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1.  INTRODUCTION

The unique neurological milieu of rapid eye movement 
(REM) sleep provides optimal conditions for the process-
ing of emotional memories (Gujar et  al., 2011; Maquet 
et al., 1996; Menz et al., 2016; Nishida et al., 2009; Rihm 
& Rasch, 2015; van der Helm et al., 2011; Walker, 2009). 
The “Sleep to forget, Sleep to Remember” (SFSR) 
hypothesis (Helm & Walker, 2010) builds on this by pro-
posing that spontaneous reactivation of emotional mem-
ories during REM facilitates the decoupling of the 
affective charge from a memory.

Targeted memory reactivation (TMR) is an established 
technique for triggering memory reactivation during 
sleep. In TMR studies, stimuli, like tones or odours, that 

were previously associated with a newly encoded mem-
ory during wake are re-presented during sleep, prompting 
reactivation of the corresponding memory representation 
(Rasch et  al., 2007; Rudoy et  al., 2009). An extensive 
body of experimental work, mainly in non-REM sleep, 
has demonstrated the potential of this non-invasive tech-
nique to enhance the consolidation of different types of 
memories (see Hu et al., 2020 for a review). Nonetheless, 
the specific impacts of TMR during REM sleep on emo-
tional reactivity remain to be explored.

We previously asked whether TMR reduces emotional 
reactivity by asking participants to rate emotional images 
for arousal both before and after the manipulation. This 
showed that TMR of emotionally arousing stimuli during 
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REM, but not during slow wave sleep (SWS), led to a sig-
nificant habituation of subjective arousal (Hutchison 
et  al., 2021). In the current study, we extend this REM 
TMR finding by examining both physiological and neural 
arousal responses, in addition to subjective ratings 
(Fig. 1).

We used functional magnetic resonance imaging 
(fMRI) to examine brain activity, focusing on regions 
known to be involved in the processing and regulation of 
emotions, namely the amygdala, insula, orbitofrontal cor-
tex (OFC), and subgenual anterior cingulate cortex 
(sgACC). These regions have been extensively studied 
and are recognized as key components of the neural cir-
cuitry underlying emotional experiences. Previous stud-
ies have reported alterations in activations elicited here 
by emotional pictures as a result of sleep (Cairney et al., 
2014; van der Helm et al., 2011) or emotional reactivity 
(Murty et  al., 2010; Rolls, 2019, 2023; Stevens, 2011). 
Furthermore, dysfunctions within these regions have 
been associated with psychiatric disorders such as 
depression or post-traumatic stress disorder (PTSD) 
(Benschop et al., 2022; Drevets et al., 2008; Gasquoine, 
2014; Hamilton et al., 2008).

We used heart rate deceleration (HRD) as a physiolog-
ical marker of autonomic arousal. HRD, which reflects the 
parasympathetic orienting response, has been shown to 
map onto the affective tone of a stimulus, with greater 
deceleration indicating higher levels of arousal (Bradley 
et al., 2001; Buchanan et al., 2006). Prior work has dis-
cussed different effects of sleep on the parasympathetic 
aspects of emotional arousal, with studies showing either 
a decrease (Bolinger et  al., 2019; Cunningham et  al., 
2014) or a preservation of the HRD in response to emo-
tional stimuli (Ashton et al., 2019; Bolinger et al., 2018; 
Pace-Schott et  al., 2011). No study has specifically 
explored the response of HRD to TMR during REM.

Drawing on our own previous findings (Hutchison 
et al., 2021), and supported by evidence indicating that 
REM sleep can provide optimal conditions for the pro-
cessing of emotional memories (Hutchison et al., 2021) 
(although this is not always the case (Davidson et  al., 
2021)) and by studies suggesting that REM TMR may 
impact upon arousal responses (Menon, 2015; Seeley 
et al., 2007; van der Helm et al., 2011), we predicted that 
our manipulation would result in diminished activity in the 
brain’s arousal system, decreased heart rate responses, 

Fig. 1.  Study design. The study consisted of three sessions. At Baseline, two questionnaires were first filled: the Stanford 
Sleepiness Scale (SSS) and the Positive and Negative Affect Schedule (PANAS). They were followed by the arousal rating 
task, in which participants were asked to rate 48 negative IAPS pictures–sound pairs on a 5-point rating scale of arousal 
(1 = less arousing, 5 = more arousing). After filling out the PANAS a second time, participants were wired-up for EEG. 
During the night, tones associated with half of the stimuli were played in random order during REM sleep. The following 
morning, participants filled a sleep quality questionnaire. The second session (Session 48-H) and the third session 
(Session 2-Wk) had the same structure: after filling the SSS and the PANAS, participants performed the arousal rating 
task. The PANAS was administered again as soon as they finished the task. Session 48-h was performed in the MRI 
scanner while heart rate deceleration (HRD) was recorded; it occurred 48 h after S1. Session 2-Wk was performed online 
(2 weeks after Baseline).
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and reduction in subjective arousal during the processing 
of emotional images.

