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A B S T R A C T

The Soma And Neurite Density Imaging (SANDI) model enhances MRI-derived water diffusion metrics sensitivity 
to gray matter (GM) microstructural complexity. We investigated the hypothesis that the diffusion metrics 
derived from the SANDI three-compartment model contributed to the longitudinal relaxation rate R1(=1/T1) 
contrast in brain tissue. To this aim, twenty healthy volunteers underwent diffusion-weighted imaging and R1 
mapping via MP2RAGE at 3 T. The diffusion metrics included intra-neurite signal fraction (fneurite), intra-soma 
signal fraction (fsoma), extra-neurite fraction (fextra), soma radii (Rsoma), and intra-neurite and extra-neurite 
diffusivities (Din and De).

In GM, a moderate negative spatial correlation was observed between R1 and soma-related metrics (fsoma and 
Rsoma, with r = -0.47, -0.35, respectively), indicating that GM microstructure contributes to R1 contrast. These 
findings align with evidence suggesting structural heterogeneity in the cortex, where a different degree of 
cortical myelination modulates neuroplasticity. Notably, similar effects and trends were identified when eval
uating across subjects’ correlations of the metrics of interest (fsoma and Rsoma, with r = -0.56, -0.48, respec
tively). In WM, moderate to strong positive spatial correlations were observed between R1 and intra-neurite 
metrics (Din and fneurite, with r = 0.53, 0.30, respectively), where myelinated axons host the pool of intra- 
neurite water.

These results suggest that WM and GM microstructural characteristics contribute to the R1 contrast, where R1 
depends, among other factors, to the degree of myelination within brain tissues, thus contributing to the un
derstanding of the emerging relaxation differences across the brain parenchyma. Future research should explore 
these relationships in clinical populations with demyelination and neurodegeneration.

1. Introduction

The myelin sheath, generating from the oligodendrocyte membranes 
wrapping around axons, plays a critical role in ensuring the efficient 
transmission of electrical signals between neurons. While it is tradi
tionally associated with white matter (WM), significant amounts of 

myelin are found in the cortical gray matter (GM), where it may affect 
the organization and functional dynamics of intracortical circuits by 
stabilizing connections (Glasser et al., 2014). The mechanisms and 
functions of cortical myelination still need to be fully understood. Cur
rent hypotheses suggest that GM myelination plays a key role in neu
roplasticity (Glasser et al., 2014), i.e. the brain’s ability to adapt and 
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reorganize itself in response to learning, experience, or injury, and 
contributes to shaping neural pathways and supporting cognitive and 
motor functions. On the other hand, in diseases such as Multiple Scle
rosis, cortical demyelination is associated with disease progression and 
worsening pathology (Kutzelnigg et al., 2005), and even at the earliest 
stages of the disease, aberrant GM myelination correlates with clinical 
impairment (Davies et al., 2004).

Myelin alters the magnetic properties of brain tissues by shortening 
T1, the MRI longitudinal relaxation time (T1), thus increasing R1 (=1/ 
T1), the longitudinal relaxation rate. R1 is sensitive to the local micro
structural properties such as the water-to-macromolecule ratio (i.e. 
effectively the water content) and the presence of iron (Callaghan et al., 
2015; Gelman et al., 2001; Harkins et al., 2016; Desmond et al., 2016), 
in addition to being related to the myelin content. Indeed, a relationship 
of proportionality between R1 and brain myelin content has been 
demonstrated with higher myelin content resulting in larger R1 values 
(Mottershead et al., 2003; Schmierer et al., 2008, 2004). Additionally, 
there is strong evidence of correspondence between histological data 
and myelin patterns in the cortex observed via T1-weighted high-
resolution MRI (Eickhoff et al., 2005), which can detect distinct myeli
nation patterns across the cortex (Walters et al., 2003). As a result, R1 
mapping has been widely adopted as a non-invasive technique to infer 
myelin content in vivo (Lutti et al., 2014).

