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ABSTRACT
The Rosenblatt distribution plays a key role in the limit theorems for non-linear functionals of stationary Gaussian processes 
with long-range dependence. We derive new expressions for the characteristic function of the Rosenblatt distribution. Also we 
present a novel accurate approximation of all eigenvalues of the Riesz integral operator associated with the correlation function 
of the Gaussian process and propose an efficient algorithm for computation of the density of the Rosenblatt distribution. We 
perform Monte-Carlo simulation for small sample sizes to demonstrate the appearance of the Rosenblatt distribution for several 
functionals of stationary Gaussian processes with long-range dependence.

1   |   Introduction

The phenomenon of long-range dependence (also called 
long memory) is one of exciting area of research in the 
probability theory for last few decades due to non-standard 
normalizations and non-Gaussian limiting distributions 
of nonlinear functionals (Pipiras and Taqqu  2017). The 
Rosenblatt distribution serves a significant role in the study of 
this phenomenon which occurs in economics, finance, hydrol-
ogy, turbulence, cosmology and physics (Doukhan et al. 2002; 
Beran 2017).

The Rosenblatt distribution was introduced in (Rosenblatt 1961) 
and later it was investigated by many researchers, see 
(Taqqu  1975, 1979; Dobrushin and Major  1979) among many 
others. The Rosenblatt distribution appears as the limiting dis-
tribution of some popular functionals, see (Doukhan et al. 2002; 
Berman 1979; Rosenblatt 1979) and references therein.

The known analytical form of the characteristic function of 
the Rosenblatt distribution contains a series which converges 

in a neighbourhood of zero, see (Rosenblatt 1961; Albin 1998; 
Veillette and Taqqu 2013). It turns out that the Rosenblatt dis-
tribution is infinitely divisible (Veillette and Taqqu  2013) and 
self-decomposable, moreover, it belongs to the Thorin class 
(Maejima and Tudor 2013; Leonenko et al. 2017a, 2017b).

The density of the Rosenblatt distribution exists and bounded, 
however, the closed analytical form of the density is unknown, 
see (Veillette and Taqqu  2013; Maejima and Tudor  2013; 
Leonenko et  al.  2017a, 2017b). The Edgeworth expansion 
was used to approximate the density of the Rosenblatt distri-
bution (Veillette and Taqqu 2012). The numerical evaluation 
of the density of the Rosenblatt distribution was proposed in 
(Veillette and Taqqu 2013) and serves as a competing method 
to our own. The difference lies in the fact that we use the accu-
rate analytical approximation of eigenvalues instead of their 
numerical calculation for a large matrix and compute the 
density directly from the Fourier transform of a simple char-
acteristic function instead of the numerical evaluation of the 
convolution of two densities, where one density is computed 
via the Edgeworth expansion and another density is computed 
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via the Fourier transform of some simple characteristic func-
tion. Overall, our numerical computation of the density of 
the Rosenblatt distribution is uninvolved and faster than the 
method from (Veillette and Taqqu 2013), while the results of 
two methods coincide.

The present paper is organized as follows. In Section 2 we review 
the known facts on the Rosenblatt distribution. In Section 3 we 
provide the novel analytic forms of the characteristic function 
of the Rosenblatt distribution on the entire line and a compel-
ling viewpoint on the structure of the Rosenblatt distribution. 
In Section 4 we propose an accurate approximation of all eigen-
values of the Riesz integral operator, which allows us to perform 
fast numerical computation of the density of the Rosenblatt 
distribution.

In Section  5 we propose a time-efficient algorithm for simu-
lation of the stationary Gaussian sequences with long-range 
dependence with the power correlation function and the 
Mittag-Lefler correlation function. Furthermore, we demon-
strate small sample properties of four popular functionals for 
analysis of sequences of correlated random variables includ-
ing their non-standard normalization and convergence to the 
Rosenblatt distribution. Specifically, we consider estimation of 
the mean in Section 5.3, the correlation function in Section 5.4, 
the sojourn functionals in Section 5.5 and path roughness in 
Section 5.6. All these problems are essentials of the statistical 
analysis of stationary Gaussian sequences with long-range 
dependence.

2   |   Formal Statement

We consider the Rosenblatt distribution with shape parameter a, 
zero mean, unit variance and the characteristic function

where S0 is a small neighbourhood of zero,

and

In the rest of this section we describe the Rosenblatt distribu-
tion following (Veillette and Taqqu 2013). The random variable 
V  from the Rosenblatt distribution can be given as

where �n are i.i.d. random variables from the standard normal 
distribution and �a,1, �a,2, … are eigenvalues of the Riesz inte-
gral operator K̃a:L

2(0, 1)→ L2(0, 1) defined as

The operator K̃a is known to be positive and compact, and there-
fore has positive eigenvalues �a,n, see (Reade 1979). The repre-
sentation (2) means that V  is a specific instance of second-order 
Wiener chaos (Nourdin and Poly 2012). These eigenvalues sat-
isfy the relation

Moreover, we have

where �(u, v) = ∫ 1

0
xu−1(1−x)v−1dx is the beta function. The 

Rosenblatt distribution is infinitely divisible with the Lévy 
density

that shows self-decomposability of the Rosenblatt distribution 
(Veillette and Taqqu 2013).

