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A B S T R A C T

BOLD and cerebral blood flow (CBF) signal perturbations induced by isometabolic vasodilation enable the 
estimation of BOLD and CBF cerebrovascular reactivities (CVRs) and calibration of the BOLD signal through 
inference of its maximum change (M). We developed a BOLD and oxygen-transport modelling approach that uses 
a hypercapnic estimate of M to map the oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen 
(CMRO2). Inducing hypercapnia requires CO2 inhalation or volitional breath-holding (BH). We present a cali
brated fMRI framework aiming to overcome the limitations of induced hypercapnia that exploits endogenous 
resting-state (RS) modulations in brain hemodynamics. This approach was compared against BH. We derived a 
fitting regressor representing a non-metabolically demanding vascular signal from the average grey matter (GM) 
BOLD obtaining similar parametric maps between BH and a 10-min RS. Associations between average GM values 
were M: r=0.70, OEF: r=0.88, CMRO2: r=0.94 (p-values<10− 4) with slight underestimation of parameters 
derived from RS (~10%) compared to BH. The most informative frequency range to extract a vascular regressor 
was in the high-frequency portion of the RS spectrum (oscillation times <20 s), where modulations in systemic 
pressure induced by breathing occur. RS fMRI estimation of CMRO2 appears feasible, and it holds promise for 
research and clinical application.

1. Introduction

The human brain consumes approximately 20% of the energy 
available to the body, primarily for restoring synaptic ionic gradients 
and supporting intrinsic or spontaneous activity in communicating 
neurons at rest (Magistretti and Allaman, 2013). Since the brain does not 
have significant reserves of its metabolic substrates, i.e., glucose and 
oxygen, its ability to regulate the local blood supply through cerebral 
blood flow (CBF) is key to maintaining brain function and tissue integ
rity (Raz et al., 2007). Cerebrovascular reactivity (CVR) reflects the 
capacity of the brain’s vasculature to increase CBF following a vaso
dilatory stimulus. It is an essential property of the brain’s blood vessels 

to maintain nutrient supply in the face of changing demand (Carrera 
et al., 2009; Chiarelli et al., 2022b; Liu et al., 2019). Neural energy 
consumption is reflected in the cerebral metabolic rate of oxygen con
sumption (CMRO2), given that brain metabolism is mainly oxidative 
(Zauner et al., 2002). Therefore, both CVR and CMRO2 may be consid
ered important markers of brain physiology and pathology (Pillai and 
Mikulis, 2015; Watts et al., 2018).

Magnetic resonance imaging (MRI) can quantify both CVR and 
CMRO2. CVR is assessed through dynamic evaluation of MRI signals that 
are sensitive to CBF. CMRO2 is quantified through concurrent measures 
of baseline CBF and venous oxygen saturation (SvO2, or oxygen 
extraction fraction, OEF) which are combined, using the Fick Principle, 
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to estimate CMRO2. CBF can be efficiently mapped in the grey matter 
(GM) using Arterial Spin Labelling (ASL), one of several different MRI 
approaches available. SvO2 and thus OEF can be evaluated using various 
MRI methods that exploit the paramagnetic properties of deoxy
hemoglobin (dHb). Calibrated functional MRI (fMRI) approaches exploit 
dynamic Blood Oxygen Level Dependent (BOLD) and ASL acquisitions 
(Bright et al., 2019; Chen et al., 2022; Davis et al., 1998; Hoge, 2012) 
acquired during isometabolic modulations of brain physiology to derive 
the maximum BOLD signal change (M), which is the BOLD signal 
obtainable with the complete removal of dHb from the voxel. In contrast 
to other MRI approaches that map brain oxygenation, such as those 
based on relaxometry (e.g., quantitative BOLD, qBOLD) or on phase 
images (e.g., quantitative susceptibility mapping, QSM) (He et al., 2008; 
Zhang et al., 2015), calibrated fMRI methods are insensitive to 
non-blood sources of susceptibility, with dHb being the only para
magnetic substance that changes its concentration over time within the 
acquisition period. Initial implementations of calibrated fMRI used a 
single respiratory challenge (primarily a hypercapnic one) to estimate M 
through the Davis Model of the BOLD signal, which could then be 
applied in subsequent BOLD-ASL recordings to infer modulations in 
CMRO2 and the flow-metabolism coupling during a task (Davis et al., 
1998; Hoge, 2012). Notably, gas-free calibrated fMRI attempted to es
timate M from quantitative R2′ relaxometry measures (Chen et al., 2022; 
Kida et al., 2000), facing the same limitations as the more recent qBOLD 
approach. Due to the dependence of M on both baseline OEF and venous 
blood volume (CBVv), quantification of baseline CMRO2 was not 
possible using these methods. The method introduced for the quantita
tive mapping of CMRO2 through fMRI relies on a dual calibration 
approach (dc-fMRI), in which cerebral hemoglobin saturation is 
modulated with two separate respiratory challenges (one hypercapnic 
and one hyperoxic) (Bulte et al., 2012; Gauthier et al., 2012; Gauthier 
and Hoge, 2012; Germuska and Wise, 2019) to decouple the contribu
tions of baseline CBVv and OEF to M. Although dc-fMRI has been applied 
in clinical research studies (Chandler et al., 2023), its adoption is limited 
by the low signal-to-noise ratio (SNR) intrinsic to this technique and by 
the complex apparatus and gas-challenge paradigm required to induce 
hypercapnia and hyperoxia (Germuska and Wise, 2019).

We recently developed a calibrated fMRI approach that integrates 
the Davis Model of BOLD signal (Davis et al., 1998) with a biophysical 
model of oxygen diffusion from capillaries to mitochondria, requiring 
only one hypercapnia-based measure of M to estimate resting CMRO2 
(Chiarelli et al., 2022a; Driver et al., 2024; Hayashi et al., 2003; Hyder 
et al., 1998). This simple diffusion model assumes that steady-state ox
ygen extraction depends on the product of the mean blood transit time in 
capillaries and the oxygen pressure gradient between capillaries and the 
mitochondria at the end of the diffusion path. Using this model and 
assuming low oxygen pressure at the mitochondria (PmO2), the model 
describes the baseline CBVv as a function of baseline CBF (that we 
measure with ASL) and OEF (Gjedde, 2002; Gjedde et al., 1999). 
Modelling studies and experimental comparison with the 
dual-calibrated approach demonstrated the viability of this method, at 
least within plausible ranges of physiological parameters and in healthy 
subjects (Chiarelli et al., 2022a). However, this approach still requires a 
hypercapnic gas challenge or an alternative hypercapnic stimulus such 
as breath-holding (BH), limiting its applicability in some settings (e.g. in 
sedated or uncompliant individuals or participants with altered lung 
function) (Driver et al., 2024).

