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Abstract

This survey provides an in-depth review of large language models (LLMs), highlighting
the significant paradigm shift they represent in artificial intelligence. Our purpose is
to consolidate state-of-the-art advances in LLM design, training, adaptation, evaluation,
and application for both researchers and practitioners. To accomplish this, we trace the
evolution of language models and describe core approaches, including parameter-efficient
fine-tuning (PEFT). The methodology involves a thorough survey of real-world LLM
applications across the scientific, engineering, healthcare, and creative sectors, coupled
with a review of current benchmarks. Our findings indicate that high training and inference
costs are shaping market structures, raising economic and labor concerns, while also
underscoring a persistent need for human oversight in assessment. Key trends include the
development of unified multimodal architectures capable of processing varied data inputs
and the emergence of agentic systems that exhibit complex behaviors such as tool use and
planning. We identify critical open problems, such as detectability, data contamination,
generalization, and benchmark diversity. Ultimately, we conclude that overcoming these
complex technical, economic, and social challenges necessitates collaborative advancements
in adaptation, evaluation, infrastructure, and governance.

Keywords: large language models; transformer architectures; parameter-efficient fine-tuning;
prompt engineering; multimodal models; LLM Benchmarks; inference cost; sector-wise
applications; generative Al; economic impact

1. Introduction

Large language models (LLMs) represent a paradigm shift in artificial intelligence,
extending far beyond traditional natural language processing (NLP). Foundational models
such as OpenAl’s GPT series [1-3], Google’s PaLM [4], and Meta’s LLaMA [5] show
novel abilities to understand, reason, and generate human language in fields ranging
from software engineering and scientific discovery to education and creative arts. At
their core, these capabilities highlight the power of self-supervised learning (SSL) at scale,
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where models acquire deep, generalizable knowledge from petabytes of unlabeled text
and multimodal data. The pace of innovation in the LLM landscape is extraordinary,
exemplified by the rapid introduction of new architectures, training methodologies, and
applications. This explosive growth, while exciting, has created a fragmented and complex
body of knowledge that poses a challenge for researchers, practitioners, and policymakers
to navigate. As LLMs become more deeply integrated into societal infrastructure, a clear
and comprehensive understanding of their underlying technologies, capabilities, and
limitations is not only beneficial but essential. This survey is motivated by the need to
organize this rapidly evolving field and provide an accessible overview of the state-of-the-
art. This includes not only their core linguistic capabilities but also their rapid evolution
into autonomous agents capable of tool use and planning.

Objectives, Scope, and Methodology

The main objective of this survey is to offer a comprehensive and multifaceted
overview of the LLM domain. It aims to equip both novice and experienced researchers
with a solid foundation in key concepts while also highlighting the nuanced challenges and
future directions that define the research frontier. To meet these goals, this survey provides
a clear and structured overview of the LLM field through the following goals:

¢  Evolution of language models, reviewing the rise of Transformer-based architectures
by tracing key innovations and paradigm shifts from early rule-based systems to
modern foundation models (see Section 2).

¢  Establish a taxonomy of popular LLM architectures, including encoder-only, decoder-
only, encoder-decoder (sequence-to-sequence), and multimodal models, detailing their
design principles, capabilities, and typical use cases (see Section 3).

*  Describe the core training and adaptation methodologies, including large-scale self-
supervised pre-training, task-specific fine-tuning, and adaptation techniques such as
reinforcement learning from human feedback (RLHF) and parameter-efficient fine-
tuning (PEFT), supporting efficient and scalable deployment (see Section 4).

*  Review benchmarks and evaluation methods used to assess model performance across
tasks, including reasoning, factual correctness, robustness, and linguistic understand-
ing (see Section 5).

*  Survey real-world applications of LLMs across diverse domains—including scientific
discovery, software engineering, healthcare, and the emergence of agentic Al as a key
application area—where models act as reasoning engines for autonomous systems
(see Section 6).

e  Examine the economic implications of LLM development and deployment, including
training and inference costs, infrastructure dependencies, labor market shifts, and
growing inequalities in access and benefits (see Section 7).

e  Highlight emerging challenges and open research questions, including hallucination,
ethical risks, resource efficiency, and the broader societal impacts of LLM deployment
(see Section 8).

2. Evolution of Language Modeling

Language modeling has transformed remarkably, from early rule-based systems to
today’s Transformer-based models. This progression reflects a series of paradigm shifts,
from manually crafted symbolic rules to statistical models, then to deep neural networks,
and ultimately to large-scale self-supervised training on vast corpora. The Transformer [6]
architecture brought a breakthrough, enabling models to scale effectively and allowing
models to perform well on many different tasks. As illustrated in Table 1 and Figure 1,
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the development of language models spans four major eras, each distinguished by key
innovations in how language is represented and learned.

Table 1. Progression Please confirm the alignment change. of Language Modeling Paradigms.

Timeline

Dominant Models Key Strengths Notable Limitations

Pre-1990s: Rule-Based

Simulates conversation via
handcrafted rules; early
human-computer interaction

No learning; brittle; poor
generalization; no
understanding; limited context

ELIZA [7], PARRY [8],
A.LIC.E.[9], SHRDLU [10]

1990s-2000s: Statistical

Data-driven; foundational for
early speech/MT; robust

Fixed context (n); limited

n-gram [11], HMM [12], long-range dependencies;

CRF [13]

to noise no semantics
RNN [14], LSTM [15], Learns distributed Sequential bottlenecks; poor
2000s-2020s: Neural Networks  GRU [16], Word2Vec [17], representations; models parallelization; struggles with
GloVe [18] variable-length sequences long-term context

Late 2010s—Present:
Transformers

Scalable self-attention;
contextual understanding;
few /zero-shot ability; handles

BERT [19], GPT series [1-3],
DeepSeek [20] T5 [21],

High computational cost;
hallucination; bias;

LLaMA [5], PaLM [4] long range dependencies interpretability challenges
[ pe 14 1990sf 2000 L nA
1990s 2000s 2020s |
A < Present
Rule-Base Statistical Sequential Transformer-
Models Models Neural Based
Networks Models
Models

Figure 1. Timeline of language modeling evolution from rule-based systems to modern Transformer-
based LLMs, highlighting major paradigm shifts and representative techniques.

2.1. Rule-Based Models (Pre~1990s)

Early NLP systems were primarily rule-based. Models such as ELIZA [7] and
SHRDLU [10] relied on explicitly defined rules, pattern matching, and hardcoded grammars.
These systems were capable of simulating structured dialogue but lacked genuine language
comprehension and the ability to generalize, making them fragile and domain-limited.

2.2. Statistical Models (1990s—-2000s)

The 1990s marked a shift toward statistical approaches, where language generation
was modeled probabilistically. Techniques such as n-gram models [11], hidden Markov
models (HMMs) [12], and conditional random fields (CRFs) [13] enabled more data-driven
and robust methods, leading to advances in tasks like machine translation and speech
recognition. Nonetheless, these models were constrained by limited context windows and
an inability to capture deeper semantic or long-range dependencies.

2.3. Sequential Neural Language Models (2000s—2020s)

Deep learning dominated NLP throughout the 2010s. Recurrent neural networks
(RNNS) [14], along with their variants such as LSTMs [15] and GRUs [16], enabled sequen-
tial processing and better context modeling. Embedding-based models like Word2Vec [17]
and GloVe [18] introduced distributed word representations that captured semantic simi-
larity in high-dimensional space. Despite these breakthroughs, early neural models had
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limitations: they processed inputs sequentially, were hard to parallelize, and struggled
with very long-term dependencies due to vanishing gradients.

