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Abstract

Backchannel signals play a critical role in social interaction, ex-
pressing attentiveness, agreement, and emotion in both human and
human-agent conversations. However, few multi-modal databases
exist in this area due to the complexity of categorisation and the
high cost of precise timing, especially in naturalistic dyadic conver-
sations. To address these challenges, we introduce CCDb+ (Cardiff
Conversation Database +) an enhanced version of CCDDb, with 25
newly annotated conversations and corrections to 14 previously
annotated conversations, along with thorough consistency checks
to ensure annotation reliability. Additionally, we propose a multi-
modal process for backchannel detection as a baseline, showing
that both visual and acoustic cues contribute significantly to un-
derstanding backchannel behaviour. Recognising that backchan-
nel signals often intersect with other social cues, we introduce
several detection sub-tasks—such as smile, nodding, and agree-
ment—with baseline results for each. Finally, we demonstrate multi-
modal paradigms for nuanced signals like nodding and thinking.
The database and associated annotations are publicly available at
https://huggingface.co/datasets/Cardiff Visual Computing/CCDb.
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1 Introduction

Dyadic conversation has long been a fundamental aspect of real-
world social exchanges, and especially in recent years, when these
conversations have expanded beyond human-to-human communi-
cation to include engagements between humans and social interac-
tion agents (SIA), and even between SIAs themselves. Backchannel
is defined as gestural and vocal signals of active listenership in con-
versation [37], which significantly determine the quality of these
conversations, as they express attentiveness, rapport, agreement,
and emotion in interactions [29, 32, 76]. Additionally, backchannel
plays an important role in turn-taking [57] and other conversational
dynamics [39, 53, 74].

Early backchannel research primarily focused on vocal signals,
examining non-verbal cues such as prosodic elements [74, 76].
Other studies explored verbal signals for backchanneling, high-
lighting specific expressions and short utterances [9, 49, 51, 63, 64,
71]. Most of these studies relied on speech-based, single-modality
datasets [41, 44, 74]. However, the majority of these datasets were
not made publicly available, with one notable exception: the Switch-
board Dialog Act Corpus (SWDA) [13], which offers a valuable re-
source of telephone-style dyadic conversations for backchannel
research.

Backchannel signals are inherently complex, and while early re-
search predominantly focused on vocal signals, some studies have
highlighted the importance of integrating both visual and vocal
data to analyse social interactions, particularly human emotions.
Emotions are primarily conveyed through facial expressions, voice,
and language during everyday communication [14]. This insight
has inspired backchannel research, revealing that backchanneling
involves not only vocal responses but also rich visual cues such
as head gestures and facial expressions [2, 5]. In particular, when
interlocutors can see each other, a substantial portion of backchan-
nel signals is communicated visually [28]. Building on this under-
standing, advancements in hardware and storage technologies have
enabled the release of several multi-modal datasets, which incorpo-
rate both vocal and visual cues [6, 8, 15, 35, 41, 47, 48, 56—58, 65, 68].
These datasets allow for a more comprehensive analysis of social
interactions, providing richer insights into backchannel behaviour
by integrating multiple modalities. However, despite the increas-
ing number of multi-modal databases, several limitations remain.
Firstly, many are based on structured, story-telling interactions,


https://orcid.org/0009-0007-9162-1759
https://orcid.org/0000-0002-2094-5680
https://orcid.org/0000-0002-4965-3884
https://huggingface.co/datasets/CardiffVisualComputing/CCDb

MM °25, October 27-31, 2025, Dublin, Ireland

which may not fully reflect the spontaneity and complexity of nat-
ural dyadic exchanges. Secondly, a significant proportion of these
datasets focus on interactions between children, limiting their rele-
vance to adult social dynamics or broader demographic contexts.
Additionally, the majority of these databases have not been made
generally available, hindering the ability of researchers to repli-
cate or build upon previous work. This lack of open access poses
a significant barrier to the advancement of research in backchan-
nel behaviour, as comparisons and validations across datasets are
severely restricted.

To address these issues, we are extending CCDb to CCDb+, a
multi-modal database of natural dyadic conversations that includes
expanded and refined annotations for backchannel behaviours
across diverse age groups. The original CCDb, previously released
in video [4] and 3D sequence versions [46], provided a foundational
audiovisual corpus with annotations for conversational facial ex-
pressions, head motions, speaker activity, and verbal/non-verbal
utterances. CCDb+ builds on this foundation by adding 25 new
conversations, refining 14 previously annotated ones, and applying
a rigorous three-stage review process to enhance annotation relia-
bility. This updated version integrates new insights on backchannel
behaviour (7, 38, 55] to ensure consistency and accuracy across all
annotations.