It would be preferable in many instances to estimate M directly from 
resting-state (RS) data, without the need for an explicit hypercapnic 
stimulus. However, the estimation of M requires the measurement of 
isometabolic fluctuations in the BOLD and ASL signal, whereas the local 
RS modulations are known to have a non-isometabolic component 
(Fukunaga et al., 2008). Nonetheless, isometabolic vascular fluctuations 
are present during RS (Biswal et al., 2007; Chang and Glover, 2009; 
Kannurpatti et al., 2011; Kannurpatti and Biswal, 2008; Tak et al., 
2015). An isometabolic signal might be extracted by exploiting natural 

variation in the cerebral blood vessel tone or systemic pressure, induced 
by respiration or other endogenous physiological factors (Birn et al., 
2008; Chang and Glover, 2009). The signal, which we posit is unrelated 
to local brain metabolism, could then be used as a regressor to estimate 
maps of BOLD and CBF signal changes relative to this signal (depicting 
the local vascular response following the global endogenous stimulus, i. 
e., relative CVRBOLD and CVRCBF) and infer M. These approaches have 
previously been attempted on BOLD signal recordings to estimate 
CVRBOLD. For example, the significant temporal association between 
end-tidal partial pressure of CO2 (PETCO2, a marker of CO2 concentra
tion in arteries, CaCO2) and the BOLD signal at rest suggests the possi
bility to use such a signal to infer CVRBOLD (Chang and Glover, 2009; 
Golestani et al., 2016; Wise et al., 2004). However, using the PETCO2 
signal requires the expired air to be sampled from a mask or a nasal 
cannula, and practically, in our experience, the acquired signals may be 
contaminated by imperfect sampling and by small variations in the 
expiration pattern. Although mostly inconsequential when large mod
ulations in PETCO2 occur, for example, during a hypercapnic stimulus, 
these effects may be significant when trying to reliably estimate the 
small temporal fluctuations of the signal of interest during rest. An 
alternative approach was proposed by Liu and Colleagues (Liu et al., 
2017), which suggested using the global BOLD signal modulation as 
representative of a purely vascular, non-metabolically demanding, 
signal. Global, non-region-specific fluctuations in BOLD MRI signal are 
known to be related to several physiological mechanisms, including 
cardiac cycle, breathing cycle and slow physiological variations in blood 
pressure (Liu et al., 2017; Murphy et al., 2013; Wise et al., 2004). This 
approach is consistent, for example, with the procedures frequently 
adopted when conducting RS analysis of brain activity, where the global 
signal is generally considered of vascular origin and is regressed out 
from each voxel as a pre-processing step (Macey et al., 2004; Murphy 
et al., 2009; Rogers et al., 2007). The approach implemented by Liu and 
colleagues was demonstrated to be reproducible and accurate compared 
to the CO2 inhalation method.

Here, we propose to extend such an approach to concurrent RS 
BOLD-ASL recordings and combine this experimental method with our 
recently proposed modelling of the BOLD signal. This work aims to 
deliver a novel stimulation-free RS calibrated fMRI framework that en
ables calculation of maps of relative CVRBOLD and CVRCBF and, by 
combining these two, maps of the maximum BOLD modulation M. M can 
then be used to derive relevant quantitative information on OEF and 
CMRO2. The approach is validated against calibrated fMRI relying on a 
hypercapnic stimulus, namely, breath-holding (BH) (Driver et al., 2024; 
Thomason et al., 2006).

2. Methods

2.1. BOLD analytical modeling

Here, we summarize the biophysical model used for parameter 
estimation. For a detailed description of the model please refer to 
Chiarelli & Germuska (Chiarelli et al., 2022a) and the associated Sup
plementary Material.

2.1.1. Measuring the maximum BOLD signal
For small perturbations of R2* induced by changes in dHb, the 

steady-state fractional BOLD signal can be expressed as (Buxton, 2009; 
Germuska and Wise, 2019): 

ΔBOLD
BOLD

= M⋅
{

1 −

(
CBVv,m

CBVv

)

⋅
(

1 − SvO2,m

1 − SvO2

)β}

(1) 

where CBVv is the BOLD-sensitive blood volume (which actually refers 
to the blood volume where dHb is confined, which is primarily of venous 
origin but it also has a smaller contribution from capillaries), SvO2 is the 
venous saturation, and the subscript m depicts a temporal modulation. 
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The constant parameters are M, which is the maximum BOLD modula
tion (a function of baseline dHb), and β, which is a field strength and 
vessel geometry dependent constant larger than 1 describing the 
supralinear effect of dHb in blood on the BOLD signal (β =1.3 at 3T) 
(Bulte et al., 2012). Using the Grubb relation (Grubb et al., 1974) and 
the Fick Principle (refer to Eq. 5), Eq. 1 can be expressed as a function of 
modulation in CBF and CMRO2 as: 

ΔBOLD
BOLD

= M⋅
{

1 −

(
CBFm

CBF

)α− β

⋅
(

CMRO2,m

CMRO2

)β}

(2) 

where α is the Grubb exponent (α =0.38). Assuming isometabolism with 
hypercapnia, M can be measured through fractional BOLD and CBF 
changes as: 

M =
ΔBOLD
BOLD

{

1 −

(

1 + ΔCBF
CBF

)α− β} =
CVRBOLD⋅Δvas

{
1 − (1 + CVRCBF⋅Δvas)α− β} (3) 

where BOLD and CBF fractional changes can be divided by a measure of 
the vasoactive stimulus amplitude (Δvas, often measured in units of 
mmHg of PETCO2 change following hypercapnia) to infer CVRBOLD (e.g., 
in units of %BOLD/mmHg) and CVRCBF (e.g., in units of % CBF/mmHg).

