting for Turkey 
with nonhomogeneous discrete grey model. Energy Sources, Part B: Econ Plan 
Policy 2017;12(3):260–7. http://dx.doi.org/10.1080/15567249.2015.1089337.

[55] Akarsu Gülsüm. Forecasting regional electricity demand for Turkey. Int J 
Energy Econ Policy 2017;7(4):275–82, https://www.econjournals.com/index.
php/ijeep/article/view/5289.

[56] Günay M Erdem. Forecasting annual gross electricity demand by artificial neural 
networks using predicted values of socio-economic indicators and climatic 
conditions: Case of Turkey. Energy Policy 2016;90:92–101. http://dx.doi.org/
10.1016/j.enpol.2015.12.019.

[57] Pempetzoglou Maria. Electricity consumption and economic growth: A linear 
and nonlinear causality investigation for Turkey. Int J Energy Econ Pol-
icy 2014;4(2):263–73, https://www.econjournals.com/index.php/ijeep/article/
view/775.

[58] Hamzacebi Coskun, Es Huseyin Avni. Forecasting the annual electricity con-
sumption of Turkey using an optimized grey model. Energy 2014;70:165–71. 
http://dx.doi.org/10.1016/j.energy.2014.03.105.

[59] Kavaklioglu Kadir. Modeling and prediction of Turkey’s electricity consumption 
using support vector regression. Appl Energy 2011;88(1):368–75. http://dx.doi.
org/10.1016/j.apenergy.2010.07.021.

[60] Çunkaş M, Taşkiran U. Turkey’s electricity consumption forecasting using ge-
netic programming. Energy Sources, Part B: Econ Plan Policy 2011;6(4):406–16. 
http://dx.doi.org/10.1080/15567240903047558.

[61] Hong Tao, Fan Shu. Probabilistic electric load forecasting: A tutorial review. 
Int J Forecast 2016;32(3):914–38. http://dx.doi.org/10.1016/j.ijforecast.2015.
11.011.

[62] Hahn Heiko, Meyer-Nieberg Silja, Pickl Stefan. Electric load forecasting meth-
ods: Tools for decision making. European J Oper Res 2009;199(3):902–7. 
http://dx.doi.org/10.1016/j.ejor.2009.01.062.

[63] Singh Arunesh Kumar, Ibraheem, Khatoon S, Muazzam Md, Chaturvedi DK. 
Load forecasting techniques and methodologies: A review. In: ICPCES 2012 - 
2012 2nd international conference on power, control and embedded systems. 
2012, http://dx.doi.org/10.1109/ICPCES.2012.6508132.

[64] Riahi Keywan, van Vuuren Detlef P, Kriegler Elmar, Edmonds Jae, 
O’Neill Brian C, Fujimori Shinichiro, et al. The shared socioeconomic pathways 
and their energy, land use, and greenhouse gas emissions implications: An 
overview. Glob Environ Chang 2017;42:153–68. http://dx.doi.org/10.1016/j.
gloenvcha.2016.05.009.

[65] Ebi Kristie L, Hallegatte Stephane, Kram Tom, Arnell Nigel W, Carter Timothy R, 
Edmonds Jae, et al. A new scenario framework for climate change research: 
background, process, and future directions. Clim Change 2014;122(3):363–72. 
http://dx.doi.org/10.1007/s10584-013-0912-3.

