
Example 
Which one of , , and  belongs with  and ? 

Top-down reasoning with 





Bottom-up and top-down reasoning with 
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Reasoning under Results:                             iff Assumptions
(1) Consistency from the two below

(2) Possibility
(3) Inconsistency
(4) Impossibility No assumption

Uncertainty Same as above
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RELATED WORK 
Probabilistic logic learning: inductive logic programming (ILP, Muggleton, 
91, Nienhuys-Cheng & Wolf, 97), probabilistic logic programming, (PLP, 
Sato, 95),

Statistical relational learning: Bayesian networks (BN, Pearl, 88), 
probabilistic relational model (PRM, Friedman et al., 96), Markov logic 
networks (MLN, Richardson & Domingos, 06), etc.

Fundamental problems 

Symbol grounding / inference grounding 
No simple theory explains how pieces of abstract knowledge (e.g., 
symbols and networks) and even inferences emerge from concrete data.


Separation of learning and reasoning 
Learning is the process of extracting knowledge from data, while 
reasoning is the process of drawing new conclusions from that knowledge. 
Learning methods cannot be used as reasoning methods, and vice versa.


Reasoning under anomalies 
Agents cannot reason from inconsistent or impossible information, due to 
the principle of explosion in formal logic and division by zero in probability 
theory.


Huge hypothesis spaces 
The size of a probability distribution over models is infinite in predicate 
logic and exponential in propositional logic. The existing solutions demand 
independence and conditional independence assumptions.

MOTIVATING EXAMPLE 
Humans can think abstractly and logically from experiences.

Example 1 
What number fits in the blank?


18 because of the following knowledge that can be expressed in 
predicate logic.




Example 2 

Alice and Bob did not blame each other.

One day Alice blamed Bob, and she blamed herself afterwards.

Alice and Bob blamed each other on another day.


Carol remembers these senes. One day, she wanted to blame 
Bob, but she didn’t. Why?

She knows that someone will blame her because of the 
knowledge, expressed in predicate logic.




Fundamental question 
For agents to reason abstractly and logically from experiences, 
what mathematical principle can ground predicate logic in data?

top ∃ left + right = bottom

→x(−y(Blames(x, y)) ∈ −z(Blames(z, x)))
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ABSTRACT     An important open question in AI is what simple and natural principle enables a machine to ground logical reasoning in data for 
meaningful abstraction. This paper explores a conceptually new approach to combining probabilistic reasoning and predicative symbolic 
reasoning over data. We return to the era of reasoning with a full joint distribution before the advent of Bayesian networks. We then discuss that 
a full joint distribution over models of exponential size in propositional logic and of infinite size in predicate logic should be simply derived from a 
full joint distribution over data of linear size. We show that the same process is not only enough to generalise the logical consequence relation of 
predicate logic but also to provide a new perspective to rethink well-known limitations such as the undecidability of predicate logic, the symbol 
grounding problem and the principle of explosion. The reproducibility of this theoretical work is fully demonstrated by the included proofs.

Definition (Data distribution) 




i.e., data is distributed 
uniformly, e.g., 

p(dk)
Def.1= 1

# Data

p(d8) = 1/20

Definition (Model distribution) 




i.e., each data point supports a 
single model, e.g., 

p(mn |dk)
Def.2= {1 if mn = m(dk)

0 otherwise

p(m4 |d8) = 1

Definition (Knowledge distribution) Let . 




i.e., the truth value obeys the semantics of predicate logic, e.g., 

β ⇒ [0.5,1]
p(x1 |x2, ⇔, xI, mn, dk)

Def.3= {β  if mn ⇒ [[x1]]
1 ⋯ β otherwise

Prop.1= p(x1 |mn)

p(Blames(bob, alice) |m2) = p(Blames(bob, alice) |m(d8)) = β

rain wet

Rain p(Wet=1|Rain)
0 0.1
1 0.95

BN:

alarm :- earthquake.
0.2 : earthquake.

PLP:

ILP:
Fish(x) ← Swims(x)
Swims(sharky)
Fish(sharky)

1.5 : smokes(x) Δ cancer(x)
2.0 : friends(x, y) Δ
(smokes(x) ≡ smokes(y))

MLN:

EVALUATIONS

Fig: Inference of abstraction for propositional logic (left: Kido, 25) and predicate logic (right).
Top: data . Middle: models  (i.e. pairs of domains and valuation functions). Bottom: formula .dk mn xi

m(d8) = m4

m1 ⇒ [[→x(−y(Blames(x, y)) ∈ Blames(alice, x))]] indicates that this formula is true in m1.
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OUR SOLUTION 
✅ Modelling how knowledge emerges from 
data (see →)

❎ Modelling logical/probabilistic knowledge 
and inference over such knowledge (see ↓)

Fig: lim
β∈1

p(μ |≠) Thm.2=
∀n [[μ]]mn

(∅≠i⇒MPS(≠) [[[≠i]]])mn
p(mn)

∀n (∅≠i⇒MPS(≠) [[[≠i]]])mn
p(mn)

≠≠ ≠≠2
≠3

≠1

≠2

≠1

≠(1) (2) (3) (4)

≠ |= μ (Cor.5)
≠ |⊆ μ (Cor.4)

→≠i ⇒ MCS(≠) . ≠i |= μ (Cor.3)
→≠i ⇒ MPS(≠) . ≠i |⊆ μ (Cor.2)

limβ∈1 p(μ |≠) ⇒ [0,1]

limβ∈1 p(μ |≠) = 1

[[[≠]]] ∧ ∪
∅≠i⇒MPS(≠) [[[≠i]]] = ∅≠i⇒MCS(≠) [[≠i]]

[[[≠]]] = [[≠]] ∧ ∪


