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Abstract 

BOLD and cerebral blood flow (CBF) signal perturbations induced by isometabolic vasodilation enable the 

estimation of BOLD and CBF cerebrovascular reactivities (CVRs) and calibration of the BOLD signal through 

inference of its maximum change (M).  We developed a BOLD and oxygen-transport modelling approach that uses 

a hypercapnic estimate of M to map the oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen 

(CMRO2). Inducing hypercapnia requires CO2 inhalation or volitional breath-holding (BH). We present a calibrated 

fMRI framework aiming to overcome the limitations of induced hypercapnia that exploits endogenous resting-state 

(RS) modulations in brain hemodynamics. This approach was compared against BH. We derived a fitting regressor 

representing a non-metabolically demanding vascular signal from the average grey matter (GM) BOLD obtaining 

similar parametric maps between BH and a 10-min RS. Associations between average GM values were M: r=0.70, 

OEF: r=0.88, CMRO2: r=0.94  (p-values<10-4) with slight underestimation of parameters derived from RS (~10%) 

compared to BH.  The most informative frequency range to extract a vascular regressor was in the high-frequency 

portion of the RS spectrum (oscillation times <20 s), where modulations in systemic pressure induced by breathing 

occur. RS fMRI estimation of CMRO2 appears feasible, and it holds promise for research and clinical application. 
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Introduction 

 The human brain consumes approximately 20% of the energy available to the body, primarily for restoring 

synaptic ionic gradients and supporting intrinsic or spontaneous activity in communicating neurons at rest 

(Magistretti and Allaman, 2013). Since the brain does not have significant reserves of its metabolic substrates, i.e., 

glucose and oxygen, its ability to regulate the local blood supply through cerebral blood flow (CBF) is key to 

maintaining brain function and tissue integrity (Raz et al., 2007). Cerebrovascular reactivity (CVR) reflects the 

capacity of the brain’s vasculature to increase CBF following a vasodilatory stimulus. It is an essential property of 

the brain’s blood vessels to maintain nutrient supply in the face of changing demand (Carrera et al., 2009; Chiarelli 

et al., 2022b; Liu et al., 2019). Neural energy consumption is reflected in the cerebral metabolic rate of oxygen 

consumption (CMRO2), given that brain metabolism is mainly oxidative (Zauner et al., 2002). Therefore, both CVR 

and CMRO2 may be considered important markers of brain physiology and pathology (Pillai and Mikulis, 2015; 

Watts et al., 2018).  

 Magnetic resonance imaging (MRI) can quantify both CVR and CMRO2. CVR is assessed through dynamic 

evaluation of MRI signals that are sensitive to CBF. CMRO2 is quantified through concurrent measures of baseline 

CBF and venous oxygen saturation (SvO2, or oxygen extraction fraction, OEF) which are combined, using the Fick 

Principle, to estimate CMRO2. CBF can be efficiently mapped in the grey matter (GM) using Arterial Spin Labelling 

(ASL), one of several different MRI approaches available. SvO2 and thus OEF can be evaluated using various MRI 

methods that exploit the paramagnetic properties of deoxyhemoglobin (dHb). Calibrated functional MRI (fMRI) 

approaches exploit dynamic Blood Oxygen Level Dependent (BOLD) and ASL acquisitions (Bright et al., 2019; 

Chen et al., 2022; Davis et al., 1998; Hoge, 2012) acquired during isometabolic modulations of brain physiology to 

derive the maximum BOLD signal change (M), which is the BOLD signal obtainable with the complete removal of 

dHb from the voxel. In contrast to other MRI approaches that map brain oxygenation, such as those based on 

relaxometry (e.g., quantitative BOLD, qBOLD) or on phase images (e.g., quantitative susceptibility mapping, QSM) 

(He et al., 2008; Zhang et al., 2015), calibrated fMRI methods are insensitive to non-blood sources of susceptibility, 

with dHb being the only paramagnetic substance that changes its concentration over time within the acquisition 

period. Initial implementations of calibrated fMRI used a single respiratory challenge (primarily a hypercapnic one) 
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to estimate M through the Davis Model of the BOLD signal, which could then be applied in subsequent BOLD-

ASL recordings to infer modulations in CMRO2 and the flow-metabolism coupling during a task (Davis et al., 1998; 

Hoge, 2012). Notably, gas-free calibrated fMRI attempted to estimate M from quantitative R2' relaxometry 

measures (Chen et al., 2022; Kida et al., 2000), facing the same limitations as the more recent qBOLD approach. 

Due to the dependence of M on both baseline OEF and venous blood volume (CBVv), quantification of baseline 

CMRO2 was not possible using these methods. The method introduced for the quantitative mapping of CMRO2 

through fMRI relies on a dual calibration approach (dc-fMRI), in which cerebral hemoglobin saturation is 

modulated with two separate respiratory challenges (one hypercapnic and one hyperoxic) (Bulte et al., 2012; 

Gauthier et al., 2012; Gauthier and Hoge, 2012; Germuska and Wise, 2019) to decouple the contributions of baseline 

CBVv and OEF to M. Although dc-fMRI has been applied in clinical research studies (Chandler et al., 2023), its 

adoption is limited by the low signal-to-noise ratio (SNR) intrinsic to this technique and by the complex apparatus 

and gas-challenge paradigm required to induce hypercapnia and hyperoxia (Germuska and Wise, 2019). 

 We recently developed a calibrated fMRI approach that integrates the Davis Model of BOLD signal (Davis et 

al., 1998) with a biophysical model of oxygen diffusion from capillaries to mitochondria, requiring only one 

hypercapnia-based measure of M to estimate resting CMRO2 (Chiarelli et al., 2022a; Driver et al., 2024; Hayashi et 

al., 2003; Hyder et al., 1998). This simple diffusion model assumes that steady-state oxygen extraction depends on 

the product of the mean blood transit time in capillaries and the oxygen pressure gradient between capillaries and 

the mitochondria at the end of the diffusion path. Using this model and assuming low oxygen pressure at the 

mitochondria (PmO2), the model describes the baseline CBVv as a function of baseline CBF (that we measure with 

ASL) and OEF (Gjedde, 2002; Gjedde et al., 1999). Modelling studies and experimental comparison with the dual-

calibrated approach demonstrated the viability of this method, at least within plausible ranges of physiological 

parameters and in healthy subjects (Chiarelli et al., 2022a). However, this approach still requires a hypercapnic gas 

challenge or an alternative hypercapnic stimulus such as breath-holding (BH), limiting its applicability in some 

settings (e.g. in sedated or uncompliant individuals or participants with altered lung function) (Driver et al., 2024). 