http://dx.doi.org/10.1016/j.rser.2018.02.002
http://dx.doi.org/10.1016/j.rser.2018.02.002
http://dx.doi.org/10.1016/j.rser.2018.02.002
https://www.iea.org/reports/world-energy-outlook-2024
https://www.iea.org/reports/world-energy-outlook-2024
https://www.iea.org/reports/world-energy-outlook-2024
http://dx.doi.org/10.1016/j.energy.2011.07.043
http://dx.doi.org/10.1016/j.energy.2011.07.043
http://dx.doi.org/10.1016/j.energy.2011.07.043
http://dx.doi.org/10.1016/j.rser.2011.08.005
http://dx.doi.org/10.1016/j.energy.2023.128575
http://dx.doi.org/10.1016/j.enpol.2015.11.028
http://dx.doi.org/10.1016/j.energy.2023.128431
http://dx.doi.org/10.1016/j.apenergy.2017.02.054
http://dx.doi.org/10.1109/ACCESS.2017.2738029
http://dx.doi.org/10.1109/ACCESS.2017.2738029
http://dx.doi.org/10.1109/ACCESS.2017.2738029
http://dx.doi.org/10.1016/j.energy.2020.117200
http://dx.doi.org/10.1016/j.energy.2020.117200
http://dx.doi.org/10.1016/j.energy.2020.117200
http://dx.doi.org/10.1016/j.ijepes.2014.12.036
http://dx.doi.org/10.24200/sci.2022.58636.5825
http://dx.doi.org/10.24200/sci.2022.58636.5825
http://dx.doi.org/10.24200/sci.2022.58636.5825
http://dx.doi.org/10.3906/elk-2011-14
http://dx.doi.org/10.16183/j.cnki.jsjtu.2021.192
http://dx.doi.org/10.1016/j.esd.2023.101312
http://dx.doi.org/10.1016/j.esd.2023.101312
http://dx.doi.org/10.1016/j.esd.2023.101312
http://dx.doi.org/10.1016/j.enbuild.2017.04.038
http://dx.doi.org/10.1016/j.enbuild.2017.04.038
http://dx.doi.org/10.1016/j.enbuild.2017.04.038
http://dx.doi.org/10.1016/j.energy.2015.10.064
http://dx.doi.org/10.1080/15435075.2020.1865375
http://dx.doi.org/10.1080/15435075.2020.1865375
http://dx.doi.org/10.1080/15435075.2020.1865375
http://dx.doi.org/10.3390/en15165950
http://dx.doi.org/10.3390/SU12155931
http://dx.doi.org/10.1038/s41560-018-0095-2
http://dx.doi.org/10.1002/2050-7038.12999
http://dx.doi.org/10.1002/2050-7038.12999
http://dx.doi.org/10.1002/2050-7038.12999
http://dx.doi.org/10.1007/s00202-022-01559-8
http://dx.doi.org/10.1016/j.enbuild.2017.09.034
http://dx.doi.org/10.1016/j.enbuild.2017.09.034
http://dx.doi.org/10.1016/j.enbuild.2017.09.034
http://dx.doi.org/10.1002/ep.13901
http://dx.doi.org/10.1007/s40866-023-00168-z
http://dx.doi.org/10.1016/j.enpol.2011.02.059
http://dx.doi.org/10.1016/j.enpol.2011.02.059
http://dx.doi.org/10.1016/j.enpol.2011.02.059
http://dx.doi.org/10.3906/elk-2006-29
http://dx.doi.org/10.1002/er.6631
http://dx.doi.org/10.1002/er.6631
http://dx.doi.org/10.1002/er.6631
http://dx.doi.org/10.3390/en16114499
http://dx.doi.org/10.1080/14786451.2022.2026357
http://dx.doi.org/10.1109/access.2022.3154044
http://dx.doi.org/10.1080/15567036.2021.1945170
http://dx.doi.org/10.1080/15567036.2021.1945170
http://dx.doi.org/10.1080/15567036.2021.1945170
http://dx.doi.org/10.1016/j.esr.2018.09.004
http://dx.doi.org/10.1016/j.esr.2018.09.004
http://dx.doi.org/10.1016/j.esr.2018.09.004
http://dx.doi.org/10.1080/15567249.2015.1089337
https://www.econjournals.com/index.php/ijeep/article/view/5289
https://www.econjournals.com/index.php/ijeep/article/view/5289
https://www.econjournals.com/index.php/ijeep/article/view/5289
http://dx.doi.org/10.1016/j.enpol.2015.12.019
http://dx.doi.org/10.1016/j.enpol.2015.12.019
http://dx.doi.org/10.1016/j.enpol.2015.12.019
https://www.econjournals.com/index.php/ijeep/article/view/775
https://www.econjournals.com/index.php/ijeep/article/view/775
https://www.econjournals.com/index.php/ijeep/article/view/775
http://dx.doi.org/10.1016/j.energy.2014.03.105
http://dx.doi.org/10.1016/j.apenergy.2010.07.021
http://dx.doi.org/10.1016/j.apenergy.2010.07.021
http://dx.doi.org/10.1016/j.apenergy.2010.07.021
http://dx.doi.org/10.1080/15567240903047558
http://dx.doi.org/10.1016/j.ijforecast.2015.11.011
http://dx.doi.org/10.1016/j.ijforecast.2015.11.011
http://dx.doi.org/10.1016/j.ijforecast.2015.11.011
http://dx.doi.org/10.1016/j.ejor.2009.01.062
http://dx.doi.org/10.1109/ICPCES.2012.6508132
http://dx.doi.org/10.1016/j.gloenvcha.2016.05.009
http://dx.doi.org/10.1016/j.gloenvcha.2016.05.009
http://dx.doi.org/10.1016/j.gloenvcha.2016.05.009
http://dx.doi.org/10.1007/s10584-013-0912-3