2.4. Transformer-Based Models (Late 2010s—Present)

The advent of the Transformer architecture, with its attention mechanism, revolu-
tionized NLP by allowing efficient, parallelizable modeling of long-range dependencies.
Models such as BERT [19], GPT [1-3], T5 [21], PaLM [4], and LLaMA [5] pushed the
boundaries of what language models could achieve. This approach enabled pre-training on
large unlabeled data, followed by task-specific fine-tuning, with capabilities like few-shot
learning. However, these models face challenges: they need a lot of computational power,
sometimes generate incorrect information (hallucinate), and raise ethical concerns about
bias, misuse, and transparency.

3. Model Architectures

The development of LLMs has followed a variety of architectural designs, each opti-
mized for specific types of tasks and data modalities. As shown in Figure 2, the Transformer
architecture introduced by Vaswani et al. [6] served as the foundation for most modern
large language models. Table 2 further compares major LLM architectures, highlighting
representative models and their typical use cases. Below, we highlight prominent model
types, discussing their structural characteristics and typical use cases.

Probabilities
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Figure 2. Overview of the Transformer architecture (encoder-decoder model) as introduced by
Vaswani et al. [6].
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Table 2. Comparison of Major LLM Architectures.
Architecture Type Representative Models Typical Use Cases
Encoder-Only BERT [19], RoBERTa [22], ALBERT [23] Text classification, NER, extractive QA,
sentiment analysis
GPT-2/3/4 [2], LLaMA [5], PaLM [24], Text generation, dialogue systems, in-context

Decoder-Only

DeepSeek-V3 [20] learning

Encoder-Decoder (Seq2Seq)

Translation, summarization, abstractive QA,

T5 [21], BART [25] text rewriting

Multimodal

Image captioning, visual question answering,

DeepSeek-VL [26], GPT-40 [27] cross-modal retrieval

3.1. Decoder-Only Models

Decoder-only models, such as the GPT series (GPT-2, GPT-3, GPT-4) [1-3], PaLM [24],
LLaMA [5], and DeepSeek-V3 [20], are autoregressive architectures using only the decoder
blocks of the Transformer architecture. Their core operational principle is unidirectional
context processing; they generate text token by token, from left to right. Each new token
depends on the tokens generated before it. This works by using a masked self-attention
mechanism that makes sure, when predicting the token at position i, the model only
looks at tokens before position i. The standard self-supervised objective for these models
is next token prediction (NTP), also named causal language modeling (CLM). Due to
their inherent structure, these models excel at free-form text generation, dialogue systems,
content creation, and any task requiring coherent and contextually aware linguistic output.
Their proficiency in few-shot and zero-shot in-context learning directly results from this
generative pre-training.

3.2. Encoder-Only Models

Encoder-only models, such as BERT (bidirectional encoder representations from Trans-
formers) [19] and its variants like RoBERTa [22] and ALBERT [23], are composed exclusively
of Transformer encoder blocks. Unlike their autoregressive counterparts, these models
process the whole input sequence, allowing for deep bidirectional context understanding.
The self-attention mechanism in encoders is not masked, meaning every token can attend to
every other token in the sequence (both to its left and right). This makes them exceptionally
well-suited for comprehension-based Natural Language Understanding (NLU) tasks such
as text classification, sentiment analysis, named entity recognition (NER), and extractive
question answering. Their main pre-training task is usually Masked Language Modeling
(MLM), where some input tokens are randomly hidden, and the model learns to predict
these hidden tokens using the surrounding visible context.

3.3. Sequence-to-Sequence Models

Sequence-to-sequence (seq-to-seq) models, including T5 (text-to-text transfer Trans-
former) [21] and BART (bidirectional and auto-regressive Transformers) [25], utilize the
complete Transformer architecture, comprising both an encoder and a decoder stack. The
encoder processes the input sequence to build a rich, contextualized representation, which
is then passed to the decoder to generate the target output sequence. This architecture is
highly effective for transformation tasks that map an input sequence to a different output
sequence. Prominent applications include machine translation, text summarization (where
a long document is mapped to a shorter summary), and abstractive question answering.
Their self-supervised pre-training often involves denoising objectives; for instance, T5 is
trained by hiding parts of the input text and teaching the model to restore the original,
complete text.
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3.4. Multimodal Models

Multimodal models, such as DeepSeek-VL [26] and GPT-40 [27], are designed to
handle and integrate multiple data modalities like text, images, and sometimes audio or
video. These architectures extend the Transformer backbone to process and fuse heteroge-
neous inputs, enabling tasks such as cross-modal retrieval, visual question answering, and
image captioning.

3.5. Mixture of Experts (MoE) Models

Another innovation for scaling LLMs efficiently is the Mixture of Experts (MoE)
architecture [28]. Unlike traditional dense models, where all parameters are used for
every input, MoE models consist of numerous smaller “expert” sub-networks and a router
network. For any given input token, the router dynamically selects a small subset of experts
to process it. This conditional computation allows MoE models to have a massive number
of parameters while keeping the inference cost low, as only a fraction of the model is
activated for each token. Prominent examples like Mistral’s Mixtral 8x7B [29] and Google’s
Gemini [30] models leverage this architecture to achieve state-of-the-art performance
with significantly reduced computational overhead compared to dense models of similar
size [31].

4. Training and Adaptation

The lifecycle of an LLM does not end with its initial pre-training. LLMs undergo
several stages of adaptation to show their full potential and tailor their vast, generalized
knowledge to specific applications and user expectations. This section details the core
training paradigms and methodologies that transform foundational models into specialized,
efficient, and aligned tools. We first outline the stages of pre-training, fine-tuning, and
prompt engineering, then cover alignment and efficiency strategies, focusing on parameter-
efficient fine-tuning (PEFT) and transfer learning. An overview of these adaptation methods
is illustrated in Figure 3.

Reparameterization Selective
 LoRA

» Masking
« NOLA

Additive
« Adapter Hybrid Approaches

» Soft prompt

Figure 3. Overview of adaptation methods for large language models.
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4.1. Pre-Training

Pre-training is a self-supervised phase in which the model learns general language
patterns and world knowledge from large-scale, unlabeled text corpora. This one-time
process uses objectives such as NTP or MLM and forms the foundational backbone of
modern large language models.

4.1.1. Fine-Tuning

Fine-tuning updates all model parameters using supervised learning on a task-specific
dataset. While effective, it is costly for large LLMs, requiring substantial compute and
storage for each task, motivating more efficient alternatives.

4.1.2. Prompt Engineering and In-Context Learning

Prompt engineering guides LLM behavior by crafting inputs without changing model
weights. It uses instructions and examples (few-shot prompting) to leverage in-context
learning [3]. Though efficient and flexible, its performance depends on prompt design and
context window limits.

4.1.3. Instruction Tuning

Instruction tuning is a specialized form of fine-tuning to enhance an LLM’s ability to
follow natural language instructions and generalize to unseen tasks. This is carried out by
training the model on a large, diverse set of functions presented in instructional formats
(e.g., “Summarize the following text,” “Translate this sentence to French,” “Write a Python
function that computes the factorial”). Seminal models such as FLAN [32] and TO [33] have
shown that instruction tuning significantly improves zero-shot performance across a wide
range of tasks, making models more usable and steerable.

