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Summary 

Rapid Eye Movement Sleep (REM) is thought to process emotions via memory reactivation. 

Such REM reactivation can be triggered by presenting a tone associated with the target 

memory. This reduces subjective arousal ratings for negative stimuli. Here, we measure 

arousal objectively in brain and autonomic system. Participants rated negative image-sound 

pairs, half of which were then re-presented during subsequent REM.  All images were re-rated 

in a Magnetic Resonance Imaging (MRI) scanner with pulse oximetry forty-eight hours after 

encoding. Reactivation in REM reduced responses in the brain’s Salience Network (SN), 

including Anterior Insula and dorsal Anterior Cingulate Cortex (dACC), and associated 

emotion-processing regions: orbitofrontal cortex, subgenual cingulate, and left amygdala.  

Memory reactivation in REM reduced heart rate deceleration (HRD). Subjective arousal 

ratings were reduced for more upsetting images and increased for less upsetting images.  Our 

findings have implications for the use of memory reactivation to treat depression and anxiety 

disorders.  

Keywords: sleep, emotion, memory, reactivation, arousal, fMRI, heart rate, PTSD  

 

 

Introduction 

 

The unique neurological milieu of rapid eye movement (REM) sleep provides optimal 

conditions for the processing of emotional memories1–7. The “Sleep to forget, Sleep to 

Remember” (SFSR) hypothesis8 builds on this by proposing that spontaneous reactivation of 

emotional memories during REM facilitates the decoupling of the affective charge from a 

memory. 

Targeted memory reactivation (TMR) is an established technique for triggering memory 

reactivation during sleep. In TMR studies, stimuli, like tones or odours, that were previously 

associated with a newly encoded memory during wake are re-presented during sleep, 
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prompting reactivation of the corresponding memory representation9,10. An extensive body of 

experimental work, mainly in non-REM sleep, has demonstrated the potential of this non-

invasive technique to enhance the consolidation of different types of memories (see11 for a 

review). Nonetheless, the specific impacts of TMR during REM sleep on emotional reactivity 

remain to be explored. 

We previously asked whether TMR reduces emotional reactivity by asking participants to rate 

emotional images for arousal both before and after the manipulation. This showed that TMR 

of emotionally arousing stimuli during REM, but not during slow wave sleep (SWS), led to a 

significant habituation of subjective arousal12. In the current study, we extend this REM TMR 

finding by examining both physiological and neural arousal responses, in addition to subjective 

ratings (Figure 1). 

We used functional magnetic resonance imaging (fMRI) to examine brain activity, focusing on 

regions known to be involved in the processing and regulation of emotions, namely the 

amygdala, insula, orbitofrontal cortex (OFC), subgenual anterior cingulate cortex (sgACC). 

These regions have been extensively studied and are recognized as key components of the 

neural circuitry underlying emotional experiences. Previous studies have reported alterations 

in activations elicited here by emotional pictures as a result of sleep6,13 or emotional 

reactivity14–17. Furthermore, dysfunctions within these regions have been associated with 

psychiatric disorders such as depression or post-traumatic stress disorder (PTSD)18–21.  

We used heart rate deceleration (HRD) as a physiological marker of autonomic arousal. HRD, 

which reflects the parasympathetic orienting response, has been shown to map onto the 

affective tone of a stimulus, with greater deceleration indicating higher levels of arousal22,23. 

Prior work has discussed different effects of sleep on the parasympathetic aspects of 

emotional arousal, with studies showing either a decrease24,25 or a preservation of the HRD in 

response to emotional stimuli26–28. No study has specifically explored the response of HRD to 

TMR during REM. 
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Drawing on our own previous findings12, and supported by evidence indicating that REM sleep 

can provide optimal conditions for the processing of emotional memories7,8,12 (although this is 

not always the case30) and by studies suggesting that REM TMR may impact upon arousal 

responses6,31,32, we predicted that our manipulation would result in diminished activity in the 

brain’s arousal system, decreased heart rate responses, and reduction in subjective arousal 

during the processing of emotional images. 
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Figure 1: Study design. The study consisted of three sessions. At Baseline two 
questionnaires were first filled: the Stanford Sleepiness Scale (SSS) and the Positive and 
Negative Affect Schedule (PANAS). They were followed by the arousal rating task, in which 
participants were asked to rate 48 negative IAPS pictures -sound pairs on a 5-point rating 
scale of arousal (1 = less arousing, 5 = more arousing). After filling out the PANAS a second 
time, participants were wired-up for EEG. During the night, tones associated with half of the 
stimuli were played in random order during REM sleep. The following morning, participants 
filled a sleep quality questionnaire. At the second session (Session 48-H) and the third session 
(Session 2-Wk) had the same structure: after filling the SSS and the PANAS, participants 
performed the arousal rating task. The PANAS was administered again as soon as they 
finished the task. Session 48-Hr was performed in the MRI scanner while heart rate 
deceleration (HRD) was recorded; it occurred 48 h after S1. Session 2-Wk was performed 
online (2 weeks after Baseline).  

