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ABSTRACT

Rapid Eye Movement Sleep (REM) is thought to process emotions via memory reactivation. Such REM reactivation
can be triggered by presenting a tone associated with the target memory. This reduces subjective arousal ratings for
negative stimuli. Here, we measure arousal objectively in brain and autonomic system. Participants rated negative
image-sound pairs, half of which were then re-presented during subsequent REM. All images were re-rated in a Mag-
netic Resonance Imaging (MRI) scanner with pulse oximetry 48 h after encoding. Reactivation in REM reduced
responses in the brain’s Salience Network (SN), including Anterior Insula and dorsal Anterior Cingulate Cortex (dACC),
and associated emotion-processing regions: orbitofrontal cortex, subgenual cingulate, and left amygdala. Memory
reactivation in REM reduced heart rate deceleration (HRD). Subjective arousal ratings were reduced for more upset-
ting images and increased for less upsetting images. Our findings have implications for the use of memory reactiva-
tion to treat depression and anxiety disorders.
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1. INTRODUCTION were previously associated with a newly encoded mem-
ory during wake are re-presented during sleep, prompting
reactivation of the corresponding memory representation
(Rasch et al., 2007; Rudoy et al., 2009). An extensive
body of experimental work, mainly in non-REM sleep,

has demonstrated the potential of this non-invasive tech-

The unique neurological milieu of rapid eye movement
(REM) sleep provides optimal conditions for the process-
ing of emotional memories (Gujar et al., 2011; Maquet
et al., 1996; Menz et al., 2016; Nishida et al., 2009; Rihm
& Rasch, 2015; van der Helm et al., 2011; Walker, 2009).

The “Sleep to forget, Sleep to Remember” (SFSR)
hypothesis (Helm & Walker, 2010) builds on this by pro-
posing that spontaneous reactivation of emotional mem-
ories during REM facilitates the decoupling of the
affective charge from a memory.

Targeted memory reactivation (TMR) is an established
technique for triggering memory reactivation during
sleep. In TMR studies, stimuli, like tones or odours, that

nique to enhance the consolidation of different types of
memories (see Hu et al., 2020 for a review). Nonetheless,
the specific impacts of TMR during REM sleep on emo-
tional reactivity remain to be explored.

We previously asked whether TMR reduces emotional
reactivity by asking participants to rate emotional images
for arousal both before and after the manipulation. This
showed that TMR of emotionally arousing stimuli during
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REM, but not during slow wave sleep (SWS), led to a sig-
nificant habituation of subjective arousal (Hutchison
et al., 2021). In the current study, we extend this REM
TMR finding by examining both physiological and neural
arousal responses, in addition to subjective ratings
(Fig. 1).

We used functional magnetic resonance imaging
(fMRI) to examine brain activity, focusing on regions
known to be involved in the processing and regulation of
emotions, namely the amygdala, insula, orbitofrontal cor-
tex (OFC), and subgenual anterior cingulate cortex
(sgACC). These regions have been extensively studied
and are recognized as key components of the neural cir-
cuitry underlying emotional experiences. Previous stud-
ies have reported alterations in activations elicited here
by emotional pictures as a result of sleep (Cairney et al.,
2014; van der Helm et al., 2011) or emotional reactivity
(Murty et al., 2010; Rolls, 2019, 2023; Stevens, 2011).
Furthermore, dysfunctions within these regions have
been associated with psychiatric disorders such as
depression or post-traumatic stress disorder (PTSD)
(Benschop et al., 2022; Drevets et al., 2008; Gasquoine,
2014; Hamilton et al., 2008).

We used heart rate deceleration (HRD) as a physiolog-
ical marker of autonomic arousal. HRD, which reflects the
parasympathetic orienting response, has been shown to
map onto the affective tone of a stimulus, with greater
deceleration indicating higher levels of arousal (Bradley
et al., 2001; Buchanan et al., 2006). Prior work has dis-
cussed different effects of sleep on the parasympathetic
aspects of emotional arousal, with studies showing either
a decrease (Bolinger et al., 2019; Cunningham et al.,
2014) or a preservation of the HRD in response to emo-
tional stimuli (Ashton et al., 2019; Bolinger et al., 2018;
Pace-Schott et al., 2011). No study has specifically
explored the response of HRD to TMR during REM.

Drawing on our own previous findings (Hutchison
et al., 2021), and supported by evidence indicating that
REM sleep can provide optimal conditions for the pro-
cessing of emotional memories (Hutchison et al., 2021)
(although this is not always the case (Davidson et al.,
2021)) and by studies suggesting that REM TMR may
impact upon arousal responses (Menon, 2015; Seeley
et al., 2007; van der Helm et al., 2011), we predicted that
our manipulation would result in diminished activity in the
brain’s arousal system, decreased heart rate responses,

Session Baseline

[
+r——‘—w D)
0ss | | 3@ - <
=l 5 |
Pl " I -
\_r:ruusal \'0‘55
4s 1-5 h-
ds
1) 1)
REM 4 ‘
=N
@
2
Lo 2
[=]
%)
g"b 3
S s
i
#'l 1
1 2 3 4 L] L] 7 8
Hours of sleep
6pm  11pm 7am
Fig. 1.