3   |   Main Results

The Laplace transform of V  defined in (2) is given by

see (Albin 1998). We note that the formal expansion of the sum 
in the above expression gives

where the latter summand equals infinity. Using the classical 
Taylor expansion of the logarithm

which does not converge for all positive x, we obtain
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which is related to (1) as �(z) = �LT(−iz), z ∈ ℝ. We note that 
the expressions of the characteristic function (1) and the Laplace 
transform (3) cannot be used for numerical calculation because 
they are defined at a neighbourhood of zero.

In next theorem, we derive new expressions using three other 
expansions of the logarithm which converge on the full do-
main (0, ∞) and one integral representation. In other words, 
we construct analytic continuations for the expressions (1) 
and (3).

Theorem 1.  The characteristic function �(z) of the Rosenblatt 
distribution is given by �(z) = �LT(−iz), where the Laplace trans-
form �LT(s) with s > −

1

2𝜆a,1
 admits

	i.	 the representation using the domain-scaled expansion

	 ii.	 the representation using the Ramanujan expansion

	 iii.	 the representation using the Ramanujan-Bradley 
expansion

	 iv.	 the representation using the integral form

The proof of Theorem  1 is deferred to the online supplement. 
We note that the evaluation of the characteristic function of 
the Rosenblatt distribution requires computation of the infinite 
sums with a special care because numerical computation of ∑∞

i=1 �
2
a,n is problematic for a ∈ (0.35,0.5) due to very slow con-

vergence of the series 
∑∞

i=1 n
2a−2. To overcome difficulties of 

numerical computation, we propose to find smallest integer Mϵ 
such that

for k = 3, 4, …, where ϵ is a small positive number, for example, 
ϵ = 0.0001. Then we can write the random variable V  defined in 
(2) in the form V =W + Z, where

Due to the choice of Mϵ, the random variable Z has approxi-
mately the normal distribution with mean zero and variance

Indeed, the characteristic function of Z has the form

Moreover, we have

This argument provides a clear constructive view on the 
Rosenblatt distribution. Specifically, the random variable from 
the Rosenblatt distribution can be simulated as

where �n are i.i.d. random variables from the standard normal 
distribution. The density of the Rosenblatt distribution can be 
computed by the inverse Fourier transform of the characteristic 
function

Applying the Stein method for the random variable Vϵ and tak-
ing the limit as ϵ→ 0, we obtain the following characterizing 
identity, which follows from (Arras and Houdré 2019, Ch. 3).

Theorem 2.  Let X  be a random variable with zero mean. The 
Stein equation

holds for all bounded Lipschitz function f ( ⋅ ) if and only if X  has 
the Rosenblatt distribution with parameter a.

Let us use the Stein equation (6) with f (x) = x, we refer to (Arras 
and Houdré 2019, Ch. 3) for a discussion on a class of suitable 
functions. Then the right hand side of the Stein equation is
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and the left hand side of the Stein equation is the second mo-
ment, which equals one from the definition of the Rosenblatt 
distribution. Thus, the Stein equation for f (x) = x and X = V  
becomes �V 2 = 1. Taking f (x) = x2 and X = V  in the Stein equa-
tion (6) we obtain

For f (x) = x3 and X = V  in the Stein equation (6) we obtain

The values of the third and fourth moments demonstrate that 
the Rosenblatt distribution is non-Gaussian.

4   |   Computational Aspects

Although moments of the Rosenblatt distribution depend on the 
multidimensional integrals ca,k,

simulation and computation of the density of the Rosenblatt 
distribution is not possible without the eigenvalues �a,n. It was 
shown in (Dostani'c  1998) that these eigenvalues have the as-
ymptotic behaviour �a,n = Can

a−1
(
1 + o

(
n−�

))
 as n→ ∞ for any 

� ∈ (0, 1) and admit the accurate approximation

where

see (Veillette and Taqqu  2013) for details. From extensive 
numerical calculation of eigenvalues for various a ∈ (0,0.5),  
we obtain that the eigenvalues �a,n admit the accurate 
approximation

In Figure  1 we demonstrate that eigenvalues �a,n for var-
ious a and n computed via approximation (7) are close to val-
ues computed numerically using the algorithm described in 
(Veillette and Taqqu 2013). Figure 1 also shows the behaviour of 
Sa,M =

∑M
n=1 �

2
a,n which show the contribution of W . We note that 

�2
ϵ
= 1 − 2Sa,M describes the contribution of the normal compo-

nent Z. We note that for a ≈ 0.45 we have the situation, where 
both components W  and Z have approximately equal contribu-
tion for making the shape of the Rosenblatt distribution, that is, 
Sa,M ≈ �2

ϵ
 for a ≈ 0.45.