2.  METHODS

2.1.  Participants

Twenty-three right-handed, non-smoking healthy volun-
teers (14 females, age range: 20–33 years, mean ± SD: 
23.61  ±  3.92) were recruited for this study, which was 
approved by the Ethics Committee of the School of Psy-
chology at Cardiff University. A pre-screening question-
naire was used to ensure that participants were fluent in 
English, had normal or corrected to normal vision, no pre-
vious history of physical, psychological, neurological, or 
sleep disorders, and no hearing impairments. Participants 
were required to be right-handed and to not regularly take 
any psychologically active medication or substance 
directly or indirectly affecting sleep quality. They agreed to 
abstain from alcohol 24 h prior to each experimental ses-
sion and from caffeine and other psychologically active 
food from 12  h prior. Participants were also asked to 
refrain from engaging in intense physical activities during 
the period of the study. Further criteria of exclusion 
included a habit of daytime napping, a non-regular sleep-
wake rhythm, engaging in nightshift work, cross-
continental travel in the 2  months before the study, or 
having such plans during the experimental weeks. Addi-
tionally, to ensure that participants did not experience 
negative emotional stress over the week before starting 
the experiment, they were asked to complete the Depres-
sion, Anxiety and Stress Scale as inclusion criteria (DASS-
42, normal scores: Depression (D) ≤  9; Anxiety (A) ≤  7; 
Stress (S) ≤ 14) (Lovibond & Lovibond, 1995). All partici-
pants gave written informed consent and received mone-
tary compensation for their participation. Five participants 
were excluded from all analyses due to: voluntary with-
drawal (n = 4) or technical issues (n = 1) and three partici-
pants were unable to complete the online follow-up. 
Hence, the final dataset included 18 participants (11 
females, age range: 20–30 years, mean ± SD: 23.61 ± 3.56) 
at Baseline and 48 h, and n = 15 in 10 days (S3).

2.2.  Arousal rating task

Participants viewed 48 standardized negative images 
which were selected from the International Affective Pic-
ture System (Lang et  al., 2008) (see Supplemental 
Table S7). Each image was converted to greyscale and 
matched in luminance and resolution (height = 600 px; 
width = 800 px) using the SHINE toolbox (Willenbockel 
et  al., 2010) in MATLAB 2007a. Each image was rated 
using a 5-point arousal scale, corresponding to increased 

emotional intensity (i.e., 1  =  less arousing, 5  =  more 
arousing), and paired with a semantically related sound 
obtained from the International Affective Digitized Sounds 
database (IADS; Lang et  al., 2008). Participants were 
instructed to rate each picture-sound pair along arousal 
dimension.

Each trial consisted of a fixation cross (500 ms), pic-
ture and sound presentation (1 s), a blank screen (4 s), the 
arousal rating (4 s), and the inter-trial interval (jittered: 3.5 
– 4.5 – 5.5 – 6.5 s). Sounds were 400 ms long. In order to 
match the duration of the picture presentation on the 
screen (1 s) with the duration of the sounds, the 400 ms 
sounds were repeated twice with a 200  ms gap in 
between the two presentations: 400 ms – 200 ms gap – 
400 ms. Audacity software (www​.audacityteam​.org) was 
used to modify the length of sounds.

In Session 1 only, the arousal rating task was preceded 
by a practice round and followed by a forced-choice 
task. The practice round aimed to let participants famil-
iarize with the rating scale. It consisted of four neutral 
IAPS pictures paired with semantically related neutral 
sounds taken from the IADS. The forced-choice task, 
which was performed for all image-sound pairs, aimed to 
assess whether participants had learned the associations 
between images and sounds. For each trial, participants 
had to choose which of the four IAPS images displayed 
was semantically related with the sound. This task was 
repeated until participants reached 75% accuracy. Feed-
back with the correct answer was presented for 1.5 s.

2.3.  Study design and procedure

The study consisted of three sessions (Fig. 1), all sched-
uled for the same time in the evening (~6 pm). For all ses-
sions, before and after performing the arousal rating task 
participants completed the Positive and Negative Affect 
Schedule (PANAS) scale (Watson et al., 1988) to evaluate 
their mood. The Stanford Sleepiness Scale (Hoddes 
et al., 1973) was administered at the beginning of each 
experimental session to determine participants’ level of 
alertness.

S1 lasted approximately 2  h and progressed as fol-
lows: participants completed the arousal rating task, then 
changed into their sleepwear, were fitted for polysom-
nography (PSG) recording, and went to bed at around 
11:30 pm while brown noise was delivered throughout 
the night to minimize noise-induced arousals. For the 
TMR protocol, acoustic stimuli semantically related to the 
IAPS pictures were replayed during REM sleep to trigger 
reactivation of negative emotions. Participants were 
woken up after 7–8 h of sleep. After removing the elec-
trodes and before leaving the lab, they were asked to rate 
their sleep quality and whether they heard any sounds 

http://www.audacityteam.org
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during the night with an adapted and translated version 
of a German sleep quality questionnaire (Görtelmeyer, 
1985). Participants were asked to come back to the lab 
48 h later for Session 48-H during which the arousal rat-
ing task was performed in a 3T Siemens MRI scanner 
during fMRI acquisition while heart rate deceleration 
(HRD) was recorded. Session 2-Wk (2 weeks after Base-
line), the follow-up session, was performed online and 
lasted ~40 min.