In addition to influencing the tissue longitudinal relaxation rate 
because of its macromolecular structure, the presence of myelin in the 
voxel of tissue reduces the amount of free diffusion in that voxel, as 
axons are covered by a lipid protein bilayer, which hinders and restricts 
water diffusion. This latter mechanism is thought to originate from 
multiple diffusive compartments (Jones, 2010). Indeed, water diffusion 
varies within the brain parenchyma, exhibiting isotropic behaviour in 
GM and anisotropic properties in WM regions, characterized by densely 
packed myelinated fibres. By exploiting the endogenous contrast pro
vided by self-diffusion of water molecules in tissues, diffusion-weighted 
MRI (DW-MRI) can be used to probe the microstructure of biological 
tissues permitting the study of brain development (Mukherjee et al., 
2002) and the assessment of structural integrity in normal and patho
logical states (Caporale et al., 2017; Guerreri et al., 2019; Salat et al., 
2005; Sullivan and Pfefferbaum, 2010).

The mathematical models that parameterize brain tissue micro
structure from diffusion signals necessarily simplify the underlying 
cellular geometry, which may limit the accuracy and completeness of 
microstructure estimation (Alexander et al., 2019). Additionally, several 
key factors need to be considered for GM: water exchange across the cell 
membrane - between neurites and the extracellular space (Jelescu et al., 
2022; Olesen et al., 2022); non-Gaussian diffusion along neuronal and 
glial processes - resulting from structural disorder (Novikov et al., 2014, 
2011); the signal contribution from soma (Palombo et al., 2020). 
Traditional diffusion models have historically schematized neural tissue 
as a combination of two diffusive compartments: one corresponding to 
the confined space within the neurites (intra-neurite compartment), the 
other including the water diffusing in the extra-cellular space (extra-
neurite compartment). However, recent studies have shown that the 
‘Standard Model’ of diffusion (SM) with its two compartments fails in 
representing diffusion signal attenuation at high b-values (McKinnon 
et al., 2017; Palombo et al., 2018). As a result, diffusion MRI in GM 
requires ‘rethinking the basic microstructure modeling blocks’ to more 
accurately reflect the complex interplay between cellular compartments 
and diffusion processes (Jelescu et al., 2022). More recently, the 
intra-soma compartment (including neurons and neuroglia) was added 
in the Soma And Neurite Density Imaging (SANDI) diffusion model 
(Palombo et al., 2020). This model is particularly promising for studying 
cortical architecture and cortical myelination in that it describes water 
diffusion within tissue compartments more comprehensively.

Given these considerations, we hypothesized that GM microstruc
tural characteristics, particularly its cytoarchitecture, contributing to R1 
contrast, determined an association between SANDI-derived diffusion 

metrics in GM and R1. For completeness, we also investigated such as
sociations in WM. Towards this aim, we decided to employ the 
Magnetization Prepared 2 Rapid Acquisition Gradient Echo (MP2RAGE) 
sequence (Marques et al., 2010) for R1 mapping as it is becoming 
increasingly widespread in research and it is a clinically viable 
approach, considering its contained acquisition time.

This study aims thus to determine whether specific microstructural 
properties captured by the SANDI model corresponded to variations in 
R1, which depends, among other things, on the myelin content.

By establishing these relationships, our study seeks to clarify the 
contribution of cytoarchitecture to R1 contrast, providing new insights 
into how neuronal architecture and myelin content interact in the 
healthy brain.

2. Methods

2.1. Theory – soma and neurite density imaging model

Traditional brain microstructure imaging models include two diffu
sive compartments, intra-neurite and extra-neurite, where neurites are 
modelled by infinite cylinders of null radius embedded in the hindered 
extra-neurite water. The extra-neurite pool in WM corresponds to water 
in the extra-axonal space, whereas, in GM, this pool includes both water 
in the extra-cellular space and water within the cell bodies of neurons 
and glia, called the soma, combined into a single diffusive compartment. 
This model is sufficient to describe DW-MRI signal attenuation in WM 
and GM for diffusion weights up to b = 3000 s/mm2 (or, equivalently, 3 
ms/μm2), but it becomes inadequate at higher b values (b > 3000 s/ 
mm2), where it fails to capture the observed signal decay (McKinnon 
et al., 2017; Palombo et al., 2018).