Let us find Mϵ from the condition 
∑∞

n=Mϵ+1
�3a,n ≅ ϵ. We can 

see from Table 1 that the case of a ≅ 0.44 requires the largest 
value of Mϵ. This means that the accurate computation of the 
Rosenblatt distribution requires a big number of eigenvalues 
for a ≈ 0.44.

In Figure 2 we depict the characteristic function �ϵ(z) for vari-
ous a. We can see that the shape of �ϵ(z) tends to the characteris-
tic function of the normal distribution as a→ 0.5.

In Figure  3 we depict the density, the logarithm of the den-
sity and the cumulative distribution function (cdf) of the 
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FIGURE 1    |    Left: Eigenvalues �a,1 (black), �a,2 (blue) and �a,8 (red) which are computed numerically (circles) and via approximation (7) (solid line) 
for a ∈ (0,0.5). Right: Sa,M =

∑M

n=1
�2
a,n

 as a function of a for M = 100 (black), M = 500 (blue) and M = 2000 (red).
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TABLE 1    |    Values of Mϵ for various ϵ and a.

a = 0.1 a = 0.2 a = 0.3 a = 0.35 a = 0.4 a = 0.44 a = 0.48

Mϵ
||ϵ=10−3 2 3 7 13 24 34 13

Mϵ
||ϵ=10−4 3 9 48 133 409 909 630
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Rosenblatt distribution for various a. We can see that the density 
of Rosenblatt distribution is close to the density of shifted chi-
square distribution for a ∈ (0,0.2) and close to the density of the 
normal distribution for a ∈ (0.4,0.5).

5   |   Numerical Study With Applications of the 
Rosenblatt Distribution

The Rosenblatt distribution with parameter a appears as a lim-
iting distribution of several functionals for stationary Gaussian 
sequences with the correlation function of the form

where l( ⋅ ) is a slowly varying function, that implies long-
range dependence if a ∈ (0, 1). Typical examples of such cor-
relation function are r(t) =

(
1+ t2

)−a∕2, r(t) = (1+| t| )−a and 
r(t) = Ea

(
−|t|a) , where Ea(v) =

∑∞

k=0
vk

Γ(1+ak)
, v ∈ ℂ, is the 

Mittag-Leffler function. For running our numerical study, we 
firstly propose an efficient algorithm for simulation of long 
sequences with LRD, see (Bardet et  al.  2003) for review of 
simulation algorithms, which were found to be very time con-
suming in our settings.

5.1   |   Simulation of Long Gaussian Sequences

The traditional way of simulation of a stationary Gaussian se-
quence X1, … ,Xn with zero mean, unit variance and the speci-
fied correlation function is via simulation of the vector from the 
multivariate normal distribution with the use of the Cholesky 
decomposition or the eigenvalue decomposition of the covari-
ance matrix. However, this way is computationally infeasible 

if the length of Gaussian sequence is larger than 10,000 due to 
the problem with the decomposition of the covariance matrix of 
large size.

The second way of simulation is to approximate the Gaussian 
sequence by the autoregressive process. This approach works 
well when the specified correlation function is close to zero 
for large lags and is not suitable for simulation of sequences 
with LRD.

The third way of simulation is based on the approximation

where X (k)
1
, … ,X (k)

n  is a Gaussian autoregressive sequence of 
order 1 with zero mean, unit variance and the correlation func-
tion e−�k ∣t∣ and the specified correlation function r(t) allows the 
approximation in the form

We note that the coefficients bk could be computed via the min-
imization of an error of the approximation (8) with some �k, for 
example, �k = e−(k−1). To avoid this high-dimensional optimiza-
tion, we propose the following methodology for finding bk and �k 
in the approximation (8).

