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ABSTRACT 

Background 

Cardiac diffusion tensor imaging (cDTI) is sensitive to imaging parameters including the 

number of unique diffusion encoding directions (ND) and number of repetitions (NR; 

analogous to number of signal averages or NSA). However, there is no clear guidance for 

optimising these parameters in the clinical setting.  

 

Methods 

Spin echo cDTI data with 2nd order motion compensated diffusion encoding gradients were 

acquired in ten healthy volunteers on a 3T MRI scanner with different diffusion encoding 

schemes in pseudo-randomised order. The data were subsampled to yield 96 acquisition 

schemes with 6 ≤ ND ≤ 30 and 33 ≤ total number of acquisitions (NAall) ≤ 180. Stratified 

bootstrapping with robust fitting was performed to assess the accuracy and precision of each 

acquisition scheme. This was quantified across a mid-ventricular short-axis slice in terms of 

root mean squared difference (RMSD) with respect to the full reference dataset, and standard 

deviation (SD) across bootstrap samples respectively. 

 

Results 

For the same acquisition time, the ND = 30 schemes had on average 48%, 40%, 34% and 

34% lower RMSD and 6.2%, 7.4%, 10% and 5.6% lower SD in MD, FA, HA and |E2A| 

compared to the ND = 6 schemes. Given a fixed number of high b-value acquisitions, there 

was a trend towards lower RMSD and SD of MD and FA with increasing numbers of low b-

value acquisitions. Higher NAall with longer acquisition times led to improved accuracy in all 

metrics whereby quadrupling NAall from 40 to 160 volumes led to a 20%, 39%, 11% and 5.4% 

reduction in RMSD of MD, FA, HA and |E2A| respectively, averaged across six diffusion 

encoding schemes. Precision was also improved with a corresponding 53%, 50%, 53% and 

36% reduction in SD. 

 

Conclusions 

We observed that accuracy and precision were enhanced by (i) prioritising number of diffusion 

encoding directions over number of repetitions given a fixed acquisition time, (ii) acquiring 

sufficient low b-value data, (iii) using longer protocols where feasible. For clinically relevant 

protocols, our findings support the use of ND = 30 and NAb50:NAb500 ≥ 1/3 for better accuracy 

and precision in cDTI parameters. These findings are intended to help guide protocol 

optimisation for harmonisation of cDTI. 
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Graphical abstract 
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INTRODUCTION 

Cardiac diffusion tensor imaging (cDTI) is a rapidly emerging technique for myocardial tissue 

characterisation in vivo without need for contrast agents1. It has shown promise in 

characterising the microstructural changes in several clinical scenarios, including myocardial 

infarction2-6, hypertrophic cardiomyopathy7-11, aortic stenosis12, amyloidosis13 and others. The 

major challenge of cDTI for in vivo imaging is its high sensitivity to bulk motion of the heart 

during contracture. To ameliorate this, the use of 2nd order motion-compensated (M2) diffusion 

encoding gradients has become standard practice in spin echo echo planar imaging (EPI)14,15. 

This leads to longer echo times (TEs) and lower signal-to-noise-ratio (SNR) compared to using 

non-motion-compensated diffusion gradients, which is compounded by the relatively short T2 

of the myocardium, i.e. ~44 ms at 3T16. 

 

To obtain adequate SNR and to mitigate instances of images containingartefacts, clinical cDTI 

protocols typically employ high numbers of repetitions (8 ≤ NR ≤ 16)14,17,18. We refer to number 

of repetitions (NR) instead of the more commonly used number of signal averages (NSA) 

because cardiac DTI data are in general exported and reconstructed offline as separate 

repetitions instead of being averaged on the scanner. However, the number of unique diffusion 

encoding directions (6 ≤ ND ≤ 12)14,15,17-19 often remains small relative to DTI protocols used 

in other anatomy such as the brain, where ND ≥ 30 has been recommended20. As the imaging 

time is related to both NR and ND, identifying a suitable range of NR and ND is important for 

cDTI within a clinically feasible timeframe. Moreover, DTI parameters, including mean 

diffusivity (MD) and fractional anisotropy (FA), as measured in the healthy myocardium with 

spin echo methods are known to vary in the literature with reports of 0.75 × 10-3 mm2/s ≤ MD 

≤ 1.72 × 10-3 mm2/s and 0.29 ≤ FA ≤ 0.43 17,19,21. Known imaging sources of variation for these 

parameters include spatial resolution22, ND, NR, SNR23, diffusion encoding time24 and b-

value18. Isolating the effects of NR and ND is therefore an important aspect in the optimisation 

of efficient and robust cDTI protocols for clinical use.  

 

In DTI, ND = 6 is the minimum number of unique non-zero b-value acquisitions required for 

tensor estimation25. However, previous work in the brain investigating the dependence of DTI 

parameters on ND, showed that higher ND reduced artefactually elevated FA26,27 and its 

standard deviation (SD)26, particularly in regions of low FA28. Higher SNR, as may be obtained 

by averaging, led to similarly lower and more accurate FA29,30. As a guide, ND ≥ 20 was 

recommended for measurement of FA26,31,32 while ND ≥ 30 was suggested for measurement 

of tensor orientation and MD26. Whilst the effects of ND and NR have been reported ex vivo23, 

there have only been preliminary reports33-36 that provide no conclusive evidence on the 

requirements of ND and NR for cDTI in vivo. A recent consensus statement on cDTI published 
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by the Society for Cardiovascular Magnetic Resonance Cardiac Diffusion Special Interest 

Group recommended that more than 6 directions should be used but highlighted that 

rationalising ND and NR remains an unmet need in the development of cDTI1. Furthermore, 

there exist various approaches for sampling low b-value data in cDTI. Whilst there are 

methods for optimising the quantity of low b-value data as a proportion of high b-value data in 

the brain37, optimal sampling of low b-value data is less well understood in the heart. 