i [ \ / Session 48-Hr ﬁ\l / Session 2-Wk

. = +ﬁ_

5

i Amusal |

Study design. The study consisted of three sessions. At Baseline, two questionnaires were first filled: the Stanford

Sleepiness Scale (SSS) and the Positive and Negative Affect Schedule (PANAS). They were followed by the arousal rating
task, in which participants were asked to rate 48 negative IAPS pictures—sound pairs on a 5-point rating scale of arousal
(1 = less arousing, 5 = more arousing). After filling out the PANAS a second time, participants were wired-up for EEG.
During the night, tones associated with half of the stimuli were played in random order during REM sleep. The following
morning, participants filled a sleep quality questionnaire. The second session (Session 48-H) and the third session
(Session 2-Wk) had the same structure: after filling the SSS and the PANAS, participants performed the arousal rating
task. The PANAS was administered again as soon as they finished the task. Session 48-h was performed in the MRI
scanner while heart rate deceleration (HRD) was recorded; it occurred 48 h after S1. Session 2-Wk was performed online

(2 weeks after Baseline).
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and reduction in subjective arousal during the processing
of emotional images.

2. METHODS

2.1. Participants

Twenty-three right-handed, non-smoking healthy volun-
teers (14 females, age range: 20-33 years, mean + SD:
23.61 + 3.92) were recruited for this study, which was
approved by the Ethics Committee of the School of Psy-
chology at Cardiff University. A pre-screening question-
naire was used to ensure that participants were fluent in
English, had normal or corrected to normal vision, no pre-
vious history of physical, psychological, neurological, or
sleep disorders, and no hearing impairments. Participants
were required to be right-handed and to not regularly take
any psychologically active medication or substance
directly or indirectly affecting sleep quality. They agreed to
abstain from alcohol 24 h prior to each experimental ses-
sion and from caffeine and other psychologically active
food from 12 h prior. Participants were also asked to
refrain from engaging in intense physical activities during
the period of the study. Further criteria of exclusion
included a habit of daytime napping, a non-regular sleep-
wake rhythm, engaging in nightshift work, cross-
continental travel in the 2 months before the study, or
having such plans during the experimental weeks. Addi-
tionally, to ensure that participants did not experience
negative emotional stress over the week before starting
the experiment, they were asked to complete the Depres-
sion, Anxiety and Stress Scale as inclusion criteria (DASS-
42, normal scores: Depression (D) < 9; Anxiety (A) < 7;
Stress (S) < 14) (Lovibond & Lovibond, 1995). All partici-
pants gave written informed consent and received mone-
tary compensation for their participation. Five participants
were excluded from all analyses due to: voluntary with-
drawal (n = 4) or technical issues (n = 1) and three partici-
pants were unable to complete the online follow-up.
Hence, the final dataset included 18 participants (11
females, age range: 20-30 years, mean + SD: 23.61 + 3.56)
at Baseline and 48 h, and n = 15 in 10 days (S3).

2.2. Arousal rating task

Participants viewed 48 standardized negative images
which were selected from the International Affective Pic-
ture System (Lang et al., 2008) (see Supplemental
Table S7). Each image was converted to greyscale and
matched in luminance and resolution (height = 600 px;
width = 800 px) using the SHINE toolbox (Willenbockel
et al., 2010) in MATLAB 2007a. Each image was rated
using a 5-point arousal scale, corresponding to increased

emotional intensity (i.e., 1 = less arousing, 5 = more
arousing), and paired with a semantically related sound
obtained from the International Affective Digitized Sounds
database (IADS; Lang et al., 2008). Participants were
instructed to rate each picture-sound pair along arousal
dimension.

Each trial consisted of a fixation cross (500 ms), pic-
ture and sound presentation (1 s), a blank screen (4 s), the
arousal rating (4 s), and the inter-trial interval (jittered: 3.5
-4.5-5.5-6.5s). Sounds were 400 ms long. In order to
match the duration of the picture presentation on the
screen (1 s) with the duration of the sounds, the 400 ms
sounds were repeated twice with a 200 ms gap in
between the two presentations: 400 ms — 200 ms gap —
400 ms. Audacity software (www.audacityteam.org) was
used to modify the length of sounds.

In Session 1 only, the arousal rating task was preceded
by a practice round and followed by a forced-choice
task. The practice round aimed to let participants famil-
iarize with the rating scale. It consisted of four neutral
IAPS pictures paired with semantically related neutral
sounds taken from the IADS. The forced-choice task,
which was performed for all image-sound pairs, aimed to
assess whether participants had learned the associations
between images and sounds. For each trial, participants
had to choose which of the four IAPS images displayed
was semantically related with the sound. This task was
repeated until participants reached 75% accuracy. Feed-
back with the correct answer was presented for 1.5 s.

2.3. Study design and procedure

The study consisted of three sessions (Fig. 1), all sched-
uled for the same time in the evening (~6 pm). For all ses-
sions, before and after performing the arousal rating task
participants completed the Positive and Negative Affect
Schedule (PANAS) scale (Watson et al., 1988) to evaluate
their mood. The Stanford Sleepiness Scale (Hoddes
et al.,, 1973) was administered at the beginning of each
experimental session to determine participants’ level of
alertness.