In both the lab and the MR scanner, the task was pre-
sented using PsychoPy3 Experiment Runner (v2020.1.3) 
(Peirce et  al., 2019). The SSS and the PANAS question-
naires were executed using MATLAB (The MathWorks Inc., 
Natick, MA, 2000) and Psychophysics Toolbox Version 3 
(Brainard, 1997), except for the sleep quality questionnaire, 
completed with pen and paper. In S3, the behavioral task 
was administered through the Pavlovia online platform 
(https://pavlovia​.org/) and the SSS and PANAS question-
naire were distributed via Qualtrics software (Qualtrics, 
Provo, UT, USA. https://www​.qualtrics​.com).

2.4.  Questionnaires

The SSS is used to provide a subjective indication of 
sleepiness, with participants rating their current state on 
a 7-point Likert scale, where 1 is most alert and 7 is least 
alert (Hoddes et al., 1973).

The PANAS scale (Watson et al., 1988) is a self-report 
measure composed of two subscales designed to assess 
individuals’ levels of positive and negative effect. Each 
subscale is composed of 10 Likert-type format items 
ranging from 1 (vey slightly/not at all) to 5 (very much).

2.5.  PSG data acquisition

Standard polysomnography consisting of electroenceph-
alography (EEG), left and right electromyography (EMG) 
electrodes placed on the chin, left and right electroocu-
lography (EOG) electrodes placed below and above the 
eyes, was continuously recorded using passive Ag/AgCl 
electrodes and collected with a BrainAmp DC Amplifier 
(Brain Products GmbH, Gilching, Germany). According to 
the international 10–20 system, six EEG electrodes were 
positioned on the scalp (F3, F4, C3, C4, O1 and O2) and 
we further attached one ground electrode to the fore-
head. All electrodes were referenced to the mean of the 
left and right mastoid electrodes applied behind the left 
and right ear. Impedances were maintained below 5 kΩ 
for each scalp electrode, and below 10 kΩ for each face 
electrode. Electrodes were applied with Ten20 conduc-
tive paste (Weaver & Co., Aurora, USA) on sites cleaned 
with NuPrep exfoliating gel (Weaver & Co., Aurora, USA). 
Data were recorded using BrainVision Recorder software 

(Brain Products GmbH), sampled at 500 Hz, and saved 
without further filtering.

2.6.  TMR during REM sleep

Semantically related acoustic stimuli which had been 
paired with pictures during wake were replayed to the 
participants during stable REM sleep, as assessed with 
standard AASM criteria (Iber et al., 2007). The TMR pro-
tocol was executed using MATLAB 2016b and Cogent 
2000 and it consisted of the presentation of 24 Cued 
sounds (400 ms duration) repeatedly presented 20 times 
each (20 loops of all 24 sounds), with an inter-trial interval 
jittered between 2, 2.5, 3, 3.5, and 4  s. Volume was 
adjusted for each participant to make sure that the 
sounds did not wake them up and to prevent arousals. 
Thus, participants selected a volume that they felt they 
could hear, and we turned this down lower if there were 
signs of arousal. Cueing was paused immediately when 
any sign of arousal was shown or when participants left 
the relevant sleep stage and resumed only when stable 
REM sleep was observed. Notably, post-hoc scoring ver-
ified that all TMR cues were delivered in REM for 17 of the 
participants for whom data were analyzed. In one partic-
ipant, 24 out of the 480 cues were erroneously delivered 
in NREM.

2.7.  MRI data acquisition

Magnetic resonance imaging (MRI) data were obtained at 
Cardiff University Brain Imaging Centre (CUBRIC), using 
a Siemens Magnetom Prisma 3T scanner with a 
32-channel head coil. Functional images were acquired 
with a T2*-weighted echo-planar imaging (EPI) sequence 
(repetition time (TR) = 2000 ms; echo time (TE) = 30 ms; 
FA  =  75°; bandwidth 2442  Hz/Pixel, field of view 
(FoV)  =  224  mm2; voxel-size  =  3.5  mm3; slice thick-
ness = 3.5 mm; 37 slices with a ~25° axial-to-coronal tilt 
from the anterior–posterior commissure (AC-PC) line and 
interleaved slice acquisition; parallel acquisition tech-
nique (PAT) with in-plane acceleration factor 2 (GRAPPA), 
anterior-to-posterior phase-encoding direction). To cor-
rect for distortions in the fMRI data caused by magnetic 
field inhomogeneities, B0-fieldmap was acquired 
(TR = 1000 ms; TE1 = 4.92 ms; TE2 = 7.38 ms; FA = 75°; 
bandwidth 290  Hz/Pixel; FoV  =  224  mm2; voxel-size 
=  3.5  mm3; slice thickness  =  3.5  mm; interleaved slice 
acquisition; anterior-to-posterior phase-encoding direc-
tion).T1- weighted structural images were obtained using 
a 3D magnetization-prepared rapid-acquisition gradient 
echoes (MPRAGE) sequence (TR  =  2300  ms; TE = 
3.06 ms; FA = 9°; bandwidth 230 Hz/Pixel, FoV = 256 mm2, 
voxel-size  =  1  mm3, slice thickness  =  1  mm, parallel 

https://pavlovia.org/
https://www.qualtrics.com
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acquisition technique (PAT) with in-plane acceleration 
factor 2 (GRAPPA), anterior-to-posterior phase-encoding 
direction).

3.  DATA ANALYSIS

3.1.  Behavioral data analysis

Differences on arousal ratings between Cued and Uncued 
items were assessed using linear mixed-effects models 
implemented in the lme4 package (Bates et al., 2015).