 It would be preferable in many instances to estimate M directly from resting-state (RS) data, without the need 

for an explicit hypercapnic stimulus. However, the estimation of M requires the measurement of isometabolic 
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fluctuations in the BOLD and ASL signal, whereas the local RS modulations are known to have a non-isometabolic 

component (Fukunaga et al., 2008). Nonetheless, isometabolic vascular fluctuations are present during RS (Biswal 

et al., 2007; Chang and Glover, 2009; Kannurpatti et al., 2011; Kannurpatti and Biswal, 2008; Tak et al., 2015). An 

isometabolic signal might be extracted by exploiting natural variation in the cerebral blood vessel tone or systemic 

pressure, induced by respiration or other endogenous physiological factors (Birn et al., 2008; Chang and Glover, 

2009). The signal, which we posit is unrelated to local brain metabolism, could then be used as a regressor to 

estimate maps of BOLD and CBF signal changes relative to this signal (depicting the local vascular response 

following the global endogenous stimulus, i.e., relative CVRBOLD and CVRCBF) and infer M. These approaches have 

previously been attempted on BOLD signal recordings to estimate CVRBOLD. For example, the significant temporal 

association between end-tidal partial pressure of CO2 (PETCO2, a marker of CO2 concentration in arteries, CaCO2) 

and the BOLD signal at rest suggests the possibility to use such a signal to infer CVRBOLD (Chang and Glover, 2009; 

Golestani et al., 2016; Wise et al., 2004). However, using the PETCO2 signal requires the expired air to be sampled 

from a mask or a nasal cannula, and practically, in our experience, the acquired signals may be contaminated by 

imperfect sampling and by small variations in the expiration pattern. Although mostly inconsequential when large 

modulations in PETCO2 occur, for example, during a hypercapnic stimulus, these effects may be significant when 

trying to reliably estimate the small temporal fluctuations of the signal of interest during rest. An alternative 

approach was proposed by Liu and Colleagues (Liu et al., 2017), which suggested using the global BOLD signal 

modulation as representative of a purely vascular, non-metabolically demanding, signal. Global, non-region-

specific fluctuations in BOLD MRI signal are known to be related to several physiological mechanisms, including 

cardiac cycle, breathing cycle and slow physiological variations in blood pressure (Liu et al., 2017; Murphy et al., 

2013; Wise et al., 2004). This approach is consistent, for example, with the procedures frequently adopted when 

conducting RS analysis of brain activity, where the global signal is generally considered of vascular origin and is 

regressed out from each voxel as a pre-processing step (Macey et al., 2004; Murphy et al., 2009; Rogers et al., 

2007). The approach implemented by Liu and colleagues was demonstrated to be reproducible and accurate 

compared to the CO2 inhalation method. 
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 Here, we propose to extend such an approach to concurrent RS BOLD-ASL recordings and combine this 

experimental method with our recently proposed modelling of the BOLD signal. This work aims to deliver a novel 

stimulation-free RS calibrated fMRI framework that enables calculation of maps of relative CVRBOLD and CVRCBF 

and, by combining these two, maps of the maximum BOLD modulation M. M can then be used to derive relevant 

quantitative information on OEF and CMRO2. The approach is validated against calibrated fMRI relying on a 

hypercapnic stimulus, namely, breath-holding (BH) (Driver et al., 2024; Thomason et al., 2006). 
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Methods 

BOLD Analytical Modeling  

 Here, we summarize the biophysical model used for parameter estimation. For a detailed description of the 

model please refer to Chiarelli & Germuska (Chiarelli et al., 2022a) and the associated Supplementary Material. 

Measuring the Maximum BOLD Signal 

 For small perturbations of R2* induced by changes in dHb, the steady-state fractional BOLD signal can be 

expressed as (Buxton, 2009; Germuska and Wise, 2019): 

∆𝐵𝑂𝐿𝐷

𝐵𝑂𝐿𝐷
= 𝑀 ∙ {1 − (

𝐶𝐵𝑉𝑣,𝑚

𝐶𝐵𝑉𝑣
) ∙ (

1−𝑆𝑣𝑂2,𝑚

1−𝑆𝑣𝑂2
)

𝛽
}                 (1)  

where CBVv is the BOLD-sensitive blood volume (which actually refers to the blood volume where dHb is confined, 

which is primarily of venous origin but it also has a smaller contribution from capillaries), SvO2 is the venous 

saturation, and the subscript m depicts a temporal modulation. The constant parameters are M, which is the 

maximum BOLD modulation (a function of baseline dHb), and β, which is a field strength and vessel geometry 

dependent constant larger than 1 describing the supralinear effect of dHb in blood on the BOLD signal (β =1.3 at 

3T) (Bulte et al., 2012). Using the Grubb relation (Grubb et al., 1974) and the Fick Principle (refer to Equation 5), 

Equation 1 can be expressed as a function of modulation in CBF and CMRO2 as: 

∆𝐵𝑂𝐿𝐷

𝐵𝑂𝐿𝐷
= 𝑀 ∙ {1 − (

𝐶𝐵𝐹𝑚

𝐶𝐵𝐹
)

𝛼−𝛽
∙ (

𝐶𝑀𝑅𝑂2,𝑚

𝐶𝑀𝑅𝑂2
)

𝛽
}                 (2)  

where α is the Grubb exponent (α =0.38). Assuming isometabolism with hypercapnia, M can be measured through 

fractional BOLD and CBF changes as: 

M =
∆𝐵𝑂𝐿𝐷

𝐵𝑂𝐿𝐷

{1−(1+
∆𝐶𝐵𝐹

𝐶𝐵𝐹
)

𝛼−𝛽
}

 = 
𝐶𝑉𝑅𝐵𝑂𝐿𝐷∙∆𝑣𝑎𝑠

{1−(1+𝐶𝑉𝑅𝐶𝐵𝐹∙∆𝑣𝑎𝑠)𝛼−𝛽}
                (3) 

where BOLD and CBF fractional changes can be divided by a measure of the vasoactive stimulus amplitude (∆𝑣𝑎𝑠, 

often measured in units of mmHg of PETCO2 change following hypercapnia) to infer CVRBOLD (e.g., in units of 

%BOLD/mmHg) and CVRCBF (e.g., in units of % CBF/mmHg).  
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Although in this work Equation 3 was used for the computation of M, it is worth noting that Equation 3 can be 

linearized relative to the modulation in CBF, assuming it to be small, to obtain: 

M =
∆𝐵𝑂𝐿𝐷

𝐵𝑂𝐿𝐷

(𝛽−𝛼)∙(
∆𝐶𝐵𝐹

𝐶𝐵𝐹
)

=
𝐶𝑉𝑅𝐵𝑂𝐿𝐷

(𝛽−𝛼)∙𝐶𝑉𝑅𝐶𝐵𝐹
                 (4) 

Since 𝛽 − 𝛼 ≈ 1, M is almost equal to the ratio of the fractional changes of BOLD and CBF (or CVRBOLD/ CVRCBF). 