4.1.4. Reinforcement Learning from Human Feedback (RLHF)

RLHF is a powerful technique for aligning LLM outputs with complex, subjective
human preferences, such as helpfulness, honesty, and harmlessness. It was notably used to
train models like InstructGPT and ChatGPT-3 [34]. The RLHF process typically involves
three steps: (1) Supervised fine-tuning (SFT), where a pre-trained model is fine-tuned
on a high-quality dataset of human-written examples to establish a baseline behavior.
(2) Reward model training, where a separate model learns to score outputs based on a
dataset of human-ranked model responses. (3) Reinforcement learning optimization, where
the SFT model is further improved using an RL algorithm, which uses the reward model’s
scores to guide the LLM toward generating outputs that align with human preferences.

4.2. Parameter-Efficient Fine-Tuning

Parameter-efficient fine-tuning (PEFT) methods have emerged as a solution to the
prohibitive costs of full fine-tuning. PEFT techniques aim to adapt a pre-trained LLM by
updating only a small fraction of its parameters while keeping the vast majority of the
original model weights frozen. This dramatically reduces computational and storage costs,
making it feasible to adapt a single pre-trained model to multiple tasks. These methods
vary significantly in their approach, leading to important trade-offs between the number
of trainable parameters, impact on inference speed, memory usage, and downstream task
performance, as summarized in Table 3. The choice of PEFT strategy often depends on
the specific constraints of the application, such as available computing power and desired
generalization. PEFT methods can be broadly categorized as follows.
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Table 3. Comparison of Popular Parameter-Efficient Fine-Tuning (PEFT) Methods.

PEFT Method

Core Mechanism

Key Characteristics

Trainable Params

Adapters [35]

Prompt Tuning [36]

Prefix-Tuning [37]

LoRA [38]

Injects small, trainable “adapter”
modules between frozen
Transformer layers.

Prepends learnable “soft prompt”

embeddings to the input sequence.

Prepends learnable prefixes to the
hidden states of each Transformer
layer.

Freezes base model weights and
injects trainable low-rank matrices
to approximate weight updates.

Trade-off: Effective generalization
but adds inference latency due to
new modules. Requires
architectural modification.

Trade-off: Highest parameter
efficiency but performance can be
less stable and sensitive to prompt
length. No inference latency.

More expressive and stable than
prompt tuning, but slightly more
complex. No added inference
latency during generation.

Trade-off: Balances high
downstream performance with
efficiency. No inference latency as
matrices can be merged. Highly

Low (~0.1-5%)

Very Low (<0.1%)

Very Low (<0.1%)

Low (~0.1-1%)

effective and widely adopted.

4.2.1. Adapter-Based Methods

This approach involves injecting small, trainable neural network modules, known as
“adapters,” within the layers of the pre-trained Transformer. During fine-tuning, only the
parameters of these newly added adapters are trained, while the original LLM weights
remain frozen. Adapters are typically designed as bottleneck architectures, with a down-
projection, a non-linearity, and an up-projection, significantly reducing the number of
trainable parameters compared to the main model [35].

4.2.2. Prompt-Based Methods (Soft Prompts)

Prompt-based Methods differ from discrete prompt engineering by learning contin-
uous task-specific vectors, or soft prompts, that are prepended to the model’s input. In
prompt tuning, a small set of learnable embedding vectors is added to the input token
embeddings; only these vectors are updated during training [36]. Prefix tuning, a more
expressive variant, prepends continuous vectors to the hidden states of each Transformer
layer, enabling more direct control over internal activations [37].

4.2.3. Reparameterization-Based Methods

Low-rank adaptation (LoRA) is one of the most popular and effective PEFT tech-
niques [38]. It assumes that weight updates during adaptation lie in a low-rank subspace.
Instead of updating the full weight matrix W, LoRA introduces a trainable low-rank de-
composition AW = BA, where A and B are much smaller matrices and r < min(din, dout)-
The base weights W are frozen, and only A and B are trained. At inference, the update
is merged as W' = W + BA, adding no latency. The trainable parameters are a small
fraction of W. QLoRA improves efficiency further by quantizing the base model to 4-bit
and applying LoRA on top [39].

5. Benchmarking and Evaluation

The effectiveness of an LLM’s training or adaptation process ultimately depends on
how well its capabilities are assessed. Once a model has been pre-trained and fine-tuned, it
must be systematically evaluated to verify its performance across a range of tasks. Robust
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benchmarking not only guides the model development process but also helps identify
limitations, biases, or regressions that may have emerged during the adaptation process.
Thus, evaluation is a critical step in the LLM lifecycle, closely tied to its development
and deployment.

5.1. Benchmarking

Benchmarking is a foundational aspect of evaluating LLMs, as it provides standard-
ized datasets and metrics to quantify performance across tasks, domains, and model scales.
With the growing deployment of LLMs in real-world applications, benchmarking has
evolved from static accuracy measurements to multidimensional, general-purpose eval-
uations. Several prominent benchmarks have been developed to assess capabilities such
as factual recall, reasoning, linguistic understanding, and robustness. In the subsections
below, we summarize four major benchmarks, each contributing unique insights into LLM
behavior. While these are often used together in evaluation pipelines, their emphases and
methodologies differ significantly. A comparison of major LLM benchmarks is provided in
Table 4.

Table 4. Comparison of Major LLM Benchmarks.

Benchmark

Focus Dataset Size/Scope

MMLU [40]

Academic QA and reasoning across disciplines 57 subjects, ~15K Multiple-Choice Questions

BIG-bench [41]

Emergent abilities and generalization (e.g.,

. . + ity- i
humor, ethics, logic) 200+ tasks, community-contributed

SuperGLUE [42]

Challenging NLU tasks (coreference,

inference, etc.) 8 tasks (e.g., RTE, WSC, COPA)

HELM [43]

Multi-dimensional LLM evaluation (accuracy,

. ) 42 scenarios x 8 metrics x 30+ models
fairness, robustness, bias)

In the subsections below, we summarize four major benchmarks, each contributing
unique insights into LLM behavior. While these are often used together in evaluation
pipelines, their emphases and methodologies differ significantly.

5.1.1. MMLU

The Massive Multitask Language Understanding (MMLU) benchmark evaluates
knowledge and reasoning across 57 tasks from diverse academic and professional fields,
including mathematics, medicine, history, and law. Designed for few-shot evaluation,
MMLU measures how well LLMs generalize to unseen subject areas, making it a critical
tool for gauging real-world utility beyond training distributions [40].

5.1.2. BIG-Bench

BIG-bench (Beyond the Imitation Game) is a collaborative, community-driven bench-
mark suite consisting of over 200 tasks. These tasks are designed to evaluate emergent
abilities of language models, such as humor understanding, arithmetic reasoning, and
moral judgment. BIG-bench emphasizes the identification of novel generalization capabili-
ties that arise only in models of sufficient scale [41].

5.1.3. SuperGLUE

SuperGLUE is an advanced successor to the GLUE benchmark, targeting more chal-
lenging language understanding problems, such as coreference resolution, causal reasoning,
and multisentence inference. It includes human performance baselines and provides fine-
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grained diagnostics for task-specific errors, making it suitable for evaluating fine-tuned or
general-purpose LLMs [42].

5.1.4. HELM

Unlike task-specific benchmarks, the Holistic Evaluation of Language Models (HELM)
framework takes a meta-evaluation approach by comparing multiple LLMs across a variety
of dimensions—accuracy, calibration, robustness, fairness, bias, toxicity, and efficiency.
HELM highlights trade-offs in model design and deployment, promoting more transparent
and holistic assessment across use cases and deployment scenarios [43].