Suppose that the correlation function r(t) has the representation

r(t) =
l(| t| )
|t|a ,

Xj ≈

M�
k= 1

√
bkX

(k)
j
, j = 1, … ,n,

(8)r(t) ≈

M∑
k= 1

bke
−�k ∣t∣.

r(t) =

∞

∫
0

e−txp(x)dx,

FIGURE 2    |    The real part (left) and the imaginary part (right) of the characteristic function �ϵ(z) with Mϵ = 100 for a = 0.2 (black), a = 0.3 (blue), 
a = 0.4 (red) and a = 0.44 (green).
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FIGURE 3    |    The density (left), the logarithm of the density (right) and the cdf (middle) of the Rosenblatt distribution which is computed via the 
inverse Fourier transform of the characteristic function �ϵ(z) with Mϵ = 100 for a = 0.2 (black), a = 0.3 (blue), a = 0.4 (red) and a = 0.44 (green).
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where p(x) is a density. Then we can construct the approxima-
tion (8) with bk = 1∕M and �k be random values from the dis-
tribution with the density p(x). Alternatively, �k can be chosen 
as the (k − 0.5)∕M-quantile of the distribution with the den-
sity p(x).

Let us take a decreasing positive sequence q0, q1, q2, … such that 
1 = q0 > q1 > q2 > … > 0 and limk→∞ qk = 0. Define �k as the 
qk-quantile of the distribution with density p(x), that is,

We note that �1, �2, … is a decreasing sequence, 𝜏1 > 𝜏2 > … 
and limk→∞ �k = 0. Then by splitting the integration domain 
(0, ∞) with breakpoints �1, �2, … we obtain that

and, consequently, the correlation function r(t) has the approx-
imation (8) with

that follows from

We recommend to take �1 = �1 and

The approximation (8) is accurate if M is large and 
max

{
b1, … , bM

}
 is small.

5.2   |   Simulation of Long Gaussian Sequences 
With LRD

Suppose that

where l( ⋅ ) is a slowly varying function, which describes 
the behaviour of the density p(x) at zero. It follows from the 
Tauberian-Abelian theorem that the property  (9) is equiva-
lent to

which describes the behaviour of the correlation function r(t) 
at infinity, see e.g. (Feller and Morse 1958). We note that LRD 
occurs if � ∈ (0, 1).

For simulation of sequences with r(t) in the form (10), it was pro-
posed in (Leonenko and Taufer 2005) to take

where c is a constant such that 
∑M

k=1 bk = 1. This choice of �k is 
not convenient in numerical studies due to slow convergence 
to zero.

Let us develop an approximation for the correlation function 
r(t) = 1∕(1+| t| )a. From (Barndorff-Nielsen and Leonenko 2005) 
we have that

where

We recommend to choose the sequence qk to be fast-decreasing. 
Specifically, we propose to take

The above choice of qk provides the reasonable accuracy of the 
approximation (8) even with small M. The simulation algorithm 
is deferred to the online supplement.

In Figure  4 we demonstrate the good accuracy of the approx-
imation (8) with parameters (11) of the correlation function 
r(t) = 1∕(1+| t| )a for various a ∈ (0,0.5).

In Figure  5 we depict several realizations of a stationary 
Gaussian sequence with zero mean, unit variance and the 
correlation function r(t) = 1∕(1+| t| )a to illustrate the phe-
nomenon of long-range dependence. We can see that the de-
viation of a local trend of realizations from zero increases as 
a decreases. We note that a sequence of length 2,000,000 is 
needed for rather good accuracy of estimation of the param-
eter a if a ≈ 0.25.

qk =

�k

∫
0

p(x)dx, k = 0,1,2, … .

r(t) =

∞∑
k= 1

�k−1

∫
�k

e−txp(x)dx

bk = qk−1 − qk and some �k ∈
(
�k−1, �k

)
,

�k−1

∫
�k

e−txp(x)dx ≈ e−t�k

�k−1

∫
�k

p(x)dx =
(
qk−1 − qk

)
e−t�k .

�k =
√
�k−1�k , k = 2, 3, … .

(9)p(x) =
1

Γ(𝛼)
x𝛼−1l(1∕x), 𝛼 > 0, x > 0, x → 0,

(10)r(t) =
l(| t| )
|t|� , t → ∞ ,

bk = c∕k(1+a), �k = 1∕k,

1

(1+| t| )a =

∞

∫
0

e−txp(x)dx, a ∈ (0, 1),

p(x) =
1

Γ(a)
xa−1e−x .

(11)

qk=

{
0.98, k=1,

0.9�k−2, k=2, 3, … ,
� = e−(2−a)a,M=

⌈
2

a

⌉
+8,

FIGURE 4    |    The approximation (8) with parameters (11) (solid line) 
of the correlation function r(t) = 1∕(1+| t| )a (dotted line) for various a 
in log–log scale.
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7 of 11Stat, 2025

As a second example, we develop an approximation for the 
Mittag-Leffler correlation function r(t) = Ea

(
−|t|a). From 

(Barndorff-Nielsen and Leonenko 2005) we have that

where

is the density of the Lamperti distribution, which has the quan-
tile function

see (James 2010). We recommend to choose the sequence qk in 
the form

The above choice of qk for the Mittag-Lefler correlation function 
provides the reasonable accuracy of the approximation (8) even 
with small M. In Figure 6 we demonstrate the good accuracy 
of the approximation (8) with parameters (12) of the correlation 
function r(t) = Ea

(
−|t|a) for various a ∈ (0,0.5).