S1 lasted approximately 2 h and progressed as fol-
lows: participants completed the arousal rating task, then
changed into their sleepwear, were fitted for polysom-
nography (PSG) recording, and went to bed at around
11:30 pm while brown noise was delivered throughout
the night to minimize noise-induced arousals. For the
TMR protocol, acoustic stimuli semantically related to the
IAPS pictures were replayed during REM sleep to trigger
reactivation of negative emotions. Participants were
woken up after 7-8 h of sleep. After removing the elec-
trodes and before leaving the lab, they were asked to rate
their sleep quality and whether they heard any sounds
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during the night with an adapted and translated version
of a German sleep quality questionnaire (Gortelmeyer,
1985). Participants were asked to come back to the lab
48 h later for Session 48-H during which the arousal rat-
ing task was performed in a 3T Siemens MRI scanner
during fMRI acquisition while heart rate deceleration
(HRD) was recorded. Session 2-Wk (2 weeks after Base-
line), the follow-up session, was performed online and
lasted ~40 min.

In both the lab and the MR scanner, the task was pre-
sented using PsychoPy3 Experiment Runner (v2020.1.3)
(Peirce et al., 2019). The SSS and the PANAS question-
naires were executed using MATLAB (The MathWorks Inc.,
Natick, MA, 2000) and Psychophysics Toolbox Version 3
(Brainard, 1997), except for the sleep quality questionnaire,
completed with pen and paper. In S3, the behavioral task
was administered through the Pavlovia online platform
(https://pavlovia.org/) and the SSS and PANAS question-
naire were distributed via Qualtrics software (Qualtrics,
Provo, UT, USA. https://www.qualtrics.com).

2.4. Questionnaires

The SSS is used to provide a subjective indication of
sleepiness, with participants rating their current state on
a 7-point Likert scale, where 1 is most alert and 7 is least
alert (Hoddes et al., 1973).

The PANAS scale (Watson et al., 1988) is a self-report
measure composed of two subscales designed to assess
individuals’ levels of positive and negative effect. Each
subscale is composed of 10 Likert-type format items
ranging from 1 (vey slightly/not at all) to 5 (very much).

2.5. PSG data acquisition

Standard polysomnography consisting of electroenceph-
alography (EEG), left and right electromyography (EMG)
electrodes placed on the chin, left and right electroocu-
lography (EOG) electrodes placed below and above the
eyes, was continuously recorded using passive Ag/AgCl
electrodes and collected with a BrainAmp DC Amplifier
(Brain Products GmbH, Gilching, Germany). According to
the international 10-20 system, six EEG electrodes were
positioned on the scalp (F3, F4, C3, C4, O1 and 02) and
we further attached one ground electrode to the fore-
head. All electrodes were referenced to the mean of the
left and right mastoid electrodes applied behind the left
and right ear. Impedances were maintained below 5 kQ
for each scalp electrode, and below 10 kQ for each face
electrode. Electrodes were applied with Ten20 conduc-
tive paste (Weaver & Co., Aurora, USA) on sites cleaned
with NuPrep exfoliating gel (Weaver & Co., Aurora, USA).
Data were recorded using BrainVision Recorder software

(Brain Products GmbH), sampled at 500 Hz, and saved
without further filtering.

2.6. TMR during REM sleep

Semantically related acoustic stimuli which had been
paired with pictures during wake were replayed to the
participants during stable REM sleep, as assessed with
standard AASM criteria (Iber et al., 2007). The TMR pro-
tocol was executed using MATLAB 2016b and Cogent
2000 and it consisted of the presentation of 24 Cued
sounds (400 ms duration) repeatedly presented 20 times
each (20 loops of all 24 sounds), with an inter-trial interval
jittered between 2, 2.5, 3, 3.5, and 4 s. Volume was
adjusted for each participant to make sure that the
sounds did not wake them up and to prevent arousals.
Thus, participants selected a volume that they felt they
could hear, and we turned this down lower if there were
signs of arousal. Cueing was paused immediately when
any sign of arousal was shown or when participants left
the relevant sleep stage and resumed only when stable
REM sleep was observed. Notably, post-hoc scoring ver-
ified that all TMR cues were delivered in REM for 17 of the
participants for whom data were analyzed. In one partic-
ipant, 24 out of the 480 cues were erroneously delivered
in NREM.

2.7. MRI data acquisition

Magnetic resonance imaging (MRI) data were obtained at
Cardiff University Brain Imaging Centre (CUBRIC), using
a Siemens Magnetom Prisma 3T scanner with a
32-channel head coil. Functional images were acquired
with a T2*-weighted echo-planar imaging (EPI) sequence
(repetition time (TR) = 2000 ms; echo time (TE) = 30 ms;
FA = 75° bandwidth 2442 Hz/Pixel, field of view
(FoV) = 224 mm?; voxel-size = 3.5 mm3; slice thick-
ness = 3.5 mm; 37 slices with a ~25° axial-to-coronal tilt
from the anterior—posterior commissure (AC-PC) line and
interleaved slice acquisition; parallel acquisition tech-
nique (PAT) with in-plane acceleration factor 2 (GRAPPA),
anterior-to-posterior phase-encoding direction). To cor-
rect for distortions in the fMRI data caused by magnetic
field inhomogeneities, BO-fieldmap was acquired
(TR =1000 ms; TE1 =4.92 ms; TE2 = 7.38 ms; FA = 75°;
bandwidth 290 Hz/Pixel; FoV = 224 mm?; voxel-size
= 3.5 mm?; slice thickness = 3.5 mm; interleaved slice
acquisition; anterior-to-posterior phase-encoding direc-
tion).T1- weighted structural images were obtained using
a 3D magnetization-prepared rapid-acquisition gradient
echoes (MPRAGE) sequence (TR = 2300 ms; TE =
3.06 ms; FA = 9°; bandwidth 230 Hz/Pixel, FoV =256 mm?2,
voxel-size = 1 mm?3, slice thickness = 1 mm, parallel
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acquisition technique (PAT) with in-plane acceleration
factor 2 (GRAPPA), anterior-to-posterior phase-encoding
direction).