To comprehensively evaluate the potential of this database, we
conducted baseline assessment experiments based on multi-modal
information for backchannel and sub-signal detection tasks. Our
focus on backchannel detection serves two main purposes. First,
developing detection algorithms can streamline future annotation
processes, allowing for automated initial detection followed by
human validation, significantly saving time and effort. Second, de-
tecting listener backchannel enables social interaction agents to
generate more appropriate and positive responses in dyadic con-
versations, enhancing the quality of human-agent interactions.

While our current work centres on backchannel detection, CCDb
has supported a range of studies over the past decade, showcasing
its adaptability across various research domains. Numerous studies
have leveraged CCDb for recognising visual markers of sponta-
neous head gestures [67] and advancing the automation of human
listening behavior in both human-human and human-agent interac-
tions [17, 22, 23, 59, 60]. Additionally, CCDb has been instrumental
in turn-taking prediction in conversations [40], and in detecting
and classifying social communicative events (SCE) [16].

Researchers have further enriched CCDb with additional spe-
cialised annotations to tailor it to their unique study objectives.
For instance, engagement has been annotated to understand con-
versational involvement [30, 31], head gestures have been detailed
with greater specificity [70], and smiles and laughter have been
annotated across three levels of intensity [18, 19]. We encourage
the research community to build upon CCDb+ in similar ways,
exploring new dimensions of multi-modal interaction and, where
applicable, adding custom annotations suited to their specific re-
search topics.

The major contributions of this paper are as follows.

e We release a multi-modal database of dyadic conversations,
comprising 44 fully annotated interactions with video, audio
and transcript.
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e We propose a streamlined approach that integrates multi-
modal information, combining both acoustic and visual cues,
for enhanced backchannel detection. Our evaluation demon-
strates that acoustic cues are particularly effective for backchan-
nel detection, with their performance further enhanced when
integrated with visual cues. The source code is publicly avail-
able at https://github.com/hsdy1125/Backchannel-Detection-
CCDb.

e We propose and validate multi-modal paradigms for the
detection of thinking and nodding signals.

2 Related Work

Backchannel detection is a research area of widespread interest.
However, current research is constrained by two significant gaps.
First, there is a notable lack of publicly available, comprehensive
multi-modal datasets for backchannel studies, particularly those
capturing natural dyadic interactions. Second, despite advances in
detection methods, many studies still primarily rely on a single
publicly available group conversation dataset, which introduces
certain biases.

To address these gaps, we review existing dyadic conversation
datasets with backchannel annotations, examining their strengths
and limitations in representing natural backchannel behaviours.
Following this, we discuss current methodological approaches to
backchannel detection, highlighting the need for models that can
adapt to the nuances of dyadic interactions.

2.1 Current Dyadic Conversation Databases
with Backchannel Annotation

Several dyadic conversation databases have been utilised in backchan-
nel research, especially those that integrate multi-modal data (audio,
visual, and sometimes transcripts). These datasets enable a richer
analysis of backchannel behaviours, which are expressed through
vocal signals, facial expressions, and gestures.

In Table 1 we list recent publicly available datasets that were
used in Backchannel research. However, while the availability of
these datasets has grown, several limitations remain. For instance,
while some databases have been released, a considerable number re-
main inaccessible to the broader research community, which limits
their replication and further investigation [35, 41, 56]. Furthermore,
many datasets are constrained by a narrow subject age range, of-
ten focusing exclusively on specific groups, such as children or
young adults, reducing their applicability to broader demograph-
ics [41, 68]. Additionally, many of the available databases are based
on structured scenarios, such as storytelling or interviews, which
may not fully capture the spontaneity and complexity of natural,
unstructured dyadic interactions [8, 47, 58]. This scenario-based
limitation may reduce the ecological validity of the findings de-
rived from these datasets, as they do not reflect the natural flow of
conversation typical of real-life exchanges. Moreover, the annota-
tion of backchannel in some datasets is based on a limited range
of cues, such as noddings or vocal signals, without incorporating
multi-modal signals like facial expressions or other head gestures.
This narrow annotation basis may lead to an incomplete represen-
tation of backchannel behaviours, which are inherently diverse and
context-dependent [8, 21, 41, 56, 58, 65].
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Furthermore, despite the growing emphasis on multi-modal
data, some databases still focus primarily on unimodal datasets,
which mainly consist of audio data. Many existing single-modality
databases, including the Maekawa Corpus [44] and others [13, 41,
74], continue to be utilised, even though they primarily focus on
audio cues. This reliance on single-modality datasets limits the
potential for a more comprehensive understanding of backchannel
behaviours, which are inherently multi-modal in nature.