Measuring CMRO2  

 Baseline CMRO2 can be estimated with MRI through the Fick Principle (the conservation of oxygen mass): 

𝐶𝑀𝑅𝑂2 = 𝐶𝐵𝐹 ∙ 𝑂𝐸𝐹 ∙ 𝐶𝑎𝑂2                   (5) 

Baseline CBF can be inferred from the baseline ASL signal, whereas CaO2 can be estimated from end-tidal partial 

pressure of O2 (PETO2) measurements (refer to Equations 14 and 15). OEF is defined as: 

𝑂𝐸𝐹 =
𝐶𝑎𝑂2−𝐶𝑣𝑂2

𝐶𝑎𝑂2
                    (6) 

with CaO2 and CvO2 being arterial and venous blood oxygen content, respectively. The maximum BOLD signal M 

is expressed as a function of resting CBVv and SvO2 (or OEF) as (Buxton, 2009; Germuska and Wise, 2019) : 

𝑀 = 𝑇𝐸 ∙ 𝐴 ∙ 𝐶𝐵𝑉𝑣 ∙ ((1 − 𝑆𝑣𝑂2) ∙ [𝐻𝑏])
𝛽

= 𝑇𝐸 ∙ 𝐴 ∙ 𝐶𝐵𝑉𝑣 ∙ ((1 −
𝐶𝑎𝑂2

𝜑∙[𝐻𝑏]
∙ (1 − 𝑂𝐸𝐹)) ∙ [𝐻𝑏])

𝛽

                        (7) 

where TE is the echo time of the acquisition, A is a field strength and vessel geometry dependent constant, φ is the 

oxygen binding capacity of hemoglobin (φ=1.34 mL/g) and [Hb] is the concentration of hemoglobin in blood. Of 

note, the link between SvO2 and OEF is derived assuming negligible plasma O2 content on the venous side. 

(Chiarelli et al., 2022a). TE is known, A can be assumed or derived through modelling, and [Hb] can be measured 

using blood samples or by measuring the T1 of blood in a large vessel, which primarily depends on [Hb]. 

Equation 7 has two physiological unknowns, baseline CBVv and OEF, which makes it impossible to solve for OEF 

through a single estimate of M without additional constraints.  
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 We recently introduced into the calibrated fMRI framework a simple model of diffusion of oxygen from 

capillaries to mitochondria that states that the steady-state extraction of oxygen from capillaries is proportional to 

the product of mean capillary transit time (MCTT) and the pressure gradient along the diffusion path: 

𝑂𝐸𝐹 ∙ 𝐶𝑎𝑂2 = 𝑘 ∙ 𝑀𝐶𝑇𝑇 ∙ (𝑃50 ∙ √
2

𝑂𝐸𝐹
− 1

ℎ
− 𝑃𝑚𝑂2)              (8) 

where k is the effective permeability of the capillary and the surrounding brain tissue, (𝑃50 ∙ √
2

𝑂𝐸𝐹
− 1

ℎ
) is the 

capillary oxygen pressure, and PmO2 is the oxygen pressure at the mitochondria. Capillary oxygen pressure depends 

on OEF, P50, which is the oxygen partial pressure when half of Hb is saturated (generally P50≈26 mmHg; P50 can be 

inferred from a measure of PaCO2), and h, which is the Hill constant (h=2.8). Equation 8 can be rewritten via the 

central volume principle (i.e., MCTT=CBVcap/CBF) with CBV of capillaries (CBVcap) being a fraction of CBVv  

(i.e., CBVv=ρ∙CBVcap) as: 

𝐶𝐵𝐹 ∙ 𝑂𝐸𝐹 ∙ 𝐶𝑎𝑂2 =
𝑘

𝜌
∙ 𝐶𝐵𝑉𝑣 ∙ (𝑃50 ∙ √

2

𝑂𝐸𝐹0
− 1

ℎ
− 𝑃𝑚𝑂2)            (9) 

Equation 9 allows us to express CBVv as a function of CBF and OEF as: 

𝐶𝐵𝑉𝑣 = 𝐶𝐵𝐹 ∙
𝜌

𝑘
∙

𝑂𝐸𝐹∙𝐶𝑎𝑂2

(𝑃50∙ √
2

𝑂𝐸𝐹
−1

ℎ
−𝑃𝑚𝑂2) 

                       (10) 

where the CBF is multiplied by 
𝜌

𝑘
∙

𝑂𝐸𝐹∙𝐶𝑎𝑂2

(𝑃50∙ √
2

𝑂𝐸𝐹
−1

ℎ
−𝑃𝑚𝑂2) 

 which is the MTT within the venous compartment. 

Equation 10 can be integrated into Equation 7 to obtain: 

𝑀 = 𝑇𝐸 ∙
𝐴∙𝜌

𝑘
∙

𝐶𝐵𝐹∙𝑂𝐸𝐹∙𝐶𝑎𝑂2∙((1−
𝐶𝑎𝑂2
𝜑[𝐻𝑏]

∙(1−𝑂𝐸𝐹))∙[𝐻𝑏])

𝛽

(𝑃50∙ √
2

𝑂𝐸𝐹
−1

ℎ
−𝑃𝑚𝑂2) 

             (11) 
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TE,  𝛽 and h in Equation 11 are known constants related to the MRI acquisition scheme, MRI physics and oxygen 

bounding properties of hemoglobin, whereas quantitative CBF at rest can be measured with ASL (refer to the Data 

Analysis, fMRI Processing paragraph). Moreover baseline values of P50, CaO2 and [Hb] can be estimated from  

PETCO2 and PETO2 traces and from measures of blood hematocrit (please refer to the Methods Section, paragraphs 

Data Analysis, Analysis of Gas Recordings and Estimation of Blood Hemoglobin Concentration). Since the lumped 

parameter 
𝐴∙𝜌

𝑘
  should be near constant in the absence of significant vascular remodelling and PmO2 is generally 

small in the human brain (PmO2≈0) (Gjedde, 2002), Equation 11 can be used to infer OEF from measures of M and 

hence CMRO2 through Equation 5. We assigned a value of 8.8 s-1g-βdLβ/(μmol/mmHg/mL/min) to the term  
𝐴∙𝜌

𝐾
, 

matching our previously established in-vivo measurement when PmO2 is fixed to 0 mmHg (Chiarelli et al., 2022a).  