 

In this study, we investigated the accuracy and precision of several diffusion sampling 

schemes over a wide range of ND and NR in healthy volunteers, extending our previous ex 

vivo work23. We compare time-normalised data to assess the trade-offs made between ND 

and NR, and examine the effects of the number of low b-value acquisitions. We hypothesized 

that accuracy and precision in DTI measurements would be improved by (i) sampling schemes 

that prioritise ND over NR, (ii) sufficient sampling of low b-value data, and (iii) longer scan 

times. This is intended to inform optimisation and standardisation of clinical cDTI protocols. 

 

METHODS  

Data Acquisition 

Cardiac DTI data were acquired in healthy volunteers (N = 10) using a Prisma 3T MRI 

(Siemens Healthineers, Erlangen, Germany) with maximum gradient amplitude, Gmax = 80 

mT/m and a combination of 18-channel body and 32-channel spine radiofrequency array coils. 

The study was performed under approved ethics, and healthy volunteers provided written 

informed consent. Data were acquired with single-shot spin echo EPI, 2D radiofrequency inner 

volume excitation and cardiac triggering: TR = 3 RR-intervals, TE = 76 ms, in-plane resolution 

= 2.3 x 2.3 mm2, slice thickness = 8 mm, number of slices = 3, field-of-view = 320 x 111 mm2, 

partial Fourier = 7/8, bandwidth = 2012 Hz/px, blow = 50 and bhigh = 500 s/mm2. Up to 2nd order 

motion compensated diffusion encoding gradient waveforms were applied. Subjects were 

scanned under free-breathing conditions without respiratory gating, in late systolic phase. 

 

Diffusion-weighted data were acquired in pseudo-randomised fashion over a range of diffusion 

encoding schemes with different ND and NR. Low b-value data were acquired with ND = 3 

orthogonal directions, denoted by NDorth3, b50. High b-value data were acquired with a 61-

direction Cook diffusion encoding scheme38 that was sequentially subsampled to 6, 10, 18 and 

30 direction sets. These diffusion encoding schemes (DES) were denoted Cook61_6, 

Cook61_10, Cook61_18 and Cook61_30. The Cook diffusion encoding scheme was 

particularly amenable for subsampling because it was optimised for incremental sampling in 

case of premature scan termination. Previous work has shown that noise performance (and 

therefore the accuracy of parameter estimates) of a given diffusion encoding scheme is 
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significantly correlated with the condition number of its transformation matrix39.  Specific sets 

of sequentially subsampled directions were identified to minimise the condition numbers of the 

transformation matrices. This was performed by circularly subsampling ND = 6, 10, 18 and 30 

sequential directions from the Cook61 scheme, incrementing the first diffusion encoding 

direction (Di) from 1 to 61, and finding Di that minimised the condition numbers. For the 

diffusion encoding schemes subsampled to 6, 10, 18 and 30 directions, condition numbers 

were relatively low at 1.74, 1.75, 1.70 and 1.58 respectively. For reference, the condition 

numbers of the widely used Jones30 and 6-direction dual gradient schemes are 1.59 and 2.00 

respectively39. An icosahedral diffusion encoding scheme40 with 6 diffusion encoding 

directions (Icosa6) and Jones diffusion encoding scheme37 with 30 diffusion encoding 

directions (Jones30) were also acquired. An upper limit of 30 diffusion encoding directions 

was specified due to diminishing returns with higher ND29.  These diffusion encoding schemes 

are illustrated in Figure 1. 

 

 

Figure 1. Diffusion encoding schemes investigated include Cook61 diffusion encoding scheme 

subsampled to 6, 10, 18 and 30 directions, a 6-direction icosahedral scheme and a 30-

direction scheme by Jones et al. Each direction was reflected on the opposite side of the 

sphere. 

 

The full set of data acquired included NR(NDorth3, b50) = 24,  NR(NDCook61_30, b500) = 12, 

NR(NDCook61_6, b500) = 8, NR(NDicosa6, b500) = 20 and NR(NDJones30, b500) = 4. This yielded a total 

of number of acquisitions (NAall) = 24 × 3 + 12 × 30 + 8 × 6 + 20 × 6 + 4 × 30 = 720 volumes, 
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which constituted the reference dataset acquired in a single scan. The reference dataset was 

subsampled into the 6 diffusion encoding schemes listed in Figure 1, with the total number of 

high b-value acquisitions (NAb500) set to 30, 60, 90 and 120 volumes each. For a 6-direction 

scheme, this translated to NR = 5, 10, 15 and 20 repetitions respectively. To keep acquisition 

times consistent, schemes with larger ND had proportionally lower NR. In cases where NA 

was not divisible by ND e.g. Cook61_18, the last repetition of data would form an incomplete 

shell. Further to the diffusion encoding schemes, we also investigated the sensitivity of DTI to 

low b-value acquisitions. Here, we sampled a number of low b-value acquisitions (NAb50) equal 

to a factor of the number of high b-value acquisition (NAb500), where NAb50 = NAb500 / [10, 5, 3, 

2]. For example, in a 6-direction scheme with NAb500 = 30, NAb50 = 3, 6, 10 and 15. The total 

number of acquisitions (NAall) was the sum of NAb50 and NAb500. This yielded 96 subsampled 

combinations i.e. acquisition schemes comprising 6 diffusion encoding schemes, 4 sets of low 

b-value acquisitions and 4 sets of high b-value acquisitions, as reflected in Table 1.  The 

naming convention follows the format “DES_NAb500_NAb50”, e.g. Cook61_30_90_30. Nominal 

acquisition time = NAall × nominal TR = 720 × 3 s = 36 min, where nominal TR = number of 

slices × 60 / heart rate, where data were acquired in a slice-interleaved manner and with 

assumed heart rate of 60 bpm. 

 

Table 1. Acquisition schemes extracted from the reference dataset, indicating numbers of 

diffusion encoding directions for high b-value data (NDb500), numbers of acquisition volumes 

for high b-value data (NAb500), numbers of repetitions for high b-value data (NRb500), numbers 

of acquisition volumes for low b-value data (NAb50) including three orthogonal diffusion 

encoding directions, total numbers of acquisition volumes (NAall), and acquisition time. For 

brevity and clarity, subsets of data with different diffusion encoding schemes (highlighted 

yellow) and NAb50 (highlighted blue) are reported in detail in Results. 