The SANDI model (Palombo et al., 2020) addresses this limitation by 
incorporating a third diffusive compartment, which accounts for the 
unmodeled contribution of soma within GM. The SANDI model builds on 
the assumptions of the SM and experimental evidence suggesting that, at 
short diffusion times td (td<20 ms given a water bulk diffusivity of ~3 
μm2/ms and an estimated pre-exchange time >500 ms), the effects of 
cell membrane permeability and water exchange between intra-cellular 
and extra-cellular spaces are negligible (Yang et al., 2018). Additionally, 
this model assumes, as tested through numerical simulations (Palombo 
et al., 2020) that, at these short td, the intracellular sub-compartments, i. 
e. soma and neurites, can be treated as separate, non-exchanging 
compartments.

According to the SANDI model, the signal attenuation from the DW- 
MRI experiment as a function of b-value (S(b)), normalized to the image 
without diffusion weighting, (S(0)) is: 

S(b)
S(0)

= fic(finAin(b)+ fisAis(b)) + fecAec(b) (1) 

where fic and fec are the intra-cellular and extra-cellular relative signal 
fractions (for which the condition fic + fec = 1 is always valid), fin and fis 
are the intra-neurite and intra-soma relative signal fractions (for which 
the condition fin + fis = 1 is always verified), Ain and Ais, Aec are the 
normalized signals of the neurites, soma and extra-cellular space, 
respectively. To obtain orientationally independent diffusion metrics, 
the powder-averaged signal (that is, the average of the signal across 
various uniformly distributed directions) can be considered. The 

normalized, direction-averaged signal is indicated by S̃(b)S(0), comprising Ãin 

and Ãis, Ãec, detailed below.
For the extra-cellular compartment or space, Ãec(b,Dec) depends on the 

b-value and the extra-cellular diffusivity (Dec, from now on simply 
named De) and can be expressed, assuming isotropic Gaussian diffusion 
in this compartment, as: 

Ãec(b,De) ≈ e− bDe (2) 

E. Bliakharskaia et al.                                                                                                                                                                                                                         NeuroImage 320 (2025) 121466 

2 



For the intra-neurite compartment, Ãin(b,Din) depends on the b-value 
and the axial intra-neurite diffusivity (Din), which describes the diffusion 
of water along the length of neurites, modeled as randomly oriented 
cylinders or sticks with negligible radial diffusivity (D⊥≈0). The 
normalized signal from neurite diffusion is thus: 

Ãin(b,Din) ≈

̅̅̅̅̅̅̅̅̅̅̅̅
π

4bDin

√

erf
( ̅̅̅̅̅̅̅̅̅

bDin
√ )

(3) 

Finally, for the intra-soma compartments, Ãis(b,Dis, rs) depends not 
only on the b-value, the intra-soma diffusivity (Dis) and the cellular size 
(rs) but also on additional parameters such as the diffusion gradient 
amplitude (g), the gradient pulse duration (δ), and the time between the 
gradient pulses (Δ). It represents the normalized signal arising from 
diffusion within somas, which are modeled as spheres:  

where γ is the gyromagnetic ratio, am is the root of a Bessel function- 
related equation, and rs quantifies the radius or apparent soma size. 
The parameter Dis characterizes water diffusion inside somas (for prac
tical applications, Dis is often set to the self-diffusion coefficient of water 
at tissue temperature).

By substituting Eqs. (2), (3) and (4) into Eq. (1), we get the 
approximated expression for the total direction-averaged signal: 

S̃(b)
S(0)

= (1 − feс)(finÃin(b,Din)+ (1 − fin)Ãis(b,Dis, rs)) + fecÃec(b,De) (5) 

The parameters to be estimated fitting the DW-MRI signal to Eq. (5)
are five in total, as Dis is set to a fixed value of 3 µm²/ms (corresponding 
to 3 × 10–3 mm2/s), corroborated by numerical simulations and Pulsed 
Gradient Spin Echo experiments (Palombo et al., 2020), while fextra 
(the extra-cellular intensity fraction) is equal to fextra=1-fsoma-fneurite 
(with fsoma equivalent to (1-fec)(1-fin) in Eq.(5), and fneurite equivalent 
to (1-fec)fin in Eq.(5)).