 

 

 

Data Acquisition 

 Thirty-three healthy volunteers (16 females, age (mean ± standard deviation) = 24.5 ± 6.0 years) were recruited 

at CUBRIC, Cardiff University, Cardiff, UK. The study was performed in accordance with the Declaration of 

Helsinki and was approved by the Cardiff University, School of Psychology Ethics Committee. Written consent 

was obtained from each participant. Data were acquired using a Siemens MAGNETOM Prisma (Siemens 

Healthcare GmbH, Erlangen) 3 T clinical scanner with a 32-channel receiver head coil (Siemens Healthcare GmbH, 

Erlangen).   

 BOLD-ASL fMRI data were acquired during RS and BH using an in-house PCASL acquisition scheme with 

pre-saturation and background suppression (Okell et al., 2013) and a dual-excitation (DEXI) echo planar imaging 

(EPI) 2D readout (Schmithorst et al., 2014). The labelling duration (τ) and the Post Label Delay (PLD) were both 

set to 1.5 s, GRAPPA acceleration (factor = 3) was used with TE1 = 10 ms and TE2 = 30 ms. An effective TR of 4.4 s 

was used to acquire 15 slices, with an in-plane resolution of 3.4 × 3.4 mm2 and a slice thickness of 6 mm with a 
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20% slice gap. The RS protocol consisted of a 10-minute and 16-second DEXI PCASL acquisition. During RS the 

participants were instructed to fix their vision on a cross at the center of the screen with a grey background. The BH 

protocol was visually guided via instructions projected onto the same screen and included 10 repeats of a 20 second 

duration post-expiratory breath-holding with 30 seconds of recovery (normal breathing) in between. Subjects were 

instructed to fully breathe out at the end of each BH to enable estimation of arterial content of O2 and CO2. During 

the fMRI recordings, CO2 and O2 in the expired air were evaluated from the volunteer's nasal cannula using a gas 

analyzer (AEI Technologies, Pittsburgh, PA, USA). 

 Calibration images (S0) were acquired for ASL quantification with PCASL labelling and background 

suppression pulses switched off, with TR=6 s, and TE =10 ms (Germuska et al., 2019). Two S0 images were 

acquired with opposite phase encoding directions twice, before RS and BH, to allow for distortion corrections in 

the BOLD-ASL fMRI acquisition. An in-house inversion recovery sequence, with a single slice readout, was 

acquired with the imaging plane intersecting the superior sagittal sinus in order to estimate the longitudinal 

relaxation time constant (T1) of blood and infer [Hb] (Varela et al., 2011). The sequence consisted of a nonselective 

inversion pulse followed by fast (TR/TE=150/22ms) acquisitions of a single slice (EPI readout, 3 mm slice 

thickness, 128x128 matrix, 1.8x1.8 mm2 in-plane resolution) acquired for 6 seconds. The short TR saturated the 

static tissue and highlighted the longitudinal magnetization recovery of the inflowing blood. 16 inversions were 

performed to increase the confidence in the T1 estimate.  

A magnetization-prepared rapid acquisition with gradient echo (MPRAGE) T1-weighted scan was acquired for 

registration and brain segmentation purposes (matrix 165 x 203 x 197, 1 mm isotropic resolution, TR/TE = 

2100/3.24 ms). 

 

Data Analysis 

Analysis of Gas Recordings 
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 PETCO2 and PETO2 were extracted from CO2 and O2 recordings using in-house software developed in Matlab 

(The MathWorks, Inc. MATLAB R2022b) (Chiarelli et al., 2022a). Average PETCO2, assumed to be in equilibrium 

with PaCO2 during RS, was used to infer P50 from estimates of resting blood pH based on the Henderson-

Hasselbalch Equation, assuming [HCO3
-]= 24 mmol/L (Gai et al., 2003): 

𝑝𝐻 = 6.1 + log (
[𝐻𝐶𝑂3

−]

0.03∙𝑃𝑎𝐶𝑂2
)                  (12) 

and calculating P50 according to the linear relation (Germuska et al., 2019): 

P50 = 221.87–26.37∙pH                (13) 

CaO2 was calculated from average PETO2, assumed equal to PaO2 during RS, using the Hill Equation: 

 𝑆𝑎𝑂2 =
1

1+(
𝑃50

𝑃𝑎𝑂2 
)

ℎ                (14) 

and the equation: 

 𝐶𝑎𝑂2 = 𝜑 ∙ [𝐻𝑏] ∙ 𝑆𝑎𝑂2 + 𝜀 ∙ 𝑃𝑎𝑂2                      (15) 

where ε is the oxygen plasma solubility in blood (ε=0.0031 mL/mmHg/dL), and [Hb] was estimated through 

Equation 16. 

Estimation of Blood Hemoglobin Concentration 

 The T1 of venous blood was estimated from non-linear least squares fitting to a mono-exponential signal model 

using the long TR approximation, S=|𝑎 + 𝑏 ∙ 𝑒(−𝑇𝐼/𝑇1)| where TI is the time of inversion. To reduce possible 

contamination from blood water of non-venous origin, only the first 4 seconds from the inversion were used.  

Automatic voxel selection for the sagittal sinus was performed by first defining a small rectangular region of interest 

(ROI) measuring 60x30 mm² around the superior sagittal sinus. Secondly, voxels with intensity above the 50th 

percentile within this ROI were retained in the third acquired slice, where complete saturation of static tissue was 

achieved. The blood hematocrit (Hct) was determined from the linear relationship with venous T1 previously 

reported at 3 T (Lu et al., 2004): 

𝑇1(𝑠) =
1

0.83∙𝐻𝑐𝑡+0.28
                             (16) 

Hct was converted to [Hb], assuming a ratio Hct/[Hb]=3 (%dL/g)(Insiripong et al., 2013). 
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fMRI Processing 

 Both RS and BH fMRI data were processed using FSL (Jenkinson et al., 2012), ANTS (Avants et al., 2011), 

and in-house Matlab algorithms. Time courses were divided by TE and PCASL tagging (tag/control). Tag and 

control images for both echoes were motion-corrected with FSL's MCFLIRT (Jenkinson et al., 2002). Initial 

volumes of tag and control images were rigidly registered using FLIRT to minimize misregistration from tag-control 

contrast differences. BH and RS volumes were rigidly aligned using ANTS to the brain-extracted S0 (estimated with 

FSL BET), acquired with the same phase encoding as the functional scans. Susceptibility distortions were corrected 

using FSL TOPUP with two S0 images of different phase encoding direction (Smith et al., 2004). Finally, BH images 

were registered to RS images using ANTS. 