To identify the contribution of Cueing on arousal rat-
ings across time, we first fitted a model that included 
Cueing (two levels: Cued and Uncued), Session (two lev-
els: S2 and S3) and their interaction as fixed effects, and 
participants and items as random effects.

Model 1 formula: Rating ~ Cueing * Session + 1 | Par-
ticipants, ~ 1 | Items.

Next, we introduced the baseline variable into the 
model, representing the ratings provided by participants 
in Session 1, before any experimental manipulation.

Model 2 formula: Rating ~ Cueing * Session + Base-
line + 1 | Participants, ~ 1 | Items.

We employed a group mean centering (GMC) for the 
baseline values by subtracting each individual’s mean 
baseline rating from their individual ratings for the base-
line session (Enders & Tofighi, 2007).

By adopting this approach, we ensured a more accu-
rate evaluation of the changes occurring within partici-
pant and mitigated the influence of divergent initial rating 
levels between individuals. Moreover, we addressed the 
potential multicollinearity among predictor variables in 
the model (Bolger & Laurenceau, 2013).

Finally, we added an interaction term between cueing 
and group mean centered baseline to examine whether 
the effect of cueing on arousal ratings varied depending 
on the participants baseline level.

Model 3 formula: rating ~ Cueing * Session + Cueing 
* Baseline + 1 | participants, ~ 1 | items.

To determine statistical significance, we conducted a 
likelihood ratio test (LRT) in which we compared all the 
three models. The LRT yielded a substantial improve-
ment in the model fit (χ2(1) = 6.60, p = 0.01), thus we will 
report our analysis based on this third model. For a model 
comparison analysis see Supplemental Table S6.

We used R (Rstudio Team (2022), www​.R​-project​.org) 
and the R-packages lme4 and emmeans for all our statis-
tical analyses (Bates et al., 2015; Lenth, 2023). Figures 
were created using ggplot2 package (Wickham, 2009).

Finally, we were interested in determining whether time 
spent in REM or SWS modulated the effects of TMR. 
Unfortunately, the sleep data were missing for two partici-
pants due to technical problems, and thus including sleep 

data in the analysis reduced our sample size. We, never-
theless, examined the subset of data with complete sleep 
information to determine whether adding these covariates 
would have improved model fit. For SWS, a likelihood ratio 
test comparing the original model to a model including 
SWS time as a covariate revealed no significant improve-
ment in model fit, χ²(1) = 0.32, p = 0.574. Similarly, adding 
REM sleep time as a covariate did not significantly improve 
model fit compared to the original model, χ²(1)  =  0.09, 
p = 0.759. These results suggest that the inclusion of SWS 
and REM sleep time as covariates would not have sub-
stantially altered the findings reported in the main analysis.

3.2.  EEG data analysis

PSG recordings were manually scored in 30 s epochs by 
two trained independent sleep scorers, according to the 
standard AASM manual (Iber et  al., 2007). Each EEG 
recording was scored using a publicly available interface 
(https://github​.com​/mnavarretem​/psgScore). From the 
scored sleep stages, the following sleep macrostructure 
parameters were calculated: (1) total sleep time (TST, 
min) as the total time in any sleep stages other than wake; 
(2) time spent in each sleep stage; and (3) percentage of 
time spent in each sleep stage, calculated as the time in 
the respective sleep stage over TST. Data from n = 2 par-
ticipants was excluded due to recording issues. Sleep 
parameters are reported in Table 1.

3.3.  EEG cleaning

EEG cleaning consisted of filtering and rejection of outliers 
based on statistical measures. EEG cleaning began with 
band-pass filtering (0.1 to 30 Hz) and band-stop filtering 
(50 Hz). EEGs were segmented into 3-s trials (0.5 s pre-
stimulus and 2.5 s post-stimulus). We removed trials rep-
resenting outliers based on statistical measures (variance, 
max, min) extracted for every trial and every channel. A 
trial was considered as an outlier if its statistical measure 
exceeded the third quartile + (the interquartile range *1.5) 

Table 1.  Functional results.

Brain region No. voxels
Peak 

Z-value MNI x, y, z (mm)

Insula 28 4.01 -33, 14, 14
Orbitofrontal  
cortex

39 4.29 -37, 60, -9
17 3.93 -37, 32, -7

Dosal anterior  
cingulate

349 5.13 5, 56, 14
121 4.5 -39, 44, 2

Peak Z-values and corresponding MNI coordinates for regions 
showing activation in the contrast Uncued > Cued with the 
inclusion threshold of one-tailed p < 0.001 and cluster correction 
of p < 0.05.

http://www.R-project.org
https://github.com/mnavarretem/psgScore
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or was below the first quartile—(the interquartile range*1.5) 
in more than 25% of channels. This was done for all men-
tioned statistical measures. If a trial was marked as an 
outlier for less than 25% of channels, it was interpolated 
using neighboring channels with triangulation method in 
Fieldtrip; otherwise, it was removed. Trials were then visu-
ally inspected, and any remaining artifacts were removed.