2.2. Data acquisition

2.2.1. Participants
The study participants were 20 healthy adult volunteers (9 males and 

11 females). The age range was 24 – 31 years (mean = 27.5 years; 
standard deviation (SD) = 3.8 years). Participants provided written 
informed consent, and they were screened for MRI compatibility. None 
of the subjects had a history of neurological disease, psychological dis
orders, drug or alcohol abuse, or use of neuropsychiatric medication. 
Participants were instructed to maintain their usual intake of food, drink 
(including alcohol), and caffeine on the day of the study. The study was 
approved by the Cardiff University School of Psychology Ethics 
Committee.

2.2.2. MRI protocol
The imaging protocol was conducted on a Siemens Prisma 3T scan

ner (Siemens Healthineers, Erlangen, Germany) at the Cardiff University 
Brain Research Imaging Centre (CUBRIC), using a 32-channel, receive- 
only head coil. All participants underwent a protocol including 
diffusion-weighted imaging (DWI) with varying gradient strengths and 
quantitative R1 mapping via Magnetization Prepared 2 Rapid Acquisi
tion Gradient Echo (MP2RAGE) sequence (Marques et al., 2010), with 
detailed sequence parameters listed in Table 1. The MP2RAGE sequence 
models R1 assuming that water exchange between free water and water 
bound to macromolecules is negligible, and that each voxel comprises a 
single spin pool of water molecules, whose signal recovery after exci
tation can be theoretically described by a mono-exponential behavior.

DWI included six non-zero b-shells with increasing diffusion di
rections at higher b-values and 13 b0 volumes acquired with phase- 
encoding in an anterior-posterior direction. In addition, an image with 
no diffusion weighting but an opposite phase-encoding direction was 
acquired for susceptibility distortion correction. B-value shuffling was 
adopted to avoid excessive gradient coil heating (Hutter et al., 2018).

2.3. Data processing and statistics

Diffusion weighted images (DWIs) were denoised (Veraart et al., 
2016) and corrected for Gibbs ringing artifacts with MRtrix3 (Tournier 

et al., 2019). The b0-images acquired in opposite phase encodings were 
used to estimate the susceptibility induced distortions via FSL TOPUP 
(FSL, FMRIB Software Library, v6.0.1 (Jenkinson et al., 2012)). FSL BET 
was used to provide a binary mask to FSL EDDY, which was employed to 
correct for eddy-current induced distortions and subject motion, 
exploiting the output from TOPUP. Diffusion data quality check was 
conducted via the evaluation of the signal-to noise ratio, using in-house 
MATLAB scripts (MATLAB version: R2022b, Natick, Massachusetts: The 
MathWorks Inc). MATLAB was also used to derive a map of apparent R1 
(apparent due to the single compartment assumption; thereafter, simply 
named R1) from the quantitative T1 map produced by the MP2RAGE 
sequence, and for the correlation analysis, detailed below. FSL DTIFIT 

Table 1 
Overview of parameters for Diffusion - Weighted Imaging (DWI) and R1 
protocols.

Parameter DWI Protocol R1 mapping 
Protocol

Total DWI Volumes 266 –
Diffusion Directions/ 

Volumes per b-shell
13 / 20 / 20 / 30 / 61 / 61 / 61 –

Diffusion Weightings (b- 
values)

0 / 200 / 500 / 1200 / 2400 / 
4000 / 6000 s/mm²

–

Acquisition Method Double-refocused spin-echo DW 
echo-planar imaging

MP2RAGE

Repetition Time (TR) 3000 ms 5000 ms
Echo Time (TE) 85 ms 2.36 ms
Flip Angle (FA) 50◦ FA1 = 7◦, FA2 =

5◦

Refocusing Flip Angle 180◦ –
Diffusion Gradient 

Separation (Δ)
40 ms –

Diffusion Gradient 
Duration (δ)

28 ms –

Resolution 2.5-mm isotropic 1-mm isotropic
Number of Slices 42 160
Field of View (FOV) 220 × 220 mm² 224 × 224 mm²
Bandwidth 1496 Hz/pixel 350 Hz/pixel
GRAPPA Acceleration 2 2
Inversion Times (TI) – TI1=700 ms, 

TI2=1500 ms
Echo Spacing 0.75 ms 5.8 ms
Slice orientation Transversal Sagittal
Scan duration 13.48 min 7.55 min

GRAPPA=GeneRalized Autocalibrating Partial Parallel Acquisition; DW=diffu
sion weighted; MP2RAGE= Magnetization Prepared 2 Rapid Acquisition 
Gradient Echoes.