 All subsequent analysis was performed in Matlab (The MathWorks, Inc. MATLAB R2022b). 

 TE1 surround subtractions (ΔS) were converted into CBF (expressed in quantitative units of mL/100g/min) 

through the single compartment kinetic model for PCASL with voxelwise S0 normalization (Alsop et al., 2015): 

𝐶𝐵𝐹 =
6000∙𝜆∙𝑒

𝑃𝐿𝐷
𝑇1𝑏 

2∙η∙ η𝑖𝑛𝑣∙𝑇1𝑏∙(1−𝑒
−

𝜏
𝑇1𝑏 ) 

∙ (
∆𝑆

𝑆0
)              (17) 

where λ is the water partition coefficient (λ= 0.9 mL/g), T1b is the T1 relaxation constant of arterial blood (estimated 

through the inversion recovery acquisition with correction for being arterial blood) (Lu et al., 2004), η is the tagging 

inversion efficiency (η =0.85), and ηinv is a scaling factor to account for the reduction in tagging efficiency due to 

background suppression (ηinv=0.88) (Aslan et al., 2010; Mutsaerts et al., 2014). To avoid the confounding effects 

of spatial high-frequency features of S0 during normalization, a low-pass filtered version of S0 was used, estimated 

through second-order polynomial fitting of the brain-masked S0. In order to avoid possible misregistration effects 

between functional scans and structural images, the time averaged CBF map was used to extract an apparent GM 

mask. Owing to the much higher perfusion of GM compared to white matter (WM), the presence of GM was 

evaluated by normalizing the CBF map between its 5th and its 95th percentile and by setting to zero all values below 

0 and above 1 after normalization (to exclude outliers). Voxels were labelled as GM if their normalized value was 

above 0.5. TE2 volumes were used for BOLD signal extraction.  
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 For the BH task, BOLD and CBF signals were band-pass filtered (Butterworth digital filter, order 4) with cut-

off times of 10 s (0.1 Hz of low-pass cut-off frequency) and 200 s (0.005 Hz of high pass cut-off frequency). The 

low-pass cut-off time of 10 s (0.1 Hz) was chosen to approximate a surrounding averaging required to eliminate 

any residual perfusion effect on BOLD signal induced by the alternating tagging (considering a Nyquist time of 8.8 

s, 0.11 Hz of Nyquist frequency). The high-pass cut-off time was chosen to eliminate slow drifts without distorting 

the response and recovery signal to the BH task.   

  The RS BOLD and CBF signals were band-pass filtered (Butterworth digital filter, order 4) with variable 

combinations of low-pass and high-pass frequency to explore the optimal frequency band to be used. The low-pass 

cut-off times varied from 10 s (0.1 Hz) to 100 s (0.01 Hz), whereas the high-pass cut-off times varied from 40 s 

(0.025 Hz)  to 300 s (0.003 Hz), please refer to the Results Section, paragraph Effect of Filtering and Recording 

Time on Resting-State Analysis. The optimal band-pass filter was identified with cut-off times between 10 s and 

150 s, which were used for the main results presented.  

 The following analysis was conducted for both BH and RS. Global GM BOLD signals were calculated as the 

median value within the GM mask for each time point, following band-pass filtering. These signals were converted 

to z-scores to represent a vascular signal with zero mean and unit variance. Voxel-wise BOLD and CBF signal 

modulations relative to the vascular signal were assessed using linear regression within a general linear model 

(GLM) framework (Friston, 1994). The voxel-wise signal could shift by one sample (± 4.4 s) to best correlate with 

the vascular signal, estimating the local cerebrovascular response time lag relative to the global signal. The 

regression weight estimated the BOLD or CBF modulation associated with the global vascular signal, expressed as 

%BOLD and %CBF changes due to the unitary variance of the vascular signal. The Signal-to-Noise Ratio (SNR) 

of the modulation estimate was calculated by dividing the GLM β-weight by its confidence interval. CVRBOLD and 

CVRCBF maps were used to estimate M from Equation 3. OEF was inferred using Equation 11, with non-linear 

inversion through parameter space exploration. CMRO2 was estimated via Equation 5. Average GM values of the 

parameters were extracted, and parametric maps were warped onto MNI152 space (using FSL's FNIRT) for average 

map evaluation across subjects. RS acquisition time effects were investigated by repeating the RS analysis at 

intervals from 20 s, increasing in 20 s steps, up to the entire available acquisition time. 
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Statistical Analysis 

 Pearson’s correlations and t-tests were performed to assess pairwise associations and biases between the 

parameters estimated through BH and RS. Normality evaluation was performed prior to statistical inference using 

the Kolmogorov-Smirnov test. A null hypothesis probability below 5% (p<0.05) was considered statistically 

significant. 

Results 

Arterial Oxygenation 

 PETO2 during the RS recordings was, on average, PETO2=111±7 mmHg (mean±std), whereas the average PETCO2 

was PETCO2=36±3 mmHg. PETO2 and PETCO2 were respectively assumed to be in equilibrium with PaO2 and PaCO2. 

From Equations 12 and 13, the PaCO2 delivered an estimated average P50=25.6±1.4 mmHg. From Equation 14, an 

average SaO2=98.3±0.5 % was estimated. The T1 of blood, inferred from the inversion recovery acquisition, was 

on average T1,blood=1632±117 ms, which delivered, through Equation 16, a hematocrit of Hct=40.5±5.1 % and a 

hemoglobin concentration in blood of [Hb]=13.5±1.7 g/dL. From Equation 15, the average blood oxygen content 

was CaO2=17.9±2.2 mL/dL. 

Vascular Signal and Cerebrovascular Reactivity 

 Figure 1a reports an example, for a representative subject, of the time-averaged RS CBF map and the 

corresponding apparent GM mask. Figure 1b depicts, for the same subject, the average GM BOLD signal extracted 

for the BH and the RS recordings. Clear periodic modulations of a few percentage points of the BOLD signal are 

visible for the BH. These modulations are induced by changes in flow caused by the hypercapnic BH task. The RS 

modulation exhibits, as expected, aperiodic and smaller fluctuations. These signals were normalized (converted to 

z-scores) and assumed to represent an isometabolic vascular signal to estimate relative CVRBOLD and CVRCBF. 