Although in this work Eq. 3 was used for the computation of M, it is 
worth noting that Eq. 3 can be linearized relative to the modulation in 
CBF, assuming it to be small, to obtain: 

M =
ΔBOLD
BOLD

(β − α)⋅
(

ΔCBF
CBF

) =
CVRBOLD

(β − α)⋅CVRCBF
(4) 

Since β − α ≈ 1, M is almost equal to the ratio of the fractional 
changes of BOLD and CBF (or CVRBOLD/ CVRCBF).

2.1.2. Measuring CMRO2
Baseline CMRO2 can be estimated with MRI through the Fick Prin

ciple (the conservation of oxygen mass): 

CMRO2 = CBF⋅OEF⋅CaO2 (5) 

Baseline CBF can be inferred from the baseline ASL signal, whereas CaO2 
can be estimated from end-tidal partial pressure of O2 (PETO2) mea
surements (refer to Eqs 14 and 15). OEF is defined as: 

OEF =
CaO2 − CvO2

CaO2
(6) 

with CaO2 and CvO2 being arterial and venous blood oxygen content, 
respectively. The maximum BOLD signal M is expressed as a function of 
resting CBVv and SvO2 (or OEF) as (Buxton, 2009; Germuska and Wise, 
2019) : 

M = TE⋅A⋅CBVv⋅((1 − SvO2)⋅[Hb])β

= TE⋅A⋅CBVv⋅
((

1 −
CaO2

φ⋅[Hb]
⋅(1 − OEF)

)

⋅[Hb]
)β

(7) 

where TE is the echo time of the acquisition, A is a field strength and 
vessel geometry dependent constant, φ is the oxygen binding capacity of 
hemoglobin (φ=1.34 mL/g) and [Hb] is the concentration of hemoglo
bin in blood. Of note, the link between SvO2 and OEF is derived 
assuming negligible plasma O2 content on the venous side. (Chiarelli 
et al., 2022a). TE is known, A can be assumed or derived through 
modelling, and [Hb] can be measured using blood samples or by 
measuring the T1 of blood in a large vessel, which primarily depends on 
[Hb].

Eq. 7 has two physiological unknowns, baseline CBVv and OEF, 
which makes it impossible to solve for OEF through a single estimate of 
M without additional constraints.

We recently introduced into the calibrated fMRI framework a simple 

model of diffusion of oxygen from capillaries to mitochondria that states 
that the steady-state extraction of oxygen from capillaries is propor
tional to the product of mean capillary transit time (MCTT) and the 
pressure gradient along the diffusion path: 

OEF⋅CaO2 = k⋅MCTT⋅

(

P50⋅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2
OEF

− 1h

√

− PmO2

)

(8) 

where k is the effective permeability of the capillary and the sur

rounding brain tissue, 

(

P50⋅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2
OEF − 1h

√
)

is the capillary oxygen pressure, 

and PmO2 is the oxygen pressure at the mitochondria. Capillary oxygen 
pressure depends on OEF, P50, which is the oxygen partial pressure when 
half of Hb is saturated (generally P50≈26 mmHg; P50 can be inferred 
from a measure of PaCO2), and h, which is the Hill constant (h=2.8). Eq. 
8 can be rewritten via the central volume principle (i.e., MCTT=CBVcap/ 
CBF) with CBV of capillaries (CBVcap) being a fraction of CBVv (i.e., 
CBVv=ρ•CBVcap) as: 

CBF⋅OEF⋅CaO2 =
k
ρ⋅CBVv⋅

(

P50⋅

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2
OEF0

− 1h

√

− PmO2

)

(9) 

Eq. 9 allows us to express CBVv as a function of CBF and OEF as: 

CBVv = CBF⋅
ρ
k

⋅
OEF⋅CaO2(

P50⋅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2
OEF − 1h

√

− PmO2

) (10) 

where the CBF is multiplied by ρ
k⋅

OEF⋅CaO2(

P50 ⋅
̅̅̅̅̅̅̅̅̅

2
OEF− 1h

√
− PmO2

) which is the MTT 

within the venous compartment.
Eq. 10 can be integrated into Eq. 7 to obtain: 

M = TE⋅
A⋅ρ
k

⋅
CBF⋅OEF⋅CaO2⋅

((

1 − CaO2
φ[Hb]⋅(1 − OEF)

)

⋅[Hb]
)β

(

P50⋅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2
OEF − 1h

√
− PmO2

) (11) 

TE, β and h in Eq. 11 are known constants related to the MRI 
acquisition scheme, MRI physics and oxygen bounding properties of 
hemoglobin, whereas quantitative CBF at rest can be measured with ASL 
(refer to the Data Analysis, fMRI Processing paragraph). Moreover 
baseline values of P50, CaO2 and [Hb] can be estimated from PETCO2 and 
PETO2 traces and from measures of blood hematocrit (please refer to the 
Methods Section, paragraphs Data Analysis, Analysis of Gas Recordings 
and Estimation of Blood Hemoglobin Concentration). Since the lumped 
parameter A⋅ρ

k should be near constant in the absence of significant 
vascular remodelling and PmO2 is generally small in the human brain 
(PmO2≈0) (Gjedde, 2002), Eq. 11 can be used to infer OEF from mea
sures of M and hence CMRO2 through Eq. 5. We assigned a value of 8.8 
s− 1g− βdLβ/(μmol/mmHg/mL/min) to the term A⋅ρ

k , matching our previ
ously established in-vivo measurement when PmO2 is fixed to 0 mmHg 
(Chiarelli et al., 2022a).