3. DATA ANALYSIS

3.1. Behavioral data analysis

Differences on arousal ratings between Cued and Uncued
items were assessed using linear mixed-effects models
implemented in the Ime4 package (Bates et al., 2015).

To identify the contribution of Cueing on arousal rat-
ings across time, we first fitted a model that included
Cueing (two levels: Cued and Uncued), Session (two lev-
els: S2 and S3) and their interaction as fixed effects, and
participants and items as random effects.

Model 1 formula: Rating ~ Cueing * Session + 1 | Par-
ticipants, ~ 1 | ltems.

Next, we introduced the baseline variable into the
model, representing the ratings provided by participants
in Session 1, before any experimental manipulation.

Model 2 formula: Rating ~ Cueing * Session + Base-
line + 1 | Participants, ~ 1 | ltems.

We employed a group mean centering (GMC) for the
baseline values by subtracting each individual’'s mean
baseline rating from their individual ratings for the base-
line session (Enders & Tofighi, 2007).

By adopting this approach, we ensured a more accu-
rate evaluation of the changes occurring within partici-
pant and mitigated the influence of divergent initial rating
levels between individuals. Moreover, we addressed the
potential multicollinearity among predictor variables in
the model (Bolger & Laurenceau, 2013).

Finally, we added an interaction term between cueing
and group mean centered baseline to examine whether
the effect of cueing on arousal ratings varied depending
on the participants baseline level.

Model 3 formula: rating ~ Cueing * Session + Cueing
* Baseline + 1 | participants, ~ 1 | items.

To determine statistical significance, we conducted a
likelihood ratio test (LRT) in which we compared all the
three models. The LRT yielded a substantial improve-
ment in the model fit (y2(1) = 6.60, p = 0.01), thus we will
report our analysis based on this third model. For a model
comparison analysis see Supplemental Table S6.

We used R (Rstudio Team (2022), www.R-project.org)
and the R-packages Ime4 and emmeans for all our statis-
tical analyses (Bates et al., 2015; Lenth, 2023). Figures
were created using ggplot2 package (Wickham, 2009).

Finally, we were interested in determining whether time
spent in REM or SWS modulated the effects of TMR.
Unfortunately, the sleep data were missing for two partici-
pants due to technical problems, and thus including sleep

data in the analysis reduced our sample size. We, never-
theless, examined the subset of data with complete sleep
information to determine whether adding these covariates
would have improved model fit. For SWS, a likelihood ratio
test comparing the original model to a model including
SWS time as a covariate revealed no significant improve-
ment in model fit, y%(1) = 0.32, p = 0.574. Similarly, adding
REM sleep time as a covariate did not significantly improve
model fit compared to the original model, x2(1) = 0.09,
p = 0.759. These results suggest that the inclusion of SWS
and REM sleep time as covariates would not have sub-
stantially altered the findings reported in the main analysis.

3.2. EEG data analysis

PSG recordings were manually scored in 30 s epochs by
two trained independent sleep scorers, according to the
standard AASM manual (lber et al., 2007). Each EEG
recording was scored using a publicly available interface
(https://github.com/mnavarretem/psgScore). From the
scored sleep stages, the following sleep macrostructure
parameters were calculated: (1) total sleep time (TST,
min) as the total time in any sleep stages other than wake;
(2) time spent in each sleep stage; and (3) percentage of
time spent in each sleep stage, calculated as the time in
the respective sleep stage over TST. Data from n = 2 par-
ticipants was excluded due to recording issues. Sleep
parameters are reported in Table 1.

3.3. EEG cleaning

EEG cleaning consisted of filtering and rejection of outliers
based on statistical measures. EEG cleaning began with
band-pass filtering (0.1 to 30 Hz) and band-stop filtering
(50 Hz). EEGs were segmented into 3-s trials (0.5 s pre-
stimulus and 2.5 s post-stimulus). We removed trials rep-
resenting outliers based on statistical measures (variance,
max, min) extracted for every trial and every channel. A
trial was considered as an outlier if its statistical measure
exceeded the third quartile + (the interquartile range *1.5)

Table 1. Functional results.

Peak
Brain region No. voxels  Z-value MNI x, y, z (mm)
Insula 28 4.01 -33, 14, 14
Orbitofrontal 39 4.29 -37, 60, -9
cortex 17 3.93 -37, 32, -7
Dosal anterior 349 5.13 5,56, 14
cingulate 121 4.5 -39, 44, 2

Peak Z-values and corresponding MNI coordinates for regions
showing activation in the contrast Uncued > Cued with the
inclusion threshold of one-tailed p < 0.001 and cluster correction
of p < 0.05.
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or was below the first quartile — (the interquartile range*1.5)
in more than 25% of channels. This was done for all men-
tioned statistical measures. If a trial was marked as an
outlier for less than 25% of channels, it was interpolated
using neighboring channels with triangulation method in
Fieldtrip; otherwise, it was removed. Trials were then visu-
ally inspected, and any remaining artifacts were removed.