INSERT FIGURE 1 AROUND HERE 

 Figure 2a reports boxplots showing the variability (standard deviation after bandpass filtering) of the voxel-

wise and global BOLD (upper row, left image) and CBF (upper row, right image) signals in the gray matter (GM) 

during BH and RS. Additionally, Figure 2a presents the estimated average GM CVRBOLD and CVRCBF (lower row) 

for both BH and RS. The voxel-wise BOLD variability in the GM was 1.3 ± 0.8% during BH and 1.2 ± 0.7% during 
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RS, while the global GM BOLD signal variability was 0.7 ± 0.1% during BH and 0.5 ± 0.3% during RS. The voxel-

wise CBF variability in the GM was 59 ± 17% during BH and 58 ± 27% during RS, whereas the global GM CBF 

signal variability was 35 ± 12% during BH and 25 ± 20% during RS. The CVRBOLD in the GM was 0.74 ± 0.17% 

for BH and 0.40 ± 0.18% for RS. The CVRCBF in the GM was 11.9 ± 5.1% for BH and 7.2 ± 2.6% for RS. The CVR 

metrics obtained represent the variability in the voxel-wise signal (% of signal change) that was explained by the 

normalized (z-scored) global GM BOLD signal (after allowing for ±1 TR, ±4.4 seconds time lag). Since the global 

regressor is the same for both BOLD and CBF, their values are comparable within each subject and condition. It is 

important to note that, although CVRBOLD and CVRCBF are larger for BH compared to RS, the ratio between the two 

is similar. The ratio of the two CVRs (apart from mild non-linearities and scaling parameters) is close to M (as 

shown in Equations 3 and 4). Figures 2b and 2c present images of CVRBOLD and CVRCBF (the images were z-scored 

to highlight spatial similarities), and cerebrovascular response time lag for an exemplar subject (upper rows for each 

subplot) as well as average maps in MNI space (lower rows for each subplot). The maps depicted were derived 

from BH (left column for each subplot) or RS (right column for each subplot). Spatial similarities between the BH 

and RS-derived maps are evident upon visual inspection. Comparing average maps between BH and RS, CVRBOLD 

exhibited a spatial correlation of r = 0.74, whereas CVRCBF had a spatial correlation of r = 0.23 (all p’s< 10-4). The 

spatial correlations of cerebrovascular response latency were r = 0.65 for BOLD and r = 0.23 for CBF (all p’s<10-

4). The average GM SNRs with BH were 15.6±3.5 and 4.9±1.4 for CVRBOLD and CVRCBF , respectively. The average 

GM SNR with RS were 8.9±3.1 and 3.5.0±1.4 for CVRBOLD and CVRCBF, respectively. 

INSERT FIGURE 2 AROUND HERE 

Maximum BOLD Modulation and Brain Oxygen Consumption 

 Figure 3 displays images of the quantitative physiological parameters extracted through modelling, namely M 

(a), OEF (b) and CMRO2 (c). OEF and CMRO2 were derived twice, using M obtained from the BH or RS signal 

modulation experiment (indicated in the figure with the labels ‘BH M’ and ‘RS M’). The maps are reported similarly 

to Figure 2. Comparing the group-average maps of BH and RS, the voxel-wise correlations were r=0.58, r=0.28 and 

r=0.78 for M, OEF and CMRO2, respectively (all p’s<10-4). 

INSERT FIGURE 3 AROUND HERE 
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 Figure 4 reports the scatterplots and the Bland-Altmann plots comparing the average M (a), OEF (b) and 

CMRO2 (c) in the GM between BH and RS. Significant associations between the average GM values obtained via 

the two modulations (BH and RS) were obtained for all parameters (M: r=0.70, OEF: r=0.88, CMRO2: r=0.96, all 

p’s<10-4). A systematic bias was observed for the different parameters, with an underestimation of RS derived 

parameters compared to those derived from BH. The M value in the GM was, on average, M=7.9±2.1 % for BH 

and M=6.9±1.8 % for RS with a difference of 12.7% (RS vs. BH: t=-3.59, p<10-3). The OEF in the GM was, on 

average, OEF=36±4 % for BH and OEF=32±6 % for RS with a difference of 11.1% (RS vs. BH: t=-8.1, p<10-4). 

CMRO2 in the GM was, on average, CMRO2=162±35 μmol/100g/min for BH and CMRO2=143±33 μmol/100g/min 

for RS with a difference of 11.7% (RS vs. BH: t=-10.5, p<10-4). 

INSERT FIGURE 4 AROUND HERE 

Table 1 summarizes the GM values of the main metrics evaluated. 

INSERT TABLE 1 AROUND HERE 

Effect of Filtering and Recording Time on Resting-State Analysis 

 Figure 5 illustrates the impact of band-pass filtering cut-off frequencies and RS recording time on estimating 

the average M in GM compared to BH. We focus on M as it is the quantitative parameter directly derived from 

fMRI signals, with brain oxygenation inferred through modeling. The left column displays the average estimation 

error (bias error), while the right shows the root mean square error (RMSE, combined bias and variance effects). 

Figure 5a indicates optimal performance with a low-pass time of 10 s (0.1 Hz). The high-pass cut-off is less critical, 

with optimal RMSE at around 150 s (0.0067 Hz). These values were used in our analysis. Figure 5b shows how 

increased recording time leads to a monotonic reduction in underestimation of average M and RMSE, with average 

values and confidence intervals presented. 

INSERT FIGURE 5 AROUND HERE 
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Discussion 

 Here, we introduced a novel framework to perform calibrated BOLD-ASL fMRI at rest without a concurrent 

exogenous modulation in brain physiology. The proposed method is distinguished from other non-invasive MRI 

methods of mapping CMRO2 (He et al., 2008; Zhang et al., 2015)  by two principal features. Firstly, the method 

provides a multiparametric mapping of brain physiology, including BOLD-derived and ASL-derived relative 

vascular reactivities (CVRs). Secondly, the method maps venous oxygenation by exploiting deoxyhemoglobin 

oscillations over time, delivering an estimate which is virtually unaffected by other sources of magnetic 

susceptibility.  