5.3   |   Estimation of the Mean for a Sequence 
of Special Structure

Consider a stationary sequence Y1,Y2, …, which is given by

where H2(x) = x2 − 1 and E1,E2, … is a stationary Gaussian se-
quence with zero mean, unit variance and correlation function 
r(k). The sequence 

{
Ek

}
 can be viewed as discretization of a sta-

tionary Gaussian process and the sequence 
{
H2

(
Ek

)}
 is a sta-

tionary sequence with zero mean and variance 2. Consider the 
estimator of � in the form

The estimator �̂n has asymptotically the scaled Rosenblatt dis-
tribution if the sequence 

{
Ek

}
 has the correlation function 

r(t) = l(|t|)
|t|a  with a ∈ (0,0.5) as t → ∞ and has the normal distribu-

tion otherwise, see (Ivanov and Leonenko 2002; Leonenko and 
Taufer 2006).

Let us make a numerical study to obtain the distribution of the 
estimator for small sample sizes. Specifically, we consider the 
random variable

which has asymptotically the Rosenblatt distribution with pa-
rameter a ∈ (0,0.5).

In Figure  7 we can see that the empirical density of 
Zn for a = 0.25 and various n is very close to the den-
sity of the Rosenblatt distribution and this holds for all 
a ∈ (0,0.25). However, such proximity is not observed for 
larger values of a. Nevertheless, the empirical density of Zn for 
a = 0.45 becomes more close to the density of the Rosenblatt 
distribution as n increases. We would like to note that the 
empirical density of Zn for a = 0.45 and small n is close to the 
Rosenblatt distribution with some small value of a.

5.4   |   Estimation of the Correlation Function for a 
Stationary Gaussian Sequence With LRD

Let E1,E2, … be a stationary Gaussian sequence with 
zero mean, unit variance and correlation function 

Ea
(
− |t|a) =

∞

∫
0

e−txpml(x)dx, a ∈ (0, 1),

pml(x) =
sin(a𝜋)

𝜋

xa−1

1 + 2 cos(a𝜋)xa + x2a
, x > 0,

Qml(u) =

(
sin(ua�)

sin((1−u)a�)

)1∕a

,u ∈ (0, 1),

(12)

qk=

⎛⎜⎜⎜⎜⎜⎝

0.98, k=1,

0.9, k=2,

0.7, k=3,

0.5�k−4, k=4, 5, … ,

� = e−(2−a)a,M=
�
2

a

�
+8,

Yk = � + �H2

(
Ek

)
,

�̂n =
1

n

n∑
k= 1

Yk .

Zn =
�a

n1−a

n∑
k= 1

H2

(
Ek

)
, a ∈ (0,0.5),

FIGURE 5    |    The realizations of a stationary Gaussian sequence with zero mean, unit variance and the correlation function r(t) = 1∕(1+| t| )a for 
a = 0.15, 0.25, 0.35 and 0.45.

FIGURE 6    |    The approximation (8) with parameters (12) (solid line) 
of the Mittag-Leffler correlation function r(t) = Ea

(
−|t|a) (dotted line) 

for various a in log–log scale.

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06 1e+07 1e+08

0.
01

0.
05

0.
20

1.
00

a
0.05
0.15
0.25
0.35
0.45

 20491573, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sta4.70107 by N

IC
E

, N
ational Institute for H

ealth and C
are E

xcellence, W
iley O

nline L
ibrary on [04/11/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 of 11 Stat, 2025

r(k) = Cov
(
Es,Es+k

)
= �

(
EsEs+k

)
. Suppose that the correlation 

function r(k) has the shape

As well known, the classical estimator of r(k) is given by

which has asymptotically the scaled Rosenblatt distribu-
tion if a ∈ (0,0.5) and the normal distribution otherwise, see 
(Rosenblatt 1961, 1979). The fact that the asymptotic distribu-
tion of r̂(k) does not depend on k for a ∈ (0,0.5) is very remark-
able. Specifically, the limiting distribution of

is given by the Rosenblatt distribution.

Let us make a numerical study to obtain the distribution of Rk,n 
for small sample sizes. We note that R0,n = Zn and, therefore, the 
empirical distribution of R0,n is shown in Figure 7.