2.2. Data acquisition

Thirty-three healthy volunteers (16 females, age (mean ± standard 
deviation) = 24.5 ± 6.0 years) were recruited at CUBRIC, Cardiff Uni
versity, Cardiff, UK. The study was performed in accordance with the 
Declaration of Helsinki and was approved by the Cardiff University, 
School of Psychology Ethics Committee. Written consent was obtained 
from each participant. Data were acquired using a Siemens MAGNETOM 
Prisma (Siemens Healthcare GmbH, Erlangen, Germany) 3 T clinical 
scanner with a 32-channel receiver head coil (Siemens Healthcare 
GmbH, Erlangen, Germany).
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BOLD-ASL fMRI data were acquired during RS and BH using an in- 
house PCASL acquisition scheme with pre-saturation and background 
suppression (Okell et al., 2013) and a dual-excitation (DEXI) echo planar 
imaging (EPI) 2D readout (Schmithorst et al., 2014). The labelling 
duration (τ) and the Post Label Delay (PLD) were both set to 1.5 s, 
GRAPPA acceleration (factor = 3) was used with TE1 = 10 ms and TE2 =

30 ms. An effective TR of 4.4 s was used to acquire 15 slices, with an 
in-plane resolution of 3.4 × 3.4 mm2 and a slice thickness of 6 mm with a 
20% slice gap. The RS protocol consisted of a 10-minute and 16-second 
DEXI PCASL acquisition. During RS the participants were instructed to 
fix their vision on a cross at the center of the screen with a grey back
ground. The BH protocol was visually guided via instructions projected 
onto the same screen and included 10 repeats of a 20 second duration 
post-expiratory breath-holding with 30 seconds of recovery (normal 
breathing) in between. Subjects were instructed to fully breathe out at 
the end of each BH to enable estimation of arterial content of O2 and 
CO2. During the fMRI recordings, CO2 and O2 in the expired air were 
evaluated from the volunteer’s nasal cannula using a gas analyzer (AEI 
Technologies, Pittsburgh, PA, USA).

Calibration images (S0) were acquired for ASL quantification with 
PCASL labelling and background suppression pulses switched off, with 
TR=6 s, and TE=10 ms (Germuska et al., 2019). Two S0 images were 
acquired with opposite phase encoding directions twice, before RS and 
BH, to allow for distortion corrections in the BOLD-ASL fMRI acquisi
tion. An in-house inversion recovery sequence, with a single slice 
readout, was acquired with the imaging plane intersecting the superior 
sagittal sinus in order to estimate the longitudinal relaxation time con
stant (T1) of blood and infer [Hb] (Varela et al., 2011). The sequence 
consisted of a nonselective inversion pulse followed by fast 
(TR/TE=150/22ms) acquisitions of a single slice (EPI readout, 3-mm 
slice thickness, 128×128 matrix, 1.8×1.8 mm2 in-plane resolution) ac
quired for 6 seconds. The short TR saturated the static tissue and high
lighted the longitudinal magnetization recovery of the inflowing blood. 
16 inversions were performed to increase the confidence in the T1 
estimate.

A magnetization-prepared rapid acquisition with gradient echo 
(MPRAGE) T1-weighted scan was acquired for registration and brain 
segmentation purposes (matrix 165×203×197, 1-mm isotropic resolu
tion, TR/TE = 2100/3.24 ms).

2.3. Data analysis

2.3.1. Analysis of gas recordings
PETCO2 and PETO2 were extracted from CO2 and O2 recordings using 

in-house software developed in Matlab (The MathWorks, Inc. MATLAB 
R2022b) (Chiarelli et al., 2022a). Average PETCO2, assumed to be in 
equilibrium with PaCO2 during RS, was used to infer P50 from estimates 
of resting blood pH based on the Henderson-Hasselbalch Equation, 
assuming [HCO3

− ]= 24 mmol/L (Gai et al., 2003): 

pH = 6.1 + log
( [

HCO−
3
]

0.03⋅PaCO2

)

(12) 

and calculating P50 according to the linear relation (Germuska et al., 
2019): 

P50 = 221.87 − 26.37⋅pH (13) 

CaO2 was calculated from average PETO2, assumed equal to PaO2 
during RS, using the Hill Equation: 

SaO2 =
1

1 +

(
P50

PaO2

)h (14) 

and the equation: 

CaO2 = φ⋅[Hb]⋅SaO2 + ε⋅PaO2 (15) 

where ε is the oxygen plasma solubility in blood (ε=0.0031 mL/mmHg/ 
dL), and [Hb] was estimated through Eq. 16.

2.3.2. Estimation of blood hemoglobin concentration
The T1 of venous blood was estimated from non-linear least squares 

fitting to a mono-exponential signal model using the long TR approxi
mation, S=|a+b⋅e(− TI/T1)| where TI is the time of inversion. To reduce 
possible contamination from blood water of non-venous origin, only the 
first 4 seconds from the inversion were used. Automatic voxel selection 
for the sagittal sinus was performed by first defining a small rectangular 
region of interest (ROI) measuring 60×30 mm² around the superior 
sagittal sinus. Secondly, voxels with intensity above the 50th percentile 
within this ROI were retained in the third acquired slice, where complete 
saturation of static tissue was achieved. The blood hematocrit (Hct) was 
determined from the linear relationship with venous T1 previously re
ported at 3 T (Lu et al., 2004): 

T1(s) =
1

0.83⋅Hct + 0.28
(16) 

Hct was converted to [Hb], assuming a ratio Hct/[Hb]=3 (%dL/g) 
(Insiripong et al., 2013).

2.3.3. fMRI processing
Both RS and BH fMRI data were processed using FSL (Jenkinson 

et al., 2012), ANTs (Avants et al., 2011), and in-house Matlab algo
rithms. Time courses were divided by TE and PCASL tagging (tag/con
trol). Tag and control images for both echoes were motion-corrected 
with FSL’s MCFLIRT (Jenkinson et al., 2002). Initial volumes of tag and 
control images were rigidly registered using FLIRT to minimize 
misregistration from tag-control contrast differences. BH and RS vol
umes were rigidly aligned using ANTs to the brain-extracted S0 (esti
mated with FSL BET), acquired with the same phase encoding as the 
functional scans. Susceptibility distortions were corrected using FSL 
TOPUP with two S0 images of different phase encoding direction (Smith 
et al., 2004). Finally, BH images were registered to RS images using 
ANTs.

All subsequent analysis was performed in Matlab (The MathWorks, 
Inc. MATLAB R2022b).