Notably, CCDb+ includes a wide range of annotations, allowing
for in-depth exploration of backchannel types and their contextual
significance.

2.2 State-of-the-art Backchannel Study Methods

In backchannel research, two primary tasks have emerged: pre-
diction, which anticipates backchannel timing and type during
conversation, and detection, which identifies backchannel directly
in conversation data. While prediction was initially more popular,
driven by its applications in developing responsive conversational
agents, detection has gained increasing attention in recent years
as it provides a more nuanced understanding of backchannel be-
haviour, especially in natural, multi-modal settings. Early backchan-
nel research focused on prediction, using unimodal models that
leveraged features like low pitch regions to signal backchannel
timing, laying the foundation for subsequent studies [74]. Later
models incorporated handcrafted prosodic and part-of-speech fea-
tures [9, 33, 34, 51], and as multi-modal datasets became available,
head gestures and eye gaze were integrated to enhance prediction
beyond just acoustic features [20, 43, 48]. The rise of deep learning
brought further advances, with Long Short-Term Memory (LSTM)
and Transformers making significant strides in processing continu-
ous time-series data for backchannel prediction [1, 26, 35, 64, 72].
In contrast, the backchannel detection task, first proposed in [52],
has only recently garnered attention, particularly with the push
from the MultiMediate’22 Challenge [50]. Detection differs from
prediction in that it focuses on identifying backchannel within a
broader conversational flow, posing unique challenges in terms
of accuracy and contextual adaptability. Recent state-of-the-art
methods in backchannel detection employ multi-modal transform-
ers [3, 73], with some studies also exploring the use of Gated Re-
current Units (GRUs) and attention modules [72] or graph neural
networks (GNNs) [66]. However, these approaches largely rely on
visual features provided by the MultiMediate’22 Challenge, which
revealed that adding voice features to models that already utilised
visual information often led to worse performance, with voice-only
models even performing no better than random guessing. In con-
trast, our baseline results show that using either visual or acoustic
information alone outperforms random guessing, and combining
both modalities yields better results than using either modality
individually. This difference in findings may be due to the distinct
feedback mechanisms in group conversations compared to dyadic
interactions [12].

3 CCDb+ Introduction

CCDb+ contains 44 fully annotated dyadic conversations, covering
interlocutors’ activities such as conversational facial expressions,
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head gestures, verbal and non-verbal utterances, as well as agree-
ments and disagreements. Of these, 38 conversations were initially
collected before 2013. However, only 8 of these were annotated at
that time [4]. Later, an additional 6 conversations were recorded
with four volunteers, and these recordings include not only video
but also corresponding 3D sequences [46]. To facilitate future re-
search on conversational dominance [42], we provide details on
participant backgrounds, including their affiliation and experience,
which can impact conversational dynamics. Table 2 categorises
participants as staff, students, children, or actors, to aid compara-
tive studies on interlocutor dominance. Note that the children in
conversations were paired with their parents.

In this work, we annotated 30 of the remaining conversations
and revised the previous annotations to ensure consistency with the
updated guidelines. This comprehensive update aligns all 44 conver-
sations with our refined annotation scheme, further enhancing the
usability and accuracy of CCDb+ for studying dyadic interactions.
Table 3 shows the basic facts of CCDb+.

3.1 Collection

3.1.1 Recording Equipment. CCDb+ was collected in two phases,
using consistent equipment and setup to capture natural, unscripted
dyadic conversations. In both phases, participants were seated oppo-
site each other and recorded with video and audio at 44.1 KHz using
lapel microphones. To ensure precise synchronisation of audio and
video, a handheld buzzer and LED device were employed.

Since data for the two participants in each conversation (C1
and C2) were collected independently using identical setups but
with distinct camera labels, we defined a camera classification task
to assess potential data collection biases. Using a Transformer-
based model [69], we achieved a test accuracy of 0.8906, indicating
notable camera-related differences. Further analysis revealed three
main sources of bias: (1) some participants were seated slightly
differently, resulting in minor spatial inconsistencies across views;
(2) variations in camera focal lengths, affecting body proportions in
the frames; and (3) minor contrast differences, particularly in C2.

To reduce camera-induced bias, we conducted separate classifica-
tion experiments using facial landmarks and histograms as inputs,
achieving accuracies of 0.7668 and 0.8808, respectively. We then
applied a series of preprocessing steps—including recentring, re-
cropping, histogram equalisation, and landmark re-extraction —
which modestly reduced the classification performance (to 0.7168
for landmarks and 0.7960 for histograms), suggesting a partial miti-
gation of bias. However, these refinements relied on the dlib library,
which limited the precision of normalisation. We suggest that future
researchers explore more robust preprocessing strategies tailored
to their specific applications to better address such biases.