O. Gulaydin and M. Mourshed Energy 336 (2025) 138195 
[66] Kriegler Elmar, Edmonds Jae, Hallegatte Stéphane, Ebi Kristie L, Kram Tom, 
Riahi Keywan, et al. A new scenario framework for climate change re-
search: the concept of shared climate policy assumptions. Clim Change 
2014;122(3):401–14. http://dx.doi.org/10.1007/s10584-013-0971-5.

[67] O’Neill Brian C, Kriegler Elmar, Ebi Kristie L, Kemp-Benedict Eric, Ri-
ahi Keywan, Rothman Dale S, et al. The roads ahead: Narratives for shared 
socioeconomic pathways describing world futures in the 21st century. Glob 
Environ Chang 2017;42:169–80. http://dx.doi.org/10.1016/j.gloenvcha.2015.
01.004.

[68] Riahi Keywan, Schaeffer Roberto, Arango Juan, Calvin Katherine, Guivarch Cé-
line, Hasegawa Tomoko, et al. Mitigation pathways compatible with long-term 
goals. In: Shukla PR, Skea J, Slade R, Khourdajie A Al, van Diemen R, 
McCollum D, Pathak M, Some S, Vyas P, Fradera R, Belkacemi M, Hasija A, 
Lisboa G, Luz S, Malley J, editors. Climate change 2022: mitigation of climate 
change. contribution of working group III to the sixth assessment report of 
the intergovernmental panel on climate change. Cambridge, UK and New 
York, NY, USA: Cambridge University Press; 2022, http://dx.doi.org/10.1017/
9781009157926.005.

[69] van Vuuren Detlef P, Riahi Keywan, Calvin Katherine, Dellink Rob, Emmer-
ling Johannes, Fujimori Shinichiro, et al. The shared socio-economic pathways: 
Trajectories for human development and global environmental change. Glob 
Environ Chang 2017;42:148–52. http://dx.doi.org/10.1016/j.gloenvcha.2016.
10.009.

[70] O’Neill Brian C, Carter Timothy R, Ebi Kristie, Harrison Paula A, Kemp-
Benedict Eric, Kok Kasper, et al. Achievements and needs for the climate change 
scenario framework. Nat Clim Chang 2020;10(12):1074–84. http://dx.doi.org/
10.1038/s41558-020-00952-0.

[71] Emeç Şeyma, Akkaya Gökay. Turkey’s long-term electricity consumption fore-
cast using regression analysis. J Sci Ind Res 2022;81(12):1336–41. http://dx.
doi.org/10.56042/jsir.v81i12.40731.

[72] Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, et 
al. Long-term climate change: Projections, commitments and irreversibility. In: 
Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, 
Xia Y, Bex V, Midgley PM, editors. Climate change 2013: the physical science 
basis. contribution of working group i to the fifth assessment report of 
the intergovernmental panel on climate change. Cambridge, UK: Cambridge 
University Press; 2013.

[73] The HadGEM2 Development Team:, Martin GM, Bellouin N, Collins WJ, 
Culverwell ID, Halloran PR, et al. The HadGEM2 family of met office unified 
model climate configurations. Geosci Model Dev 2011;4(3):723–57. http://dx.
doi.org/10.5194/gmd-4-723-2011.