3.4. Time-frequency representation and ERP
analysis

We performed time-frequency decomposition in a similar
way to that used in prior reports (M. E. Abdellahi et al.,
2023; Cairney et al., 2018). We used a hanning taper with
five cycles that was convolved with the signals. We used
0.5 Hz frequency steps and 5 ms time steps. Power val-
ues are shown in the range of 7-30 Hz, Supplemental
Figure S1A. We also used a baseline of -400 ms to 0 ms
relative to the onset of the TMR. The reported values rep-
resent the percentage of power change from baseline.
Missing values at the edges are caused by using five
cycles of the estimated frequency to have an adaptive
window as a function of frequency. The shown plots are
the grand average from all participants and all channels.
For the ERP analysis, we identified a baseline period of
-400 ms to 0 ms and again we report the grand average
from all participants and all channels. Small values of
amplitudes shown in the ERP plot (Supplemental
Fig. S1A) are caused by the smoothing that happened as
a result of averaging many trials, participants and chan-
nels; thus, small shifts between values will make ampli-
tude values smaller as shown.

3.5. Correction for multiple comparisons

Time-frequency decomposition was compared to base-
line and was corrected for multiple comparisons using
cluster-based permutation in Fieldtrip (Oostenveld et al.,
2011) and lively vectors (lv) (M. E. A. Abdellahi, 2022)
which have the same results. For cluster-based permuta-
tion, Monte Carlo was used with a sample-specific test
statistic threshold = 0.05, permutation test threshold for
clusters = 0.05, and 10,000 permutations. The correction
window was the whole length of the plot after removing
missing values. Plots of ERP analysis and time-frequency
analysis and cluster-based permutation were built with
lively vectors (Iv) (M. E. A. Abdellahi, 2022).

3.6. MRI data analysis

Image data preparation, preprocessing, and statistical
analysis were performed using fMRIPrep 20.2.7
(RRID:SCR_016216 (Esteban et al., 2019)) which is based

on Nipype 1.7.0 (RRID:SCR_002502 (Gorgolewski et al.,
2011)). Functional data were preprocessed in the follow-
ing way: (1) a BO-nonuniformity map correction (or field
map); (2) co-registration to the participants’ T1-weighted
anatomical scan using rigid-body model; (3) motion cor-
rection (transformation matrices, and six corresponding
rotation and translation parameters); (4) slice-time cor-
rection to 0.481; (5) spatial normalization to Montreal
Neurological Institute brain (MNI space); (6) resampling to
a voxel size of 2 x 2 x 2 mm using cubic interpolation; and
(7) smoothing using a Gaussian kernel with a full-width
half maximum (FWHM) of 6 x 6 x 6 mm.

3.7. First- and second-level analysis

Subject-level analysis was performed using a general lin-
ear model constructed separately for each participant.
The design matrix included two regressors: Cued and
Uncued picture-sound pairs. Each regressor was con-
volved with a canonical haemodynamic response func-
tion using the default Glover HRF in Nilearn. Additionally,
six affine motion correction regressors estimated during
realignment (translations in x, y, z directions and rotations
around x, y, and z axes) were included as non-convolved
regressors of no interest in the matrix.

To mitigate the effects of excessive motion during the
fMRI scan, we employed scrubbing as a denoising
approach (Jenkinson et al., 2002; Jones et al., 2022;
Power et al., 2012). Scrubbing involved identifying vol-
umes in the fMRI data that exhibit high motion and
excluding them from statistical analysis. Frame displace-
ment (FD), a measure of head motion between consecu-
tive frames in fMRI, was used to define excessive motion
(Power et al., 2012). Volumes exceeding a specified
threshold (0.5, as suggested by Power et al. (2012)) were
considered to have excessive motion and were excluded
or “scrubbed” from further analysis.

The effect of cueing in REM sleep was estimated using
a one-tailed t-test for Uncued>Cued. Individual contrast
images resulting from the first-level analysis were carried
forward to the second-level one-way t-tests.

A-priori defined ROIls consisted of the insula, sgACC,
OFC, and amygdala. These regions were selected based
on previous findings that reported activations (or de-
activations) in these regions due to sleep or emotional
(Phan et al., 2002; Rolls, 2019; van der Helm et al., 2011;
Walker, 2009) and their involvement in psychiatric disor-
ders (Drevets et al., 2008; Kunimatsu et al., 2020). ROIs
were created using the integrated Automated Anatomical
Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002) in the
Wake Forest University Pick Atlas toolbox (https://www
.nitrc.org/projects/wfu_pickatlas/), and the automated
anatomical labeling atlas 3 template (AAL3 (Rolls, 2019))
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was used to define the sgACC. The masks were thresh-
olded at 0.1. In addition, we included a whole-brain gray
matter (GM) mask thresholded at 0.1.