3.1.2  Recording Method. Phase 1 included 30 conversations among
16 speakers, aged 8 to 56. Although topics were suggested based on
a pre-session questionnaire, the participants were not required to
follow any script, allowing for spontaneous, dynamic exchanges. In
Phase 2, six additional conversations were recorded with four vol-
unteers aged 20 to 50, recruited from the public. Three participants
had acting experience; however, they were instructed to converse
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Table 1: Comparison of multi-modal databases of dyadic conversations for backchannel studies. “Content” denotes the modalities
present: A (audio), V (visual), and T (transcriptions). “Pub.” indicates whether backchannel annotations are publicly available

Dataset Year Content Scenario Age Size Pub. Language Annotation of backchannel
Ranges types

Spontal [15] 2010 AVT Spontaneous — 40mins No  Swedish Utterances, Head Position,
conversa- Breathing, Coughing, Laughter
tion

HCRC [48] 2010 AV Storytelling - 1h40mins No  English Utterances, Gaze, Nodding

CCDb [4, 46] 2013 AV Spontaneous 8-55 1h39mins  Yes  English Utterance, Nodding, Shaking,
conversa- Tilt, Laughter, Facial expres-
tion sions, Thinking and Confusion

NoXi [8] 2017 AV Spontaneous 21-45 25h18mins Yes 7 languages | Utterances
conversa-
tion

P2PSTORY [68] 2018 AV Storytelling 5-6 1h15mins  Yes  English Utterance, Nodding, Smile,

Brow Raise, Lean Toward, Gaze

Vyaktitv [35] 2021 AV Spontaneous 19-24 14h No  Hindi Utterance, Nodding, Shaking,
conversa- Laughter, Eyebrow
tion

Slovak dialogue corpus [56] | 2022 AV Interview - 8h7mins No  Slovak Utterance

Two-party dialogues [58] 2023 AV Storytelling - - No  Japanese Utterance

VideoCall [6] 2023 AV Online 6-12 - No France Posture, Gaze, Nodding, Shak-
Playing ing, Laughter, Eyebrow
Games

KoreanInterview [65] 2023 - Interview 20-30 5h6mins No  Korean Nodding

AutisticChildren [41] 2023 - - 4-15 - No  English Utterances

NoXi+] [21] 2024 AVT Spontaneous 18-45 41h1lmins Yes 5 languages | Utterance, Nodding
conversa-
tion

CCDb+ 2025 AVT Spontaneous 8-55 3h44mins  Yes  English Utterance, Nodding, Shaking,
conversa- Tilt, Laughter, Facial expres-
tion sions, Thinking and Confusion

naturally on everyday topics like hobbies, films, and travel, mirror-
ing the unscripted approach of Phase 1. Further collection details
are documented in prior studies [4, 46].

Participants engaged in multiple conversations with different
partners, enabling cross-participant interactions that are valuable
for studying the stability of facial expressions and emotional re-
sponses across different social contexts. Additionally, interactions
were left unscripted to capture authentic, spontaneous conversation
dynamics. To further validate the natural flow of these dialogues,
we calculated the lexical density [36] for each conversation. The
mean lexical density for CCDb was 0.46, and CCDb+ averaged
0.53, aligning with typical spoken conversation values [24]. This
balance reflects the appropriate level of spontaneity and conversa-
tional depth for dyadic interactions, supporting the dataset’s aim
to capture realistic social behaviours.

3.2 Annotation

All manual annotations were carried out in ELAN [75]. Annotations
included Backchannel, Frontchannel, Agree, Disagree, Head ges-
tures, Facial expressions, Verbal utterance, Non-verbal utterance,

Table 2: Participants’ Roles in CCDb+ Conversations

Role Participants

Staff P1, P3, P4, P6, P7, P8, P10, P13, P14, P15, P18
Student P2, P5, P9, P12, P16, P19

Child P11, P17

External Actor | P20, P21, P22

Table 3: Basic facts of CCDb+

No.of distinct participants | 22

No.of conversations 44
Length of conversations 224 mins
Length of labelled set 188 mins

Length per conversation 5 mins

Age range of participants | 8-55 years old
Male-to-female ratio 15:7

Frame Rate 60 FPS

and 11 additional commonly used conversation labels, totalling 18
labels; see some examples in Figure 1.
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3.2.1 Annotation Protocol. We annotated 30 conversations with
the help of 15 proficient PhD students. They were given guidelines,
examples, and explanations on ambiguous labels. During annota-
tion, expert advice was sought for clarification on some questions.
Each annotation underwent a three-stage review process involving
discussions and modifications to ensure accuracy. Despite potential
semantic ambiguities, labels were retained if two out of three anno-
tators agreed. The three-stage review process improves annotation
accuracy by resolving ambiguities through discussion and reduc-
ing individual biases. It ensures consistency by retaining labels
with majority agreement. In addition, all transcripts were indepen-
dently verified by two native English speakers to ensure linguistic
accuracy.