 A fundamental requirement of the method is that the component of the fluctuations of BOLD and ASL signals 

used to establish the vascular reactivities is of purely vascular origin and unrelated to brain metabolism. We used 

the global GM BOLD signal as representative of a pure vascular signal based on a previously proposed method 

applied to standalone BOLD recordings (Liu et al., 2017). Using such a signal, we were able to extract CVRBOLD 

and CVRCBF (in arbitrary units of % signal change) as well as cerebrovascular response latency maps with 

satisfactory SNR (SNR of the estimate was, on average, around 10 for BOLD and 3.5 for ASL in the GM) and with 

significant spatial similarities to those extracted with the vasoactive stimulus (hypercapnia induced through breath 

holding, Figure 2). Considering that images were not smoothed, and the spatial similarities were evaluated on the 

entire 3D volume, the correlations obtained for average maps were excellent for CVRBOLD (r=0.74) and acceptable 

for CVRCBF (r =0.23). For the CVRCBF spatial analysis, it is worth noting that this parameter is characterized by 

having fewer spatial features compared to CVRBOLD (which is also weighted by CBVv), contributing to a decrease 

in the spatial correlations (Biondetti et al., 2024; Zhao et al., 2021). Moreover, CVRCBF maps are affected by ASL 

noise in the WM, where the method has a particularly low SNR due to the long arrival times of blood in this 

compartment). Although expressed in relative units of BOLD or ASL signal change, the resting-state CVR maps 

did spatially align with the maps derived from breath-holding. This is inherently interesting, as these CVR maps 

can be utilized to examine local changes in vascular function in patients by spatially comparing brain regions on an 

individual basis. 



Multiparametric mapping of CMRO2 with resting-state calibrated fMRI– 20 

With respect to oxygen consumption quantification, the M maps were similar between RS and BH, with a 3D spatial 

correlation of the group mean image of r=0.58. Also, the CMRO2 maps were highly similar with a group mean 

image correlation of r=0.78. For OEF, the spatial correlation was r=0.28. However, the same concept of CVRCBF 

applies to the OEF map, since OEF is known to be largely uniform within the brain in healthy subjects (Figure 3). 

Importantly, when evaluating average GM values for M, OEF and CMRO2, the across-subject associations were 

high (from r=0.70 to r=0.96, Figure 4). 

 The main advantage of the proposed approach of using a global fMRI signal as a regressor to infer CVR and 

CMRO2 is that it does not require independent measures, such as a measure of PETCO2 modulations over time, and 

it generally provides, especially for BOLD, a signal with good SNR. Please note that PETCO2 and PETO2 signals 

were only used to estimate their average values from which to infer baseline CaCO2 (and hence P50) and CaO2. 

Temporal averages of end-tidal pressures can be estimated with a much higher accuracy than their small temporal 

modulations at rest. As a note, we found a variability on baseline PETCO2 and PETO2 below 10%. Considering an 

average level of [Hb] of 14 g/dL, this variability should produce a variability of P50 below 4% and a variability of 

CaO2, when the effect of [Hb] is marginalized, below 1%. Although further assessment of the effect of this 

variability on the modelling parameters estimation is required, when partial pressures of O2 and CO2 in the exhaled 

air are not available, we suggest using, at least in healthy subjects, standard average values.  

 When possible, especially in patient populations, these metrics can be assessed through blood sampling. Arterial 

blood sampling allows for an accurate estimation of PaO2 and PaCO2, which in turn enables the derivation of CaO2 

and P50. Using end-tidal measurements as a surrogate for arterial gas content has its own limitations, particularly 

due to the assumption of equilibrium between arterial and alveolar gas pressures (Bengtsson et al., 2001). 

Additionally, the current study employed a nasal cannula to monitor O2 and CO2 in the expired air, which requires 

participants to breathe almost exclusively through their nose (Bright and Murphy, 2013). A pulse oximeter may 

also be used to derive CaO2, when coupled at least with measures of hematocrit. Indeed, arterial or venous blood 

sampling can allow for an accurate estimation of hematocrit, which in this study was inferred using quantitative 

measures of the venous T1 relaxation in the superior sagittal sinus. Although the MRI method has been proven to 
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be accurate (Varela et al., 2011), more direct measurements of hematocrit in blood are preferrable in future studies, 

particularly for clinical applications where a large variability in hemoglobin in blood may be found.  

 Importantly, the use of a global signal regressor was already validated by our group for the BH task (Driver et 

al., 2024). When applying the approach to BH, the method inherently accounts for several confounding factors 

introduced by the hypercapnic BH stimulus (Thomason et al., 2005). The BH outcome depends on patient 

compliance and factors such as expiration time, lung volume, arterial transit time from the lung and brain 

hemodynamics time constant. These factors are largely accounted for by using a global brain signal as a regressor. 

The main remaining confounding factor when using BH and a global regressor is movement. However, we 

demonstrated in our previous work that movement does not seem to heavily affect the results when simple 

movement correction algorithms are implemented (Driver et al., 2024). The drawback of using a global brain signal 

as a regressor is the absence of CVR quantification. However, since the maximum BOLD modulation is derived 

from the comparison of CVRBOLD and CVRCBF (i.e., approximately their ratio), quantification is not required for our 

application; only the use of the same regressor to estimate both CVRs is necessary. 

 We considered using a global CBF signal from our concurrent ASL data as a vascular regressor instead of the 

BOLD signal. However, this approach underperformed, likely due to ASL's lower SNR compared to BOLD, leading 

to an underestimation of M for RS. Using the GM global BOLD signal as a regressor still showed a residual negative 

bias of about 10% in M estimation using RS compared to BH, affecting OEF and CMRO2 estimates (Figure 4). This 

bias was partially due to limited recording time. Increasing the recording time reduced the bias error in RS-M 

compared to BH-M, as shown by a monotonic decrease without a plateau within our 10-minute limit (Figure 5b). 

The RMSE plot confirmed that the maximum recording time was insufficient to minimize error. We speculate that 

the decreasing bias with longer recording times stems from spurious correlations between global vascular signals 

and local brain metabolism, which are stronger with limited data samples. The resting-state method requires longer 

acquisition times beyond 10 minutes, likely due to the limited temporal SNR of ASL and smaller endogenous 

vascular modulations compared to exogenous stimuli. 