3.4.  Time-frequency representation and ERP 
analysis

We performed time-frequency decomposition in a similar 
way to that used in prior reports (M. E. Abdellahi et al., 
2023; Cairney et al., 2018). We used a hanning taper with 
five cycles that was convolved with the signals. We used 
0.5 Hz frequency steps and 5 ms time steps. Power val-
ues are shown in the range of 7–30  Hz, Supplemental 
Figure S1A. We also used a baseline of –400 ms to 0 ms 
relative to the onset of the TMR. The reported values rep-
resent the percentage of power change from baseline. 
Missing values at the edges are caused by using five 
cycles of the estimated frequency to have an adaptive 
window as a function of frequency. The shown plots are 
the grand average from all participants and all channels. 
For the ERP analysis, we identified a baseline period of 
–400 ms to 0 ms and again we report the grand average 
from all participants and all channels. Small values of 
amplitudes shown in the ERP plot (Supplemental 
Fig. S1A) are caused by the smoothing that happened as 
a result of averaging many trials, participants and chan-
nels; thus, small shifts between values will make ampli-
tude values smaller as shown.

3.5.  Correction for multiple comparisons

Time-frequency decomposition was compared to base-
line and was corrected for multiple comparisons using 
cluster-based permutation in Fieldtrip (Oostenveld et al., 
2011) and lively vectors (lv) (M. E. A. Abdellahi, 2022) 
which have the same results. For cluster-based permuta-
tion, Monte Carlo was used with a sample-specific test 
statistic threshold = 0.05, permutation test threshold for 
clusters = 0.05, and 10,000 permutations. The correction 
window was the whole length of the plot after removing 
missing values. Plots of ERP analysis and time-frequency 
analysis and cluster-based permutation were built with 
lively vectors (lv) (M. E. A. Abdellahi, 2022).

3.6.  MRI data analysis

Image data preparation, preprocessing, and statistical 
analysis were performed using fMRIPrep 20.2.7 
(RRID:SCR_016216 (Esteban et al., 2019)) which is based 

on Nipype 1.7.0 (RRID:SCR_002502 (Gorgolewski et al., 
2011)). Functional data were preprocessed in the follow-
ing way: (1) a B0-nonuniformity map correction (or field 
map); (2) co-registration to the participants’ T1-weighted 
anatomical scan using rigid-body model; (3) motion cor-
rection (transformation matrices, and six corresponding 
rotation and translation parameters); (4) slice-time cor-
rection to 0.481; (5) spatial normalization to Montreal 
Neurological Institute brain (MNI space); (6) resampling to 
a voxel size of 2 x 2 x 2 mm using cubic interpolation; and 
(7) smoothing using a Gaussian kernel with a full-width 
half maximum (FWHM) of 6 x 6 x 6 mm.

3.7.  First- and second-level analysis

Subject-level analysis was performed using a general lin-
ear model constructed separately for each participant. 
The design matrix included two regressors: Cued and 
Uncued picture-sound pairs. Each regressor was con-
volved with a canonical haemodynamic response func-
tion using the default Glover HRF in Nilearn. Additionally, 
six affine motion correction regressors estimated during 
realignment (translations in x, y, z directions and rotations 
around x, y, and z axes) were included as non-convolved 
regressors of no interest in the matrix.

To mitigate the effects of excessive motion during the 
fMRI scan, we employed scrubbing as a denoising 
approach (Jenkinson et  al., 2002; Jones et  al., 2022; 
Power et  al., 2012). Scrubbing involved identifying vol-
umes in the fMRI data that exhibit high motion and 
excluding them from statistical analysis. Frame displace-
ment (FD), a measure of head motion between consecu-
tive frames in fMRI, was used to define excessive motion 
(Power et  al., 2012). Volumes exceeding a specified 
threshold (0.5, as suggested by Power et al. (2012)) were 
considered to have excessive motion and were excluded 
or “scrubbed” from further analysis.

The effect of cueing in REM sleep was estimated using 
a one-tailed t-test for Uncued>Cued. Individual contrast 
images resulting from the first-level analysis were carried 
forward to the second-level one-way t-tests.

A-priori defined ROIs consisted of the insula, sgACC, 
OFC, and amygdala. These regions were selected based 
on previous findings that reported activations (or de-
activations) in these regions due to sleep or emotional 
(Phan et al., 2002; Rolls, 2019; van der Helm et al., 2011; 
Walker, 2009) and their involvement in psychiatric disor-
ders (Drevets et al., 2008; Kunimatsu et al., 2020). ROIs 
were created using the integrated Automated Anatomical 
Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002) in the 
Wake Forest University Pick Atlas toolbox (https://www​
.nitrc.org/projects/wfu_pickatlas/), and the automated 
anatomical labeling atlas 3 template (AAL3 (Rolls, 2019)) 

https://www.nitrc.org/projects/wfu_pickatlas/
https://www.nitrc.org/projects/wfu_pickatlas/


7

V. Greco, T.A. Foldes, M.E.A. Abdellahi et al.	 Imaging Neuroscience, Volume 3, 2025

was used to define the sgACC. The masks were thresh-
olded at 0.1. In addition, we included a whole-brain gray 
matter (GM) mask thresholded at 0.1.

To control for multiple comparisons, we performed 
cluster-level corrections. This was accomplished using the 
3dttest++ function in the Analysis of Functional NeuroIm-
ages (AFNI) software suite (Cox, 1996; Cox & Hyde, 1997), 
employing the ClustSim option for Monte Carlo simula-
tions. A cluster-defining threshold (CDT) of p < 0.001 was 
set to identify potential clusters showing a significant 
effect. The ClustSim option generated a distribution of 
cluster sizes under the null hypothesis, allowing us to 
determine a cluster-size threshold corresponding to a 
family-wise error (FWE) corrected p-value of less than 0.05.