[74] Copernicus Climate Change Service. Climate and energy indicators for europe 
from 2005 to 2100 derived from climate projections. 2021, http://dx.doi.org/
10.24381/cds.f6951a62, Copernicus Climate Change Service (C3S) Climate Data 
Store (CDS).

[75] Day Tony. Degree-days: Theory and application. Technical Memorandum TM41, 
London, UK: The Chartered Institution of Building Services Engineers; 2006.

[76] Turkstat. Adrese dayalı nüfus kayıt sistemi sonuçları. Ankara, Türkiye: Turkish 
Statistical Institute (TURKSTAT); 2024, https://biruni.tuik.gov.tr/medas/.

[77] Wang Xinyu, Meng Xiangfeng, Long Ying. Projecting 1 km-grid population 
distributions from 2020 to 2100 globally under shared socioeconomic pathways. 
Sci Data 2022;9:563. http://dx.doi.org/10.1038/s41597-022-01675-x.

[78] Gillies Sean, et al. Rasterio: geospatial raster I/O for Python programmers. 2013, 
https://github.com/rasterio/rasterio.

[79] Jordahl Kelsey, den Bossche Joris Van, Fleischmann Martin, Wasserman Jacob, 
McBride James, Gerard Jeffrey, et al. Geopandas/geopandas: v0.8.1. 2020, 
http://dx.doi.org/10.5281/zenodo.3946761.

[80] Matthew Perry and contributors. Rasterstats: Summary statistics of geospatial 
raster datasets. 2024, https://github.com/perrygeo/python-rasterstats.

[81] Turkstat. Population projections, 2023–2100. Turkish Statistical Institute 
(TURKSTAT); 2024, https://data.tuik.gov.tr/Bulten/Index?p=Population-
Projections-2023-2100-53699&dil=2.

[82] Turkstat. Adrese Dayalı Nüfus Kayıt Sistemi Sonuçları: Hanehalkı tiplerine göre 
hanehalkı sayısı. Ankara, Türkiye: Turkish Statistical Institute (TURKSTAT); 
2024, https://biruni.tuik.gov.tr/medas/.

[83] Turkstat. Gross domestic product by provinces, 2004–2014. Ankara, Türkiye: 
Turkish Statistical Institute (TURKSTAT); 2016, https://data.tuik.gov.tr/Bulten/
Index?p=Gross-Domestic-Product-by-Provinces-2004-2014-24920&dil=2.

[84] Turkstat. Gross domestic product by provinces, 2015–2017. Ankara, Türkiye: 
Turkish Statistical Institute (TURKSTAT); 2019, https://data.tuik.gov.tr/Bulten/
Index?p=Gross-Domestic-Product-by-Provinces-2015-2017-30888&dil=2.

[85] Turkstat. Gross domestic product by provinces, 2022. Ankara, Türkiye: Turkish 
Statistical Institute (TURKSTAT); 2023, https://data.tuik.gov.tr/Bulten/Index?
p=Il-Bazinda-Gayrisafi-Yurt-Ici-Hasila-2022-45867&dil=2.

[86] Turkstat. Gross domestic product by provinces, 2023. Ankara, Türkiye: Turkish 
Statistical Institute (TURKSTAT); 2024, https://data.tuik.gov.tr/Bulten/Index?
p=Il-Bazinda-Gayrisafi-Yurt-Ici-Hasila-2023-53575&dil=2.

[87] World Bank. Official exchange rate (LCU per US$, period average). 2025, 
https://data.worldbank.org/indicator/PA.NUS.FCRF.
22 
[88] Murakami Daisuke, Yoshida Takahiro, Yamagata Yoshiki. Gridded GDP pro-
jections compatible with the five SSPs (shared socioeconomic pathways). 
Front Built Environ 2021;7. http://dx.doi.org/10.3389/fbuil.2021.760306, 
Data: https://doi.org/10.6084/m9.figshare.12016506.v1.

[89] Khalil Mohamad Ali, Fatmi Mahmudur Rahman. How residential energy 
consumption has changed due to COVID-19 pandemic? An agent-based 
model. Sustain Cities Soc 2022;81:103832. http://dx.doi.org/10.1016/j.scs.
2022.103832.

[90] Eken Özcan, Tosun Nilgün, Tuzcu Eken Derya. COVID-19 salgını ile acil ve 
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