5.2. Evaluation

Evaluating the quality of generated text from NLP models is critical for tasks such as
summarization, translation, and other text-generation applications. This section reviews
commonly used automatic metrics, ROUGE and BLEU, with their definitions, computations,
strengths, and limitations.

5.2.1. ROUGE

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) is a family of recall-
focused metrics primarily used for automatic summarization evaluation but also applicable
to other generation tasks where coverage of reference content is important [44]. ROUGE
metrics compare the overlap between a reference text (often one or more human-generated
references) and a system-generated text. Higher scores indicate greater overlap and, pre-
sumably, better content coverage.

Each ROUGE variant reports Precision (proportion of overlapping units in the gen-
erated text), Recall (proportion of overlapping units in the reference text), and F; (their
harmonic mean). ROUGE’s definitions of precision and recall operate over counts of
overlapping textual units rather than binary classification counts. The main ROUGE
variants include

*  ROUGE-N: Evaluates the overlap of n-grams between generated and reference texts,
counting matched n-grams (with frequency clipping). Commonly used for unigrams
(ROUGE-1) and bigrams (ROUGE-2), it emphasizes recall, specifically how many
reference n-grams are covered, making it suitable for summarization evaluation.

e ROUGE-L: Uses the longest common subsequence (LCS) between generated and
reference texts to capture in-sequence overlap without requiring contiguous matches.
It computes precision and recall over LCS length (and often their harmonic mean),
with a sentence-level variant (ROUGE-Lsum) for multisentence inputs.

e ROUGE-S (Skip-Bigram): Matches word pairs in order but not necessarily adjacent,
allowing more flexible overlap detection than strict n-grams. It counts skip-bigram
matches to assess loosely ordered content overlap, though it remains surface-based
without deeper semantic matching.

522. BLEU

BLEU (Bilingual Evaluation Understudy) is a precision-oriented metric for machine
translation that measures clipped n-gram overlap with reference translations and applies
a brevity penalty to discourage overly short outputs [45]. While effective for translation
by penalizing extraneous content, BLEU’s reliance on exact n-gram matches can limit its
correlation with human judgments in tasks with high lexical variability.

Different metrics suit different tasks. ROUGE is well-suited for summarization due to
its emphasis on recall and content coverage. BLEU, with its precision focus and brevity
penalty, remains standard for machine translation. BLEURT and similar learned metrics are
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valuable when capturing paraphrasing, fluency, and semantic nuance is essential—though
they often require greater computational resources. Using multiple human references im-
proves evaluation reliability by accounting for acceptable variation in outputs. Consistent
preprocessing (e.g., tokenization, casing, punctuation) is also critical, as minor inconsisten-
cies can skew scores. Since metric values vary by dataset and domain, relative comparisons
between models are generally more informative than absolute numbers. Ultimately, auto-
matic metrics should be complemented by human evaluation, especially in high-stakes or
user-facing applications where coherence, factuality, and usefulness are paramount.

6. Applications of LLMs

LLMs have rapidly evolved from experimental systems within research into powerful
technologies transforming various industries. Their multimodal reasoning, zero- and few-shot
learning, and generative capabilities support numerous practical applications across domains
(Figure 4). Table 5 summarizes the major sectors where LLMs are being deployed, highlighting
representative applications and examples.

STEM & Research
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Figure 4. Overview of LLM applications across diverse sectors.

Table 5. Applications of Large Language Models Across Sectors.

Category Sector/Use Cases Description/Example Functions  References
Scientific Research: hypothesis LLMs like Elicit and SciBot

STEM & Research generation, experiment design, support knowledge synthesis, [1,46-50]
writing planning, and scientific writing.
Healthcare & Life Sciences: LLMs generate EHR notes,
scribing, drug discovery, simulate molecular interactions,  [51-54]
literature review and summarize biomedical texts.
Software Engineering: code LLMs like Copilot and
generation, debugging, HDL CodeLLaMA assist in [55-60]
design, and privacy-aware programming and hardware
analytics logic synthesis.
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Table 5. Cont.
Category Sector/Use Cases Description/Example Functions  References
Analyzes transactions, powers
Enterprise & Business Fmanc.e & Banking: fraud. financial assistants, and [61-63]
detection, chatbots, reporting automates compliance
summaries.
Manufacturing & Supply Chain: Forecast demanc!, interpret logs,
forecasting, log analysis, training and support engineering [64-66]
’ ’ education via LLM-based tutors.
Legal & Regulatory: legal search, Used in tools like CoCouns'el and
: . Harvey Al for legal reasoning [67,68]
contracts, compliance monitoring . .
and risk detection.
LLMs power story generation,
Creative & Social Domains Creatlve.Indusfcrles': writing, compose music (e.g.., MuseNet), [69-73]
art/music, design ideation and assist with architecture
sketches.
Supports inclusive,
Education: conversational always-available learning [74,75]
tutoring, engagement environments with natural !
interaction.
Used in platforms like Khanmigo
Training: content customization, and Duolingo Al for tailored
. . . : [74-77]
feedback, real-time assessment learning experiences and skill
development.
. . Auto-GPT and LangChain enable
Autonomous Systems LLM Agents: task chaining, API agents to reason, use tools, and [78,79]

interaction, digital automation

automate workflows.

6.1. Software Engineering and Design

LLMs play a critical role in modern software development and hardware design:

Code Generation: Tools like GitHub Copilot and CodeLLaMA suggest or generate

code from natural language [55,56].

Debugging and Refactoring: LLMs assist developers by offering bug fixes and code

improvements [57].

EDA and HDL Translation: In chip design, LLMs automate the generation of HDL
and streamline design verification [58,59].

6.2. Healthcare and Life Sciences

LLMs are increasingly integrated into healthcare settings for administrative automa-

tion, clinical decision-making, and research support. Examples include:

EHR Data Synthesis: LLMs excel at analyzing complex and unstructured Electronic
Health Records (EHRs). They can extract information and generate concise patient
summaries, with performance that can outperform human experts [30].

Diagnostic Assistance: These models can serve as powerful diagnostic aids by process-
ing clinical notes and patient histories to suggest potential differential diagnoses in
fields such as radiology [81]. Specialized models, such as Med-PaLM 2, have demon-
strated expert-level performance on medical competency exams, underscoring their
potential to augment clinical workflows [82].

Personalized Treatment Planning: By aligning a patient’s clinical profile with the
latest evidence-based guidelines and medical literature, LLMs can assist in providing
personalized treatment plans [83,84].
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*  Medical Scribing and Documentation: LLMs transcribe doctor—patient conversations
into structured EHR notes, reducing clerical workload and allowing clinicians to focus
more on patient care [51,52].

¢  Drug Discovery: They assist in identifying drug targets and predicting molecular
interactions using biomedical data [53,54].

e  Literature Synthesis: LLMs extract and summarize findings from large corpora of
medical papers, enabling faster insights [51].

6.3. Finance and Banking
The financial sector applies LLMs for automation, analysis, and risk mitigation:

¢ Investment Analysis and Strategy: LLMs perform sentiment analysis on financial news,
social media, and earnings reports to identify market trends and inform investment
strategies. These models process vast amounts of unstructured text data in real-
time to provide quantitative insights that support algorithmic trading and portfolio
management [85].

¢ Compliance and Fraud Detection: Models analyze transactions and communications
for anomalies indicative of fraud or regulatory violations [61].