An additional region of interest (ROI) analysis was per-
formed to investigate the mean activation within the left 
and right subgenual cingulate cortex (sgACC) and the left 
amygdala. For each participant, contrast images repre-
senting the difference in activation between the Uncued 
and Cued conditions (Uncued-Cued) were generated 
from the first-level fMRI analysis. These contrast images 
were then masked with the sgACC and left amygdala 
ROIs using a custom Python script leveraging the NiBa-
bel and NumPy libraries. The script extracted all voxel 
values within each ROI for each participant and calcu-
lated the mean activation within each mask. This resulted 
in a single mean activation value for each participant and 
ROI, representing the average difference in activation 
between the Uncued and Cued conditions within that 
region. To examine whether cueing led to deactivation 
within these ROIs, a one-tailed one-sample t-test was 
performed on the mean activation values at the group 
level, testing the hypothesis that the mean activation was 
significantly higher than zero.

3.8.  Heart rate data analysis

At Session 48-H (when the task was performed in the MR 
scanner), heart rate was acquired with a pulse oximetry 
sensor provided with the Siemens Physiological Monitor-
ing Unit and attached to the ring finger of the non-
dominant hand. R components of the QRS complexes 
were marked using custom made script in Matlab 2019a 
and subsequently interpolated at 1000  Hz. HRD was 
computed as the maximum R-R interval deceleration in 
the 5 s interval following each picture onset, subtracted 
from the mean R-R interval during the 1.5  s baseline 
period before each picture onset. Due to technical diffi-
culties (high presence of motion artifacts n = 3 and poor 
sensor placement n = 1), only data from n = 14 partici-
pants were analyzed.

To compare the difference in HRD between Cued and 
Uncued stimuli to zero, we used a one-way t-test 

(Gaussian distribution). Correlations between HRD, 
behavioral measures, parameter estimates for our ROIs 
in each subject, and EEG results were assessed with 
Pearson’s correlation or Spearman’s Rho (depending on 
the Shapiro-Wilk test result) using cor.test () function in 
the R environment. False discovery rate (FDR) correction 
was used to correct for multiple correlations (q < 0.05) 
(Benjamini & Hochberg, 1995).

4.  RESULTS

4.1.  Sleep characteristics and EEG analysis

Participants obtained an average of 528.91  min total 
sleep time (TST) (+/- 37.38), with an average of 95.09 min 
of REM (+/- 27.42 min, see Supplemental Table S1 for full 
details of sleep). EEG analysis confirmed that TMR cues 
were processed by the brain since TMR onset is followed 
by an increase in beta band (12.5–30 Hz) compared to 
baseline (see Supplemental Fig. S1B). This starts around 
1 s after TMR (corrected with cluster-based permutation, 
n = 16, p = 0.0079). The response is present on C3 and 
C4, F3 and F4, but not O1 or O2 (Supplemental Fig. S3). 
ERP analysis showed an amplitude increase just before 
500  ms after the TMR onset, followed by a decrease 
500 ms after the cue (Supplemental Fig. S1B). A separate 
analysis specific to theta band showed a power increase 
at ~0.1 - 0.6 s post cue (Supplemental Fig. S2). These 
findings are in keeping with other TMR studies which 
used baseline correction rather than control tones in REM 
(M. E. Abdellahi et al., 2023) and NREM (van der Helm 
et al., 2011; Yao et al., 2024), both of which show similar 
pattern in the ERP and time-frequency response. Nota-
bly, however, the absence of a control tones (not associ-
ated with a memory) makes it difficult to say whether the 
elicited responses are due to memory reactivation or are 
instead related only to the sound.

4.2.  fMRI

To determine whether REM TMR led to a decrease in 
neural arousal responses in the brain, we compared fMRI 
responses to Uncued  >  Cued picture-sound pairs. We 
first tested this using a whole-brain corrected analysis of 
grey matter which revealed two strong decreases of 
response in dorsal anterior cingulate cortex (dACC) (349 
voxels and 159 voxels), with no other clusters surviving 
(Fig. 2A, Table 1). Next, we tested the same comparison 
in our insula ROI and found reduced responses in the 
anterior portion of insula (Fig. 2B, Table 1), FWE corrected 
at p < 0.05.

Anterior insula and dACC are the two primary nodes of 
the brain’s Salience Network (SN) (Menon, 2015;  
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Seeley et  al., 2007), so a reduction in responsivity in 
these regions after REM TMR suggests that our manipu-
lation could lead to downscaling of a more generalised 
salience response. The SN helps the brain to identify 
important stimuli, and to coordinate resources in 
response to these stimuli, for instance by switching 
between the Central Executive Network and the Default 
Mode Network. Within this network, the frontal insula is 
an afferent hub for detecting autonomic feedback, while 
the dACC is the efferent hub, important for generating 
responses. Together, these regions are thought to pro-
cess salient stimuli, determine their importance, and 
select responses (Seeley et al., 2007; Seeley, 2019), for a 
review see Menon (2015).