To control for multiple comparisons, we performed
cluster-level corrections. This was accomplished using the
3dttest++ function in the Analysis of Functional Neurolm-
ages (AFNI) software suite (Cox, 1996; Cox & Hyde, 1997),
employing the ClustSim option for Monte Carlo simula-
tions. A cluster-defining threshold (CDT) of p < 0.001 was
set to identify potential clusters showing a significant
effect. The ClustSim option generated a distribution of
cluster sizes under the null hypothesis, allowing us to
determine a cluster-size threshold corresponding to a
family-wise error (FWE) corrected p-value of less than 0.05.

An additional region of interest (ROI) analysis was per-
formed to investigate the mean activation within the left
and right subgenual cingulate cortex (sgACC) and the left
amygdala. For each participant, contrast images repre-
senting the difference in activation between the Uncued
and Cued conditions (Uncued-Cued) were generated
from the first-level fMRI analysis. These contrast images
were then masked with the sgACC and left amygdala
ROIs using a custom Python script leveraging the NiBa-
bel and NumPy libraries. The script extracted all voxel
values within each ROI for each participant and calcu-
lated the mean activation within each mask. This resulted
in a single mean activation value for each participant and
ROI, representing the average difference in activation
between the Uncued and Cued conditions within that
region. To examine whether cueing led to deactivation
within these ROls, a one-tailed one-sample t-test was
performed on the mean activation values at the group
level, testing the hypothesis that the mean activation was
significantly higher than zero.

3.8. Heart rate data analysis

At Session 48-H (when the task was performed in the MR
scanner), heart rate was acquired with a pulse oximetry
sensor provided with the Siemens Physiological Monitor-
ing Unit and attached to the ring finger of the non-
dominant hand. R components of the QRS complexes
were marked using custom made script in Matlab 2019a
and subsequently interpolated at 1000 Hz. HRD was
computed as the maximum R-R interval deceleration in
the 5 s interval following each picture onset, subtracted
from the mean R-R interval during the 1.5 s baseline
period before each picture onset. Due to technical diffi-
culties (high presence of motion artifacts n = 3 and poor
sensor placement n = 1), only data from n = 14 partici-
pants were analyzed.

To compare the difference in HRD between Cued and
Uncued stimuli to zero, we used a one-way t-test

(Gaussian distribution). Correlations between HRD,
behavioral measures, parameter estimates for our ROls
in each subject, and EEG results were assessed with
Pearson’s correlation or Spearman’s Rho (depending on
the Shapiro-Wilk test result) using cor.test () function in
the R environment. False discovery rate (FDR) correction
was used to correct for multiple correlations (g < 0.05)
(Benjamini & Hochberg, 1995).

4. RESULTS

4.1. Sleep characteristics and EEG analysis

Participants obtained an average of 528.91 min total
sleep time (TST) (+/- 37.38), with an average of 95.09 min
of REM (+/- 27.42 min, see Supplemental Table S1 for full
details of sleep). EEG analysis confirmed that TMR cues
were processed by the brain since TMR onset is followed
by an increase in beta band (12.5-30 Hz) compared to
baseline (see Supplemental Fig. S1B). This starts around
1 s after TMR (corrected with cluster-based permutation,
n = 16, p = 0.0079). The response is present on C3 and
C4, F3 and F4, but not O1 or O2 (Supplemental Fig. S3).
ERP analysis showed an amplitude increase just before
500 ms after the TMR onset, followed by a decrease
500 ms after the cue (Supplemental Fig. S1B). A separate
analysis specific to theta band showed a power increase
at ~0.1 - 0.6 s post cue (Supplemental Fig. S2). These
findings are in keeping with other TMR studies which
used baseline correction rather than control tones in REM
(M. E. Abdellahi et al., 2023) and NREM (van der Helm
et al., 2011; Yao et al., 2024), both of which show similar
pattern in the ERP and time-frequency response. Nota-
bly, however, the absence of a control tones (not associ-
ated with a memory) makes it difficult to say whether the
elicited responses are due to memory reactivation or are
instead related only to the sound.

4.2. fMRI

To determine whether REM TMR led to a decrease in
neural arousal responses in the brain, we compared fMRI
responses to Uncued > Cued picture-sound pairs. We
first tested this using a whole-brain corrected analysis of
grey matter which revealed two strong decreases of
response in dorsal anterior cingulate cortex (dACC) (349
voxels and 159 voxels), with no other clusters surviving
(Fig. 2A, Table 1). Next, we tested the same comparison
in our insula ROI and found reduced responses in the
anterior portion of insula (Fig. 2B, Table 1), FWE corrected
at p < 0.05.

Anterior insula and dACC are the two primary nodes of
the brain’s Salience Network (SN) (Menon, 2015;
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A) Dorsal Anterior Cingulate

C) Lateral Orbitofrontal Ctx

B) Anterior Insula

S8

D) Mean signal change in ROI

Fig. 2. Functional activity in response to Uncued > Cued contrast on negative picture-sound pairs in Session 48-h.
(A-C) Cluster corrected responses at pFWE < 0.05, cluster-level corrected. Results are overlaid on a skull stripped MNI
ICBM152 T1 template. OFC = orbitofrontal cortex. (D) Percent signal change (Uncued > Cued) in sgACC (R and L) and
L Amygdala. Bars represent mean percent signal change in the Uncued minus Cued contrast, with error bars indicating
standard error of the mean. Positive values indicate less activation in the Cued condition compared to the Uncued

condition.