 

Results  

Sleep characteristics and EEG analysis 

Participants obtained an average of 528.91 min total sleep time (TST) (+/- 37.38), with an 

average of 95.09 min of REM (+/- 27.42 min, see Table S1 for full details of sleep).  EEG 

analysis confirmed that TMR cues were processed by the brain since TMR onset is followed 

by an increase in beta band (12.5-30 Hz) compared to baseline (see figure S1B).  This starts 

around one second after TMR (corrected with cluster-based permutation, n = 16, p = 0.0079).  
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The response is present on C3 and C4, F3 and F4, but not O1 or O2 (Figure S4). ERP analysis 

showed an amplitude increase just before 500ms after the TMR onset, followed by a decrease 

500ms after the cue (S1B). A separate analysis specific to theta band showed a power 

increase at ~0.1 - 0.6 seconds post cue, figure S2. These findings are in keeping with other 

TMR studies which used baseline correction rather than control tones in REM33 and NREM6,34, 

both of which show similar pattern in the ERP and time-frequency response.  Notably, 

however, the absence of a control tones (not associated with a memory) makes it difficult to 

say whether the elicited responses are due to memory reactivation or are instead related only 

to the sound. 

 

fMRI 

To determine whether REM TMR led to a decrease in neural arousal responses in the brain, 

we compared fMRI responses to Uncued > Cued picture-sound pairs.  We first tested this 

using a whole-brain corrected analysis of grey matter which revealed two strong decreases of 

response in dorsal anterior cingulate cortex (dACC) (349 voxels and 159 voxels), with no other 

clusters surviving (Figure 2a, Table 1).  Next, we tested the same comparison in our insula 

ROI and found reduced responses in the anterior portion of insula (Figure 2b, Table 1), FWE 

corrected at p<0.05.   
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Figure 2. Functional activity in response to Uncued > Cued contrast on negative picture-
sound pairs in Session 48-Hr. A-C) Cluster corrected responses at pFWE < 0.05, cluster-
level corrected. Results are overlaid on a skull stripped MNI ICBM152 T1 template. OFC = 
orbitofrontal cortex. D) Percent signal change (Uncued > Cued) in sgACC (R and L) and L 
Amygdala. Bars represent mean percent signal change in the Uncued minus Cued contrast, 
with error bars indicating standard error of the mean. Positive values indicate less activation 
in the Cued condition compared to the Uncued condition. 

 

 

Brain region No. voxels Peak Z-value MNI x, y, z (mm) 

Insula 28 4.01 -33, 14, 14 

Orbitofrontal Cortex 

 

39 

17 

4.29 

3.93 

-37, 60, -9 

-37, 32, -7 

Dosal Anterior 

Cingulate 

349 

121 

5.13 

4.5 

5, 56, 14 

-39, 44, 2 

    

Table 1. Functional results. Peak Z-values and corresponding MNI coordinates for regions 
showing activation in the contrast Uncued > Cued with the inclusion threshold of one-tailed 
p<0.001 and cluster correction of p<0.05. 
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Anterior insula and dACC are the two primary nodes of the brain’s Salience Network (SN)31,32, 

so a reduction in responsivity in these regions after REM TMR suggests that our manipulation 

could lead to downscaling of a more generalised salience response. The SN helps the brain 

to identify important stimuli, and to coordinate resources in response to these stimuli, for 

instance by switching between the Central Executive Network and the Default Mode Network. 

Within this network, the frontal insula is an afferent hub for detecting autonomic feedback, 

while the dACC is the efferent hub, important for generating responses. Together, these 

regions are thought to process salient stimuli, determine their importance, and select 

responses31,35, for a review see32.   

 

The SN influences physiological arousal via connections to the amygdala which recognizes 

threats and recruits brain structures to respond to threat17,32.  Examination of our amygdala 

ROI showed a reduction in response in just one voxel of left amygdala at p < 0.001 

uncorrected, (x = -26, y = 1, z = 16), however this did not survive FWE correction.  To check 

for a mean response across this structure, we next examined mean percent signal change in 

our L amygdala ROI and found a significant effect (M = 0.185%, SD = 0.436%), t(17) = 1.80, 

p = .045, see Figure 2d. This suggests that our TMR manipulation leads to a dispersed change 

across the left amygdala, rather than being apparent in a strong cluster.  Such a change in 

reactivity is in keeping with the literature since amygdala responses to arousal have already 

been shown to be modulated by REM TMR6 although the effect is disrupted when REM is 

extremely disturbed.  These findings might indicate that REM TMR can reduce the extent to 

which a negative stimulus is perceived as a threat. 