The SN influences physiological arousal via connec-
tions to the amygdala which recognizes threats and 
recruits brain structures to respond to threat (Menon, 
2015; Rolls, 2023). Examination of our amygdala ROI 
showed a reduction in response in just one voxel of left 
amygdala at p  <  0.001 uncorrected, (x  =  -26, y  =  1, 
z = 16); however, this did not survive FWE correction. To 
check for a mean response across this structure, we next 
examined mean percent signal change in our L amyg-
dala ROI and found a significant effect (M  =  0.185%, 
SD = 0.436%), t(17) = 1.80, p = 0.045, see Figure 2D. 
This suggests that our TMR manipulation leads to a dis-
persed change across the left amygdala, rather than 

being apparent in a strong cluster. Such a change in 
reactivity is in keeping with the literature since amygdala 
responses to arousal have already been shown to be 
modulated by REM TMR (van der Helm et  al., 2011) 
although the effect is disrupted when REM is extremely 
disturbed. These findings might indicate that REM TMR 
can reduce the extent to which a negative stimulus is 
perceived as a threat.

Next, we examined our ROI in orbitofrontal cortex, 
finding a strong reduction in right lateral OFC at p < 0.05 
FEW corrected (Fig. 2C). OFC plays a critical role in rep-
resenting the reward value associated with a range of 
stimuli and outcomes. It encodes the emotional and 
affective significance of different inputs, thus contributing 
to the modulation of emotional responses (Rolls, 2019). 
The significance of OFC in shaping emotional experi-
ences and behavioural responses becomes even more 
apparent when we consider outputs to regions such as 
the dACC and insula since these allow reward value rep-
resentations generated by the OFC to feed into the SN 
and contribute to the complexity of our emotional experi-
ences and associated behaviours (Rolls, 2019, 2023).

Our final ROI was the subgenual cingulate, a region 
which is associated with psychiatric disorders such as 
depression or PTSD (Benschop et  al., 2022; Drevets 
et al., 2008). Here, as in amygdala, we observed uncor-
rected responses (just one voxel in each case). Because 

Fig. 2.  Functional activity in response to Uncued > Cued contrast on negative picture-sound pairs in Session 48-h. 
(A-C) Cluster corrected responses at pFWE < 0.05, cluster-level corrected. Results are overlaid on a skull stripped MNI 
ICBM152 T1 template. OFC = orbitofrontal cortex. (D) Percent signal change (Uncued > Cued) in sgACC (R and L) and 
L Amygdala. Bars represent mean percent signal change in the Uncued minus Cued contrast, with error bars indicating 
standard error of the mean. Positive values indicate less activation in the Cued condition compared to the Uncued 
condition.
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these did not survive FWE correction, we examined mean 
signal change for each area and found significant results 
in both hemispheres: (left sgACC: M  =  0.148%, 
SD  =  0.288%), t(17)  =  2.18, p  =  0.022, right sgACC: 
(M  =  0.130%, SD  =  0.313%), t(17)  =  1.76, p  =  0.048 
(Fig. 2D).

4.3.  Heart rate deceleration (HRD)

To index the impact of the TMR manipulation on auto-
nomic responses to negative images, we compared heart 
rate deceleration between Cued and Uncued images in 
the second Session 48-H. This revealed greater deceler-
ation for Uncued stimuli, one-way t-test on the Uncued-
Cued difference, p  =  0.026, (mean -0.71, ±0.28 SEM), 
indicating a stronger emotional reactivity to these Uncued 
images (Fig. 3A). No significant correlations were found 
between HRD, sleep, behavioural results, or functional 
parameter estimates (all padj  >  0.05, see Supplemental 
Tables S4 and S5).

Our observation of depotentiated visceral reactivity to 
stimuli that were Cued overnight is in good keeping with 
the observed downregulation of the Salience Network. 
The majority of studies indicating a sleep-dependent 
preservation of physiological arousal in response to neg-
ative stimuli have investigated the effect of either a nap or 
a single night of sleep (Ashton et al., 2019; Bolinger et al., 
2018; Pace-Schott et al., 2011).One study of how sleep 
modulates affective reactivity observed that HRD was 
preserved in the short term, but reduced after a week, 
suggesting that time might play an important role in the 
modulation of emotional strength (Bolinger et al., 2019). 
Because we observed a reduction in HRD 48 h after the 
first exposure to the task followed by the TMR manipula-

tion, we speculate that the TMR may have speeded up 
this time-dependent decrease.

4.4.  Subjective arousal ratings

Baseline ratings were non-normally distributed, even after 
mean centring, (Shapiro-Wilk p < 0.001 for both Cued and 
Uncued), so we used a Wilcoxon signed rank test to 
determine whether they differed between Cued and 
Uncued categories. This gave a probability of p = 0.39, 
indicating that the ratings did not differ pre-sleep.