*  Chatbots and Virtual Assistants: Customer service is enhanced by LLMs that provide
24 /7 support, reducing operational costs [62].

¢  Financial Reporting: LLMs generate and summarize reports, accelerating analyst
workflows [63].

6.4. Manufacturing and Supply Chain
LLMs optimize complex engineering and logistics systems:

*  Forecasting and Optimization: Demand prediction and supply chain optimization
benefit from LLM-generated insights [64].

*  Quality Control: Natural language interfaces aid in interpreting maintenance logs or
sensor data [65].

¢  Engineering Education: LLMs provide customized support and tutoring for technical
training [66].

6.5. Scientific Research and Discovery
LLMs are accelerating scientific progress:

*  Hypothesis Generation and Literature Review: LLMs rapidly synthesize findings from
thousands of papers [46]. For instance, tools like Elicit [47] and Semantic Scholar [86]
leverage Transformer models to extract key claims, compare methodologies, and trace
citations across thousands of papers in seconds. More recent models like Google’s
Gemini [30] can perform deep research by synthesizing information across multiple
documents, analyzing data, and generating novel hypotheses, effectively acting as Al
research assistants [87].

¢  Experiment Design and Analysis: Beyond understanding prior work, LLMs can
support the planning and interpretation of experiments. For example, models like
ChatGPT [1] and SciPIP [88] have been used to suggest experimental conditions,
recommend statistical techniques, and simulate expected outcomes based on prior
data [46]. In computational chemistry, LLMs have even been integrated into pipelines
to optimize reaction conditions and propose novel molecular structures [48], and new
frameworks are using them to make the entire automated machine learning (AutoML)
process more explainable and user-friendly through natural language [89].

*  Scientific Writing: LLMs assist researchers in drafting abstracts, summarizing findings,
and organizing research manuscripts in line with academic standards. Tools such
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as PaperPal and Writefull utilize LLMs to enhance clarity, suggest citations, and
correct grammar in real time. In addition, citation-aware models like SciBot [49] can
automatically insert references and generate BibTeX entries based on context.

6.6. Education and Corporate Training
LLMs are transforming how knowledge is delivered and assessed:

¢  Personalized Learning: LLMs dynamically tailor educational content to match a
learner’s proficiency, interests, and preferred learning style. For instance, platforms
like Khanmigo (by Khan Academy) use GPT-based models to deliver adaptive math
explanations for students at varying levels [74].

*  Assessment and Feedback: LLMs can evaluate student responses, provide constructive
feedback, and even detect misconceptions. Tools such as Gradescope Al integrate
LLMs to automate short-answer grading and generate formative feedback, freeing
instructors to focus on higher-level instruction [76,77].

*  Virtual Tutoring: LLMs act as intelligent tutors that offer instant, 24/7 support across
a wide range of topics. For example, Duolingo’s GPT-4-powered Al tutor provides
personalized conversational practice in language learning, correcting errors and ex-
plaining grammar contextually [75].

6.7. Creative and Content Industries

From text to music, LLMs are reshaping creative workflows and augmenting human
expression across multiple domains.

¢  Writing and Journalism: LLMs like GPT-4 are used by outlets such as BuzzFeed to
generate article drafts, headlines, and marketing copy [69]. These models accelerate
content creation while allowing human editors to refine tone and accuracy.

*  Sports Media and Entertainment: Domain-specific applications are emerging that
showcase how LLMs can augment commentary, analysis, and fan engagement. Data-
driven football match commentaries that combine real-time statistics with fluent
narrative structures help enrich live sports coverage [90]. Similarly, natural language
explanations of machine learning models of footballing actions bridge the gap between
complex analytics and interpretable insights for coaches and analysts [91].

*  Visual and Performing Arts: Multimodal systems such as OpenAl’'s MuseNet [71]
and DALL-E [72] generate music and artwork from textual prompts, enabling new
forms of artistic experimentation [70]. Artists use these tools for inspiration, rapid
prototyping, or hybrid collaborations.

*  Design and Architecture: Tools like Autodesk Forma integrate LLMs and generative
models to assist with early-stage ideation and layout generation [73].

6.8. Legal and Regulatory Sectors
LLMs are increasingly being adopted to streamline legal workflows, reduce costs, and

improve access to legal resources.

¢ Legal Research: LLMs like Casetext’s CoCounsel use GPT-4 to retrieve relevant
statutes, case law, and legal summaries within seconds [67].

*  Contract Review: Tools such as Harvey Al assist law firms by analyzing contracts,
flagging potential risks, and summarizing clauses in plain language [68].

6.9. Autonomous Al Agents

Emerging Al agents powered by LLMs are capable of reasoning over tasks, interacting
with tools, and autonomously executing complex digital operations.
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¢  Chain Tasks and APIs: LLM agents like Auto-GPT and LangChain-based systems can
autonomously decompose goals into subtasks and interact with external APIs, file
systems, or browsers to complete them [78,79].

7. Economic Implications of LLM Development and Deployment

The rapid advancement and widespread adoption of LLMs are generating far-reaching
economic impacts. These models are reshaping industries, creating new markets, and in-
troducing substantial economic challenges [92]. The LLM ecosystem is shaped by three
primary cost centers: the massive, front-loaded capital required for pre-training; the on-
going operational expense of inference; and the significant, often-underestimated human
capital investment in data curation and alignment [93] (see Figure 5). As shown in Table 6,
training costs for frontier models have escalated into the hundreds of millions of dollars,
reinforcing high barriers to entry and driving market concentration.

This section examines the key economic dimensions of LLM development and de-
ployment, beginning with their foundational cost structure and extending to their broader
impacts on labor markets, fiscal policy, and economic inequality.

Inference
(Deployment Phase)

* High Capital Cost

(Compute:

GPUs/TPUs)

¢ Massive Data
Acquisition (Petabytes,

Curation)

* Significant Human
Capital (Skilled Labor)
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Energy)

* Commercialization
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( Alignment (Fine-
Tuning & Human
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Training (Pre-training
Phase)

Figure 5. LLM lifecycle: Training, Inference, and Alignment.

Table 6. Illustrative Cost Estimates for LLM Training and Inference.

Item Estimated Cost/Metric

Training GPT-3 (175B) ~$4.6M USD (2020) [94]

Training PaLM (540B) ~$3~12M USD (2022) [95]
Training Gemini 1.0 Ultra ~$192M USD (2025) [96]

Inference Cost per 1M tokens (OpenAl $0.10 (GPT-4.1 nano input) to $8.00
API, June 2025) (GPT-4.1 output) [97]

7.1. The Foundational Costs: From Training to Deployment

The economics of LLMs are anchored by immense costs spanning the entire model
lifecycle, from initial training to final deployment (see Table 7). These expenditures concen-
trate development in a handful of well-resourced organizations and create technical and
economic trade-offs at each stage.

¢  Training Costs: The initial pre-training of a foundation model is the most expensive
phase, representing a significant front-loaded capital expenditure. It requires massive
computational power, typically involving thousands of high-end GPUs or TPUs
running continuously for weeks or months. The costs have escalated dramatically;
while GPT-2 (1.5 billion parameters, 2019) cost an estimated $50,000 to train, Google’s
PalLM (540 billion parameters, 2022) is estimated to have cost around $8 million,
and the Megatron-Turing NLG 530B model over $11.35 million [98]. These costs are
driven by the sheer scale of the model (billions or trillions of parameters) and the vast
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datasets (trillions of tokens) required to achieve state-of-the-art performance. This
has concentrated development in industry, which produced 32 significant machine
learning models in 2022 compared to just three from academia.