 

Next, we examined our ROI in orbitofrontal cortex, finding a strong reduction in right lateral 

OFC at p<0.05 FEW corrected, (figure 2c). OFC plays a critical role in representing the reward 

value associated with a range of stimuli and outcomes. It encodes the emotional and affective 
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significance of different inputs, thus contributing to the modulation of emotional responses14. 

The significance of OFC in shaping emotional experiences and behavioural responses 

becomes even more apparent when we consider outputs to regions such as the dACC and 

insula since these allow reward value representations generated by the OFC to feed into the 

SN and contribute to the complexity of our emotional experiences and associated 

behaviours14,17. 

Our final ROI was the subgenual cingulate, a region which is associated with psychiatric 

disorders such as depression or PTSD18,19. Here, as in amygdala, we observed uncorrected 

responses (just one voxel in each case).  Because these did not survive FWE correction, we 

examined mean signal change for each area and found significant results in both 

hemispheres:  (left sgACC:  M = 0.148%, SD = 0.288%), t(17) = 2.18, p = .022, right sgACC: 

(M = 0.130%, SD = 0.313%), t(17) = 1.76, p = .048, figure 3D. 

 

Heart rate deceleration (HRD) 

To index the impact of the TMR manipulation on autonomic responses to negative images, 

we compared heart rate deceleration between Cued and Uncued images in the second 

Session 48-H. This revealed greater deceleration for Uncued stimuli, one-way t-test on the 

Uncued-Cued difference, p=0.026, (mean -0.71, ±0.28 SEM), indicating a stronger emotional 

reactivity to these Uncued images (Figure 3a). No significant correlations were found between 

HRD, sleep, behavioural results, or functional parameter estimates (all padj > 0.05, see 

Supplemental Material Tables S4 and S5).    

 

Our observation of depotentiated visceral reactivity to stimuli that were Cued overnight is in 

good keeping with the observed downregulation of the Salience Network. The majority of 

studies indicating a sleep-dependent preservation of physiological arousal in response to 

negative stimuli have investigated the effect of either a nap or a single night of sleep26–28.One 
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study of how sleep modulates affective reactivity observed that HRD was preserved in the 

short term, but reduced after a week, suggesting that time might play an important role in the 

modulation of emotional strength24. Because we observed a reduction in HRD 48h after the 

first exposure to the task followed by the TMR manipulation we speculate that the TMR may 

have speeded up this time dependent decrease. 

 

Figure 3. (a) Heart rate deceleration: Data for cued and uncued conditions at Session 48-H 
are shown separately (left) and the difference between Cued and Uncued conditions (right) 
which reached significance, one-way t-test P = <0.026. Data are shown as means (±SEM). 
Dots represent individual participants. (b) Post-manipulation Behavioural data (Sessions 
48-H and 2-Wk): Model predicted interaction between Cueing and mean-centered Baseline. 
Shadowed areas represent 95% Confidence Intervals. 
 

Subjective Arousal Ratings  

Baseline ratings were non-normally distributed, even after mean centring, (Shapiro-Wilk 

p<0.001 for both Cued and Uncued), so we used a Wilcoxon signed rank test to determine 

whether they differed between Cued and Uncued categories.  This gave a probability of 

p=0.39, indicating that the ratings did not differ pre-sleep. 

 

To investigate the effects of REM TMR on subjective arousal ratings we used a linear mixed 

model (LMM) with Cueing (Cued and Uncued), group mean centred ratings at Baseline, and 

Session (48-H and 2-Wk) as fixed effects (formula: rating ~ Cueing * Session + Cueing * 
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Baseline). Both participants and items were included as random effects (formula: ~ 1 | 

Participants, ~ 1 | Items). There was no effect of cueing (M = −0.04, 95% CI [−0.15, 0.07], p = 

0.45, but the interaction between Cueing and Baseline was significant (M = −0.10, 95% CI 

[−0.17, −0.02], p = 0.010) (Figure 3b), see Table S2a for full results). Thus, when baseline 

arousal ratings were taken into account, REM TMR led to decreases in arousal ratings of 

pictures that had been rated as very arousing at baseline while also leading to an increase in 

arousal ratings for pictures rated as less arousing at baseline. This pattern is consistent with 

the work of Pereira et. al. (2022) who observed that Slow Wave Sleep (SWS) TMR of 

emotional material reduced responses in the orbitofrontal cortex for negative items, while 

simultaneously increasing them for neutral items36.  It is possible that spreading of activation 

between the various items in an associative network of memories, including the most arousing 

and least arousing items, means that reactivation actually causes a general smoothing of the 

emotional responses – tending to push all the items towards the same mean rating.   

 

Notably, Session also had a significant negative effect (M = −0.29, 95% CI [−0.41, −0.17], p < 

0.001), suggesting that ratings decreased across sessions, but the interaction between 

Cueing and Session was not significant (M = 0.05, 95% CI [−0.12, 0.21], p = 0.564), suggesting 

that the effect of cueing did not vary significantly across sessions. Post-hoc t-tests (Table S2B) 

revealed that that cueing tended to decrease arousal ratings for items that were rated as 

higher than average arousal at baseline, while simultaneously increasing ratings for items 

rated lower than average arousal at baseline (Figure 3b). Descriptive statistics are reported in 

Table S3. 

