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ABSTRACT

The Rosenblatt distribution plays a key role in the limit theorems for non-linear functionals of stationary Gaussian processes
with long-range dependence. We derive new expressions for the characteristic function of the Rosenblatt distribution. Also we

present a novel accurate approximation of all eigenvalues of the Riesz integral operator associated with the correlation function

of the Gaussian process and propose an efficient algorithm for computation of the density of the Rosenblatt distribution. We

perform Monte-Carlo simulation for small sample sizes to demonstrate the appearance of the Rosenblatt distribution for several

functionals of stationary Gaussian processes with long-range dependence.

1 | Introduction

The phenomenon of long-range dependence (also called
long memory) is one of exciting area of research in the
probability theory for last few decades due to non-standard
normalizations and non-Gaussian limiting distributions
of nonlinear functionals (Pipiras and Taqqu 2017). The
Rosenblatt distribution serves a significant role in the study of
this phenomenon which occurs in economics, finance, hydrol-
ogy, turbulence, cosmology and physics (Doukhan et al. 2002;
Beran 2017).

The Rosenblatt distribution was introduced in (Rosenblatt 1961)
and later it was investigated by many researchers, see
(Taqqu 1975, 1979; Dobrushin and Major 1979) among many
others. The Rosenblatt distribution appears as the limiting dis-
tribution of some popular functionals, see (Doukhan et al. 2002;
Berman 1979; Rosenblatt 1979) and references therein.

The known analytical form of the characteristic function of
the Rosenblatt distribution contains a series which converges

in a neighbourhood of zero, see (Rosenblatt 1961; Albin 1998;
Veillette and Taqqu 2013). It turns out that the Rosenblatt dis-
tribution is infinitely divisible (Veillette and Taqqu 2013) and
self-decomposable, moreover, it belongs to the Thorin class
(Maejima and Tudor 2013; Leonenko et al. 2017a, 2017b).

The density of the Rosenblatt distribution exists and bounded,
however, the closed analytical form of the density is unknown,
see (Veillette and Taqqu 2013; Maejima and Tudor 2013;
Leonenko et al. 2017a, 2017b). The Edgeworth expansion
was used to approximate the density of the Rosenblatt distri-
bution (Veillette and Taqqu 2012). The numerical evaluation
of the density of the Rosenblatt distribution was proposed in
(Veillette and Taqqu 2013) and serves as a competing method
to our own. The difference lies in the fact that we use the accu-
rate analytical approximation of eigenvalues instead of their
numerical calculation for a large matrix and compute the
density directly from the Fourier transform of a simple char-
acteristic function instead of the numerical evaluation of the
convolution of two densities, where one density is computed
via the Edgeworth expansion and another density is computed
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via the Fourier transform of some simple characteristic func-
tion. Overall, our numerical computation of the density of
the Rosenblatt distribution is uninvolved and faster than the
method from (Veillette and Taqqu 2013), while the results of
two methods coincide.

The present paper is organized as follows. In Section 2 we review
the known facts on the Rosenblatt distribution. In Section 3 we
provide the novel analytic forms of the characteristic function
of the Rosenblatt distribution on the entire line and a compel-
ling viewpoint on the structure of the Rosenblatt distribution.
In Section 4 we propose an accurate approximation of all eigen-
values of the Riesz integral operator, which allows us to perform
fast numerical computation of the density of the Rosenblatt
distribution.

In Section 5 we propose a time-efficient algorithm for simu-
lation of the stationary Gaussian sequences with long-range
dependence with the power correlation function and the
Mittag-Lefler correlation function. Furthermore, we demon-
strate small sample properties of four popular functionals for
analysis of sequences of correlated random variables includ-
ing their non-standard normalization and convergence to the
Rosenblatt distribution. Specifically, we consider estimation of
the mean in Section 5.3, the correlation function in Section 5.4,
the sojourn functionals in Section 5.5 and path roughness in
Section 5.6. All these problems are essentials of the statistical
analysis of stationary Gaussian sequences with long-range
dependence.