Diffusion encoding scheme Cook61_6 / Icosa6 Cook61_10 Cook61_18 Cook61_30 / Jones30 

NDb500   6 6 6 6 10 10 10 10 18 18 18 18 30 30 30 30 

NAb500   30 60 90 120 30 60 90 120 30 60 90 120 30 60 90 120 

NRb500 = NAb500 / NDb500 5 10 15 20 3 6 9 12 1.7 3.3 5 6.7 1 2 3 4 

NAb50 
= NAb500 /  

[10, 5, 3, 2] 

3 6 9 12 3 6 9 12 3 6 9 12 3 6 9 12 

6 12 18 24 6 12 18 24 6 12 18 24 6 12 18 24 
10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 

15 30 45 60 15 30 45 60 15 30 45 60 15 30 45 60 

NAall = NAb50 + NAb500 

33 66 99 132 33 66 99 132 33 66 99 132 33 66 99 132 

36 72 108 144 36 72 108 144 36 72 108 144 36 72 108 144 
40 80 120 160 40 80 120 160 40 80 120 160 40 80 120 160 

45 90 135 180 45 90 135 180 45 90 135 180 45 90 135 180 

Time (s) 
= Nall * 3R-R intervals               (= 

3s @ 60bpm)  

99 198 297 396 99 198 297 396 99 198 297 396 99 198 297 396 

108 216 324 432 108 216 324 432 108 216 324 432 108 216 324 432 
120 240 360 480 120 240 360 480 120 240 360 480 120 240 360 480 

135 270 405 540 135 270 405 540 135 270 405 540 135 270 405 540 
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Data Analysis 

Magnitude only data were exported from the scanner and analysed. Post-processing used in-

house tools developed in Python. Image registration was performed by masking a suitable low 

b-value image using a square, registering all blow images to this reference image, then using 

the average of registered blow images as a reference image to register all images. The DTI 

signal representation was then fitted to the full dataset using robust weighted least squares41  

implemented in DiPy42, and the entire image series was predicted from this fit. All original 

images were then re-registered to these predicted images, leading to superior registration 

compared to the first stage. Rigid registration was performed using SimpleITK43 with Mutual 

Information as a metric, calculated within the square mask. To assess the potential of signal 

rectification in the high b-value data, SNRb500 was calculated in a mid short-axis slice by taking 

the mean signal intensity over repetitions divided by the standard deviation over repetitions44 

for each diffusion encoding direction in the registered data, and then averaging across 

directions and voxels.  

 

Diffusion tensor fitting was performed on the registered images using robust weighted-least 

squares41. The robust fitting method has been previously shown to be superior to whole-image 

shot-rejection41and the weighted-least squares method mitigates signal rectification bias in 

magnitude images45. cDTI parameters MD, FA, helix angle (HA) and sheetlet angle (E2A) 

were calculated. HA and E2A were measured using a cylindrical coordinate system with origin 

at the centre of mass of the left ventricular (LV) segmentation on a slice-wise basis, as defined 

here46. Segmentation of the LV contours was performed with care taken to exclude voxels 

exhibiting partial-volume effects. Regions affected by strong artefacts that may negatively 

impact the results, were masked out by defining ‘sectors’ centred on the LV blood-pool such 

that these voxels are ignored in the voxel statistics. 

 

To assess the relative performance of each acquisition scheme, we use bootstrapping to 

approximate the sampling distribution of diffusion measures, by using the full reference 

dataset to generate samples of possible datasets that could be obtained from each acquisition 

scheme. Bootstrapping was done using the repetition bootknife method47 which is a form of 

stratified bootstrapping. Each diffusion encoding direction was treated as a strata, and each 

bootstrap sample was generated by randomly choosing (with replacement) images from each 

strata, after first removing a random image from each strata. A total of 500 bootstrap samples 

were generated per acquisition scheme (Table 1). This was well in excess of the minimum 

number of bootstrap samples required for stable measurements of accuracy and precision, 

and in a similar range as in the previous literature48,49. The number of images chosen from 

each strata was based on the number of repetitions specified for each shell. Where NAb500 
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was perfectly divisible by NDb500, i.e. in most cases, these images were distributed equally 

across diffusion encoding directions for the current shell. Where NAb500 was not perfectly 

divisible by NDb500 (e.g. in the Cook61_18 scheme with NAb500 = 30), any remaining images 

were then assigned to random unique directions within the design for the current shell, so 

there was at most a difference of 1 image per strata in the current shell. 

 

For each individual diffusion encoding scheme, accuracy was assessed by calculating the root 

mean squared difference (RMSD) between the bootstrap samples and the full reference 

dataset.  Precision was assessed by the standard deviation (SD) of cDTI metrics across 

bootstrap samples, whereby a lower SD reflected higher precision, i.e. precision = (SD)-2. The 

mean, RMSD and SD were then averaged over voxels in segmented regions-of-interest 

(ROIs) in a mid-myocardial slice and in the mid-ventricular septal wall i.e. AHA regions 8 and 

9, in order to exclude regions with poorer B0 homogeneity e.g. near the posterior vein. Boxplots 

of mean, RMSD and SD are presented with median and interquartile range (IQR) over 

subjects. Individual bootstrap sample data in all volunteers from selected diffusion encoding 

schemes were also presented as histograms. The data were fitted using normal distributions. 

Non-overlapping 95% confidence intervals (CI) of the mean indicate statistically significant 

differences between acquisition schemes. Paired t-tests for RMSD and SD measures were 

performed between each acquisition scheme. P-values were adjusted for multiple 

comparisons using Bonferroni-Holm correction50 with a significance threshold of p < 0.05. P-

value matrices were calculated, and cDTI parameters compared against nominal imaging 

time. 

 

RESULTS 

Subject characteristics were age = 23 ± 4 years, 1 male 9 female, average heart rate = 71 ± 

10 beats per minute (bpm), weight = 61 ± 10 kg and body mass index = 22 ± 2 (mean ± SD 

across subjects). SNRb500 was 9.6 ± 1.0 (mean ± SD across subjects). An example of image 

quality and registration performance is given (Supplementary Video 1).  