TE1 surround subtractions (ΔS) were converted into CBF (expressed 
in quantitative units of mL/100g/min) through the single compartment 
kinetic model for PCASL with voxelwise S0 normalization (Alsop et al., 
2015): 

CBF =
6000⋅λ⋅e

PLD
T1b

2⋅η⋅ ηinv⋅T1b⋅

(

1 − e−
τ

T1b

) ⋅
(

ΔS
S0

)

(17) 

where λ is the water partition coefficient (λ= 0.9 mL/g), T1b is the T1 
relaxation constant of arterial blood (estimated through the inversion 
recovery acquisition with correction for being arterial blood) (Lu et al., 
2004), η is the tagging inversion efficiency (η =0.85), and ηinv is a 
scaling factor to account for the reduction in tagging efficiency due to 
background suppression (ηinv=0.88) (Aslan et al., 2010; Mutsaerts et al., 
2014). To avoid the confounding effects of spatial high-frequency fea
tures of S0 during normalization, a low-pass filtered version of S0 was 
used, estimated through second-order polynomial fitting of the 
brain-masked S0. In order to avoid possible misregistration effects be
tween functional scans and structural images, the time averaged CBF 
map was used to extract an apparent GM mask. Owing to the much 
higher perfusion of GM compared to white matter (WM), the presence of 
GM was evaluated by normalizing the CBF map between its 5th and its 
95th percentile and by setting to zero all values below 0 and above 1 after 
normalization (to exclude outliers). Voxels were labelled as GM if their 
normalized value was above 0.5. TE2 volumes were used for BOLD signal 
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extraction.
For the BH task, BOLD and CBF signals were band-pass filtered 

(Butterworth digital filter, order 4) with cut-off times of 10 s (0.1 Hz of 
low-pass cut-off frequency) and 200 s (0.005 Hz of high pass cut-off 
frequency). The low-pass cut-off time of 10 s (0.1 Hz) was chosen to 
approximate a surrounding averaging required to eliminate any residual 
perfusion effect on BOLD signal induced by the alternating tagging 
(considering a Nyquist time of 8.8 s, 0.11 Hz of Nyquist frequency). The 
high-pass cut-off time was chosen to eliminate slow drifts without dis
torting the response and recovery signal to the BH task.

The RS BOLD and CBF signals were band-pass filtered (Butterworth 
digital filter, order 4) with variable combinations of low-pass and high- 
pass frequency to explore the optimal frequency band to be used. The 
low-pass cut-off times varied from 10 s (0.1 Hz) to 100 s (0.01 Hz), 
whereas the high-pass cut-off times varied from 40 s (0.025 Hz) to 300 s 
(0.003 Hz), please refer to the Results Section, paragraph Effect of 
Filtering and Recording Time on Resting-State Analysis. The optimal 
band-pass filter was identified with cut-off times between 10 s and 150 s, 
which were used for the main results presented.

The following analysis was conducted for both BH and RS. Global GM 
BOLD signals were calculated as the median value within the GM mask 
for each time point, following band-pass filtering. These signals were 
converted to z-scores to represent a vascular signal with zero mean and 
unit variance. Voxel-wise BOLD and CBF signal modulations relative to 
the vascular signal were assessed using linear regression within a gen
eral linear model (GLM) framework (Friston, 1994). The voxel-wise 
signal could shift by one sample (± 4.4 s) to best correlate with the 
vascular signal, estimating the local cerebrovascular response time lag 
relative to the global signal. The regression weight estimated the BOLD 
or CBF modulation associated with the global vascular signal, expressed 
as %BOLD and %CBF changes due to the unitary variance of the vascular 
signal. The Signal-to-Noise Ratio (SNR) of the modulation estimate was 
calculated by dividing the GLM β-weight by its confidence interval. 
CVRBOLD and CVRCBF maps were used to estimate M from Eq. 3. OEF was 
inferred using Eq. 11, with non-linear inversion through parameter 
space exploration. CMRO2 was estimated via Eq. 5. Average GM values 
of the parameters were extracted, and parametric maps were warped 
onto MNI152 space (using FSL’s FNIRT) for average map evaluation 
across subjects. RS acquisition time effects were investigated by 
repeating the RS analysis at intervals from 20 s, increasing in 20 s steps, 
up to the entire available acquisition time.

2.4. Statistical analysis

Pearson’s correlations and t-tests were performed to assess pairwise 
associations and biases between the parameters estimated through BH 
and RS. Normality evaluation was performed prior to statistical infer
ence using the Kolmogorov-Smirnov test. A null hypothesis probability 
below 5% (p<0.05) was considered statistically significant.

3. Results

3.1. Arterial oxygenation

PETO2 during the RS recordings was, on average, PETO2=111±7 
mmHg (mean±std), whereas the average PETCO2 was PETCO2=36±3 
mmHg. PETO2 and PETCO2 were respectively assumed to be in equilib
rium with PaO2 and PaCO2. From Eqs 12 and 13, the PaCO2 delivered an 
estimated average P50=25.6±1.4 mmHg. From Eq. 14, an average 
SaO2=98.3±0.5 % was estimated. The T1 of blood, inferred from the 
inversion recovery acquisition, was on average T1,blood=1632±117 ms, 
which delivered, through Eq. 16, a hematocrit of Hct=40.5±5.1 % and a 
hemoglobin concentration in blood of [Hb]=13.5±1.7 g/dL. From Eq. 
15, the average blood oxygen content was CaO2=17.9±2.2 mL/dL.

3.2. Vascular signal and cerebrovascular reactivity

Fig. 1a reports an example, for a representative subject, of the time- 
averaged RS CBF map and the corresponding apparent GM mask. Fig. 1b 
depicts, for the same subject, the average GM BOLD signal extracted for 
the BH and the RS recordings. Clear periodic modulations of a few 
percentage points of the BOLD signal are visible for the BH. These 
modulations are induced by changes in flow caused by the hypercapnic 
BH task. The RS modulation exhibits, as expected, aperiodic and smaller 
fluctuations. These signals were normalized (converted to z-scores) and 
assumed to represent an isometabolic vascular signal to estimate relative 
CVRBOLD and CVRCBF.