3.2.2  Annotation Definition. We harmonised the differences be-
tween the two sets of annotation labels across our previous two
papers [4, 46], establishing this framework as the foundation for
this work. Drawing from recent, more comprehensive discussions
in the research community on backchannel behaviour, particularly
the discussions in [7, 25, 54, 55], with an emphasis on identifying
clear indicators for categorising interaction behaviours, we refined
the annotation labels to improve clarity and consistency. The defi-
nition of each refined label is made available alongside the dataset
upon access. For backchannel specifically, [38] served as a key refer-
ence, guiding our multi-stage process. This process involves playing
recordings at half-speed to accurately identify backchannel through
lexical and nodding cues, then classifying them by type (e.g., single
or repeated words) and function (e.g., continuers, convergence to-
kens) based on O’Keeffe and Adolphs’ functional distinctions. The
scheme incorporates nodding cues as outlined in previous studies,
while we further extend this by including considerations for facial
expressions.

E1ED

Smile Head Shake Laugh

Sle il

Thinking Head Tilt Confusion

81§

Surprise Negative Head Nodding

u.

Surprise Positive

Figure 1: Examples of recorded facial expressions and head
gestures

3.2.3 Inter-Annotation Agreement. We selected a subset of the
CCDb+ (5% of the data) and re-annotated it independently to calcu-
late event scores for each category to show annotation reliability.
Table 4 illustrates Cohen’s Kappa [11] values for various labels.
In our annotation, most labels achieved good reliability, with
Cohen’s Kappa values exceeding 0.75, demonstrating substantial
agreement among annotators. However, certain labels, specifically
Backchannel, Surprised-Positive, and Surprised-Negative, exhibited
lower reliability, with Cohen’s Kappa values falling below 0.4. For
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Table 4: Annotation Data with Total Duration, Counts, and
Cohen’s Kappa. Labels with Cohen’s Kappa below 0.4 are in
bold, and those with Cohen’s Kappa above 0.75 are under-
lined, and the table is sorted by Cohen’s Kappa values from
high to low.

Label Duration(s) Counts Cohen’s Kappa
Non-Verbal 594.57 928 0.8698
Laugh 949.03 505 0.8476
Verbal 10780.15 3987 0.8385
Utterance 11355.15 4389 0.8242
Disagree 164.31 138 0.7835
Frontchannel 11391.3 2776 0.7605
Agree 910.39 979 0.7526
Thinking 2487.37 1481 0.6672
Happy 5464.88 1356 0.6603
Smile 5314.83 1344 0.6485
Head Nodding 1554.83 1146 0.6247
Confusion 483.43 260 0.5665
Head Shake 709.23 543 0.5457
Head Tilt 861.47 625 0.4902
Backchannel 3312.14 1898 0.3798
Surprised-Positive 321.88 236 0.2109
Surprised-Negative 24.98 19 0.0000

the Surprised expressions, low reliability can largely be attributed
to the rarity of occurrence in natural conversation, especially for
Surprised-Negative, which did not appear in our selected subset,
resulting in a Cohen’s Kappa value of 0. Surprised-Positive also
had a low Kappa value due to its average duration being less than 1
second.and its subtle facial muscle movements, as evidenced by the
inter-annotator confusion matrix, a substantial number of instances
marked as Surprised-Positive by Annotator 1 were not marked by
Annotator 2, highlighting the difficulty in consistently identifying
this expression.

Additionally, the Backchannel label exhibits a relatively lower
Cohen’s Kappa score of 0.3798, indicating weaker inter-annotator
agreement. This score was obtained by comparing the final con-
sensus labels with an independent annotator’s annotations, who
occasionally misclassified frontchannel utterances or overlooked
non-verbal cues. After identifying and resolving these disagree-
ments through a secondary review with an additional checker,
the score improved significantly to 0.6667. As shown in the inter-
annotator confusion matrix, a substantial portion of disagreements
arise from the confusion between Backchannel and Frontchannel,
especially in the presence of utterances. This ambiguity likely stems
from the current definition of backchannel as listener responses
that do not convey new information but signal attention, under-
standing, or agreement. However, in practice, the boundary can
be subtle. For instance, in response to a question like “Have you
brought my shoes?”, a listener’s “yeah” may vary in prosody: a
loud, emphatic “yeah” is typically interpreted as a frontchannel
response, whereas a softer, neutral “yeah” may still function as a
backchannel [62]. These nuanced variations complicate annotation
and reduce label consistency. Nevertheless, we remain confident in
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Table 5: Co-occurrence Counts and Durations of Backchan-
nel, with Duration Proportions relative to the Total Duration.