 

MD, FA, HA and |E2A| maps in a representative volunteer are shown (Figure 2). The maps 

are consistent with those reported in the literature. Absolute differences with respect to the 

reference data and SD were elevated in the inferolateral wall, corresponding to the region near 

the posterior vein, but this effect was less distinct in the average parameter maps. 
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Figure 2. cDTI maps MD, FA, HA and |E2A| in a mid-myocardial short-axis slice in a 

representative healthy volunteer using example diffusion encoding scheme Cook61_30 with 

NAb500 = 90 and NAb500 = 30. (Top) mean over bootstrap samples, (middle) absolute difference 

between current and reference diffusion encoding scheme and (bottom) standard deviation 

across bootstrap samples. Region of elevated absolute difference and SD in the inferolateral 

wall is indicated by arrows. These maps were scaled at 5× smaller range to highlight the 

heterogeneity. 

 

Boxplots reflecting (i) cDTI metrics averaged over bootstrap samples, (ii) accuracy of cDTI 

metrics expressed as the RMSD with respect to the fully sampled reference data, and (iii) 1 / 

sqrt(precision) as expressed by SD across bootstrap samples across a mid-myocardial short-

axis slice are shown (Figure 3; median and IQR over subjects). For clarity of presentation, we 

focused first on 24 acquisition schemes with 6 different diffusion encoding schemes and 4 

different total acquisition times. In all cases, NAb500:NAb50 = 3. For context, these schemes are 

highlighted in yellow in Table 1. In the reference data, mean MD = (1.46 ± 0.04) × 10-3 mm2/s, 

mean FA = 0.35 ± 0.02, mean HA = -3.4° ± 3.0°, mean |E2A| = 32.9° ± 10.0° (mean ± SD 

across subjects). Within each band with normalised acquisition times in Table 1, there was a 

small but observable trend towards lower RMSD and SD in MD, FA, HA and |E2A| with higher 

ND, indicating higher accuracy and precision. This was consistent across Cook, Icosa and 

Jones diffusion encoding schemes. For the same acquisition time, for the ND = 30 schemes 
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(Cook and Jones), RMSD MD, FA, HA and |E2A| were on average 48%, 40%, 34% and 34% 

lower than for the ND = 6 schemes (Cook and icosahedral). Similarly, SD of MD, FA, HA and 

|E2A| were 6.8%, 7.8%, 10% and 1% lower in the former compared to the latter. Mean FA was 

most sensitive to diffusion encoding scheme, whilst MD, HA and |E2A| were less so.  

 

Across bands with different acquisition times, there was a clear trend towards lower SD (i.e. 

better precision) in all cDTI metrics with increasing number of acquisitions and scan time. For 

ease of reference, these results were reformatted into bands with different diffusion encoding 

schemes and ordered by increasing NAall within each band (Supplementary Figures 2, 3 and 

4). For completeness, mean E2A is reported (Supplementary Figure 4), with mean E2A = 1.7° 

± 7.1°. 

 

 

Figure 3. Boxplots of cDTI metrics (left to right) MD, FA, HA and |E2A| showing (top) cDTI 

metrics averaged over bootstrap samples, (middle) RMSD with respect to the fully sampled 

reference data, and (bottom) SD across bootstrap samples across a mid-myocardial short-

axis slice. 24 acquisition schemes are described in the following format “DES_NAb500_NAb50”, 

e.g. Cook61_30_90_30. These were sorted by diffusion encoding scheme and grouped into 

four groups (white and grey vertical bands) with increasing NAall corresponding to increasing 

acquisition times. For reference, median and IQR values from the reference dataset are given 

(black solid and dashed lines); 5% and 10% of the median MD and FA from the reference 

dataset are indicated (red solid lines). 
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A subset of six acquisition schemes corresponding to NAall = NAb500 + NAb50 = 120 are 

presented as histograms (Figure 4). RMSD and SD for MD, FA, HA and |E2A| were 

significantly lower for ND ≥ 18 compared to ND = 6 data, indicating better accuracy and 

precision in diffusion encoding schemes with greater number of directions rather than 

repetitions. This applied across Cook, icosahedral and Jones diffusion schemes. P-value 

matrices illustrate significant differences (p < 0.05) between acquisition schemes, that were 

most prominent in precision (SD) and least prominent in mean values across different ND and 

NA (Figure 5). 

 

 

Figure 4. Histograms of (top to bottom) mean, RMSD and SD of (left to right) MD, FA, HA and 

|E2A| across 500 bootstrap samples and healthy volunteers (N = 10). Data from six time-

normalised acquisition schemes are presented, with vertical lines indicating 95% confidence 

intervals of the mean. Non-overlapping 95% CI indicate significant differences between 

groups. 
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Figure 5. P-value matrices reflecting pairwise comparisons between the 24 acquisition 

schemes given in Figure 3 with p < 0.05 (blue), p = 0.05 (white) and p > 0.05 (red). 

 

We also report the mean, RMSD and SD for the four cDTI parameters as a function of numbers 

of low and high b-value acquisitions, NAb50 and NAb500. For clarity, only a single diffusion 

encoding scheme Cook61_30 is presented (Figure 6).  For context, these schemes are 

highlighted in blue in Table 1. Within each band of fixed NAb500, there was a trend towards 

lower RMSD and SD of MD and FA. A similar trend was observed in RMSD and SD of HA and 

|E2A| at lower total number of acquisitions (NAall < 45), but was not discernible at higher NAall. 

For the same NAb500, the schemes with NAb500:NAb50 = 2 had on average, RMSD MD and FA 

that were 29% and 13% lower than the NAb500:NAb50 = 10 schemes. Similarly, SD MD and FA 

were 46% and 20% lower in the former compared to the latter.  
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Figure 6. Boxplots of cDTI metrics (left to right) MD, FA, HA and |E2A| showing (top) cDTI 

metrics averaged over bootstrap samples, (middle) RMSD with respect to the fully sampled 

reference data, and (bottom) SD across bootstrap samples across a mid-myocardial short-

axis slice. 16 acquisition schemes were sorted by number of low b-value acquisitions (NAb50) 

and grouped into four groups (white and grey vertical bands) with increasing NAall 

corresponding to increasing acquisition times. For reference, median and IQR values from the 

reference dataset are given (black solid and dashed lines); 5% and 10% of the median MD 

and FA from the reference dataset are indicated (red solid lines). 