In Figure 8 we can see that the empirical distribution of Rk,n 
for small n almost does not depends on k, that confirms the 
theoretical statement. In particular, the empirical distribution 
of Rk,n is similar to the empirical distribution of Zn for various 
a and n.

r(k) =
l(k)

ka
.

r̂(k) =
1

n

n− k∑
j= 1

EjEj+k ,

Rk,n =
�a

n1−a

n− k∑
j= 1

(
EjEj+k − r(k)

)
, a ∈ (0,0.5), k = 0, 1, … .

FIGURE 7    |    The empirical density of Zn (black) and the density of the Rosenblatt distribution (red) for various n and a = 0.25, 0.35 and 0.45; d is 
the empirical standard deviation of Zn.

FIGURE 8    |    The empirical density of R10,n (black) and R20,n (blue) and the density of the Rosenblatt distribution (red) for various n and a = 0.25, 
0.35 and 0.45; d is the empirical standard deviation of R10,n.
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9 of 11Stat, 2025

5.5   |   Estimation of Sojourn Functionals

Let E(t) be a stationary Gaussian process with zero mean, unit 
variance and correlation function r(t) = l(|t|)

|t|a . Consider the so-
journ functional

where u > 0 and

is the indicator function. We interpret Mt(u) as the time spent 
by the process ∣ E(s) ∣ above the level u for s ∈ [0, t]. Following 
(Berman 1979), the expansion of Mt(u) is the form

where Hj( ⋅ ) is the j-th Hermit polynomial, and

where

is the standard bivariate normal density with correlation q. From 
(Berman 1979) we also have that the functional

has asymptotically the Rosenblatt distribution.

Let us make a numerical study to obtain the distribution of

for small sample sizes, where E1, … ,En is a stationary 
Gaussian sequence with zero mean and correlation func-
tion r(t) = 1∕(1+| t| )a.

In Figure 9 we can see that the empirical distribution of Su,n 
for small n depends slightly on u. In particular, the empirical 
distribution of Su,n tends to the Rosenblatt distribution as n 
increases.

5.6   |   Roughness of the fBm Path

Let X (t) be a stochastic process, t ∈ [0, 1]. Define the quadratic 
variation of X (t) by

which can be interpreted as the path roughness and often used 
in finance and geophysics.

Mt(u) =

t

∫
0

1{|E(s)|>u}(s)ds,

1{|E(s)|>u}(s) =

{
1, ∣E(s) ∣ >u,

0, ∣E(s) ∣ ≤u,

Mt (u)=2(1−Φ(u))+u�(u) ∫
t

0

(
E2(s)−1

)
ds+2�(u)

∞∑
j=2

H2j−1

2j! ∫
t

0

H2j(E(s))ds,

Var
(
Mt(u)

)
= 4

t

∫
0

(t − s)

r(s)

∫
0

(�(u,u; q) − �(u,u; − q))dqds,

�(u, v; q) =
1

2�
√
1 − q2

exp

�
−
x2 − 2quv + v2

2
�
1 − q2

�
�

Mt(u) − 2t(1 − Φ(u))

2u�(u)

√
∫ t

0 (t − s)r2(s)ds

Su,n =
𝜎a

n1−a
⋅

1

u𝜙(u)

(
n∑

j= 1

1{|Ej|>u}(j) − 2n(1 − Φ(u))

)

Vn =

n∑
j= 1

(
X

(
j

n

)
−X

(
j−1

n

))2

,

FIGURE 9    |    The empirical density of S2,n (black) and S1.5,n (blue) and the density of the Rosenblatt distribution (red) for various n and a = 0.25, 0.35 
and 0.45; d is the empirical standard deviation of S2,n.
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10 of 11 Stat, 2025

Suppose that X (t) is the fractional Brownian motion (fBm) 
with Hurst parameter H ∈ (0, 1) and covariance function 
r(t, s) =

(
s2H + t2H − |t− s|2H)∕2. Then the distribution of

is asymptotically normal when H ∈ (0, 3∕4
]
 and converges to 

the Rosenblatt distribution with parameter a = 2 − 2H when 
H ∈ (3∕4, 1) as n increases, see (Dobrushin and Major  1979; 
Nourdin  2012; Nourdin and Poly  2012). The quadratic 
variation Vn is useful in practice because the classical estima-
tor of H is based on the fact that n2H−1Vn → 1 in probability 
as n→ ∞.

Let us make a numerical study to obtain the distribution of

for small sample sizes, where X (t) is the fractional Brownian 
motion with H = 1 − a∕2, which can be simulated using the 
FFT-based algorithm from (Wood and Chan 1994) implemented 
in the R package SuperGauss.

In Figure  10 we can see that the empirical distribution 
of Gn for small n is rather close to the Rosenblatt distribu-
tion for a ≤ 0.35. We also see that the empirical distribu-
tion of Gn tends to the Rosenblatt distribution as n increases 
for a = 0.45.