 

Discussion 

Our observation that REM TMR leads to reduced arousal related responses in the salience 

network as well as the amygdala, orbitofrontal cortex, and subgenual cingulate combines with 
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our behavioural and autonomic results to suggest that REM reactivation can somehow reduce 

the extent to which an emotional stimulus elicits arousal, and this is true not only subjectively, 

but also in terms of autonomic and neural responsivity. Our current findings join prior research 

showing promising evidence for a role of memory reactivation during REM sleep in decreasing 

the affective tone associated with negative experiences. For instance, Wassing and 

colleagues induced the self-conscious emotion of shame in volunteers suffering from insomnia 

to explore the impact of disrupted REM sleep on emotional distress37. Their findings indicate 

that discontinuities in REM can prevent the brain from processing and reducing emotional 

distress as reflected by continuous amygdala reactivity. Another recent study showed that 

TMR during REM of imagery rehearsal therapy for two consecutive weeks reduced the 

frequency of nightmares while promoting more positive dream emotions 38.  

Interestingly, no significant correlations were found between HRD, sleep, behavioural results, 

or functional parameter estimates (all padj > 0.05, see Supplemental Material Tables S4 and 

S5).  While the differences between these objective and subjective measures could be due to 

small sample size, it is also possible that top down influences such as cultural norms, 

emotional regulation, cognitive appraisal, and memory of prior responses might all influence 

subjective ratings without influencing objective measures.  Top down factors should always 

be taken into account when interpreting subjective ratings.  

 

Overall, our findings support the possibility that targeted reactivation of emotionally arousing 

memories in REM could potentially offer a way to make these memories less upsetting.  As 

such, our method could lead to clinically important opportunities for the early treatment of 

psychiatric disorders such as depression and post-traumatic stress disorder PTSD.  In the 

future, we hope to extend this work by developing an EEG classifier which can detect the 

emotionality of reactivation, this would allow us to more precisely determine the extent to which 

emotional memory reactivation actually predicts the reductions in salience and arousal 

responses that we observe here.  
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There are several limitations to this study.  First, because we were specifically interested in 

emotional arousal, we did not measure memory performance, so we cannot comment on how 

TMR impacted on memory strength.  Second, we did not collect baseline data for the HRD or 

MRI, so can only comment on how responses within a session differ for items that were Cued 

vs Uncued, we cannot say anything about whether they are altered with respect to baseline.  

We also cannot be certain that the Cued and Uncued groups did not already differ on these 

measures at baseline, although we do know that subjective arousal ratings did not differ at 

that timepoint. This limitation is exacerbated by our sample size of 18, which – though larger 

than the REM group of 15 used in Hutchison et al 2021 is still modest.  Finally, due to the 

shortness of REM we did not include control sounds during the night of sleep, preferring 

instead to play our experimental cues as many times as possible.  This decision means we 

cannot comment on how the ERPs and time-frequency responses induced by experimental 

sounds differ from those that would have been induced by sounds that were not coupled with 

aversive memories.  
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Methods 

Participants 

Twenty-three right-handed, non-smoking healthy volunteers (14 females, age range: 20 – 33 

years, mean ± SD: 23.61 ± 3.92) were recruited for this study, which was approved by the 

Ethics Committee of the School of Psychology at Cardiff University. A pre-screening 

questionnaire was used to ensure that participants were fluent in English, had normal or 

corrected to normal vision, no previous history of physical, psychological, neurological, or 

sleep disorders and no hearing impairments. Participants were required to be right-handed 

and to not regularly take any psychologically active medication or substance directly or 

indirectly affecting sleep quality.  They agreed to abstain from alcohol 24 hours prior to each 

experimental session and from caffeine and other psychologically active food from 12 hours 

prior. Participants were also asked to refrain from engaging in intense physical activities during 

the period of the study. Further criteria of exclusion included a habit of daytime napping, a 

non-regular sleep-wake rhythm, engaging in nightshift work, cross-continental travel in the two 

months before the study or having such plans during the experimental weeks. Additionally, to 



15 
 

ensure that participants did not experience negative emotional stress over the week before 

starting the experiment, they were asked to complete the Depression, Anxiety and Stress 

Scale as inclusion criteria (DASS-42, normal scores: Depression (D) ≤ 9; Anxiety (A) ≤ 7; 

Stress (S) ≤ 14) ) 39. All participants gave written informed consent and received monetary 

compensation for their participation.  Five participants were excluded from all analyses due 

to: voluntary withdrawal (n = 4) or technical issues (n = 1) and three participants were unable 

to complete the online follow-up. Hence, the final dataset included 18 participants (11 females, 

age range: 20 – 30 years, mean ± SD: 23.61 ± 3.56) at Baseline and 48-h, and n = 15 in 10-

days (S3). 