Ãis(b,Dis, rs) ≈ exp

{

−
2(γg)2

Dis

∑∞

m=1

a− 4
m

a2
mr2

s − 2
×

[

2δ −
2 + e− a2

mDis(Δ− δ) − 2e− a2
mDisδ − 2e− a2

mDisΔ + e− a2
mDis(Δ+δ))

a2
mDis

]}

(4) 
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was used to extract the diffusion tensor using b-values up to 1200 
s/mm2, yielding mean diffusivity and fractional anisotropy (FA) maps, 
and the tensor eigenvalues and eigenvectors. FA maps were later used 
for parcellation of white and gray matter.

The SANDI toolbox (https://github.com/palombom/SANDI-Matlab- 
Toolbox-Latest-Release) was used to estimate via a Machine Learning 
approach based on Random Forest Regression, five model parameters: 
fsoma (equivalent to (1-fec)(1-fin) in Eq.(5)), fneurite (equivalent to (1- 
fec)fin in Eq.(5)), the signal fractions of intra-soma and intra-neurite 
compartments (the extra-neurite signal fraction fextra was computed 
from them as fextra=1-fsoma-fneurite and corresponds to fec in Eq. (5)); 
Din, De, the apparent diffusivities of intra-neurite and extra-neurite 
compartments, respectively; Rsoma (rs), the estimated magnetic reso
nance (MR) apparent radius of soma and/or cellular bodies (e.g. glia).

2.3.1. Signal to noise ratio of DWIs
A critical aspect to consider when analyzing DWI data is the reli

ability of the acquired signal. Indeed, noise can introduce bias into the 
estimated diffusion metrics (Jones and Basser, 2004). To ensure robust 
data quality, the signal-to-noise ratio (SNR) of the DW images was 
evaluated. Conventionally, SNR is evaluated for each diffusion-encoded 
volume and thus, each b-value, allowing to verify whether the measured 
signal falls below the noise floor at the highest b-value (Caporale et al., 
2017). SNR is calculated as the ratio between the diffusion signal in WM 
and GM and the standard deviation of the noise in the background. This 
approach (hereafter referred to simply as SNR) provides an overall 
measure of signal reliability across the dataset. To this aim, the SNR 
averaged across subjects for each diffusion direction was calculated. 
However, because of the use of parallel imaging and a multi-channel 
receiver head coil, SNR was evaluated also following the definition 
proposed by Dietrich et al. (2007) (Dietrich et al., 2007), employing two 
raw, uncorrected images without diffusion weighting, or b = 0 s/mm2 

images. Because the method considers the difference between two 
consecutive b0 images, it will be referred to as SNRdiff hereafter. The 
SNRdiff was thus defined as: 

SNRdiff =
1̅
̅̅
2

√
meanROI(S1(b = 0) + S2(b = 0))
stdROI(S1(b = 0) − S2(b = 0))

(6) 

where S1(b = 0) and S2(b = 0) represent the signal in the first two 
consecutive b = 0 s/mm2 images acquired. The two SNRs were calcu
lated in two regions of interest (ROIs), namely the WM and GM, and 
were reported as the mean ± standard deviation. The corpus callosum 
was chosen because, due to the presence of highly coherent WM fibers, it 
represents a region where the diffusion is highly facilitated along the 
fiber direction (corresponding roughly to the left-right direction) and 
highly hindered in the perpendicular direction. Therefore, the direction 
of facilitated diffusion may represent the worst-case scenario in the SNR 
evaluation due to larger signal attenuation.