2 | Formal Statement

We consider the Rosenblatt distribution with shape parameter a,
Zero mean, unit variance and the characteristic function

k
$(2) = exp(% Z(ziz)kc“"%),a cl0.1/2.ze5,CR,
k=2
&)

where S, is a small neighbourhood of zero,
=yQAd-2a)1-a)/2

and

1 1
I I o e e e

In the rest of this section we describe the Rosenblatt distribu-
tion following (Veillette and Taqqu 2013). The random variable
V from the Rosenblatt distribution can be given as

Z (2 -1), )

where ¢, are i.i.d. random variables from the standard normal
distribution and 4, ;, 4, ... are eigenvalues of the Riesz inte-
gral operator K :L%(0,1) - LZ(O 1) defined as

1

(Iz'gf)(x) = aa/ |x—ul~*f(w)du.

0

The operator I~<a is known to be positive and compact, and there-
fore has positive eigenvalues 4, ,, see (Reade 1979). The repre-
sentation (2) means that V is a specific instance of second-order
Wiener chaos (Nourdin and Poly 2012). These eigenvalues sat-
isfy the relation

Moreover, we have

M

2 _
2,=1/2,

n=1

8

3
26a

3 _ — —
Yan= Taa—3a) %1

1l
—

where p(u,v) = /olx"‘l(l—x)"‘ldx is the beta function. The
Rosenblatt distribution is infinitely divisible with the Lévy
density

m(x):% Z < ),x>0,

= a,n

that shows self-decomposability of the Rosenblatt distribution
(Veillette and Taqqu 2013).

3 | Main Results

The Laplace transform of V defined in (2) is given by

brr(s)=E(e™) =exp<— Z(%ln(1+22a,ns) —Aayns)>,S> _ 2/11 ,

n=1

see (Albin 1998). We note that the formal expansion of the sum
in the above expression gives

(o]
Z n(1+24,,s)

l\)l»—l

0
5 2 Ao
n=1

where the latter summand equals infinity. Using the classical
Taylor expansion of the logarithm

v DT
InG) = Y ——E-1"x€0.2),
k=1 k

which does not converge for all positive x, we obtain

ZOE exp(% z %( ) ﬂ’;,n», T
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which is related to (1) as ¢(z) = ¢ r(—iz), z € R. We note that
the expressions of the characteristic function (1) and the Laplace
transform (3) cannot be used for numerical calculation because
they are defined at a neighbourhood of zero.

In next theorem, we derive new expressions using three other
expansions of the logarithm which converge on the full do-
main (0, o) and one integral representation. In other words,
we construct analytic continuations for the expressions (1)
and (3).

Theorem 1. The characteristic function ¢(z) of the Rosenblatt
distribution is given by ¢(z) = ¢, r(—iz), where the Laplace trans-
form ¢y p(s) withs > — # admits

a,l

i. the representation using the domain-scaled expansion

. - . A5 \2%k-1
a,n
¢LT(S) - 2<1+A s ; 2k—1<1+la,ns> >’

ii.  the representation using the Ramanujan expansion

- 1
n(pr(s)) = Z AansIn(1424,.,8) ) —
k=1 2k(1+ (1+424,,s) )

s

@
iii. the representation using the Ramanujan-Bradley
expansion
1 (o) o0 . 2
In(g0) =3 ¥ X2 (a+240) 1)

iv.  the representation using the integral form

N

272

< ant
1n(¢LT(S)) =/ Z mdu
n=1 a,n

0

The proof of Theorem 1 is deferred to the online supplement.
We note that the evaluation of the characteristic function of
the Rosenblatt distribution requires computation of the infinite
sums with a special care because numerical computation of
221 Ain is problematic for a € (0.35,0.5) due to very slow con-
vergence of the series ), n?*~% To overcome difficulties of
numerical computation, we propose to find smallest integer M,
such that