 

Arousal rating task 

Participants viewed 48 standardized negative images which were selected from the 

International Affective Picture System 40 (see Supplemental Material Table S7). Each image 

was converted to greyscale and matched in luminance and resolution (height = 600 px; width 

= 800 px) using the SHINE toolbox 41 in MATLAB 2007a. Each image was rated using a 5-

point arousal scale, corresponding to increased emotional intensity (i.e. 1 = less arousing, 5 = 

more arousing), and paired with a semantically related sound obtained from the International 

Affective Digitized Sounds database (IADS; 40). Participants were instructed to rate each 

picture-sound pair along arousal dimension. 

Each trial consisted of a fixation cross (500ms), picture and sound presentation (1 s), a blank 

screen (4 s), the arousal rating (4 s) and the inter-trial interval (jittered: 3.5 – 4.5 – 5.5 – 6.5 

s). Sounds were 400ms long. In order to match the duration of the picture presentation on the 

screen (1s) with the duration of the sounds, the 400ms sounds were repeated twice with a 

200ms gap in between the two presentations: 400ms – 200ms gap – 400ms. Audacity 

software (www.audacityteam.org) was used to modify the length of sounds.  
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In Session 1 only, the arousal rating task was preceded by a practice round and followed by 

a forced-choice task. The practice round aimed to let participants familiarize with the rating 

scale. It consisted of four neutral IAPS pictures paired with semantically related neutral sounds 

taken from the IADS. The forced-choice task, which was performed for all image-sound pairs, 

aimed to assess whether participants had learned the associations between images and 

sounds. For each trial participants had to choose which of the four IAPS images displayed 

was semantically related with the sound. This task was repeated until participants reached 

75% accuracy. Feedback with the correct answer was presented for 1.5 s.  

 

Study design and procedure  

The study consisted of three sessions (Figure 1), all scheduled for the same time in the 

evening (~6pm).  For all sessions, before and after performing the arousal rating task 

participants completed the Positive and Negative Affect Schedule (PANAS) scale 42 to 

evaluate their mood. The Stanford Sleepiness Scale 43 was administered at the beginning of 

each experimental session to determine participants’ level of alertness. 

S1 lasted approximately 2h and progressed as follows:  participants completed the arousal 

rating task, then changed into their sleepwear, were fitted for polysomnography (PSG) 

recording and went to bed at around 11:30 pm while brown noise was delivered throughout 

the night to minimize noise-induced arousals. For the TMR protocol acoustic stimuli 

semantically related to the IAPS pictures were replayed during REM sleep to trigger 

reactivation of negative emotions. Participants were woken up after 7-8 hours of sleep. After 

removing the electrodes and before leaving the lab, they were asked to rate their sleep quality 

and whether they heard any sounds during the night with an adapted and translated version 

of a German sleep quality questionnaire44. Participants were asked to come back to the lab 

48-hours later for Session 48-H during which the arousal rating task was performed in a 3T 

Siemens MRI scanner during fMRI acquisition while heart rate deceleration (HRD) was 
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recorded. Session 2-Wk (2 weeks after Baseline), the follow-up session, was performed online 

and lasted ~40 minutes.  

both the lab and the MR scanner, the task was presented using PsychoPy3 Experiment 

Runner (v2020.1.3)45. The SSS and the PANAS questionnaires were executed using MATLAB 

(The MathWorks Inc., Natick, MA, 2000) and Psychophysics Toolbox Version 346, except for 

the sleep quality questionnaire, completed with pen and paper. In S3 the behavioural task was 

administered through the Pavlovia online platform (https://pavlovia.org/) and the SSS and 

PANAS questionnaire were distributed via Qualtrics software (Qualtrics, Provo, UT, USA. 

https://www.qualtrics.com).  

 

Questionnaires 

The SSS is used to provide a subjective indication of sleepiness, with participants rating their 

current state on a 7-point Likert scale, where 1 is most alert and 7 is least alert43.  

The PANAS scale42 is a self-report measure composed of two subscales designed to assess 

individuals’ levels of positive and negative affect. Each subscale is composed of 10 Likert-type 

format items ranging from 1 (vey slightly/not at all) to 5 (very much).  