Seeley et al., 2007), so a reduction in responsivity in
these regions after REM TMR suggests that our manipu-
lation could lead to downscaling of a more generalised
salience response. The SN helps the brain to identify
important stimuli, and to coordinate resources in
response to these stimuli, for instance by switching
between the Central Executive Network and the Default
Mode Network. Within this network, the frontal insula is
an afferent hub for detecting autonomic feedback, while
the dACC is the efferent hub, important for generating
responses. Together, these regions are thought to pro-
cess salient stimuli, determine their importance, and
select responses (Seeley et al., 2007; Seeley, 2019), for a
review see Menon (2015).

The SN influences physiological arousal via connec-
tions to the amygdala which recognizes threats and
recruits brain structures to respond to threat (Menon,
2015; Rolls, 2023). Examination of our amygdala ROI
showed a reduction in response in just one voxel of left
amygdala at p < 0.001 uncorrected, (x = -26, y = 1,
z = 16); however, this did not survive FWE correction. To
check for a mean response across this structure, we next
examined mean percent signal change in our L amyg-
dala ROI and found a significant effect (M = 0.185%,
SD = 0.436%), t(17) = 1.80, p = 0.045, see Figure 2D.
This suggests that our TMR manipulation leads to a dis-
persed change across the left amygdala, rather than

being apparent in a strong cluster. Such a change in
reactivity is in keeping with the literature since amygdala
responses to arousal have already been shown to be
modulated by REM TMR (van der Helm et al., 2011)
although the effect is disrupted when REM is extremely
disturbed. These findings might indicate that REM TMR
can reduce the extent to which a negative stimulus is
perceived as a threat.

Next, we examined our ROI in orbitofrontal cortex,
finding a strong reduction in right lateral OFC at p < 0.05
FEW corrected (Fig. 2C). OFC plays a critical role in rep-
resenting the reward value associated with a range of
stimuli and outcomes. It encodes the emotional and
affective significance of different inputs, thus contributing
to the modulation of emotional responses (Rolls, 2019).
The significance of OFC in shaping emotional experi-
ences and behavioural responses becomes even more
apparent when we consider outputs to regions such as
the dACC and insula since these allow reward value rep-
resentations generated by the OFC to feed into the SN
and contribute to the complexity of our emotional experi-
ences and associated behaviours (Rolls, 2019, 2023).

Our final ROI was the subgenual cingulate, a region
which is associated with psychiatric disorders such as
depression or PTSD (Benschop et al., 2022; Drevets
et al., 2008). Here, as in amygdala, we observed uncor-
rected responses (just one voxel in each case). Because
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these did not survive FWE correction, we examined mean
signal change for each area and found significant results
in both hemispheres: (left sgACC: M = 0.148%,
SD = 0.288%), t(17) = 2.18, p = 0.022, right sgACC:
(M = 0.130%, SD = 0.313%), t(17) = 1.76, p = 0.048
(Fig. 2D).

4.3. Heart rate deceleration (HRD)

To index the impact of the TMR manipulation on auto-
nomic responses to negative images, we compared heart
rate deceleration between Cued and Uncued images in
the second Session 48-H. This revealed greater deceler-
ation for Uncued stimuli, one-way t-test on the Uncued-
Cued difference, p = 0.026, (mean -0.71, +0.28 SEM),
indicating a stronger emotional reactivity to these Uncued
images (Fig. 3A). No significant correlations were found
between HRD, sleep, behavioural results, or functional
parameter estimates (all p, g > 0.05, see Supplemental
Tables S4 and S5).

Our observation of depotentiated visceral reactivity to
stimuli that were Cued overnight is in good keeping with
the observed downregulation of the Salience Network.
The majority of studies indicating a sleep-dependent
preservation of physiological arousal in response to neg-
ative stimuli have investigated the effect of either a nap or
a single night of sleep (Ashton et al., 2019; Bolinger et al.,
2018; Pace-Schott et al., 2011).0One study of how sleep
modulates affective reactivity observed that HRD was
preserved in the short term, but reduced after a week,
suggesting that time might play an important role in the
modulation of emotional strength (Bolinger et al., 2019).
Because we observed a reduction in HRD 48 h after the
first exposure to the task followed by the TMR manipula-
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Fig. 3.
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tion, we speculate that the TMR may have speeded up
this time-dependent decrease.

4.4. Subjective arousal ratings

Baseline ratings were non-normally distributed, even after
mean centring, (Shapiro-Wilk p < 0.001 for both Cued and
Uncued), so we used a Wilcoxon signed rank test to
determine whether they differed between Cued and
Uncued categories. This gave a probability of p = 0.39,
indicating that the ratings did not differ pre-sleep.