(o]
Z Alé,n <e

n=M,+1

for k = 3,4, ..., where € is a small positive number, for example,
€ = 0.0001. Then we can write the random variable V defined in
(2) in the form V = W + Z, where

Due to the choice of M,, the random variable Z has approxi-
mately the normal distribution with mean zero and variance

M, o
ol=1-2Y 2, =2 Y
n=1

n=M,+1

Indeed, the characteristic function of Z has the form

¢z(Z)=eXP< - E - a,niz) +’1a,niz>>
n=M_,+1

Izl<—ulM 1o (ZiZ)k o
M K
= eXp(E Z k Z Aam
k=2 n=M_.+1

Moreover, we have

max |¢z(Z)—eXP<—1Z c )I —>0ase—0.
|z] <

2/la_M

This argument provides a clear constructive view on the
Rosenblatt distribution. Specifically, the random variable from
the Rosenblatt distribution can be simulated as

M,
Z 6—1

where ¢, are i.i.d. random variables from the standard normal
distribution. The density of the Rosenblatt distribution can be
computed by the inverse Fourier transform of the characteristic
function

M,

¢(2) = exp( - 1z o2 — ZC (% In(1 - 24,,iz) + Aa,niz>>.

n=1

Applying the Stein method for the random variable V, and tak-
ing the limit as € — 0, we obtain the following characterizing
identity, which follows from (Arras and Houdré 2019, Ch. 3).

Theorem 2. Let X be a random variable with zero mean. The
Stein equation
>u

©)

holds for all bounded Lipschitz function f(-) if and only if X has
the Rosenblatt distribution with parameter a.

Zeol-3

NI'—'

Bmm=E/da+m—ﬂm
0

Let us use the Stein equation (6) with f(x) = x, we refer to (Arras
and Houdré 2019, Ch. 3) for a discussion on a class of suitable
functions. Then the right hand side of the Stein equation is
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FIGURE1 | Left: Eigenvalues 4, (black), 1, , (blue) and 4, 4 (red) which are computed numerically (circles) and via approximation (7) (solid line)

M
n=1 "a,n

fora € (0,0.5). Right: S, =

(o]

1 < X
[E/(X+x—X)E Zexp(—zl1
n=1 an

0

)dx=2 Y2, =1
n=1

and the left hand side of the Stein equation is the second mo-
ment, which equals one from the definition of the Rosenblatt
distribution. Thus, the Stein equation for f(x)=x and X =V
becomes EV? = 1. Taking f(x) = x?and X = V in the Stein equa-
tion (6) we obtain

[EV3=[E/(2Vx+x2)l Zexp(— X )dx=8 Z/lzn.
) 2 Zia’n ~-

n=1

For f(x) = x>and X = V in the Stein equation (6) we obtain

[EV“:[EJ

0 5y
2 31 x _ 4
i (3V2x—3Vx+x )E’gexp<—m>dx_48;/lm+3.

The values of the third and fourth moments demonstrate that
the Rosenblatt distribution is non-Gaussian.
4 | Computational Aspects

Although moments of the Rosenblatt distribution depend on the
multidimensional integrals c,,

0, k=1,
1, k=2,
[Evk=lkd—i¢(z) =|[8s3c,3, k=3
P dg z=0 4’ 42
480, cq 4+ 120, ,, k=4
k=5,6, ...,

simulation and computation of the density of the Rosenblatt
distribution is not possible without the eigenvalues 4, ,. It was
shown in (Dostani'c 1998) that these eigenvalues have the as-
ymptotic behaviour 4,, = C,n*(1+0(n™?))asn — oo for any
6 € (0,1) and admit the accurate approximation

Agn & Cn* ' n> 20,

an =

A% asa function of a for M = 100 (black), M = 500 (blue) and M = 2000 (red).