Fig. 2a reports boxplots showing the variability (standard deviation 
after bandpass filtering) of the voxel-wise and global BOLD (upper row, 
left image) and CBF (upper row, right image) signals in the gray matter 
(GM) during BH and RS. Additionally, Fig. 2a presents the estimated 
average GM CVRBOLD and CVRCBF (lower row) for both BH and RS. The 
voxel-wise BOLD variability in the GM was 1.3±0.8 % during BH and 1.2 
±0.7 % during RS, while the global GM BOLD signal variability was 0.7 
±0.1 % during BH and 0.5±0.3 % during RS. The voxel-wise CBF 
variability in the GM was 59±17 % during BH and 58±27 % during RS, 
whereas the global GM CBF signal variability was 35±12 % during BH 
and 25±20 % during RS. The CVRBOLD in the GM was 0.74±0.17 % for 
BH and 0.40±0.18 % for RS. The CVRCBF in the GM was 11.9±5.1 % for 
BH and 7.2±2.6 % for RS. The CVR metrics obtained represent the 
variability in the voxel-wise signal (% of signal change) that was 
explained by the normalized (z-scored) global GM BOLD signal (after 
allowing for ±1 TR, ±4.4 seconds time lag). Since the global regressor is 
the same for both BOLD and CBF, their values are comparable within 
each subject and condition. It is important to note that, although 
CVRBOLD and CVRCBF are larger for BH compared to RS, the ratio be
tween the two is similar. The ratio of the two CVRs (apart from mild non- 
linearities and scaling parameters) is close to M (as shown in Eqs 3 and 
4). Figs 2b and 2c present images of CVRBOLD and CVRCBF (the images 
were z-scored to highlight spatial similarities), and cerebrovascular 
response time lag for an exemple subject (upper rows for each subplot) 
as well as average maps in MNI space (lower rows for each subplot). The 
maps depicted were derived from BH (left column for each subplot) or 
RS (right column for each subplot). Spatial similarities between the BH 
and RS-derived maps are evident upon visual inspection. Comparing 
average maps between BH and RS, CVRBOLD exhibited a spatial corre
lation of r=0.74, whereas CVRCBF had a spatial correlation of r=0.23 (all 
p’s< 10− 4). The spatial correlations of cerebrovascular response latency 
were r=0.65 for BOLD and r=0.23 for CBF (all p’s<10− 4). The average 
GM SNRs with BH were 15.6±3.5 and 4.9±1.4 for CVRBOLD and CVRCBF, 
respectively. The average GM SNR with RS were 8.9±3.1 and 3.5.0±1.4 
for CVRBOLD and CVRCBF, respectively.

3.3. Maximum BOLD modulation and brain oxygen consumption

Fig. 3 displays images of the quantitative physiological parameters 
extracted through modelling, namely M (a), OEF (b) and CMRO2 (c). 
OEF and CMRO2 were derived twice, using M obtained from the BH or 
RS signal modulation experiment (indicated in the figure with the labels 
‘BH M’ and ‘RS M’). The maps are reported similarly to Fig. 2. 
Comparing the group-average maps of BH and RS, the voxel-wise cor
relations were r=0.58, r=0.28 and r=0.78 for M, OEF and CMRO2, 
respectively (all p’s<10− 4).

Fig. 4 reports the scatterplots and the Bland-Altmann plots 
comparing the average M (a), OEF (b) and CMRO2 (c) in the GM between 
BH and RS. Significant associations between the average GM values 
obtained via the two modulations (BH and RS) were obtained for all 
parameters (M: r=0.70, OEF: r=0.88, CMRO2: r=0.96, all p’s<10− 4). A 
systematic bias was observed for the different parameters, with an un
derestimation of RS derived parameters compared to those derived from 
BH. The M value in the GM was, on average, M=7.9±2.1 % for BH and 
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M=6.9±1.8 % for RS with a difference of 12.7% (RS vs. BH: t=-3.59, 
p<10− 3). The OEF in the GM was, on average, OEF=36±4 % for BH and 
OEF=32±6 % for RS with a difference of 11.1% (RS vs. BH: t=-8.1, 
p<10− 4). CMRO2 in the GM was, on average, CMRO2=162±35 μmol/ 
100g/min for BH and CMRO2=143±33 μmol/100g/min for RS with a 
difference of 11.7% (RS vs. BH: t=-10.5, p<10− 4).

Table 1 summarizes the GM values of the main metrics evaluated.

3.4. Effect of filtering and recording time on resting-state analysis

Fig. 5 illustrates the impact of band-pass filtering cut-off frequencies 
and RS recording time on estimating the average M in GM compared to 
BH. We focus on M as it is the quantitative parameter directly derived 
from fMRI signals, with brain oxygenation inferred through modeling. 
The left column displays the average estimation error (bias error), while 
the right shows the root mean square error (RMSE, combined bias and 
variance effects). Fig. 5a indicates optimal performance with a low-pass 
time of 10 s (0.1 Hz). The high-pass cut-off is less critical, with optimal 
RMSE at around 150 s (0.0067 Hz). These values were used in our 
analysis. Fig. 5b shows how increased recording time leads to a mono
tonic reduction in underestimation of average M and RMSE, with 
average values and confidence intervals presented.

4. Discussion

Here, we introduced a novel framework to perform calibrated BOLD- 
ASL fMRI at rest without a concurrent exogenous modulation in brain 
physiology. The proposed method is distinguished from other non- 
invasive MRI methods of mapping CMRO2 (He et al., 2008; Zhang 
et al., 2015) by two principal features. Firstly, the method provides a 
multiparametric mapping of brain physiology, including BOLD-derived 
and ASL-derived relative vascular reactivities (CVRs). Secondly, the 
method maps venous oxygenation by exploiting deoxyhemoglobin os
cillations over time, delivering an estimate which is virtually unaffected 
by other sources of magnetic susceptibility.

A fundamental requirement of the method is that the component of 
the fluctuations of BOLD and ASL signals used to establish the vascular 
reactivities is of purely vascular origin and unrelated to brain meta
bolism. We used the global GM BOLD signal as representative of a pure 
vascular signal based on a previously proposed method applied to 
standalone BOLD recordings (Liu et al., 2017). Using such a signal, we 
were able to extract CVRBOLD and CVRCBF (in arbitrary units of % signal 
change) as well as cerebrovascular response latency maps with satis
factory SNR (SNR of the estimate was, on average, around 10 for BOLD 
and 3.5 for ASL in the GM) and with significant spatial similarities to 
those extracted with the vasoactive stimulus (hypercapnia induced 
through breath holding, Fig. 2). Considering that images were not 