To investigate the effects of REM TMR on subjective
arousal ratings we used a linear mixed model (LMM) with
Cueing (Cued and Uncued), group mean centred ratings
at Baseline, and Session (48-H and 2-Wk) as fixed effects
(formula: rating ~ Cueing * Session + Cueing * Baseline).
Both participants and items were included as random
effects (formula: ~ 1 | Participants, ~ 1 | ltems). There was
no effect of cueing (M = -0.04, 95% CI [-0.15, 0.07],
p = 0.45, but the interaction between Cueing and Base-
line was significant (M = -0.10, 95% CI [-0.17, -0.02],
p = 0.010) (Fig. 3B), see Supplemental Table S2A for full
results). Thus, when baseline arousal ratings were taken
into account, REM TMR led to decreases in arousal rat-
ings of pictures that had been rated as very arousing at
baseline while also leading to an increase in arousal rat-
ings for pictures rated as less arousing at baseline. This
pattern is consistent with the work of Pereira et. al. (2022)
who observed that Slow Wave Sleep (SWS) TMR of emo-
tional material reduced responses in the orbitofrontal
cortex for negative items, while simultaneously increas-
ing them for neutral items (Pereira et al., 2022). It is pos-
sible that spreading of activation between the various
items in an associative network of memories, including

=

2 4 Cued
Uncued

T T T
-2 0 2

BASELINE RATING (mean centered)
LESS AROUSING MORE AROUSING

(A) Heart rate deceleration: Data for cued and uncued conditions at Session 48-H are shown separately (left) and

the difference between Cued and Uncued conditions (right) which reached significance, one-way t-test p = < 0.026. Data
are shown as means (SEM). Dots represent individual participants. (B) Post-manipulation Behavioural data (Sessions
48-H and 2-WKk): Model predicted interaction between Cueing and mean-centered Baseline. Shadowed areas represent

95% Confidence Intervals.
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the most arousing and least arousing items, means that
reactivation actually causes a general smoothing of the
emotional responses—tending to push all the items
towards the same mean rating.

Notably, Session also had a significant negative effect
(M=-0.29,95% CI [-0.41, -0.17], p < 0.001), suggesting
that ratings decreased across sessions, but the interac-
tion between Cueing and Session was not significant
(M = 0.05, 95% CI [-0.12, 0.21], p = 0.564), suggesting
that the effect of cueing did not vary significantly across
sessions. Post-hoc t-tests (Supplemental Table S2B)
revealed that that cueing tended to decrease arousal rat-
ings for items that were rated as higher than average
arousal at baseline, while simultaneously increasing rat-
ings for items rated lower than average arousal at base-
line (Fig. 3B). Descriptive statistics are reported in
Supplemental Table S3.

5. DISCUSSION

Our observation that REM TMR leads to reduced arousal
related responses in the salience network as well as the
amygdala, orbitofrontal cortex, and subgenual cingulate
combines with our behavioural and autonomic results to
suggest that REM reactivation can somehow reduce the
extent to which an emotional stimulus elicits arousal, and
this is true not only subjectively, but also in terms of auto-
nomic and neural responsivity. Our current findings join
prior research showing promising evidence for a role of
memory reactivation during REM sleep in decreasing the
affective tone associated with negative experiences. For
instance, Wassing and colleagues induced the self-
conscious emotion of shame in volunteers suffering from
insomnia to explore the impact of disrupted REM sleep
on emotional distress (Wassing et al., 2019). Their find-
ings indicate that discontinuities in REM can prevent the
brain from processing and reducing emotional distress as
reflected by continuous amygdala reactivity. Another
recent study showed that TMR during REM of imagery
rehearsal therapy for two consecutive weeks reduced the
frequency of nightmares while promoting more positive
dream emotions (Schwartz et al., 2022).

Interestingly, no significant correlations were found
between HRD, sleep, behavioural results, or functional
parameter estimates (all p, ¢ > 0.05, see Supplemental
Tables S4 and S5). While the differences between these
objective and subjective measures could be due to small
sample size, it is also possible that top down influences
such as cultural norms, emotional regulation, cognitive
appraisal, and memory of prior responses might all influ-
ence subjective ratings without influencing objective
measures. Top down factors should always be taken into
account when interpreting subjective ratings.
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Overall, our findings support the possibility that tar-
geted reactivation of emotionally arousing memories in
REM could potentially offer a way to make these memories
less upsetting. As such, our method could lead to clinically
important opportunities for the early treatment of psychiat-
ric disorders such as depression and post-traumatic stress
disorder PTSD. In the future, we hope to extend this work
by developing an EEG classifier which can detect the
emotionality of reactivation, this would allow us to more
precisely determine the extent to which emotional memory
reactivation actually predicts the reductions in salience
and arousal responses that we observe here.

There are several limitations to this study. First, because
we were specifically interested in emotional arousal, we
did not measure memory performance, so we cannot
comment on how TMR impacted on memory strength.
Second, we did not collect baseline data for the HRD or
MRI, so can only comment on how responses within a
session differ for items that were Cued vs. Uncued, we
cannot say anything about whether they are altered with
respect to baseline. We also cannot be certain that the
Cued and Uncued groups did not already differ on these
measures at baseline, although we do know that subjec-
tive arousal ratings did not differ at that timepoint. This
limitation is exacerbated by our sample size of 18, which
— though larger than the REM group of 15 used in
Hutchison et al. (2021) is still modest. Finally, due to the
shortness of REM we did not include control sounds
during the night of sleep, preferring instead to play our
experimental cues as many times as possible. This deci-
sion means we cannot comment on how the ERPs and
time-frequency responses induced by experimental
sounds differ from those that would have been induced by
sounds that were not coupled with aversive memories.
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