TABLE1 | Values of M, for various e and a.

a=01a=02a=03a=035a=04 a=044 a=048

M€|e=10’3 2 3 7 13 24 34 13
M€|e=10"‘ 3 9 48 133 409 909 630
where
20, .
C,= 'l — a)sin(za/2),

rl-a
see (Veillette and Taqqu 2013) for details. From extensive
numerical calculation of eigenvalues for various a € (0,0.5),

we obtain that the eigenvalues 4,, admit the accurate
approximation

(140.1409a)V/7°T'(1 —a)y /%—a, n=1,

Can“’1+§al'05 F<a+%>—1na’2'2, n=2,3, ...

A

~

a,n

™

In Figure 1 we demonstrate that eigenvalues 4,, for var-
ious a and n computed via approximation (7) are close to val-
ues computed numerically using the algorithm described in
(Veillette and Taqqu 2013). Figure 1 also shows the behaviour of
Som = Zl:[:l ﬁi, , Which show the contribution of W. We note that
o2 =1-2S_,, describes the contribution of the normal compo-
nent Z. We note that for a ~ 0.45 we have the situation, where
both components W and Z have approximately equal contribu-
tion for making the shape of the Rosenblatt distribution, that is,
Sym ~ o2 fora = 0.45.

Let us find M, from the condition Z:’:MEH /lin ~e. We can
see from Table 1 that the case of a = 0.44 requires the largest
value of M,. This means that the accurate computation of the
Rosenblatt distribution requires a big number of eigenvalues
for a = 0.44.

In Figure 2 we depict the characteristic function ¢, (z) for vari-
ous a. We can see that the shape of ¢ (z) tends to the characteris-
tic function of the normal distribution as a — 0.5.

In Figure 3 we depict the density, the logarithm of the den-
sity and the cumulative distribution function (cdf) of the
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FIGURE2 | The real part (left) and the imaginary part (right) of the characteristic function ¢, (z) with M, = 100 for a = 0.2 (black), a = 0.3 (blue),
a = 0.4 (red) and a = 0.44 (green).
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FIGURE 3 | The density (left), the logarithm of the density (right) and the cdf (middle) of the Rosenblatt distribution which is computed via the
inverse Fourier transform of the characteristic function ¢,(z) with M, = 100 for a = 0.2 (black), a = 0.3 (blue), a = 0.4 (red) and a = 0.44 (green).

Rosenblatt distribution for various a. We can see that the density if the length of Gaussian sequence is larger than 10,000 due to
of Rosenblatt distribution is close to the density of shifted chi- the problem with the decomposition of the covariance matrix of
square distribution for a € (0,0.2) and close to the density of the large size.
normal distribution for a € (0.4,0.5).
The second way of simulation is to approximate the Gaussian
sequence by the autoregressive process. This approach works

5 | Numerical Study With Applications of the well when the specified correlation function is close to zero
Rosenblatt Distribution for large lags and is not suitable for simulation of sequences
with LRD.

The Rosenblatt distribution with parameter a appears as a lim-
iting distribution of several functionals for stationary Gaussian ~ The third way of simulation is based on the approximation
sequences with the correlation function of the form

M
It X~ Y Vbx®j=1,..,n,
I (Lib) G~ 2 VX
|t|a k=1
where I(-) is a slowly varying function, that implies long- where Xl(k), ,X,(,k) is a Gaussian autoregressive sequence of
range dependence if a € (0, 1). Typical examples of such cor- order 1 with zero mean, unit variance and the correlation func-

relation function are r(t) = (1 +t2)_a 2, r(t) = (1+|t])™® and tion e~ and the specified correlation function r(t) allows the

r(t) = E,(—|t|*), where E,()=Y", #ak),v €C, is the  approximation in the form

Mittag-Leffler function. For running our numerical study, we u

firstly propose an efficient algorithm for simulation of long N —altl

se i i rn~ Z bye™ . ®

quences with LRD, see (Bardet et al. 2003) for review of et

simulation algorithms, which were found to be very time con-

suming in our settings. We note that the coefficients b, could be computed via the min-
imization of an error of the approximation (8) with some 4,, for
example, A, = e~V To avoid this high-dimensional optimiza-

5.1 | Simulation of Long Gaussian Sequences tion, we propose the following methodology for finding b, and A,
in the approximation (8).