Inference Costs: While training is a formidable one-time cost, inference—the process
of using a trained model to generate outputs—is a persistent operational expense that
can cumulatively surpass the initial training cost for widely used services. The core
economic challenge is balancing the conflicting demands of latency and throughput.
For example, an interactive, low-latency configuration for PaLM 540B achieves a
Model FLOPS Utilization (MFU) of only 14%, while a high-throughput configuration
reaches 76% MFU, a five-fold difference in computational efficiency and cost. This
is rooted in technical bottlenecks like the massive memory footprint of the model
weights and the KV cache, which can total 3 TB for a 540B parameter model, and the
inherently sequential nature of autoregressive decoding that limits parallelism [99].
Optimizing inference efficiency through techniques like model quantization (e.g.,
using INT8 weights reduced PaLM’s per-token latency by 23%), multiquery attention,
and specialized hardware is a critical area of research and economic concern [99].
Data Acquisition and Curation: While much of the data used for pre-training is
scraped from the public web (e.g., Common Crawl), creating high-quality, clean, and
diverse datasets is a significant undertaking. Furthermore, the data required for
alignment stages like supervised fine-tuning (SFT) and reinforcement learning from
human feedback (RLHF) represents a substantial and often underestimated “hidden
cost” driven by expensive, high-skill human labor. This phase requires thousands
of hours of work from skilled labelers to generate demonstrations and rank model
outputs to create preference datasets. These human-powered data generation efforts
can add millions of dollars to the total development cost, an expense not captured in
compute-based cost estimates like the $8 million figure for PaLM [98]. This human
capital investment is a critical barrier to entry and a key component of a model’s total
cost of ownership.

Hardware Dependency: The development of LLMs has been largely dependent on
the availability of powerful GPUs, with NVIDIA commanding a dominant market
share [100]. This has created a hardware bottleneck where access to cutting-edge
accelerators is a primary determinant of an organization’s ability to compete at the
frontier of Al research.

Cloud Infrastructure Dominance: Major cloud providers such as Amazon Web Services
(AWS), Microsoft Azure, and Google Cloud Platform (GCP) are central to the LLM
ecosystem. They provide the scalable, on-demand computing infrastructure necessary
for both training and hosting LLMs. Strategic partnerships, such as Microsoft’s
investment in OpenAl, highlight how cloud providers are positioning themselves as
indispensable platforms for the Al economy, capturing a significant portion of the
value generated by LLM applications [101].

Scalability and Deployment Trade-offs: Organizations face a critical decision between
using third-party LLM APIs (e.g., OpenAl, Anthropic) and deploying their models
(whether open-source or custom-built). Using APIs offers lower upfront costs and
easier access but can lead to high long-term operational expenses and concerns over
data privacy and model control. Self-hosting provides more control but requires
significant investment in infrastructure and expertise. This trade-off is a central
economic consideration for businesses integrating LLMs into their operations.

The economics of LLMs are inextricably linked to the underlying hardware and cloud

infrastructure, a market dominated by a few key players.
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Table 7. Breakdown of Economic Costs in LLM Development. MFU: Model FLOPS Utilization.

Cost Category

Training (Pre-training)

Inference (Deployment)

Data Curation & Alignment

Main Drivers Key Technical Bottlenecks Example Estimate
Model size scaling, training
Compute, GPU/TPU FLOPs, hardware $8 M (PaLM 540B)
clusters, massive datasets availability
Continuous compute Memory bandwidth, KV
pute, . cache size, parallelism 29 ms/token @ 76% MFU

energy, latency constraints limits

. RLHF ranking, SFT prompt
Human lal?or, annotation generation, skilled Millions USD
costs, quality control reviewers

7.2. Market Consolidation and Commercialization

The high cost and technical complexity of developing frontier foundation models

have concentrated power in the hands of a few dominant technology firms. This growing

consolidation raises concerns about unequal access to advanced Al capabilities, reduced

competition, and the broader economic consequences of an increasingly centralized LLM

ecosystem [102]. As shown in Table 8, the economic structure of the LLM market reflects

deep imbalances in capital, compute, and data access, reinforcing barriers for smaller actors

and exacerbating inequality.

Market Concentration: The development of state-of-the-art LLMs—such as GPT-4,
Gemini, and Claude—is currently viable only for a small group of corporations, includ-
ing Google, OpenAl (partnered with Microsoft), Meta, and Anthropic, who possess the
necessary capital, proprietary data, and large-scale compute infrastructure [98,103,104].
This concentration of model development capabilities has sparked growing concerns
over an emerging “Al oligopoly,” in which a few firms dominate foundational Al
technologies, limit open innovation, and shape the trajectory of the LLM ecosystem to
serve proprietary interests [104].

Commercialization and Access: These dominant firms primarily commercialize LLMs
through usage-based APIs, which offer high performance but at costs often unafford-
able for smaller businesses. In contrast, the open-source ecosystem (e.g., LLaMA,
Mistral) provides alternatives, but these require in-house expertise and infrastruc-
ture [5]. Small and medium-sized enterprises (SMEs) face critical barriers—including
limited budgets, talent shortages, and lack of cloud resources—that hinder their
ability to adopt Al effectively [105-107]. As a result, there is a growing productiv-
ity gap between large firms rapidly scaling Al and smaller businesses struggling to
compete [108].

Economic Inequality and the Global Al Divide: The uneven diffusion of LLM ben-
efits could intensify economic inequality [109]. Domestically, workers, firms, and
regions with access to advanced Al tools may gain disproportionate advantages in
productivity and profitability. Internationally, countries with limited access to Al de-
velopment infrastructure risk falling further behind economically and technologically,
exacerbating global inequalities [110].

The Open-Source Ecosystem as a Counterbalance: In response to the market concen-
tration driven by high development costs, the open-source community has emerged
as a powerful force for democratizing Al. Pioneered by models like Meta’s LLaMA
series [5,111,112] and further advanced by organizations like EleutherAl [113], the
movement provides access to high-performance foundation models with permissive li-
censes. This enables researchers, startups, and smaller enterprises to innovate, conduct
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research, and build applications without being locked into proprietary API ecosys-
tems. Open-source models foster transparency, enable security auditing, and allow for
deep customization and fine-tuning on private data, capabilities often restricted by
commercial vendors. While this approach significantly lowers the barrier to entry, it
still requires substantial in-house computational resources and expertise to effectively
deploy and maintain these models [114].

Table 8. Structural Drivers of Inequality in the LLM Economy:.

Barriers for SMEs and

Factor Impact on Market Dynamics Global South Reference(s)

Market Consolidation Al capab1ht1es concentrated in a few High entry cost excludes academia, [98,104]
tech giants small firms

API Commercialization Usage-based pricing favors Per-token cost unsustainable for [105,108]
large-scale customers startups/NGOs

Infrastructure Lock-in Cloud platforms vertically integrate Self‘—host%ng requires GPU access, [100,101]
compute and model access engineering talent

Global Access Divide Uneven distribution of AI benefits Limited infrastructure, talent [109,110]

pipeline, and compute funding

7.3. Labor Market Disruption and Socioeconomic Inequality

LLMs are poised to cause significant shifts in the labor market, acting as both a
transformative and destructive technology [115]. While they augment human capabilities,
they also threaten to automate cognitive tasks, with complex and potentially divergent
outcomes for wage and wealth inequality [116].