Annotation Count Duration (s) Duration Proportion
Surprised-Negative 12 10.8 0.24%
Head shake 110 103.42 2.27%
Surprised-Positive 118 114.77 2.52%
Confusion 79 131.68 2.89%
Head Tilt 155 143.06 3.15%
Thinking 248 232.36 5.11%
Non-Verbal 389 261.59 5.75%
Laugh 274 500.59 11.00%
Head Nodding 584 702.34 15.44%
Verbal 1039 785.9 17.28%
Smile 717 1497.83 32.90%

the overall annotation reliability, as the final version was reviewed
and approved by three independent annotators.

4 Database Baseline Evaluation

In this section, we outline the backchannel detection task, examin-
ing key backchannel cues such as Utterances, Facial expressions,
and Head gestures. Given the multi-faceted nature of backchannel
signals, detecting each type separately allows us to assess their
individual contributions to social interaction. Our dataset reveals
a rich distribution across these cues, with Facial expressions ac-
counting for 49.9% of backchannel instances, Head gestures 23.8%,
and Utterances (verbal and non-verbal) comprising 26.3% (see more
details in Table 5).

To gain a comprehensive understanding of backchannel, we
conduct detection tasks for each category, thereby not only as-
sessing overall backchannel detection but also providing insights
into how well models capture the nuances of each type of signal
independently. This enables a more precise evaluation of model
performance, especially given that backchannel may vary in form
depending on interaction context.

4.1 Tasks Description

The MultiMediate dataset has influenced many recent studies in
backchannel detection due to its rich multi-modal data from group
conversations. It uses a 10-second context window to detect backchan-
nel appearing specifically at the end of each window. This setup is
advantageous for creating sliding-window models but introduces
a significant limitation: backchannel in their data is heavily con-
centrated in the final seconds of each window, rather than being
distributed evenly across the entire span. This approach risks under-
representing naturally occurring backchannel cues that may appear
more uniformly within conversational exchanges, thus limiting its
applicability in detecting backchannel throughout various conver-
sation phases.

In contrast, we prioritise an even temporal distribution of backchan-

nel. As shown in Table 6, CCDb+ backchannel is evenly distributed
throughout the segments. Each conversation video is sequentially
divided into 10-second segments to perform binary classification
based on a specified minimum duration threshold (0.1s) for each
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Table 6: Number of Occurrences of Backchannel in Different
Time Periods (Contex Windows)

Time Period (s) | Number of Occurrences
0-1 491
1-2 488
2-3 490
3-4 473
4-5 504
5-6 483
6-7 478
7-8 483
8-9 497
9-10 517

backchannel type. This approach allows for contextually relevant
backchannel detection across the entire segment rather than confin-
ing it to a particular timeframe. Similarly, label definitions for other
tasks are structured with this logic, ensuring balanced temporal
representation and reducing the impact of isolated occurrences.

4.2 Baseline Models

Audio-visual representation We extracted a comprehensive set
of features from each 10-second video segment for all detection
tasks to capture both acoustic and visual cues.

For acoustic features, we used Spafe [45] to analyse the signal’s
properties across multiple domains. Our feature selection included
Cepstral domain features, such as MFCCs and LFCCs, as well as
spectral features like PNCCs, PSRCCs, and GFCCs, resulting in
a diverse 91-dimensional representation across a 7-feature space.
This combination captures both fine-grained spectral details and
broader cepstral characteristics, offering a detailed acoustic profile
that can enhance backchannel detection.

For visual (face) features, we leveraged OpenFace 2.0 [77], an ad-
vanced open-source toolkit that excels in facial behaviour analysis.
OpenFace 2.0 is extensively used in fields like facial expression anal-
ysis, human-computer interaction, and affective computing due to
its improved accuracy, computational efficiency, and adaptability to
various research contexts. We extracted 714 visual features, cover-
ing head pose, facial landmarks, eye gaze, and action units, thereby
providing a rich representation of facial and gestural dynamics
critical for understanding multi-modal backchannels.