The traditional way of simulation of a stationary Gaussian se-

quence X;, ..., X, with zero mean, unit variance and the speci- Suppose that the correlation function r(t) has the representation

fied correlation function is via simulation of the vector from the

o

multivariate normal distribution with the use of the Cholesky

decomposition or the eigenvalue decomposition of the covari- rt) = / e " p(x)dx,

ance matrix. However, this way is computationally infeasible 0
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where p(x) is a density. Then we can construct the approxima-
tion (8) with b, =1 /M and 4, be random values from the dis-
tribution with the density p(x). Alternatively, 4, can be chosen
as the (k — 0.5) /M-quantile of the distribution with the den-

sity p(x).
Let us take a decreasing positive sequence q,, q;, q,, -..such that
1=qy>q;>q,> ... >0 and lim,_, g, =0. Define 7, as the

q,-quantile of the distribution with density p(x), that is,

Tk

G = / px)dx, k=0,1,2, ....

0
We note that 7, 7,, ... is a decreasing sequence, 7, > 7, > ...

and lim,_, 7, =0. Then by splitting the integration domain
(0, o0) with breakpoints 7, 7,, ... we obtain that

r= ) / e™™p(x)dx
k=1

and, consequently, the correlation function r(t) has the approx-
imation (8) with

b, = g1 — q; and some A € (1_1, 7).

that follows from

Tk-1 Ty
/ e p(x)dx ~ e / peOdx = (qy_y = qi)e™.
Tk Tk

We recommend to take A; = z; and

llk = \/Tk_lTk,k =2,3, e

The approximation (8) is accurate if M is large and
max {b,, ... by }is small.

5.2 | Simulation of Long Gaussian Sequences
With LRD

Suppose that

_ 1
pX) = @

x N1 /%), a>0,x>0,x =0, )
where I(-) is a slowly varying function, which describes
the behaviour of the density p(x) at zero. It follows from the
Tauberian-Abelian theorem that the property (9) is equiva-
lent to

)
t) = s
=

t— o0, (10)

which describes the behaviour of the correlation function r(t)
at infinity, see e.g. (Feller and Morse 1958). We note that LRD
occurs ifa € (0, 1).

For simulation of sequences with r(t) in the form (10), it was pro-
posed in (Leonenko and Taufer 2005) to take

bk = C/k(Ha), llk = 1/k,

where c is a constant such that )/~ b, = 1. This choice of 4, is
not convenient in numerical studies due to slow convergence
to zero.

Let us develop an approximation for the correlation function
r(t) =1/(1+]| t|)* From (Barndorff-Nielsen and Leonenko 2005)
we have that

0o

1 _ / e pe0dx, a € (0, 1),
0

A+ )

where

— L a-1,-x
px) = F(a)x e,

We recommend to choose the sequence g, to be fast-decreasing.
Specifically, we propose to take
y=e e pro [—} +8,

0.98, k=1,
q =
o9, k=23, .., a
1y

The above choice of g, provides the reasonable accuracy of the
approximation (8) even with small M. The simulation algorithm
is deferred to the online supplement.

2

In Figure 4 we demonstrate the good accuracy of the approx-
imation (8) with parameters (11) of the correlation function
r(t) =1/(1+]| t| ) for various a € (0,0.5).

In Figure 5 we depict several realizations of a stationary
Gaussian sequence with zero mean, unit variance and the
correlation function r(t) =1/(1+|t|)* to illustrate the phe-
nomenon of long-range dependence. We can see that the de-
viation of a local trend of realizations from zero increases as
a decreases. We note that a sequence of length 2,000,000 is
needed for rather good accuracy of estimation of the param-
eter a ifa ~ 0.25.