 

PSG data acquisition 

Standard polysomnography consisting of electroencephalography (EEG), left and right 

electromyography (EMG) electrodes placed on the chin, left and right electrooculography 

(EOG) electrodes placed below and above the eyes, was continuously recorded using passive 

Ag/AgCl electrodes and collected with a BrainAmp DC Amplifier (Brain Products GmbH, 

Gilching, Germany). According to the international 10–20 system, six EEG electrodes were 

positioned on the scalp (F3, F4, C3, C4, O1 and O2) and we further attached one ground 

electrode to the forehead. All electrodes were referenced to the mean of the left and right 

https://pavlovia.org/
https://www.qualtrics.com/
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mastoid electrodes applied behind the left and right ear. Impedances were maintained below 

5 kΩ for each scalp electrode, and below 10 kΩ for each face electrode. Electrodes were 

applied with Ten20 conductive paste (Weaver & Co., Aurora, USA) on sites cleaned with 

NuPrep exfoliating gel (Weaver & Co., Aurora, USA). Data were recorded using BrainVision 

Recorder software (Brain Products GmbH), sampled at 500 Hz and saved without further 

filtering.  

 

TMR during REM sleep 

Semantically related acoustic stimuli which had been paired with pictures during wake were 

replayed to the participants during stable REM sleep, as assessed with standard AASM criteria 

47. The TMR protocol was executed using MATLAB 2016b and Cogent 2000 and it consisted 

of the presentation of 24 Cued sounds (400ms duration) repeatedly presented 20 times each 

(20 loops of all 24 sounds), with an inter-trial interval jittered between 2, 2.5, 3, 3.5 and 4 

seconds. Volume was adjusted for each participant to make sure that the sounds did not wake 

them up and to prevent arousals, thus participants selected a volume that they felt they could 

hear, and we turned this down lower if there were signs of arousal. Cueing was paused 

immediately when any sign of arousal was showed or when participants left the relevant sleep 

stage and resumed only when stable REM sleep was observed.  Notably, post-hoc scoring 

verified that all TMR cues were delivered in REM for 17 of the participants for whom data were 

analysed.  In one participant 24 out of the 480 cues were erroneously delivered in NREM. 

 

MRI data acquisition  

Magnetic resonance imaging (MRI) data were obtained at Cardiff University Brain Imaging 

Centre (CUBRIC), using a Siemens Magnetom Prisma 3T scanner with a 32-channel head 

coil. Functional images were acquired with a T2*-weighted echo-planar imaging (EPI) 

sequence (repetition time (TR) = 2000 ms; echo time (TE) = 30 ms; FA = 75°; bandwidth 2442 
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Hz/Pixel,  field of view (FoV) = 224 mm2; voxel-size = 3.5 mm3; slice thickness = 3.5 mm; 37 

slices with a ~25° axial-to-coronal tilt from the anterior – posterior commissure (AC-PC) line 

and interleaved slice acquisition; parallel acquisition technique (PAT) with in-plane 

acceleration factor 2 (GRAPPA), anterior-to-posterior phase-encoding direction). To correct 

for distortions in the fMRI data caused by magnetic field inhomogeneities, B0-fieldmap was 

acquired (TR = 1000 ms; TE1 = 4.92 ms; TE2 =   7.38 ms; FA = 75°; bandwidth 290 Hz/Pixel; 

FoV = 224 mm2; voxel-size = 3.5 mm3; slice thickness = 3.5 mm; interleaved slice acquisition; 

anterior-to-posterior phase-encoding direction).T1- weighted structural images were obtained 

using a 3D magnetization-prepared rapid-acquisition gradient echoes (MPRAGE) sequence 

(TR = 2300 ms; TE = 3.06 ms; FA = 9°; bandwidth 230 Hz/Pixel, FoV = 256 mm2, voxel-size 

= 1 mm3, slice thickness = 1 mm, parallel acquisition technique (PAT) with in-plane 

acceleration factor 2 (GRAPPA), anterior-to-posterior phase-encoding direction). 

 

Data analysis 

Behavioural data analysis 

Differences on arousal ratings between Cued and Uncued items were assessed using a linear 

mixed effects models implemented in the lme4 package48 . 

To identify the contribution of Cueing on arousal ratings across time, we first fitted a model 

that included Cueing (two levels: Cued and Uncued), Session (two levels: S2 and S3) and 

their interaction as fixed effects, and participants and items as random effects. 

Model 1 formula: Rating ~ Cueing * Session + 1 | Participants, ~ 1 | Items. 

Next, we introduced the baseline variable into the model, representing the ratings provided by 

participants in Session 1, before any experimental manipulation.  

Model 2 formula: Rating ~ Cueing * Session + Baseline + 1 | Participants, ~ 1 | Items. 
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We employed a group mean centering (GMC) for the baseline values by subtracting each 

individual’s mean baseline rating from their individual ratings for the baseline session49.   

By adopting this approach, we ensured a more accurate evaluation of the changes occurring 

within participant and mitigated the influence of divergent initial rating levels between 

individuals. Moreover, we addressed the potential multicollinearity among predictor variables 

in the model50.  

Finally, we added an interaction term between cueing and group mean centered baseline to 

examine whether the effect of cueing on arousal ratings varied depending on the participants 

baseline level. 

Model 3 formula: rating ~ Cueing * Session + Cueing * Baseline + 1 | participants, ~ 1 | items. 