Baselines To provide a solid baseline for evaluating new models,
we tested both a linear Support Vector Machine (SVM) [27] and
a simple transformer-based architecture [69]. Recent studies in
multi-modal fusion for backchannel detection have shown that a
one-stream transformer architecture, where visual and acoustic
features are concatenated before entering the transformer layer,
delivers high performance [3]. Following these insights, we adopted
this straightforward one-stream architecture to ensure clarity in
baseline performance. This approach involves concatenating the full
10-second visual and acoustic feature vectors and inputting them
into the transformer model to detect backchannel. This process,
illustrated in Figure 2, serves as a reliable framework for comparison
and advances in multi-modal backchannel detection.
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Figure 2: Overview of the baseline detection pipeline

4.3 Evaluation Metrics and Stopping Strategy

Due to class imbalance observed across labels, we consistently
report both accuracy and binary F1-score for all tasks. However, our
early stopping and model selection strategies depend on the degree
of imbalance. Specifically, for relatively balanced tasks (positive
ratio >15%), we select the epoch with the lowest validation loss,
using accuracy to break ties. For highly imbalanced tasks (positive
ratio < 15%), validation binary F1-score guides model selection, as
metrics like recall often become unstable (e.g., dropping to zero)
during early epochs. The 15% threshold is empirically determined
solely for guiding model selection, not for evaluation purposes.
Binary F1 is preferred over recall-based metrics as it effectively
captures both false positives and false negatives in imbalanced
scenarios.

4.4 Implementation details

For tasks with a positive class ratio below 25%, we apply SMOTE [10]
separately to the visual, acoustic, and combined features, ensuring a
balanced training set, which is then processed in minibatches of size
64. The SVM model uses a linear kernel with a regularization param-
eter C = 0.1, while the transformer-based model is implemented
in PyTorch [61] with a custom Transformer Encoder featuring 10
attention heads and a feedforward dimension of 1000. This model
is optimised using Adam (learning rate 5 X 10~°, weight decay
0.0005), with binary cross-entropy loss and a learning rate adjusted
by a linear scheduler with warm-up. Training is conducted on an
NVIDIA RTX 4090 GPU. Due to the pre-extraction and reusability
of all visual and acoustic features across tasks, training is conducted
with high efficiency. Each task completes training in approximately
3 minutes for the transformer model and around 1 minute for the
SVM model.

5 Results and Discussion

To mitigate potential biases from specific data splits and ensure
more robust conclusions, we employ cross-validation. The 44 con-
versations are divided into 11 groups, with each group sequentially
serving as the test set. Within the remaining 10 groups, we ran-
domly select one as the validation set, while the remaining 9 are
used for training. This process is repeated for each fold, and we

compute the average F1 score and accuracy across all folds to pro-
duce a final, reliable evaluation of model performance. Note that
all transformer-based results are reported as the mean + standard
deviation across three random seeds, enhancing robustness by ac-
counting for variability due to random initialization. This approach
provides a clearer view of the model’s consistency and generalis-
ability.

Backchannel Detection task: To align with previous studies
using the MultiMediate dataset, we conducted experiments using
input durations of 1, 3, and 10 seconds to evaluate performance
across different temporal windows for backchannel detection. As
shown in Table 7, our models consistently outperform the random
guessing baseline, confirming that both visual and acoustic features
provide valuable information.

Obviously, the 10 seconds input window produces the best re-
sults overall, with substantial gains over random guessing across
all feature types. Notably, the Transformer model with combined
features achieves an F1 score of 0.7530 and the highest accuracy of
0.7170, highlighting the value of extended acoustic data.

Interestingly, in some cases, combining acoustic and visual fea-
tures yields slightly lower results than using acoustic features alone,
especially for the Transformer model. This discrepancy may stem
from the redundancy or potential noise introduced by merging
modalities, where less relevant or conflicting information between
visual and acoustic channels could interfere with model optimiza-
tion.

Other Detection tasks: In the detection results of various tasks,
the results reveal differences between balanced and imbalanced
classes. For tasks with relatively balanced classes, we selected Think-
ing and Nodding as single examples for analysis. In the Nodding
task, the transformer model performed well with visual features,
achieving the highest F1 score of 0.5652, indicating the effectiveness
of visual features in detecting this type of task. Additionally, the
combination of visual and audiovisual features also showed signifi-
cant improvement, demonstrating that multi-modal feature fusion
can effectively capture rich social behaviour cues. In the Thinking
task, the combination of audiovisual features with the transformer
model achieved a good performance (F1 score 0.5557), which is
a slight improvement over single features. This further suggests
that for cognitive expression recognition tasks, multi-modal data
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Table 7: Backchannel detection results based on RandomGuess, SVM, and Transformer. The best results for each model using

different feature types are highlighted in bold.