Fig. 1. (a) Example, for a representative subject, of average CBF map and the extracted apparent GM mask. (b) For the same subject as in (a), average GM BOLD 
signal for the BH and the RS recordings which were then normalized (z-scored) to obtain the global vascular signal to be used as a regressor in the CVRBOLD and 
CVRCBF estimation.
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smoothed, and the spatial similarities were evaluated on the entire 3D 
volume, the correlations obtained for average maps were excellent for 
CVRBOLD (r=0.74) and acceptable for CVRCBF (r=0.23). For the CVRCBF 
spatial analysis, it is worth noting that this parameter is characterized by 
having fewer spatial features compared to CVRBOLD (which is also 
weighted by CBVv), contributing to a decrease in the spatial correlations 
(Biondetti et al., 2024; Zhao et al., 2021). Moreover, CVRCBF maps are 
affected by ASL noise in the WM, where the method has a particularly 
low SNR due to the long arrival times of blood in this compartment). 
Although expressed in relative units of BOLD or ASL signal change, the 
resting-state CVR maps did spatially align with the maps derived from 
breath-holding. This is inherently interesting, as these CVR maps can be 
utilized to examine local changes in vascular function in patients by 
spatially comparing brain regions on an individual basis.

With respect to oxygen consumption quantification, the M maps 

were similar between RS and BH, with a 3D spatial correlation of the 
group mean image of r=0.58. Also, the CMRO2 maps were highly similar 
with a group mean image correlation of r=0.78. For OEF, the spatial 
correlation was r=0.28. However, the same concept of CVRCBF applies to 
the OEF map, since OEF is known to be largely uniform within the brain 
in healthy subjects (Fig. 3). Importantly, when evaluating average GM 
values for M, OEF and CMRO2, the across-subject associations were high 
(from r=0.70 to r=0.96, Fig. 4).

The main advantage of the proposed approach of using a global fMRI 
signal as a regressor to infer CVR and CMRO2 is that it does not require 
independent measures, such as a measure of PETCO2 modulations over 
time, and it generally provides, especially for BOLD, a signal with good 
SNR. Please note that PETCO2 and PETO2 signals were only used to es
timate their average values from which to infer baseline CaCO2 (and 
hence P50) and CaO2. Temporal averages of end-tidal pressures can be 

Fig. 2. (a) Boxplots showing the average variability (standard deviation after bandpass filtering) of the voxel-wise and global BOLD (upper row, left image) and CBF 
(upper row, right image) signals in the GM as well as the CVRBOLD and CVRCBF (lower row, left image and right image, respectively), during BH and RS. (b,c) Example 
of parametric maps obtained for a representative subject (upper rows for each subplot) and average maps in MNI space (lower rows for each subplot) related to CVR. 
The maps are reported when BH (left column for each subplot) or RS (right column for each subplot) was used as experimental paradigm; (b) relative CVRBOLD and 
CVRCBF (to highlight the spatial similarities the images were z-scored); (c) CVRBOLD and CVRCBF response time lags.

Fig. 3. Example of parametric maps obtained for a representative subject (upper rows for each subplot) and average maps in MNI space (lower rows for each subplot) 
for the quantitative physiological parameters extracted from relative CVRBOLD and CVRCBF through modelling. The maps are reported when BH (left column for each 
subplot) or RS (right column for each subplot) was used as experimental paradigm. (a) M; (b) OEF; (c) CMRO2.
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estimated with a much higher accuracy than their small temporal 
modulations at rest. As a note, we found a variability on baseline PETCO2 
and PETO2 below 10%. Considering an average level of [Hb] of 14 g/dL, 
this variability should produce a variability of P50 below 4% and a 
variability of CaO2, when the effect of [Hb] is marginalized, below 1%. 
Although further assessment of the effect of this variability on the 
modelling parameters estimation is required, when partial pressures of 

O2 and CO2 in the exhaled air are not available, we suggest using, at least 
in healthy subjects, standard average values.

When possible, especially in patient populations, these metrics can 
be assessed through blood sampling. Arterial blood sampling allows for 
an accurate estimation of PaO2 and PaCO2, which in turn enables the 
derivation of CaO2 and P50. Using end-tidal measurements as a surrogate 
for arterial gas content has its own limitations, particularly due to the 

Fig. 4. Scatterplots and the Bland-Altman plots comparing, between BH and RS, global GM (a) M, (b) OEF and (c) CMRO2. * p<10− 4.
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assumption of equilibrium between arterial and alveolar gas pressures 
(Bengtsson et al., 2001). Additionally, the current study employed a 
nasal cannula to monitor O2 and CO2 in the expired air, which requires 
participants to breathe almost exclusively through their nose (Bright and 
Murphy, 2013). A pulse oximeter may also be used to derive CaO2, when 
coupled at least with measures of hematocrit. Indeed, arterial or venous 
blood sampling can allow for an accurate estimation of hematocrit, 
which in this study was inferred using quantitative measures of the 
venous T1 relaxation in the superior sagittal sinus. Although the MRI 
method has been proven to be accurate (Varela et al., 2011), more direct 
measurements of hematocrit in blood are preferrable in future studies, 
particularly for clinical applications where a large variability in hemo
globin in blood may be found.

Importantly, the use of a global signal regressor was already vali
dated by our group for the BH task (Driver et al., 2024). When applying 
the approach to BH, the method inherently accounts for several con
founding factors introduced by the hypercapnic BH stimulus (Thomason 
et al., 2005). The BH outcome depends on patient compliance and fac
tors such as expiration time, lung volume, arterial transit time from the 
lung and brain hemodynamics time constant. These factors are largely 
accounted for by using a global brain signal as a regressor. The main 
remaining confounding factor when using BH and a global regressor is 
movement. However, we demonstrated in our previous work that 
movement does not seem to heavily affect the results when simple 
movement correction algorithms are implemented (Driver et al., 2024). 

Table 1 
Average GM values of the main metrics evaluated. CVRBOLD and CVRCBF 
represent the voxel-wise variability of BOLD and CBF signal explained by the 
normalized global GM BOLD signal (with a 1 TR, ±4.4 s, time lag allowed). M, 
OEF, and CMRO2 are derived from CVRBOLD and CVRCBF through modelling 
(Chiarelli et al., 2022a).