 

A subset of a single diffusion encoding scheme with four sets of NAb50 are presented as 

histograms (Figure 7). RMSD and SD of MD and FA were significantly lower for NAb50 ≥ 18 

compared to NAb50 ≤ 10 data, indicating better accuracy and precision with greater number of 

low b-value acquisitions. No significant differences were observed in RMSD and SD of HA 

and |E2A|. P-value matrices illustrate significant differences (p < 0.05) that were most 

prominent in accuracy (RMSD) and precision (SD) of MD and FA across different NAb50 and 

NAall (Figure 8). 
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Figure 7. Histograms of (top to bottom) mean, RMSD and SD of (left to right) MD, FA, HA and 

|E2A| across 500 bootstrap samples and healthy volunteers (N = 10). Data from a single 

diffusion encoding scheme with different numbers of low b-value acquisitions (NAb50 = 9, 18, 

30, 45) are presented, with vertical lines indicating 95% confidence intervals of the mean. Non-

overlapping 95% CI indicate significant differences between groups. 

 

Data in the mid-ventricular septal wall are presented (Supplementary Figures 5 and 6). 

Notwithstanding the larger error bars due to fewer voxels, similar trends were observed as 

compared to the whole mid-ventricular slice data. This suggests that structured noise in 

regions more greatly affected by susceptibility effects, i.e. near the posterior vein, did not 

detract from the overall findings. 
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Figure 8. P-value matrices reflecting pairwise comparisons between the 16 acquisition 

schemes given in Figure 6 with p < 0.05 (blue), p = 0.05 (white) and p > 0.05 (red). 

 

Average mean, RMSD and SD of cDTI parameters were evaluated as a function of acquisition 

time (Figure 9). The data show decreasing RMSD and SD with increasing NAall and scan time. 

The majority of diffusion encoding schemes investigated yielded an RMSD MD of <5% and 

SD MD of < 10% of the reference MD. Acquisition schemes DESAll_90_45, DESAll_120_40 

and DESAll_120_60 yielded SD MD of < 5% of the reference MD, where DESAll corresponded 

to all diffusion encoding schemes. Differences in MD between time-normalised diffusion 

encoding schemes were marginal. Diffusion encoding schemes were ranked from most to 

least accurate FA (i.e. lowest to highest RMSD): Cook61_30, Jones30, Cook61_18, Icosa6, 

Cook61_10, Cook61_6, with RMSD FA < 10% of the reference FA for Cook61_30 / Jones30 

with NAall ≥ 108. SD FA < 10% of the reference FA for Cook61_30_120_60 only. Diffusion 

encoding schemes were ranked (i) from most to least accurate HA: Cook61_30, Jones30, 

Cook61_18, Cook61_10, Cook61_6, Icosa6, (ii) from most to least precise HA: Cook61_30, 

Cook61_18, Jones30, Icosa6, Cook61_10, Cook61_6, (iii) from most to least accurate |E2A|: 

Jones30, Cook61_30, Cook61_18, Icosa6, Cook61_10, Cook61_6, and iv) from most to least 

precise |E2A|: Jones30, Icosa6, Cook61_10, Cook61_6, Cook61_18, Cook61_30. NAb500 = 
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120 and Cook61_30 / Cook61_18 was needed to achieve SD HA < 7°, whilst SD |E2A| < 13° 

was achievable with NAb500 = 120 and Jones30, Icosa6.  

  

 

Figure 9. Mean, RMSD and SD of MD, FA, HA and |E2A| within a mid-myocardial slice 

averaged across subjects and plotted against nominal acquisition time. Each acquisition 

scheme 1 – 97 is encoded by colour and described in the legend. For better presentation, 

mean values for the reference dataset labelled “all_648_72” are not plotted due to long scan 

time, and are instead given by black lines; 5% and 10% of the mean MD and FA from the 

reference dataset are indicated by red lines. 
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Higher NAall i.e. longer acquisition times led to improved precision in all DTI metrics whereby 

quadrupling NAall from 40 to 160 volumes led to a 53%, 50%, 53% and 36% reduction in SD 

in MD, FA, HA and |E2A|, averaged across six diffusion encoding schemes. In relative terms, 

this corresponded to a reduction in SD MD from 9.7% to 4.6% and SD FA from 22% to 11%, 

expressed as a percentage of the mean MD and FA of the reference data. Similarly, accuracy 

improved with a 20%, 39%, 11% and 5.4% reduction in RMSD in MD, FA, HA and |E2A| from 

40 to 160 acquired volumes. In relative terms, this corresponded to a reduction in RMSD MD 

from 3.3% to 2.7% and RMSD FA from 19% to 12% of the reference mean MD and FA. RMSD 

and SD in selected acquisition schemes are given in Table 2. 

 

Table 2. RMSD and SD of MD (×10-4 mm2/s), FA, HA (°), |E2A| (°) for selected acquisition 

schemes, varying (top to bottom) NAb50, NAAll and diffusion encoding scheme (DES; mean ± 

SD over subjects). For ease of reference, the acquisition schemes were numbered according 

to the legend in Figure 9. 