The FA maps were used to mask the corpus callosum for SNR eval
uation and normalization of the parametric maps to the standard Mon
real Neurological Institute (MNI) space. For SNR calculation, the corpus 
callosum was selected in an automated way, by retaining voxels with FA 
larger than 0.75 and with the first eigenvector (V1) magnitude larger 
than 0.9 to allow the selection of coherent WM fibers and to avoid partial 
volume effects at the borders. For the same reason, GM was selected in 
an automated way by retaining voxels with FA comprised between 0.15 
and 0.38. These thresholds were set empirically considering the average 
FA and V1 values in the respective tissues of interest (the corpus cal
losum and GM) and were applied only for SNR evaluation purposes. 
Noise was evaluated in the background by automatically selecting four 
squares at the corners of the image (size of the square was roughly 1/5 of 
the matrix size). The code is available at https://github.com/caporalea 
s/SNR_DWI.

2.3.2. Parametric maps normalization and white and gray matter 
parcellation

The FA map was registered to the anatomical T1-weighted image via 
rigid body transformation. The structural image was normalized to the 
MNI-2-mm space via non-linear transformation. These transformations 
were combined to obtain the warps that mapped the FA onto the MNI 
standard space, and the warps were applied to the R1 and SANDI 
parametric maps. A hard segmentation of the T1-image was used based 
on the absolute maximum partial volume estimate, obtaining masks of 
GM and WM, which were further eroded. For cortical parcellation, the 
Human Connectome Project (HCP) atlas, including 180 regions of in
terest (ROIs) (Glasser et al., 2016), was used. In this atlas information 
related to the architecture, topography, function and connectivity of the 
GM areas were used to obtain the cortical parcellation. The analysis was 
restricted to cortical gray matter (GM) due to the atlas chosen for 
cortical parcellation. In the Supplementary Materials we reported the 
results of an analysis including also subcortical structures. The 
ICBM-DTI-81 (Mori et al., 2008) atlas, including 50 ROIs, was used 
instead for WM parcellation. GM and WM ROIs exceeding the 20th 
percentile in voxel count were retained to exclude residual noise. Voxels 
with cell density (fsoma) higher than 0.1 were retained ensuring brain 
parenchyma selection and a reliable estimate of Rsoma in the paren
chyma (Afzali et al., 2021).

2.3.3. Statistical analysis
The median regional values of SANDI and parametric maps of R1 

were evaluated across subjects and across ROIs, with standard de
viations and errors. Pearson’s correlation was evaluated between the 
regional values of R1 and SANDI metrics, correcting for multiple com
parisons (using Benjamini-Hochberg false discovery rate criterion, 
thereafter, simply named FDR). The distribution of correlation co
efficients was also evaluated across subjects. In the correlation between 
SANDI metrics and R1 across ROIs the effect of several potential con
founders (ROI volume, the cortical thickness and curvature for GM, and 
ROI volume only for WM) was evaluated. The ROI volume was expressed 
as the number of voxels constituting the GM or WM ROI. The cortical 
thickness and the curvature were estimated using FreeSurfer (FreeSurfer 
(Fischl, 2012), v7.3.2) for each ROI of the HCP atlas, considering then 
the median across subjects. A regression analysis was performed using 
the ‘General Linear Model’ (fitglm) in MATLAB, and employing stan
dardized variables. The model tested for the GM ROIs was the following: 

SANDImetrici = β0 + β1⋅R1i + β2⋅C1i + β3⋅C2i + β4⋅C3i + εi (7) 

Where C1, C2 and C3 were the ROI volume, the cortical thickness 
and the curvature, respectively. The model tested for the WM ROIs 
included a single confounding factor, the ROI volume: 

SANDImetrici = β0 + β1⋅R1i + β2⋅C1i + εi (8) 

A conservative p-value of p’=0.05/6 = 0.0083, with 6 the number of 
SANDI metrics was considered as statistically significant, to control for 
the family-wise error rate.

Mean values ± standard deviations of R1 and SANDI metrics were 
evaluated in GM and WM without any threshold, using the binarized 
partial volume estimate maps, to enable comparison with other studies. 
The code is available at https://github.com/caporaleas/STR_CORR.