Estimated in 
the GM

BH RS Estimated 
in the GM

BH RS

Voxel-wise 
BOLD 
Signal 
Variability

1.3 
±0.8%

1.2 
±0.7%

CVRBOLD 0.74 
±0.17%

0.40 
±0.18%

Global BOLD 
Signal 
Variability

0.7 
±0.1%

0.5 
±0.3%

CVRCBF 11.9±5.1% 7.2±2.6%

Voxel-wise 
CBF Signal 
Variability

59 
±17%

58 
±27%

Maximum 
BOLD (M)

7.9±2.1% 6.9±1.8%

Global CBF 
Signal 
Variability

35 
±12%

25±20 
%

OEF 36±4% 32±6%

CMRO2 162 
±35μmol/ 
100g/min

143 
±33μmol 
/100g/min

Fig. 5. Effect (evaluated as error in the average estimate, left column, and RMSE, right column) of (a) band-pass filtering cut-off times (upper row) and (b) recording 
time (lower row) on RS estimation of GM M compared to the estimation performed through BH. Confidence intervals of the means are reported in (b) but not in (a).
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The drawback of using a global brain signal as a regressor is the absence 
of CVR quantification. However, since the maximum BOLD modulation 
is derived from the comparison of CVRBOLD and CVRCBF (i.e., approxi
mately their ratio), quantification is not required for our application; 
only the use of the same regressor to estimate both CVRs is necessary.

We considered using a global CBF signal from our concurrent ASL 
data as a vascular regressor instead of the BOLD signal. However, this 
approach underperformed, likely due to ASL’s lower SNR compared to 
BOLD, leading to an underestimation of M for RS. Using the GM global 
BOLD signal as a regressor still showed a residual negative bias of about 
10 % in M estimation using RS compared to BH, affecting OEF and 
CMRO2 estimates (Fig. 4). This bias was partially due to limited 
recording time. Increasing the recording time reduced the bias error in 
RS-M compared to BH-M, as shown by a monotonic decrease without a 
plateau within our 10-minute limit (Fig. 5b). The RMSE plot confirmed 
that the maximum recording time was insufficient to minimize error. We 
speculate that the decreasing bias with longer recording times stems 
from spurious correlations between global vascular signals and local 
brain metabolism, which are stronger with limited data samples. The 
resting-state method requires longer acquisition times beyond 10 mi
nutes, likely due to the limited temporal SNR of ASL and smaller 
endogenous vascular modulations compared to exogenous stimuli.

Nonetheless, it is well known that resting-state signals, both at a 
regional and global level, are generated by a mixture of physiological 
and non-physiological effects, which are very complex to discriminate. 
Some of these effects, such as head motion or neural activity, are un
wanted for our application (Ciric et al., 2018; Power et al., 2017; 
Schölvinck et al., 2010). In an approach aimed at minimizing these 
unwanted contributions, we decided to implement a data-driven 
approach for frequency selection of the resting-state signals of interest. 
An analysis of filtering effects identified the high-frequency spectrum 
(oscillation time below 20 s, frequency above 0.05 Hz) as crucial for the 
approach. With a TR of 4.4 s and the need to remove perfusion signal 
weighting from tag-control alternation, we theoretically could explore a 
minimum oscillation time of 8.8 s, that we approximated with a low-pass 
cut-off time of at least 10 s (0.1 Hz). Filtering out frequencies with 
oscillation times between 10 s and 20 s (0.05 Hz to 0.1 Hz) nearly 
doubled the bias error (from -10 % to -20 %) and significantly increased 
the RMSE (Fig. 5a). This suggests that vascular modulations from 
respiration and fast systemic pressure changes are key for estimating M, 
though not the only contributors, as the optimal high-pass time was 
around 150 s (0.0067 Hz, lowest RMSE).

In summary, we found that, with long resting-state (RS) acquisitions 
and optimized image and signal processing, the associations between the 
parameters of interest estimated at RS and during BH were good. This 
result suggests that the band-pass filtered global BOLD signal within the 
gray matter (GM) can be a good proxy for a vasodilatory signal, unre
lated to local brain activity. However, other physiological effects cannot 
be completely ruled out. The lower estimate of M during RS compared to 
BH (RS estimate of M about 10 % lower than BH) maybe attributable to 
local CMRO2 increases synchronous with the global GM BOLD signal 
during RS, or conversely, to an absence of isometabolism during BH, 
resulting in decreased brain activity and CMRO2 during hypercapnia. 
Regarding the latter, some studies have shown that hypercapnia tends to 
reduce neural activity and CMRO2 (the two are tightly linked in humans) 
with a maximum CMRO2 decrease reported of up to 20 % (Baas et al., 
2023; Deckers et al., 2022; James et al., 2023; Zappe et al., 2008). This 
modulation would reflect an increase in the BOLD signal with respect to 
flow between 5 % and 10 %, which is compatible with the bias we 
identified in M between RS and BH. However, further studies where 
longer RS recordings are acquired together with a BH task, or another 
vasodilatory stimulation, and with alternative MRI and non-MRI ap
proaches that map CMRO2, are required to establish the maximum ac
curacy achievable by the RS method and the underlying methodological 
or physiological origin of any residual errors.

The method shares limitations with other calibrated fMRI 

approaches. It combines BOLD with ASL functional measures, with ASL 
having a low temporal SNR and being limited mostly to estimate 
perfusion in GM. Additionally, with the relatively short post-labelling 
delays used for functional assessment (PLD=1.5 s), the ASL measures 
may be inaccurate in the elderly or patients population where there may 
be a longer arterial transit times from the blood tagging region to the 
tissue. Moreover, the method requires a vascular reserve, which may be 
absent in diseases with compromised vasculature, such as ischemic 
stroke, where arteries may be fully dilated. We have shown that esti
mating baseline oxygen metabolism from a single hypercapnic fMRI 
calibration is reliable unless mean transit time through microvascula
ture and mitochondrial oxygen tension are both high (MCTT over 2-3 
seconds and PmO2 over 20-30 mmHg) (Chiarelli et al., 2022a). This 
can occur in cases of severe physiological and metabolic dysfunction. 
For example, a significant rise in PmO2 may occur when the oxygen 
delivered by arterial blood remains high, even though the tissue is not 
consuming it due to mitochondrial dysfunction or brain tissue necrosis.

The method allows for calibrated fMRI with a simple resting para
digm, enabling the estimation of critical brain physiology parameters 
that may reflect pathology, supporting its potential for routine use in 
neuroscience and clinical imaging.
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