Vary NAb50 
76: Cook 

61_30_120_12 
82: Cook 

61_30_120_24 
88: Cook 

61_30_120_40 
94: Cook 

61_30_120_60 
 97: Reference 

R
M

S
D

 MD 0.33 ± 0.12 0.29 ± 0.09 0.27 ± 0.07 0.28 ± 0.08  0 

FA 0.028 ± 0.006 0.027 ± 0.006 0.026 ± 0.006 0.027 ± 0.006  0 

HA 6.1 ± 2.7 6.1 ± 2.7 6.2 ± 2.7 6.3 ± 2.8  0 

|E2A| 10 ± 2 10 ± 2 10 ± 2 10 ± 2  0 

S
D

 

MD 1.04 ± 0.07 0.77 ± 0.06 0.64 ± 0.05 0.55 ± 0.05  0.448 ± 0.037 

FA 0.042 ± 0.004 0.038 ± 0.004 0.036 ± 0.004 0.035 ± 0.004  0.020 ± 0.002 

HA 6.3 ± 1.5 6.3 ± 1.5 6.3 ± 1.5 6.3 ± 1.5  3.2 ± 0.9 

|E2A| 12 ± 2 12 ± 2 12 ± 2 12 ± 2  6 ± 1 
        

Vary NAAll 
16: Cook 

61_30_30_10 
40: Cook 

61_30_60_20 
64: Cook 

61_30_90_30 
88: Cook 

61_30_120_40 
  

R
M

S
D

 MD 0.36 ± 0.11 0.30 ± 0.09 0.28 ± 0.08 0.27 ± 0.07   

FA 0.055 ± 0.011 0.033 ± 0.007 0.028 ± 0.006 0.026 ± 0.006   

HA 8.1 ± 2.5 6.9 ± 2.7 6.3 ± 2.5 6.2 ± 2.7   

|E2A| 12 ± 2 11 ± 2 10 ± 2 10 ± 2   

S
D

 

MD 1.36 ± 0.10 0.92 ± 0.07 0.74 ± 0.06 0.64 ± 0.05   

FA 0.073 ± 0.007 0.050 ± 0.006 0.041 ± 0.005 0.036 ± 0.004   

HA 14 ± 2 8.9 ± 1.8 7.2 ± 1.6 6.3 ± 1.5   

|E2A| 19 ± 2 15 ± 2 13 ± 2 12 ± 2   

        

Vary DES 
85: Cook 

61_6_120_40 
86: Cook 

61_10_120_40 
87: Cook 

61_18_120_40 
88: Cook 

61_30_120_40 
89: Icosa 
6_120_40 

90: Jones 
30_120_40 

R
M

S
D

 MD 0.52 ± 0.06 0.47 ± 0.12 0.30 ± 0.08 0.27 ± 0.07 0.52 ± 0.17 0.25 ± 0.06 

FA 0.056 ± 0.011 0.050 ± 0.010 0.035 ± 0.008 0.026 ± 0.006 0.049 ± 0.009 0.031 ± 0.009 

HA 11 ± 4 10 ± 4 7.6 ± 3.3 6.2 ± 2.7 10.6 ± 2.2 6.5 ± 2.1 

|E2A| 17 ± 2 16 ± 3 12 ± 2 10 ± 2 13 ± 2 9 ± 2 

S
D

 

MD 0.69 ± 0.06 0.68 ± 0.06 0.65 ± 0.05 0.64 ± 0.05 0.68 ± 0.05 0.68 ± 0.05 

FA 0.039 ± 0.004 0.040 ± 0.005 0.037 ± 0.005 0.036 ± 0.004 0.039 ± 0.004 0.038 ± 0.004 

HA 7.3 ± 1.9 7.3 ± 2.2 6.6 ± 1.9 6.3 ± 1.5 7.1 ± 1.2 7.1 ± 1.5 

|E2A| 12 ± 2 12 ± 2 12 ± 2 12 ± 2 11 ± 2 11 ± 2 

 

 

DISCUSSION 
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We evaluated 96 acquisition schemes in terms of accuracy and precision with respect to the 

720-volume i.e. ~36-minute reference datasets. First, we observed that accuracy and 

precision in all estimates improved with NAall and acquisition time, consistent with previous 

reports23,35. Second, we found that prioritising ND over NR given a fixed acquisition time 

improved accuracy and precision in general. Differences in accuracy and precision between 

different diffusion encoding schemes with equal ND and NAAll were less prominent and 

generally not significant.  

 

In our pilot work in healthy volunteers35, we reported RMSD MD = 2.29 (×10-4 mm2/s), RMSD 

FA = 0.08 and RMSD HA = 13° using a Jones scheme with ND = 6, NAb50 = 24, and NAb500 = 

96. The accuracy improved to RMSD MD = 1.11 (×10-4 mm2/s), RMSD FA = 0.04 and RMSD 

HA = 7.8° when using a Caruyer scheme51 with a larger number of directions, i.e. ND = 96 and 

NR = 1. It was concluded that precision in cDTI was improved by prioritising ND over NR for 

a given acquisition time. This was supported by more recent work evaluating 6 ≤ ND ≤ 30, 

where it was reported that increasing ND led to reduced RMSD in cDTI parameters, and that 

recommended an experimental design strategy that maximises ND36. In the current study, the 

nearest equivalent acquisition scheme to the former was Cook61_6_90_30 which yielded 

RMSD MD = 0.794 ×10-4 mm2/s, RMSD FA = 0.04 and RMSD HA = 8.4°. This represented an 

improvement in accuracy compared to the previous study, that may be attributed to the 

improved post-processing pipeline with robust fitting of tensors52 over shot rejection. Direct 

comparison to a 96-direction diffusion encoding scheme was not available. Another pilot study 

in healthy volunteers (N = 5) explored time-normalised cDTI acquisitions with six diffusion 

encoding schemes where ND = 6, 10, 12, 15, 20, 30 and NR = 10, 6, 5, 4, 3, 2 respectively34. 

The authors reported minimal differences in median and interquartile intervals of MD and FA, 

and they suggested that the acquisition scheme was not critical to measuring MD and FA. In 

a separate study using stimulated echo acquisition mode (STEAM), no significant differences 

were found in MD and FA between time-normalised averaged datasets where ND = 6, 10, 12 

and 2053. Our results suggest otherwise and indicate that prioritising ND over NR for a given 

scan time, up to ND = 30, improves accuracy and precision of cDTI parameters. For example, 

RMSD and SD in MD and FA were significantly lower in Cook61_30_120_40 compared to 

Cook61_6_120_40 (p < 0.001). Moreover, there is potential for poor image quality associated 

with specific diffusion encoding directions due to eddy current effects. Acquiring the minimum 

of ND = 6 provides no redundancy in case a specific diffusion encoding direction gives rise to 

sub-optimal image quality. 