1.00

o
o
o
Pl - 0.05
S | = 0.5
- 0.25
- = 0.35
5 | — 045
S T T T T T T T T

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06 1e+07 1e+08
FIGURE 4 | The approximation (8) with parameters (11) (solid line)
of the correlation function r(¢) = 1 /(1+| t|)* (dotted line) for various a
in log-log scale.

60of 11

Stat, 2025

B5UD17 SUOWWOD SARERID d|ceatjdde ayp Aq pausenob a.e 3o VO (38N JO S3INJ 10} ARIq1T UIIUO A3]IM UO (SUO1IPUOD-PUR-SLLBIALIOD"AB|IM AlIq 1 UTIUO//STIY) SUORIPUOD PUB SWIB L U1 39S *[G20Z/TT/70] UO ARIqITauUlUO AB]1IM 80UB|BIXT 918D PUB I ESH 10} 1iisu| UOIEN ‘IOIN AQ L0TOL 7RIS/200T OT/I0p/W0d A8 | 1w Afeidjou U0/ SANY WOy papeojumod ‘v ‘G202 ‘€LST6Y0C



27045

[ 500000 1006000 1500000 2000000

[

2=0.25

| A

[ 500000 1000000 1500000 2000000

FIGURE 5 | The realizations of a stationary Gaussian sequence with zero mean, unit variance and the correlation function r(t) = 1/ (1+| t| )* for

a =0.15,0.25,0.35and 0.45.

As a second example, we develop an approximation for the
Mittag-Leffler correlation function r(t)=E,(—|t|*). From
(Barndorff-Nielsen and Leonenko 2005) we have that

[«S)

E,(—1t1%) =/e‘”‘pml(x)dx,ae(0, 1),
0

where

sin(ar) xa-1
, X >
1+ 2cos(ar)x® + x2a

pml(x) =

is the density of the Lamperti distribution, which has the quan-
tile function

sin(uarn)
sin((1—u)ar)

1/a
le(u) = < ) Iz € (05 ]-)a

see (James 2010). We recommend to choose the sequence g, in
the form

[

a=0. 1i

o
O' —
o .
o
o
| a
0 -~ 0.05
S | = 0.15
0.25
- = 0.35
5 | — o045
S T T

098, k=1,
0.9, k=2,

9= y=e T M= [E]+8,
0.7, k=3, a

0.57%*, k=4,5, ...,
(12)

The above choice of g, for the Mittag-Lefler correlation function
provides the reasonable accuracy of the approximation (8) even
with small M. In Figure 6 we demonstrate the good accuracy
of the approximation (8) with parameters (12) of the correlation
function r(t) = E, (—|t|*) for various a € (0,0.5).

5.3 | Estimation of the Mean for a Sequence
of Special Structure

Consider a stationary sequence Y3, Y5, ..., which is given by

Y, =0+ oH,(Ey),

where H,(x) = x?> — 1and E , E,, ...is a stationary Gaussian se-
quence with zero mean, unit variance and correlation function
r(k). The sequence {Ek} can be viewed as discretization of a sta-
tionary Gaussian process and the sequence {H,(E;)} is a sta-
tionary sequence with zero mean and variance 2. Consider the
estimator of # in the form

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06 1e+07 1e+08

FIGURE 6 | The approximation (8) with parameters (12) (solid line)
of the Mittag-Leffler correlation function r(t) = E,(—|t|*) (dotted line)
for various a in log-log scale.

B, =

S|

n
Y,
k=1

The estimator @n has asymptotically the scaled Rosenblatt dis-
tribution if the sequence {Ek} has the correlation function
r(t) = l([lltl) with a € (0,0.5)ast — oo and has the normal distribu-
tion otﬁerwise, see (Ivanov and Leonenko 2002; Leonenko and
Taufer 2006).

Let us make a numerical study to obtain the distribution of the
estimator for small sample sizes. Specifically, we consider the
random variable

Z,=

n
,:fa Y H,(Ey),a €(0,0.5),
k=1

which has asymptotically the Rosenblatt distribution with pa-
rameter a € (0,0.5).