In many professional domains, LLMs are being deployed as “co-pilots” or assistants
that enhance human productivity [117]. Programmers use tools like GitHub Copilot to
write code more efficiently, writers use LLMs for brainstorming and drafting, and analysts
leverage them for summarizing complex documents. Studies suggest these tools can yield
substantial productivity gains, particularly for less-experienced workers [118]. Conversely,
LLMs’” advanced capabilities threaten to automate tasks previously considered exclusive
to human cognition [119]. Roles involving routine, text-based work—such as customer
service, data entry, and paralegal support—are especially vulnerable to displacement [120].
The long-term economic impact will depend on the rate of automation versus the creation
of new roles that emerge to develop, manage, and collaborate with Al systems. The
ultimate distributional consequences of LLM deployment are shaped by who controls the
technology and how it is governed [121]. Deeper analysis reveals several compounding
socioeconomic factors:

*  Wage and Skill Polarization: The integration of LLMs may exacerbate wage inequal-
ity. Workers with skills complementary to Al (e.g., prompt engineering, Al ethics,
system integration) may see wage increases, while those performing tasks easily au-
tomated may face downward wage pressure [122]. This necessitates broad societal
efforts focused on reskilling and upskilling the workforce to adapt to an Al-driven
economy [110].

¢ Wage vs. Wealth Inequality: Al adoption could have opposing effects on inequality.
A calibrated task-based model using UK household data suggests that while Al may
reduce wage inequality by displacing some high-income workers, it could substantially
increase wealth inequality. This occurs as capital owners and those whose productivity
is complemented by Al capture a larger share of economic gains, highlighting a
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difficult trade-off for policymakers between fostering growth and managing wealth
disparities [123].

¢ Demographic and Fiscal Pressures: The economic impacts of LLMs intersect with
major demographic trends. In aging high-income economies, Al may compensate
for shrinking workforces but could also reduce momentum for immigration policies
that support fiscal stability [124]. As modeled by Tosun, demographic shifts directly
influence public spending on education and human capital. Failure to adapt fiscal
policy could amplify intergenerational pressures and undercut the public investments
needed to prepare the workforce for an Al-driven economy [125].

*  Population Aging: High-income economies experiencing demographic decline may in-
creasingly rely on LLMs to sustain productivity. However, without inclusive reskilling
initiatives and adaptive migration policies, these technologies risk shrinking the tax
base, amplifying intergenerational fiscal pressures, and undermining public invest-
ment in education [126].

*  Geographic Disparities: LLMs offer the potential to revitalize rural and underserved ar-
eas through applications like telehealth and remote education. However, this promise
is contingent on equitable access to broadband infrastructure and local training, with-
out which AI could worsen the rural-urban economic divide [127].

Ultimately, the historical record suggests that technological advances, Al included,
do not yield equitable outcomes by default. As West highlights in his Brookings commen-
tary [128], Al has the potential to exacerbate income inequality by displacing mid-skill
jobs and concentrating economic gains among capital owners and advanced tech workers.
Without deliberate redistribution mechanisms and inclusive system design, LLM adoption
may deepen existing structural divides. More broadly, West warns that without appropriate
safeguards, the productivity gains enabled by Al are likely to accrue to those with control
over capital and digital infrastructure. Acemoglu’s analysis [129] similarly emphasizes that
unregulated innovation tends to reinforce rather than reduce socioeconomic disparities.
Complementing these perspectives, Acemoglu and Johnson argue that it is the institu-
tional context—who governs and controls the technology—that ultimately shapes whether
innovation expands opportunity or entrenches elite dominance [121].

8. Recent Trends and Open Issues

Recent advancements in LLMs have accelerated both research and deployment across
a wide spectrum of domains. This section outlines prominent emerging trends, alongside
unresolved challenges, spanning algorithmic, ethical, and social dimensions (see Figure 6).
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Figure 6. Emerging trends in LLM research.
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8.1. Multimodal and Unified Architectures

A dominant research trend is the shift towards unified multimodal architectures
designed to natively process and reason across modalities. Pioneering systems like Deep-
Mind’s Flamingo [130], and more recent models such as GPT-4o [131,132] and Gemini
1.5 [30], exemplify this trend by integrating visual, textual, and audio inputs within a uni-
fied architectural framework. This unified method differs from earlier modular pipelines,
which typically relied on separate, specialized models for each modality that were then
loosely connected. By leveraging interleaved attention layers and large-scale alignment
strategies, modern unified models can perform complex tasks ranging from image cap-
tioning to audio-based reasoning. Even with their exciting potential, multimodal LLMs
face several key limitations. It’s difficult to align different data types within these models
properly, and training them demands substantial resources [133]. More research is crucial
to see how well these models truly generalize beyond controlled tests and to check how
robust they are with different types of inputs.

8.2. Detection of LLM-Generated Content

The widespread availability of content created by LLMs raises urgent concerns about
authenticity, plagiarism, and misinformation. Recent studies show that it’s becoming
increasingly difficult to tell the difference between human-written and LLM-generated
text in news articles, scientific papers, and social media posts [134,135]. Because of this,
detecting Al-generated content has become a crucial area of research, with methods rang-
ing from watermarking [136] to statistical [137] and neural-based approaches [138], often
relying on foundational mathematical methods like the generation of discrete orthogonal
matrices [139]. To improve resilience against tampering, researchers are developing ad-
vanced methods such as multimodal quantum watermarking for images, which has shown
high robustness against noise, geometric, and cropping attacks [140]. However, human
performance in identifying LLM-generated content remains close to random chance [134].
Moreover, adversarial attacks and prompt engineering often evade detection, posing a
severe risk in educational and scientific contexts [141]. There is an ongoing need for robust
detection benchmarks like DetectRL [142], and for integrating these into regulatory and
content verification pipelines.

8.3. Agentic LLMs and Tool-Augmented Reasoning

Beyond simple text generation, a significant trend is the development of LLMs that
exhibit emergent agentic behaviors, such as sophisticated planning, memory, and tool use.
Tools such as Auto-GPT [78] and agents built with LangChain [143] let LLMs do more than
just write. They can find information, use other software (APIs), and connect different
tasks to complete complex jobs [144]. These agent-like LLMs represent a new way for
these models to think and interact with the world. However, there are several significant
challenges. These LLM agents can have trouble making stable plans, sometimes invent facts
when using tools (tool hallucinations), and forget or corrupt information they’re supposed
to remember [145]. To make these agents more reliable, researchers are working on ways
to “ground” their knowledge in reality, create modular control systems, and clearly define
how the agents understand their actions and current state [146].

8.4. Scalability and Efficiency

The growing size and deployment of LLMs raise concerns about compute, energy, and
accessibility. Techniques such as parameter-efficient fine-tuning (PEFT) [38] and quantiza-
tion (e.g., QLoRA) [39] aim to reduce training and inference costs. Nonetheless, efficient
models still face trade-offs in robustness, generalization, and downstream performance.
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Furthermore, aligning open models without access to large-scale human feedback datasets

remains a major bottleneck [147].