 

The effects of ND have also been reported ex vivo23,54. One study in fixed pig hearts found 

that reliable estimation of HA could be obtained with ND/NR = 12/6, 30/3 or 64/2, 
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recommending the 12/6 combination as one with the shortest (<10 min) acquisition time54. 

However, only qualitative assessments were reported and data were not time-normalised. A 

second study in fixed rat hearts investigated the effects of ND, SNR and spatial resolution on 

the accuracy and precision of cDTI23. It was shown that for a given scan time, the precision of 

FA, HA, |E2A|, transverse angle, sheetlet elevation and sheetlet azimuth for a given scan time 

were largely independent of the choice of increasing NR or ND, on the assumption that SNR 

is proportional to √NR. In practice, physiological effects in vivo, such as residual motion effects 

arising from breathing and cardiac contraction, contribute a significant additional noise-like 

component that violates the above assumption, resulting in spatially correlated variations in 

parameters. This may, to an extent, reduce the value of additional NR, and support our current 

findings of prioritising ND over NR, up to ND = 30. Extrapolating to typical parameter settings 

e.g. resolution used in the clinic, the study suggested that the expected bias in MD and FA 

were 2.1% and 13% and precision in MD and FA were ±4.9% and ±30% with respect to the 

ground truth; precision of HA and |E2A| were ±14°and ±24° respectively. This compares well 

with our current findings of bias in MD and FA of 2.7% and 12% and precision in MD and FA 

of 4.6% and 11% for an NA = 160 dataset with respect to the reference data, noting that the 

previous study reported precision over voxels rather than bootstrap samples. Direct 

comparisons between ex vivo and in vivo data are difficult due to various reasons such as 

different physiological status and temperature of the myocardium. Nonetheless, our current 

findings similarly reflect that precision of MD is superior to that of FA, and precision of HA is 

superior to that of |E2A|, although the specific values differ. Whilst a ground truth does not 

exist in vivo, we can see that the trends in accuracy and precision appear to approach an 

asymptotic value by NAAll = 160, justifying the appropriateness of NAAll = 720 as suitable 

reference data.  

 

In the above rat heart study, precision in MD was optimised by maximising NR of non-diffusion-

weighted scans at the expense of ND, for a given scan time. This leads us to our third 

observation that accuracy and precision of MD, and to a lesser extent FA, improved with 

increasing numbers of low b-value acquisitions NAb50, with disproportionately large benefits at 

low NAAll. With larger NAAll ≥ 99, as more commonly used in the clinic, improvements in both 

accuracy and precision in MD and FA were retained. For example, with diffusion encoding 

scheme Cook61_30, NAb500 = 90 and NAb50 = [9, 18, 30, 45], the improvements in precision of 

MD and FA between each increasing step of NAb50 were significant (p < 0.001). Accuracy in 

MD improved when NAb50 increased from 9 to 18 (p < 0.05), but was not significantly better 

between successive increments of higher NAb50. 
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Other studies investigated the sensitivity of cDTI to SNR in human hearts49 and in fixed rat 

hearts55. In the former, systolic median 95% CI of the 1st, 2nd and 3rd eigenvectors (v1, v2 and 

v3) were 15.5°, 31.2°, and 21.8°. The authors concluded that precision improved with 

increasing SNR, but the improvements were minimal beyond NR = 10 corresponding to a 10 

min scan. This was consistent with our findings. The latter study reported that mean 95%CI of 

v1, v2 and v3 was 3.7°, 10.9° and 10.6° respectively. The poorer precision in vivo may reflect 

the additional challenges of motion and lower spatial resolution in vivo. Whilst higher image 

resolution in vivo is desirable to minimise partial volume effects, this is generally limited by 

SNR, and we employed a moderate image resolution of 2.3 × 2.3 × 8 mm3 to maximise 

generalisability. 

 

Precision and bias of cDTI measurements could potentially be affected by several factors. 

These include orientation and anisotropy of the underlying diffusion tensor27, physiological 

‘noise’ due to residual cardiac and respiratory motion effects, and signal rectification due to 

insufficient SNR. Signal rectification can be mitigated by using weighted squares fitting, as 

well as complex image data reconstruction22,56-58. However, these do not resolve the 

contribution of physiological ‘noise’ which can be substantial. 

The recommended protocols for cDTI will depend on several factors including the precision of 

the measurement, the expected differences e.g. between health and pathology, the 

parameters of interest, subject compliance and scan time available. Despite our finding that 

higher NAAll improved precision, this improvement comes with diminishing returns at higher 

NAAll. Moreover, longer scans e.g. >10 min can be challenging to perform in a clinical setting 

due to limited scan times and increased likelihood of patient discomfort leading to greater 

patient motion, poorer image quality and premature termination of scans. For context, we 

consider the range of cDTI parameters seen in clinical cohorts. Where the differences between 

health and disease are known and expected to be small, the acquisition would need to be 

designed with greater precision. In general, studies report higher MD and lower FA in disease 

cohorts relative to controls. In a study of patients post-myocardial infarction2, MD was 14% 

higher, FA was 31% lower and HA was between -7° to +5° relative to controls. In patients with 

HCM7,8,10,11, MD was between 2-10% higher, FA was between 6-17% lower relative to controls. 

Patients with amyloidosis had 26% higher MD and 29% lower FA relative to controls13. 

Similarly, patients with aortic stenosis had 6% higher MD and 17% lower FA relative to 

controls12. HA and E2A differences in pathology have been primarily reported in terms of HA 

slope or |E2A|2,7,8,10,12,59 and differences in HA may not be directly comparable. Other studies 

that reported |E2A| were based on STEAM3,9, which is known to yield substantially different 

measurements compared to spin echo. We additionally reported E2A instead of |E2A| to avoid 

loss of signed information that reflects on sheetlet orientation (Supplementary Figure 4). This 
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is particularly useful in assessing bias across different regions with positive and negative E2A. 

Averaging across the myocardium means that regions with positive and negative E2A cancel 

out resulting in mean E2A < mean |E2A|. 

 

In order to achieve SD MD of < 5% of the reference mean, NAb50 ≥ 45 with any diffusion 

encoding scheme was required. This included DESAll_90_45, DESAll_120_40 and 

DESAll_120_60 where DESAll refers to any of six diffusion encoding schemes evaluated. 