 Nonetheless, it is well known that resting-state signals, both at a regional and global level, are generated by a 

mixture of physiological and non-physiological effects, which are very complex to discriminate. Some of these 
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effects, such as head motion or neural activity, are unwanted for our application (Ciric et al., 2018; Power et al., 

2017; Schölvinck et al., 2010). In an approach aimed at minimizing these unwanted contributions, we decided to 

implement a data-driven approach for frequency selection of the resting-state signals of interest. An analysis of 

filtering effects identified the high-frequency spectrum (oscillation time below 20 s, frequency above 0.05 Hz) as 

crucial for the approach. With a TR of 4.4 s and the need to remove perfusion signal weighting from tag-control 

alternation, we theoretically could explore a minimum oscillation time of 8.8 s, that we approximated with a low-

pass cut-off time of at least 10 s (0.1 Hz). Filtering out frequencies with oscillation times between 10 s and 20 s 

(0.05 Hz to 0.1 Hz) nearly doubled the bias error (from -10% to -20%) and significantly increased the RMSE (Figure 

5a). This suggests that vascular modulations from respiration and fast systemic pressure changes are key for 

estimating M, though not the only contributors, as the optimal high-pass time was around 150 s (0.0067 Hz, lowest 

RMSE). 

 In summary, we found that, with long resting-state (RS) acquisitions and optimized image and signal 

processing, the associations between the parameters of interest estimated at RS and during BH were good. This 

result suggests that the band-pass filtered global BOLD signal within the gray matter (GM) can be a good proxy for 

a vasodilatory signal, unrelated to local brain activity. However, other physiological effects cannot be completely 

ruled out. The lower estimate of M during RS compared to BH (RS estimate of M about 10% lower than BH) maybe 

attributable to local CMRO2 increases synchronous with the global GM BOLD signal during RS, or conversely, to 

an absence of isometabolism during BH, resulting in decreased brain activity and CMRO2 during hypercapnia. 

Regarding the latter, some studies have shown that hypercapnia tends to reduce neural activity and CMRO2 (the 

two are tightly linked in humans) with a maximum CMRO2 decrease reported of up to 20% (Baas et al., 2023; 

Deckers et al., 2022; James et al., 2023; Zappe et al., 2008). This modulation would reflect an increase in the BOLD 

signal with respect to flow between 5% and 10%, which is compatible with the bias we identified in M between RS 

and BH. However, further studies where longer RS recordings are acquired together with a BH task, or another 

vasodilatory stimulation, and with alternative MRI and non-MRI approaches that map CMRO2, are required to 

establish the maximum accuracy achievable by the RS method and the underlying methodological or physiological 

origin of any residual errors. 
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 The method shares limitations with other calibrated fMRI approaches. It combines BOLD with ASL functional 

measures, with ASL having a low temporal SNR and being limited mostly to estimate perfusion in GM. 

Additionally, with the relatively short post-labelling delays used for functional assessment (PLD=1.5 s), the ASL 

measures may be inaccurate in the elderly or patients population where there may be a longer. arterial transit times 

from the blood tagging region to the tissue. Moreover, the method requires a vascular reserve, which may be absent 

in diseases with compromised vasculature, such as ischemic stroke, where arteries may be fully dilated. We have 

shown that estimating baseline oxygen metabolism from a single hypercapnic fMRI calibration is reliable unless 

mean transit time through microvasculature and mitochondrial oxygen tension are both high (MCTT over 2-3 

seconds and PmO2 over 20-30 mmHg) (Chiarelli et al., 2022a). This can occur in cases of severe physiological and 

metabolic dysfunction. For example, a significant rise in PmO2 may occur when the oxygen delivered by arterial 

blood remains high, even though the tissue is not consuming it due to mitochondrial dysfunction or brain tissue 

necrosis. 

 The method allows for calibrated fMRI with a simple resting paradigm, enabling the estimation of critical brain 

physiology parameters that may reflect pathology, supporting its potential for routine use in neuroscience and 

clinical imaging. 
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Figure Legends 

 

Figure 1: (a) Example, for a representative subject, of average CBF map and the extracted apparent GM mask. (b) 

For the same subject as in (a), average GM BOLD signal for the BH and the RS recordings which were then 

normalized (z-scored) to obtain the global vascular signal to be used as a regressor in the CVRBOLD and CVRCBF  

estimation.  

 

Figure 2: (a) Boxplots showing the average variability (standard deviation after bandpass filtering) of the voxel-

wise and global BOLD (upper row, left image) and CBF (upper row, right image) signals in the GM as well as the 

CVRBOLD and CVRCBF (lower row, left image and right image, respectively), during BH and  RS. (b,c) Example of 

parametric maps obtained for representative subject (upper rows for each subplot) and average maps in MNI space 

(lower rows for each subplot) related to CVR.  The maps are reported when BH (left column for each subplot) or 

RS (right column for each subplot) was used as experimental paradigm; (b) relative CVRBOLD  and CVRCBF (to 

highlight the spatial similarities the images were z-scored); (c) CVRBOLD and CVRCBF  response time lags.  

 
 

Figure 3: Example of parametric maps obtained for a representative subject (upper rows for each subplot) and 

average maps in MNI space (lower rows for each subplot) for the quantitative physiological parameters extracted 

from relative CVRBOLD and CVRCBF  through modelling.  The maps are reported when BH (left column for each 

subplot) or RS (right column for each subplot) was used as experimental paradigm. (a) M; (b) OEF; (c) CMRO2. 

 

Figure 4: Scatterplots and the Bland-Altmann plots comparing, between BH and RS, global GM (a) M, (b) OEF 

and (c) CMRO2. * p<10-4 

 

Figure 5: Effect (evaluated as error in the average estimate, left column, and RMSE, right column) of (a) band-

pass filtering cut-off times (upper row) and (b) recording time (lower row) on RS estimation of GM M compared 

to the estimation performed through BH. Confidence intervals of the means are reported in (b) but not in (a). 
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Estimated in the GM BH RS Estimated in the GM BH RS 

Voxel-wise BOLD Signal Variability 1.3±0.8% 1.2±0.7% CVRBOLD  0.74±0.17% 0.40±0.18% 

Global BOLD Signal Variability 0.7±0.1% 0.5±0.3% CVRCBF 11.9±5.1 %  7.2±2.6% 

Voxel-wise CBF Signal Variability 59±17% 58±27% Maximum BOLD (M) 7.9±2.1% 6.9±1.8% 

Global CBF Signal Variability 35±12% 25±20 % OEF 36±4% 32±6% 

 CMRO2 162±35μmol/100g/min 143±33μmol /100g/min 

Table 1: Average GM values of the main metrics evaluated. CVRBOLD and CVRCBF represent the voxel-wise 

variability of BOLD and CBF signal explained by the normalized global GM BOLD signal (with a 1 TR, ±4.4 s, 

time lag allowed). M, OEF, and CMRO2 are derived from CVRBOLD and CVRCBF through modelling (Chiarelli et 

al., 2022a). 

 

 

 

 

 