8.5. Ethical Concerns, Regulation, and Societal Impact

As LLMs become common in education, journalism, and science, their unsupervised

use brings significant societal risks that require careful consideration and robust governance

frameworks [148]. Key challenges include:

Authenticity and Misinformation: It is becoming nearly impossible to tell the difference
between human-written and Al-generated text, which threatens academic honesty,
public trust in information, and the integrity of the digital ecosystem [149].
Copyright and Data Provenance: A critical legal and ethical challenge stems from the
common practice of training LLMs on vast datasets scraped from the internet, which
often include copyrighted materials such as books, articles, and artwork without
permission from the creators. This practice has led to numerous high-profile lawsuits
from authors, artists, and news organizations who argue that it constitutes mass
copyright infringement [150,151]. The central debate revolves around the doctrine of
“fair use,” with technology companies arguing that training is a transformative use,
while rights holders contend it devalues their intellectual property. This highlights
the urgent need for transparency about where training data comes from and the
development of ethical data-sourcing practices [152,153].

Cultural and Linguistic Homogenization: The widespread use of LLMs raises concerns
about language becoming too uniform, the potential loss of diverse cultural nuances,
and a “flattening” of emotional expression in generated content [154,155].
Regulation and Governance: Although new rules, such as the EU Al Act [156], are
beginning to address these concerns, their enforcement and auditability remain lim-
ited. This underscores the ongoing need for human oversight in the auditing pro-
cess and clear, domain-specific guidelines for how these models are used within
different communities.

8.6. Open Problems

Several foundational challenges exist across multiple emerging trends in LLM research.

Addressing these issues is essential for future progress. Figure 7 illustrates the key open

problems outlined below.
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Figure 7. Overview of key open problems in LLM research.

Detectability vs. Usability Trade-off. The challenge of detectability involves reli-
ably identifying whether a piece of content was generated by an Al model. This
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field encompasses several technical strategies, including (a) watermarking, which
embeds a secret, statistically detectable signal into the generated output [157,158];
(b) provenance tracking, which involves cryptographic methods to verify the origin of
content [159,160]; and (c) model fingerprinting, which identifies the unique stylistic
artifacts of a specific model [161,162]. A core open problem is that these detection
approaches often degrade output fluency or introduce stylistic characteristics that can
hinder creative or assistive writing [163,164]. Furthermore, the robustness of these
detectors is often undermined by paraphrasing or adversarial prompt attacks, raising
questions about their sustained utility [165,166].

¢ Dataset Contamination and Model Collapse. Data contamination refers to the uninten-
tional inclusion of test data in a model’s training set, leading to inflated performance
metrics and an inaccurate assessment of true generalization capabilities [167]. This
problem manifests in two key ways: (a) benchmark contamination, where evaluation
datasets are inadvertently scraped from the web and included in pre-training cor-
pora, and (b) model collapse, a phenomenon where models trained on the synthetic
outputs of previous models suffer a progressive loss of quality as the diversity of
human-like language degrades and rare semantic patterns are lost [168]. Furthermore,
paraphrased benchmarks can circumvent conventional data decontamination pro-
cesses, thereby inflating performance estimates [169]. This highlights the critical need
for contamination-resilient evaluation and dataset curation methodologies [170].

e Multilingual and Cross-Domain Generalization. Generalization in LLMs refers to the
ability to perform effectively on new, unseen data and tasks that differ significantly
from the training distribution [171]. A critical open problem is poor generalization
in specific contexts, particularly in multilingual and cross-domain settings. Existing
benchmarks are overwhelmingly English-centric, leaving low-resource languages and
domain-specific tasks underrepresented [172,173]. When applying multilingual LLMs
to long non-English contexts, performance can drop dramatically (e.g., from 96% in
English to as low as 36% in Somali on multitarget retrieval tasks [172]), highlighting
serious equity and inclusivity gaps.

¢  Long-Context Reasoning and Retrieval. Even models with extremely large context
windows struggle with complex multistep reasoning across long texts. Issues like
multimatching and logic-based retrieval tasks require chained reasoning and exceed
existing attention and chain-of-thought capabilities unless decomposed into numerous
steps [174,175]. Furthermore, simply increasing context length often yields diminish-
ing returns or even performance degradation due to “hard negatives” or distracting
information [176].

*  Benchmark Diversity and Realism. Current benchmarks are often synthetic or English-
centered. While the Needle-in-a-Haystack (NIAH) test assesses memory [177], it does
not adequately measure deep comprehension or robust reasoning [178,179]. Emerging
benchmarks (e.g., RULER [180], PangeaBench [181]) aim to address these gaps but are
still limited in scope and cultural reach. A more comprehensive evaluation suite must
cover multilingual, multimodal, and real-world reasoning challenges.

In summary, LLMs have achieved remarkable capabilities, but they remain fragile
in areas related to authenticity, longevity, inclusivity, and reasoning fidelity. Overcoming
these interconnected challenges will require rigorous benchmarking, contamination-aware
dataset pipelines, multilingual and multimodal evaluation designs, and more nuanced con-
troller architectures that can robustly manage complexity without sacrificing performance
or fairness.
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9. Conclusions

This survey has examined core aspects of large language model development, cover-
ing adaptation techniques, evaluation metrics, diverse applications, economic dynamics,
and emerging research trajectories. We highlighted how parameter-efficient fine-tuning
methods offer practical avenues for adapting vast models by updating only a minimal
subset of parameters. The discussion also addressed the inherent strengths and limitations
of automated evaluation metrics, emphasizing the persistent need for human-in-the-loop
evaluation to capture complexities such as coherence, factual accuracy, and linguistic
fluency. We also showcased the transformative potential of LLMs through their various
cross-domain applications. Economically, our analysis revealed that significant upfront
training costs, ongoing inference expenses, and substantial human labor profoundly shape
market structures and raise concerns regarding inequality and labor disruption. Our survey
concluded by exploring current trends, including multimodal LLMs and tool-augmented
agents, while identifying persistent open challenges such as detectability, data contamina-
tion, and generalization. Addressing these complex issues requires collaborative progress
across multiple fronts. Future work must focus not only on advancing adaptation and
evaluation techniques but also on developing novel infrastructure, such as frameworks
for decentralized training and federated evaluation, to mitigate the centralizing pressures
of high computational costs. Concurrently, robust governance mechanisms are essential,
including standards for data transparency, independent model audits, and clear licensing
regimes to ensure responsible and equitable LLM deployment.
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CLM Causal Language Modeling

COPA Choice of Plausible Alternatives

CRF Conditional Random Fields

EDA Electronic Design Automation

EHR Electronic Health Record

FLOPs Floating Point Operations per Second

GCP Google Cloud Platform
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GPU Graphics Processing Unit
GRU Gated Recurrent Unit
HDL Hardware Description Language
HELM Holistic Evaluation of Language Models
HMM Hidden Markov Model
KV Key-Value
LCS Longest Common Subsequence
LLM Large Language Model
LoRA Low-Rank Adaptation
LSTM Long Short-Term Memory
MFU Model FLOPS Utilization
MLM Masked Language Modeling
MMLU Massive Multitask Language Understanding
NER Named Entity Recognition
NIAH Needle-in-a-Haystack
NLG Natural Language Generation
NLP Natural Language Processing
NLU Natural Language Understanding
NTP Next Token Prediction
PEFT Parameter-Efficient Fine-Tuning
QA Question Answering
RLHF Reinforcement Learning from Human Feedback
RNN Recurrent Neural Network
ROUGE Recall-Oriented Understudy for Gisting Evaluation
RTE Recognizing Textual Entailment
Seq2Seq Sequence-to-Sequence
SME Small and Medium-sized Enterprises
SSL Self-Supervised Learning
STEM Science, Technology, Engineering, and Mathematics
TPU Tensor Processing Unit
VL Vision-Language
WSC Winograd Schema Challenge
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