6   |   Conclusion

We studied the Rosenblatt distribution which appears as a lim-
iting distribution of several popular functionals of stationary 
Gaussian sequences with LRD and, therefore, it is required to 
construct the confidence intervals. The Rosenblatt distribution 

is difficult because it depends on eigenvalues of the Riesz inte-
gral operator. We derived new expressions for the characteristic 
function of the Rosenblatt distribution, which can be evaluated 
for any argument. We obtained the accurate approximation of 
all eigenvalues that enables easy evaluation of the Rosenblatt 
distribution. Also, we proposed an efficient algorithm for the 
simulation of stationary Gaussian sequences with the power 
correlation function r(t) = 1∕(1+| t| )a and the Mittag-Leffler 
correlation function r(t) = Ea

(
−|t|a). Finally, we presented 

Monte-Carlo simulation on how the Rosenblatt distribution 
appears as a limiting distribution in estimation of several sta-
tistics: the mean, the correlation function, sojourn functionals 
and path roughness. We note that the Rosenblatt distribution 
also appears as a limiting distribution of some statistics for os-
cillating Gaussian processes and in ordinal pattern analysis 
of stationary Gaussian sequences with LRD. In addition, the 
Rosenblatt distribution is the distribution of the Rosenblatt 
process at unit time, see (Pipiras and Taqqu 2017; Tudor 2023; 
Ayache et al. 2025).
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Fn =
Vn − �

(
Vn

)
√
Var

(
Vn

) .

Gn =
�a

n1−a
⋅

n2−a

1.04 − 1.5a

n∑
j= 1

[(
X

(
j

n

)
−X

(
j−1

n

))2

− na−2

]

FIGURE 10    |    The empirical density of Gn (black) and the density of the Rosenblatt distribution (red) for various n and a = 0.25, 0.35 and 0.45; d is 
the empirical standard deviation of Gn.

 20491573, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sta4.70107 by N

IC
E

, N
ational Institute for H

ealth and C
are E

xcellence, W
iley O

nline L
ibrary on [04/11/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



11 of 11Stat, 2025

References

Albin, J. 1998. “A Note on Rosenblatt Distributions.” Statistics & 
Probability Letters 40, no. 1: 83–91.

Arras, B., and C. Houdré. 2019. On Stein's Method for Infinitely Divisible 
Laws With Finite First Moment. Springer.

Ayache, A., J. Hamonier, and L. Loosveldt. 2025. “Numerical 
Simulation of Generalized Hermite Processes.” arXiv Preprint 
arXiv:2503.24136.

Bardet, J.-M., G. Lang, G. Oppenheim, A. Philippe, and M. S. Taqqu. 
2003. “Generators of Long-Range Dependent Processes: A Survey.” In 
Theory and Applications of Long-Range Dependence, vol. 1, 579–623. 
Birkhäuser. https://www.amazon.co.uk/Theory-Applications-Long-
Range-Dependence-Doukhan/dp/0817641688.

Barndorff-Nielsen, O. E., and N. N. Leonenko. 2005. “Spectral Properties 
of Superpositions of Ornstein-Uhlenbeck Type Processes.” Methodology 
and Computing in Applied Probability 7, no. 3: 335–352.

Beran, J. 2017. Statistics for Long-Memory Processes. Routledge.

Berman, S. M. 1979. “High Level Sojourns for Strongly Dependent 
Gaussian Processes.” Zeitschrift Für Wahrscheinlichkeitstheorie Und 
Verwandte Gebiete 50, no. 2: 223–236.

Dobrushin, R. L., and P. Major. 1979. “Non-Central Limit Theorems 
for Non-Linear Functional of Gaussian Fields.” Zeitschrift Für 
Wahrscheinlichkeitstheorie Und Verwandte Gebiete 50: 27–52.

Dostani'c, M. R. 1998. “Spectral Properties of the Operator of Riesz 
Potential Type.” Proceedings of the American Mathematical Society 126, 
no. 8: 2291–2297.

Doukhan, P., G. Oppenheim, and M. Taqqu. 2002. Theory and 
Applications of Long-Range Dependence. Springer Science & Business 
Media.

Feller, W., and P. M. Morse. 1958. “An Introduction to Probability 
Theory and Its Applications.” Physics Today 11: 32.

Ivanov, A., and N. Leonenko. 2002. “Asymptotic Behavior of M-
Estimators in Continuous-Time Non-Linear Regression with Long-
Range Dependent Errors.” Random Operators and Stochastic Equations 
10, no. 3: 201–222.

James, L. F. 2010. “Lamperti-Type Laws.” Annals of Applied Probability 
20, no. 4: 1303–1340.