In Figure 7 we can see that the empirical density of
Z, for a=0.25 and various n is very close to the den-
sity of the Rosenblatt distribution and this holds for all
a € (0,0.25). However, such proximity is not observed for
larger values of a. Nevertheless, the empirical density of Z, for
a = 0.45 becomes more close to the density of the Rosenblatt
distribution as n increases. We would like to note that the
empirical density of Z, for a = 0.45 and small n is close to the
Rosenblatt distribution with some small value of a.

5.4 | Estimation of the Correlation Function for a
Stationary Gaussian Sequence With LRD

Let E,,E,, ... be a stationary Gaussian sequence with
zero mean, unit variance and correlation function
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2

] a=025 |1 a=08

n =100000 | T

a=0.35 1
n = 100000

a=045
n = 100000

3 2 1 0 1 2 3 3 2 1 0 1 2 3 3 2 -1 0 1 2 3

FIGURE 7 | The empirical density of Z, (black) and the density of the Rosenblatt distribution (red) for various n and a = 0.25, 0.35 and 0.45; d is
the empirical standard deviation of Z,,.

T T T T T T T T T T T T

3 2 41 0 1 2 3 3 2 1 0 1 2 3 3 2 1 0 1 2 3

T T T T

FIGURE 8 | The empirical density of Ry, (black) and R, , (blue) and the density of the Rosenblatt distribution (red) for various n and a = 0.25,
0.35and 0.45; d is the empirical standard deviation of Ry ..

r(k) = Cov(E,, Ey,; ) = E(E,E,,; ). Suppose that the correlation s "=k
function r(k) has the shape Ren= nl—fa (EjEj+k - r(k)), a €(0,0.5,k=0,1, ....
j=1
I(k)
rk) = -

is given by the Rosenblatt distribution.
As well known, the classical estimator of r(k) is given by
aek Let us make a numerical study to obtain the distribution of R ,
Plk) = 1 Z EE for small sample sizes. We note that R, , = Z, and, therefore, the
ni3 empirical distribution of R, , is shown in Figure 7.

which has asymptotically the scaled Rosenblatt distribu- In Figure 8 we can see that the empirical distribution of R,
tion if a € (0,0.5) and the normal distribution otherwise, see for small n almost does not depends on k, that confirms the
(Rosenblatt 1961, 1979). The fact that the asymptotic distribu- theoretical statement. In particular, the empirical distribution

tion of 7(k) does not depend on k for a € (0,0.5) is very remark- of Ry, is similar to the empirical distribution of Z, for various
able. Specifically, the limiting distribution of aandn.
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5.5 | Estimation of Sojourn Functionals

Let E(t) be a stationary Gaussian process with zero mean, unit
variance and correlation function r(t) = % Consider the so-
journ functional

t

M[(u)=/1(|E(S)|>u)(s)ds,

0

where u > 0 and

1, |E®I| >u,
gy () =
0, |E@®)| <u,

is the indicator function. We interpret M,(u) as the time spent
by the process | E(s) | above the level u for s € [0, t]. Following
(Berman 1979), the expansion of M,(u) is the form

t ) o sz—l t
M,(u)=2(1—d>(u))+u¢(u)J (E (s)—l)ds+2¢(u)z o [sz(E(s))ds,
0 j=2 - Jo

where Hi(+)is the j-th Hermit polynomial, and

t r(s)
Var(M,(u)) =4/(t—s)/
0

0

(P, u; q) — Pp(u, u; — q))dqds,

where

x? — 2quv +1v?
ou,v;q) = —q—>

2(1-¢?)

L exp
274/1 — ¢?

is the standard bivariate normal density with correlation g. From
(Berman 1979) we also have that the functional

M, (u) — 2t(1 — D(w))
2up)y/ fy (¢ — )ris)ds

has asymptotically the Rosenblatt distribution.