To determine statistical significance, we conducted a likelihood ratio test (LRT) in which we 

compared all the three models. The LRT yielded a substantial improvement in the model fit 

(χ2(1) = 6.60, p = 0.01), thus we will report our analysis based on this third model. For a model 

comparison analysis see Supplemental Material Table S6.    

 

We used R (Rstudio Team (2022), www.R-project.org) and the R-packages lme4 and 

emmeans for all our statistical analyses48,51. Figures were created using ggplot2 package52.  

Finally, were interested in determining whether time spent in REM or SWS modulated the 

effects of TMR. Unfortunately, the sleep data were missing for two participants due to technical 

problems, and thus including sleep data in the analysis reduced our sample size.  We 

nevertheless examined the subset of data with complete sleep information to determine 

whether adding these covariates would have improved model fit. For SWS, a likelihood ratio 

test comparing the original model to a model including SWS time as a covariate revealed no 

significant improvement in model fit, χ²(1) = 0.32, p = .574. Similarly, adding REM sleep time 

as a covariate did not significantly improve model fit compared to the original model, χ²(1) = 
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0.09, p = .759. These results suggest that the inclusion of SWS and REM sleep time as 

covariates would not have substantially altered the findings reported in the main analysis. 

 

EEG data analysis 

 

PSG recordings were manually scored in 30s epochs by two trained independent sleep 

scorers, according to the standard AASM manual47. Each EEG recording was scored using a 

publicly available interface (https://github.com/mnavarretem/psgScore). From the scored 

sleep stages, the following sleep macrostructure parameters were calculated: (1) total sleep 

time (TST, min) as the total time in any sleep stages other than wake; (2) time spent in each 

sleep stage; (3) percentage of time spent in each sleep stage, calculated as the time in the 

respective sleep stage over TST. Data from N = 2 participants was excluded due to recording 

issues. Sleep parameters are reported in Table 1.  

 

EEG cleaning 

EEG cleaning consisted of filtering and rejection of outliers based on statistical measures. 

EEG cleaning began with band-pass filtering (0.1 to 30Hz) and band-stop filtering (50Hz). 

EEGs were segmented into 3-second trials (0.5 sec. pre-stimulus and 2.5sec. post-stimulus). 

We removed trials representing outliers based on statistical measures (variance, max, min) 

extracted for every trial and every channel. A trial was considered as an outlier if its statistical 

measure exceeded the third quartile + (the interquartile range *1.5) or was below the first 

quartile - (the interquartile range*1.5) in more than 25% of channels. This was done for all 

mentioned statistical measures. If a trial was marked as an outlier for less than 25% of 

channels it was interpolated using neighbouring channels with triangulation method in 

Fieldtrip, otherwise, it was removed. Trials were then visually inspected, and any remaining 

artifacts were removed. 
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Time-frequency representation and ERP analysis 

We performed time-frequency decomposition in a similar way to that used in prior reports53,54. 

We used a hanning taper with 5 cycles that was convolved with the signals. We used 0.5 Hz 

frequency steps and 5 ms time steps. Power values are shown in the range of 7–30 Hz, Figure 

S1A. We also used a baseline of –400 ms to 0 ms relative to the onset of the TMR. The 

reported values represent the percentage of power change from baseline. Missing values at 

the edges are caused by using 5 cycles of the estimated frequency to have an adaptive 

window as a function of frequency. The shown plots are the grand average from all participants 

and all channels. For the ERP analysis, we identified a baseline period of –400 ms to 0 ms 

and again we report the grand average from all participants and all channels. Small values of 

amplitudes shown in the ERP plot (Figure S1A) are caused by the smoothing that happened 

as a result of averaging many trials, participants and channels, thus small shifts between 

values will make amplitude values smaller as shown. 

 

Correction for multiple comparisons  

Time frequency decomposition was compared to baseline and was corrected for multiple 

comparisons using cluster-based permutation in Fieldtrip55 and lively vectors (lv)56 which have 

the same results. For cluster-based permutation, Monte Carlo was used with a sample-specific 

test statistic threshold = 0.05, permutation test threshold for clusters = 0.05, and 10,000 

permutations. The correction window was the whole length of the plot after removing missing 

values. Plots of ERP analysis and time-frequency analysis and cluster-based permutation 

were built with lively vectors (lv)56.  

 

MRI data analysis 
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Image data preparation, preprocessing, and statistical analysis were performed using 

fMRIPrep 20.2.7 (RRID:SCR_016216 57) which is based on Nipype 1.7.0 (RRID:SCR_002502 

58). Functional data were preprocessed in the following way: (1) a B0-nonuniformity map 

correction (or field map); (2) co-registration to the participants’ T1-weighted anatomical scan 

using rigid-body model; (3) motion correction (transformation matrices, and six corresponding 

rotation and translation parameters); (4) slice-time correction to 0.481; (5) spatial 

normalization to Montreal Neurological Institute brain (MNI space); (6) resampling to a voxel 

size of 2x2x2 mm using cubic interpolation; (7) smoothing using a Gaussian kernel with a full-

width half maximum (FWHM) of 6 x 6 x 6 mm. 