Leonenko, N. N., M. D. Ruiz-Medina, and M. S. Taqqu. 2017a. “Non-
Central Limit Theorems for Random Fields Subordinated to Gamma-
Correlated Random Fields.” Bernoulli 23, no. 4B: 3469–3507.

Leonenko, N. N., M. D. Ruiz-Medina, and M. S. Taqqu. 2017b. 
“Rosenblatt Distribution Subordinated to Gaussian Random Fields 
With Long-Range Dependence.” Stochastic Analysis and Applications 
35, no. 1: 144–177.

Leonenko, N. N., and E. Taufer. 2005. “Convergence of Integrated 
Superpositions of Ornstein-Uhlenbeck Processes to Fractional 
Brownian Motion.” Stochastics 77, no. 6: 477–499.

Leonenko, N. N., and E. Taufer. 2006. “Weak Convergence of 
Functionals of Stationary Long Memory Processes to Rosenblatt-Type 
Distributions.” Journal of Statistical Planning and Inference 136, no. 4: 
1220–1236.

Maejima, M., and C. A. Tudor. 2013. “On the Distribution of the 
Rosenblatt Process.” Statistics & Probability Letters 83, no. 6: 1490–1495.

Nourdin, I. 2012. Selected Aspects of Fractional Brownian Motion. Vol. 
4. Springer.

Nourdin, I., and G. Poly. 2012. “Convergence in Law in the Second 
Wiener/Wigner Chaos.” Electronic Communications in Probability 17: 
1–12.

Pipiras, V., and M. S. Taqqu. 2017. Long-Range Dependence and Self-
Similarity. Vol. 45. Cambridge university press.

Reade, J. 1979. “Asymptotic Behaviour of Eigenvalues of Certain 
Integral Equations.” Proceedings of the Edinburgh Mathematical Society 
22, no. 2: 137–144.

Rosenblatt, M. 1961. “Independence and Dependence.” In Proc. 4th 
Berkeley Sympos. Math. Statist. And Prob. 2: 431–443.

Rosenblatt, M. 1979. “Some Limit Theorems for Partial Sums of 
Quadratic Forms in Stationary Gaussian Variables.” Zeitschrift Für 
Wahrscheinlichkeitstheorie Und Verwandte Gebiete 49, no. 2: 125–132.

Taqqu, M. S. 1975. “Weak Convergence to Fractional Brownian Motion 
and to the Rosenblatt Process.” Zeitschrift Für Wahrscheinlichkeitstheorie 
Und Verwandte Gebiete 31: 287–302.

Taqqu, M. S. 1979. “Convergence of Integrated Processes of Arbitrary 
Hermite Rank.” Zeitschrift Für Wahrscheinlichkeitstheorie Und 
Verwandte Gebiete 50, no. 1: 53–83.

Tudor, C. 2023. Non-Gaussian Selfsimilar Stochastic Processes.  Springer.

Veillette, M. S., and M. S. Taqqu. 2012. “Berry–Esseen and Edgeworth 
approximations for the normalized tail of an infinite sum of indepen-
dent weighted gamma random variables.” Stochastic Processes and their 
Applications 122, no. 3: 885–909.

Veillette, M. S., and M. S. Taqqu. 2013. “Properties and Numerical 
Evaluation of the Rosenblatt Distribution.” Bernoulli 19: 982–1005.

Wood, A. T., and G. Chan. 1994. “Simulation of Stationary Gaussian 
Processes in [0, 1]d.” Journal of Computational and Graphical Statistics 
3, no. 4: 409–432.

Supporting Information

Additional supporting information can be found online in the 
Supporting Information section. Data S1: Supporting Information 

 20491573, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sta4.70107 by N

IC
E

, N
ational Institute for H

ealth and C
are E

xcellence, W
iley O

nline L
ibrary on [04/11/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.amazon.co.uk/Theory-Applications-Long-Range-Dependence-Doukhan/dp/0817641688
https://www.amazon.co.uk/Theory-Applications-Long-Range-Dependence-Doukhan/dp/0817641688

	Numerical Computation of the Rosenblatt Distribution and Applications
	ABSTRACT
	1   |   Introduction
	2   |   Formal Statement
	3   |   Main Results
	4   |   Computational Aspects
	5   |   Numerical Study With Applications of the Rosenblatt Distribution
	5.1   |   Simulation of Long Gaussian Sequences
	5.2   |   Simulation of Long Gaussian Sequences With LRD
	5.3   |   Estimation of the Mean for a Sequence of Special Structure
	5.4   |   Estimation of the Correlation Function for a Stationary Gaussian Sequence With LRD
	5.5   |   Estimation of Sojourn Functionals
	5.6   |   Roughness of the fBm Path

	6   |   Conclusion
	Acknowledgements
	Data Availability Statement
	References