Input Length | Feature Type Test Accuracy Test F1 Score

RandomGuess | SVM Transformer RandomGuess | SVM Transformer
1 second Acoustic 0.5 0.5410 | 0.5774 + 0.0235 0.5056 0.5525 | 0.5974 + 0.0332
Visual 0.5746 | 0.5608 + 0.0146 0.5898 | 0.5831 + 0.0275
Combined 0.5781 | 0.5764 = 0.0167 0.5816 | 0.5910 + 0.0094
3 seconds Acoustic 0.5 0.5622 | 0.6013 + 0.0283 0.5056 0.5661 | 0.6165 + 0.0334
Visual 0.5741 0.5903 + 0.0225 0.5792 | 0.6061 + 0.0203
Combined 0.5936 | 0.6048 + 0.0075 0.5949 | 0.6113 £ 0.0144
10 seconds Acoustic 0.5 0.6287 | 0.6721 + 0.0128 0.5056 0.6422 | 0.6845 + 0.0141
Visual 0.6013 | 0.6520 + 0.0150 0.6012 | 0.6623 + 0.0008
Combined 0.6458 | 0.7170 + 0.0107 0.6389 | 0.7530 + 0.0156

can provide more cues for the model to capture subtle behavioural
expressions.

For tasks with extreme class imbalance, such as Disagree and
Confusion, the overall F1 scores were low and close to random
guessing levels, indicating that the model struggled to effectively
capture the features of the minority class. After applying the SMOTE
technique for oversampling, the F1 scores for some tasks increased
slightly; however, in certain cases, SMOTE introduced too much
noise, leading to a decline in model performance, particularly affect-
ing the transformer’s results (e.g., for the Disagree task with visual
features, F1 score is 0.0426+0.0603). This phenomenon indicates
that while data augmentation techniques can alleviate some data
imbalance issues, they may introduce more noise in cases of severe
imbalance, necessitating further optimization and exploration of
other techniques in future work to address this problem.

Overall, these experimental results suggest that multi-modal
features and transformer architectures provide some improvement
for detection in relatively balanced tasks, while traditional over-
sampling techniques may introduce noise when dealing with se-
verely imbalanced data. Future work could further explore effective
methods for these tasks, such as incorporating more diverse data
augmentation or applying techniques specifically designed for im-
balanced learning.

6 Ablation Study

We evaluate the performance of each acoustic feature of our method
via an ablation study on the performance of SVM. This ablation
study investigates the impact of adding various acoustic features to
visual features on model performance in multiple tasks. The results
indicate that incorporating acoustic features alongside visual-only
baselines leads to varying degrees of improvement across tasks.
In particular, when combining all acoustic features with visual
information, the test accuracy for each task improves noticeably:
Backchannel reaches 64.58%, Nodding 63.02%, and Thinking 62.82%.
This suggests that, while individual acoustic features may provide
modest benefits on their own, the combined set of features provides
a more substantial improvement.

For example, in the Nodding task, the inclusion of all acous-
tic features raises test accuracy significantly over the visual-only
setup (from 60.34% to 63.02%), indicating that a comprehensive

acoustic profile enhances the model’s ability to detect nodding be-
haviour. Similarly, Thinking benefits from additional acoustic cues,
achieving an accuracy of 62.82% with the combined features ver-
sus lower individual accuracies with specific acoustic features. For
Backchannel, the combined features lead to the highest improve-
ment, reaching 64.58%, compared to only modest gains when using
individual acoustic features like ‘MSRCC’ (60.78%).

These findings suggest that, although some tasks may benefit
from specific acoustic features, the inclusion of a full acoustic set
with visual features yields the most consistent and significant per-
formance boosts across tasks.

7 Conclusion

This study advances backchannel detection by integrating multi-
modal data—vocalisations, facial expressions, and head gestures—to
better capture the nuances of social interaction. Using CCDb+, a
natural dyadic conversation corpus with audio-visual modalities,
we benchmarked different backchannel types with SVM and a ba-
sic Transformer, establishing performance baselines. Results show
that a one-stream multi-modal fusion improves detection accu-
racy and underscores the benefit of combining visual and vocal
cues for richer behavioural insight. However, annotation quality re-
mains a challenge, especially for Backchannel, Agree, and Disagree
labels, due to individual expressiveness and context-dependent in-
terpretations. Temporal misalignment between dialogue scripts
and brief visual signals further limited the use of scripts as input
features. We also noted slight positional bias introduced during
data collection. Future work should improve annotation protocols
for context-sensitive cases and explore alignment strategies for
incorporating dialogue scripts. This study lays the groundwork for
more robust multi-modal models of social interaction.
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