To investigate the effects of REM TMR on subjective 
arousal ratings we used a linear mixed model (LMM) with 
Cueing (Cued and Uncued), group mean centred ratings 
at Baseline, and Session (48-H and 2-Wk) as fixed effects 
(formula: rating ~ Cueing * Session + Cueing * Baseline). 
Both participants and items were included as random 
effects (formula: ~ 1 | Participants, ~ 1 | Items). There was 
no effect of cueing (M  =  −0.04, 95% CI [−0.15, 0.07], 
p = 0.45, but the interaction between Cueing and Base-
line was significant (M = −0.10, 95% CI [−0.17, −0.02], 
p = 0.010) (Fig. 3B), see Supplemental Table S2A for full 
results). Thus, when baseline arousal ratings were taken 
into account, REM TMR led to decreases in arousal rat-
ings of pictures that had been rated as very arousing at 
baseline while also leading to an increase in arousal rat-
ings for pictures rated as less arousing at baseline. This 
pattern is consistent with the work of Pereira et. al. (2022) 
who observed that Slow Wave Sleep (SWS) TMR of emo-
tional material reduced responses in the orbitofrontal 
cortex for negative items, while simultaneously increas-
ing them for neutral items (Pereira et al., 2022). It is pos-
sible that spreading of activation between the various 
items in an associative network of memories, including 

Fig. 3.  (A) Heart rate deceleration: Data for cued and uncued conditions at Session 48-H are shown separately (left) and 
the difference between Cued and Uncued conditions (right) which reached significance, one-way t-test p = < 0.026. Data 
are shown as means (±SEM). Dots represent individual participants. (B) Post-manipulation Behavioural data (Sessions  
48-H and 2-Wk): Model predicted interaction between Cueing and mean-centered Baseline. Shadowed areas represent 
95% Confidence Intervals.



10

V. Greco, T.A. Foldes, M.E.A. Abdellahi et al.	 Imaging Neuroscience, Volume 3, 2025

the most arousing and least arousing items, means that 
reactivation actually causes a general smoothing of the 
emotional responses—tending to push all the items 
towards the same mean rating.

Notably, Session also had a significant negative effect 
(M = −0.29, 95% CI [−0.41, −0.17], p < 0.001), suggesting 
that ratings decreased across sessions, but the interac-
tion between Cueing and Session was not significant 
(M = 0.05, 95% CI [−0.12, 0.21], p = 0.564), suggesting 
that the effect of cueing did not vary significantly across 
sessions. Post-hoc t-tests (Supplemental Table  S2B) 
revealed that that cueing tended to decrease arousal rat-
ings for items that were rated as higher than average 
arousal at baseline, while simultaneously increasing rat-
ings for items rated lower than average arousal at base-
line (Fig.  3B). Descriptive statistics are reported in 
Supplemental Table S3.

5.  DISCUSSION

Our observation that REM TMR leads to reduced arousal 
related responses in the salience network as well as the 
amygdala, orbitofrontal cortex, and subgenual cingulate 
combines with our behavioural and autonomic results to 
suggest that REM reactivation can somehow reduce the 
extent to which an emotional stimulus elicits arousal, and 
this is true not only subjectively, but also in terms of auto-
nomic and neural responsivity. Our current findings join 
prior research showing promising evidence for a role of 
memory reactivation during REM sleep in decreasing the 
affective tone associated with negative experiences. For 
instance, Wassing and colleagues induced the self-
conscious emotion of shame in volunteers suffering from 
insomnia to explore the impact of disrupted REM sleep 
on emotional distress (Wassing et al., 2019). Their find-
ings indicate that discontinuities in REM can prevent the 
brain from processing and reducing emotional distress as 
reflected by continuous amygdala reactivity. Another 
recent study showed that TMR during REM of imagery 
rehearsal therapy for two consecutive weeks reduced the 
frequency of nightmares while promoting more positive 
dream emotions (Schwartz et al., 2022).

Interestingly, no significant correlations were found 
between HRD, sleep, behavioural results, or functional 
parameter estimates (all padj  >  0.05, see Supplemental 
Tables S4 and S5). While the differences between these 
objective and subjective measures could be due to small 
sample size, it is also possible that top down influences 
such as cultural norms, emotional regulation, cognitive 
appraisal, and memory of prior responses might all influ-
ence subjective ratings without influencing objective 
measures. Top down factors should always be taken into 
account when interpreting subjective ratings.

Overall, our findings support the possibility that tar-
geted reactivation of emotionally arousing memories in 
REM could potentially offer a way to make these memories 
less upsetting. As such, our method could lead to clinically 
important opportunities for the early treatment of psychiat-
ric disorders such as depression and post-traumatic stress 
disorder PTSD. In the future, we hope to extend this work 
by developing an EEG classifier which can detect the 
emotionality of reactivation, this would allow us to more 
precisely determine the extent to which emotional memory 
reactivation actually predicts the reductions in salience 
and arousal responses that we observe here.

There are several limitations to this study. First, because 
we were specifically interested in emotional arousal, we 
did not measure memory performance, so we cannot 
comment on how TMR impacted on memory strength. 
Second, we did not collect baseline data for the HRD or 
MRI, so can only comment on how responses within a 
session differ for items that were Cued vs. Uncued, we 
cannot say anything about whether they are altered with 
respect to baseline. We also cannot be certain that the 
Cued and Uncued groups did not already differ on these 
measures at baseline, although we do know that subjec-
tive arousal ratings did not differ at that timepoint. This 
limitation is exacerbated by our sample size of 18, which 
– though larger than the REM group of 15 used in 
Hutchison et al. (2021) is still modest. Finally, due to the 
shortness of REM we did not include control sounds 
during the night of sleep, preferring instead to play our 
experimental cues as many times as possible. This deci-
sion means we cannot comment on how the ERPs and 
time-frequency responses induced by experimental 
sounds differ from those that would have been induced by 
sounds that were not coupled with aversive memories.
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