 

First and second level analysis 

Subject-level analysis was performed using a general linear model constructed separately for 

each participant. The design matrix included two regressors: Cued and Uncued picture-sound 

pairs. Each regressor was convolved with a canonical haemodynamic response function using 

the default Glover HRF in Nilearn. Additionally, six affine motion correction regressors 

estimated during realignment (translations in x, y, z directions and rotations around x, y, and 

z axes) were included as non-convolved regressors of no interest in the matrix.  

To mitigate the effects of excessive motion during the fMRI scan, we employed scrubbing as 

a denoising approach59–61. Scrubbing involved identifying volumes in the fMRI data that exhibit 

high motion and excluding them from statistical analysis. Frame displacement (FD), a measure 

of head motion between consecutive frames in fMRI, was used to define excessive motion61. 

Volumes exceeding a specified threshold (0.5, as suggested by61), were considered to have 

excessive motion and were excluded or "scrubbed" from further analysis.  
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The effect of cueing in REM sleep was estimated using a one-tailed t-test for Uncued>Cued. 

Individual contrast images resulting from the first-level analysis were carried forward to the 

second-level one-way t-tests. 

 

A-priori defined ROIs consisted of the insula, sgACC, OFC and amygdala. These regions were 

selected based on previous findings that reported activations (or de-activations) in these 

regions due to sleep or emotional6,7,14,62 and their involvement in psychiatric disorders19,63. 

ROIs were created using the integrated Automated Anatomical Labeling (AAL) atlas64 in the 

Wake Forest University Pick Atlas toolbox (http://fmri.wfubmc.edu/software/PickAtlas) and the 

automated anatomical labelling atlas 3 template (AAL314) was used to define the sgACC. The 

masks were thresholded at 0.1. In addition, we included a whole brain gray matter (GM) mask 

thresholded at 0.1.  

 

To control for multiple comparisons, we performed cluster-level corrections. This was 

accomplished using the 3dttest++ function in the Analysis of Functional NeuroImages (AFNI) 

software suite65,66, employing the ClustSim option for Monte Carlo simulations. A cluster-

defining threshold (CDT) of p < 0.001 was set to identify potential clusters showing a significant 

effect. The ClustSim option generated a distribution of cluster sizes under the null hypothesis, 

allowing us to determine a cluster-size threshold corresponding to a family-wise error (FWE) 

corrected p-value of less than 0.05.   

 

An additional region of interest (ROI) analysis was performed to investigate the mean 

activation within the left and right subgenual cingulate cortex (sgACC) and the left amygdala. 

For each participant, contrast images representing the difference in activation between the 

Uncued and Cued conditions (Uncued-Cued) were generated from the first-level fMRI 

analysis. These contrast images were then masked with the sgACC and left amygdala ROIs 

using a custom Python script leveraging the NiBabel and NumPy libraries. The script extracted 

all voxel values within each ROI for each participant and calculated the mean activation within 
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each mask. This resulted in a single mean activation value for each participant and ROI, 

representing the average difference in activation between the Uncued and Cued conditions 

within that region. To examine whether cueing led to deactivation within these ROIs, a one-

tailed one-sample t-test was performed on the mean activation values at the group level, 

testing the hypothesis that the mean activation was significantly higher than zero. 

 

Heart rate data analysis 

At Session 48-H (when the task was performed in the MR scanner), heart rate was acquired 

with a pulse oximetry sensor provided with the Siemens Physiological Monitoring Unit and 

attached to the ring finger of the non-dominant hand. R components of the QRS complexes 

were marked using custom made script in Matlab 2019a and subsequently interpolated at 

1000 Hz. HRD was computed as the maximum R-R interval deceleration in the 5 s interval 

following each picture onset, subtracted from the mean R-R interval during the 1.5 s baseline 

period before each picture onset. Due to technical difficulties (high presence of motion artifacts 

n = 3 and poor sensor placement n = 1), only data from N = 14 participants were analysed.  

To compare the difference in HRD between Cued and Uncued stimuli to zero we used a one-

way t-test (Gaussian distribution). Correlations between HRD, behavioural measures, 

parameter estimates for our ROIs in each subject and EEG results were assessed with 

Pearson’s correlation or Spearman’s Rho (depending on the Shapiro-Wilk test result) using 

cor.test() function in the R environment. False discovery rate (FDR) correction was used to 

correct for multiple correlations (q < 0.05) 67. 

 

Data Sharing 

All data are available at:  https://openneuro.org/datasets/ds005530/versions/1.0.7 
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Supplemental information 

Document S1. Figures S1 and Tables S1- S7. 
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