Let us make a numerical study to obtain the distribution of

(o3

. 1 . .
Syn = prei W(}; 1515} ) — 2n(1 = ¢(u))>

for small sample sizes, where E,, ...,E, is a stationary
Gaussian sequence with zero mean and correlation func-
tionr(t) =1/(1+|¢t] )"

In Figure 9 we can see that the empirical distribution of S, ,
for small n depends slightly on u. In particular, the empirical
distribution of S, , tends to the Rosenblatt distribution as n
increases.

5.6 | Roughness of the fBm Path

Let X(t) be a stochastic process, t € [0, 1]. Define the quadratic
variation of X(t) by

n= B (()(5)

which can be interpreted as the path roughness and often used
in finance and geophysics.

3 2 1 0 1 2 3 -3 2 -

2 33 2 4 6 1 % 3

FIGUREY9 | Theempirical density of S, , (black) and S, 5 , (blue) and the density of the Rosenblatt distribution (red) for variousn and a = 0.25,0.35

and 0.45; d is the empirical standard deviation of S, ;.
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i 2 3 3 =2 1 0 1 2 3

FIGURE 10 | The empirical density of G, (black) and the density of the Rosenblatt distribution (red) for various n and a = 0.25, 0.35 and 0.45; d is

the empirical standard deviation of G,

Suppose that X(t) is the fractional Brownian motion (fBm)
with Hurst parameter H €(0,1) and covariance function
r(t,s) = (s + 21 — |t—s|*"") / 2. Then the distribution of

Var(V,) .

is asymptotically normal when H € (0, 3/4] and converges to
the Rosenblatt distribution with parameter a =2 — 2H when
H € (3/4,1) as n increases, see (Dobrushin and Major 1979;
Nourdin 2012; Nourdin and Poly 2012). The quadratic
variation V,, is useful in practice because the classical estima-
tor of H is based on the fact that n?#~1V, - 1 in probability
asn — oo.

Let us make a numerical study to obtain the distribution of

o < j J-1\\’
G =— . —— Z x(L)=—x(L—= _pa2
" pl-e 1.04-1.5a = n n

for small sample sizes, where X(¢) is the fractional Brownian
motion with H =1 —a /2, which can be simulated using the
FFT-based algorithm from (Wood and Chan 1994) implemented
in the R package SuperGauss.

In Figure 10 we can see that the empirical distribution
of G, for small n is rather close to the Rosenblatt distribu-
tion for a <0.35. We also see that the empirical distribu-
tion of G, tends to the Rosenblatt distribution as n increases
fora =0.45.

6 | Conclusion

We studied the Rosenblatt distribution which appears as a lim-
iting distribution of several popular functionals of stationary
Gaussian sequences with LRD and, therefore, it is required to
construct the confidence intervals. The Rosenblatt distribution

is difficult because it depends on eigenvalues of the Riesz inte-
gral operator. We derived new expressions for the characteristic
function of the Rosenblatt distribution, which can be evaluated
for any argument. We obtained the accurate approximation of
all eigenvalues that enables easy evaluation of the Rosenblatt
distribution. Also, we proposed an efficient algorithm for the
simulation of stationary Gaussian sequences with the power
correlation function r(t) =1/(1+|¢t|)® and the Mittag-Leffler
correlation function r(t) = Ea(—ltla). Finally, we presented
Monte-Carlo simulation on how the Rosenblatt distribution
appears as a limiting distribution in estimation of several sta-
tistics: the mean, the correlation function, sojourn functionals
and path roughness. We note that the Rosenblatt distribution
also appears as a limiting distribution of some statistics for os-
cillating Gaussian processes and in ordinal pattern analysis
of stationary Gaussian sequences with LRD. In addition, the
Rosenblatt distribution is the distribution of the Rosenblatt
process at unit time, see (Pipiras and Taqqu 2017; Tudor 2023;
Ayache et al. 2025).
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