DESAll_90_45 had the shortest acquisition time of 6:45 min. In contrast, only 

Cook61_30_120_60 yielded SD FA of < 10% of the reference i.e. 9.8%, corresponding to an 

acquisition time of 9:00 min. Other sequences e.g. Cook61_30_120_40 came close with SD 

FA = 10.2% with an acquisition time of 8:00 min. That SD FA > SD MD was consistent with 

the greater sensitivity of FA to noise. SD HA and SD |E2A| were more sensitive to NAAll and 

diffusion encoding scheme, and less so to NAb50. Besides extending the acquisition time, 

precision in HA and |E2A| could be improved by prioritising ND over NR, e.g. ND = 30 gave 

higher precision than ND = 6, given the same total acquisition time. For clinically relevant 

protocols, our findings support the use of ND = 30. We would also recommend NAb50:NAb500 ≥ 

1/3 for better precision in MD and FA. If only MD were desired, a shorter protocol of < 7 min 

would be reasonable. We would recommend protocols of > 8 min in order to obtain good 

precision for FA, HA and |E2A|, subject to availability of scan time. 

 

LIMITATIONS 

In this study, we have only considered healthy volunteers with good compliance over the entire 

~36 min scan, excluding setup and planning. It is foreseeable that some patients will have 

poorer compliance leading to poorer image quality, accuracy and precision, suggesting more 

acquisition volumes and time would be needed to achieve similar levels of accuracy and 

precision. However, longer acquisition times are likely to contribute to worse compliance and 

may be infeasible. In the ideal case, we would examine accuracy and precision in a similar 

study in patients. In practice, such efforts may need to be combined with techniques for 

accelerating image acquisition, such as simultaneous multi-slice imaging60, compressed 

sensing61,62, and deep learning63-66.  

 

Image distortion remains a common issue in cDTI. This stems mostly from the use of single 

shot EPI readouts and consequent sensitivity to susceptibility-induced distortion. This 

commonly manifests as artefactual compression or dilation of the myocardium, especially near 

the posterior vein. In this study, we have seen that this effect also contributes to reduced local 

accuracy and precision. Recent developments in distortion correction using reversed phase 

encoding data for correction of susceptibility artefacts promise to improve the geometric fidelity 
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of the images67. Distortions can also be caused by eddy current effects and can be an issue 

particularly in M2SE cDTI where large diffusion encoding gradients are used22. Methods based 

on gradient impulse response functions and diffusion gradient response functions68 and 

potentially gradient system transfer functions69 can be an effective tool in correcting for eddy 

current effects. 

 

In this study, we used a free-breathing approach without respiratory navigators and/or slice 

tracking. This suggests that the data would have been susceptible to through-slice motion, 

which we estimate to within ±1.5 mm. This which was mitigated through the use of robust 

fitting to exclude outliers41, the use of thick 8 mm slices and acquisition of multiple diffusion 

encoding directions and repetitions, yielding high quality DTI maps. Whilst some studies have 

adopted approaches for managing through-slice motion e.g. breath-holding22, respiratory 

navigators14,70 and/or slice-tracking19, these techniques either reduce scan efficiency and/or 

rely on assumptions of heart geometry and motion, and are an incomplete solution. 

Compensation for respiratory motion in cDTI remains an area of ongoing development. 

Furthermore, M2SE cDTI is sensitive to cardiac phase49, and this study focused on imaging in 

late systole when the acquisition is most robust. 

 

To maximise the number and scope of acquisition schemes compared, we relied partially on 

subsampling of the modified Cook61 diffusion encoding scheme. This meant that (i) the 

subsampled data were not fully independent of each other, and (ii) the distribution of diffusion 

encoding directions in subsampled schemes was not fully optimal. To mitigate these, fully 

optimised Icoas6 and Jones30 schemes were employed as independent controls. Their 

accuracy and precision were seen to be comparable to the Cook61_6 and Cook61_30 

schemes respectively. Despite our approach which enabled systematic comparison of a 

relatively large number of acquisition schemes, we were limited to ND = 30 due to scan time 

constraints. Some advanced applications e.g. resolving crossing fibres in the brain require 

larger ND. However, our findings suggest diminishing returns in cDTI with increasing ND > 30, 

and there is limited evidence for higher ND, particularly where voxels with discrete crossing 

cell populations are limited in the myocardium. An alternative would be to employ acquisition 

schemes that are completely independent, as in previous pilot studies53,54. However, this 

approach extends the imaging time, limits the number of acquisition schemes that can be 

evaluated, and often means that datasets cannot be time-normalised. Even so, the common 

approach of combining all data to form a reference dataset means that reference data are not 

completely independent of the component data. 

 

CONCLUSIONS 
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In summary, we investigated the trade-off between the number of diffusion encoding directions 

and repetitions in M2 spin echo-based cardiac DTI. For a given acquisition time, we found that 

prioritising number of diffusion encoding directions over number of repetitions generally yields 

better accuracy and precision in cDTI parameters, particularly MD and FA. We also observed 

that greater sampling of low b-value data improves accuracy and precision of MD and FA but 

not HA and |E2A|. Finally, we characterised the improvements in accuracy and precision 

associated with increasing total number of acquisitions. These results may serve to guide 

optimisation of protocols for supporting ongoing efforts in harmonisation and standardisation 

of cDTI and aid its development towards wider clinical adoption.  

 

LIST OF ABBREVIATIONS 

BPM Beats per minute 

CI Confidence interval 

DES Diffusion encoding scheme 

DTI Diffusion tensor imaging 

E2A Sheetlet angle 

EPI Echo planar imaging 

FA Fractional anisotropy 

HA Helix angle 

IQR Interquartile range 

M2 2nd order motion compensated 

MD Mean diffusivity 

NA Number of acquisitions 

ND Number of diffusion encoding directions 

NR Number of repetitions 

NSA Number of signal averages 

RMSD Root mean squared difference 

SCMR Society for Cardiovascular Magnetic Resonance 

SNR Signal-to-noise ratio 

TE Echo time 

TR Repetition time 
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