3. Results

No subject was excluded due to severe movement or ringing artifacts, 
leading to a dataset of 20 healthy subjects.

The calculated mean SNRdiff values were 28.56 ± 5.11 for GM and 
29.77 ± 4.01 for WM, indicating a comparable level of data quality 
across both tissue types and to recent studies in healthy subjects at 3T 
(Schiavi et al., 2023). The conventional SNR evaluated in the corpus 
callosum (CC) and in the GM for each b-value is shown in Fig. 1. The 
across-subject average was calculated for each distinct diffusion 
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Fig. 1. Signal-to-noise ratio (SNR) of diffusion-weighted images. The SNR evaluated for each diffusion volume (averaged across subjects) is plotted against the b- 
values for the corpus callosum and gray matter (CC and GM, shown in red and blue, respectively). Experimental points represent the mean SNR across subjects.

Fig. 2. Group average parametric maps. Parametric maps of R1 and SANDI metrics normalized to MNI space and averaged across all subjects. R1 = 1/T1, 
relaxation rate; fneurite = signal intensity fraction of neurite compartment; fsoma = signal intensity fraction of cellular compartment; fextra = signal intensity 
fraction of extra-cellular compartment; Rsoma = average size of cellular bodies; Din = diffusivity of the intra-neurite compartment; De = diffusivity of the extra- 
neurite compartment. The different slices correspond to axial sections at different Z-coordinates (Z = 31, 38, 48, 58, 68) in MNI space.
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direction. Notice the spread of SNR values in the CC (and not in the GM) 
due to the inhomogeneous diffusion attenuation depending on the 
diffusion sensitizing gradient direction. This is caused by the direc
tionality of the diffusion phenomenon in WM. Even for the diffusion 
direction with the highest signal attenuation (that is [1 0 0], corre
sponding to the orientation of the most coherent fibers in the corpus 
callosum) the SNR remains above the inferior limit allowed for the 
reliability of DW data (SNR=3), according to Jones et al. (Jones et al., 
2013).

Parametric maps of R1 and SANDI metrics obtained in the current 
study, normalized to the standard MNI space and averaged across sub
jects are shown in Fig. 2. The intensity fractions of the three diffusive 
compartments (neurites, cellular bodies or soma, and extra-cellular 
space) are shown, together with the quantitative maps of average 
soma size, and the diffusivities of the intra-neurite and extra-neurite 
domains.

R1 ranged between a value of 0.77 ± 0.02 s-1 to 1.11 ± 0.03 s-1 in 
GM and WM, respectively. On average, GM presented signal fractions of 
the soma, extra-neurite and intra-neurite compartments of 0.41 ± 0.01, 
0.36 ± 0.01 and 0.19 ± 0.01, respectively. On average, in WM the 
largest signal fraction originated from the neurite compartment 
(fneurite=0.41 ± 0.02), followed by the signal fraction of the extra- 
neurite and the soma water pools (0.31 ± 0.01 and 0.27 ± 0.01, 
respectively). The estimated soma radius showed minimal differences 
between GM and WM (Rsoma=13.00 ± 0.14 in GM and 13.08 ± 0.17 
μm in WM). Regarding diffusivity measures, the intra-neurite diffusivity 
(Din) was 1.75 ± 0.02 μm²/ms in GM and 1.87 ± 0.02 μm²/ms in WM, 
while the extra-neurite diffusivity (De) was 1.90 ± 0.06 μm²/ms in GM 
and 1.64 ± 0.06 μm²/ms in WM.

Scatter plots of R1 and SANDI metrics across ROIs are shown in 
Fig. 3. Since R1 presents different ranges of values for GM and WM, the 
correlation plots for these two tissue types were illustrated separately. 
For each ROI, the marker indicates the median value of the SANDI 
metrics across subjects for that ROI, plotted against the median value of 
R1 across subjects. Correlation analyses revealed a moderate negative 

association between R1 and soma-related parameters in GM ROIs, with 
R1 negatively correlated with fsoma (r = -0.51, p < 0.0001) and Rsoma 
(r = -0.47, p < 0.0001). Additionally, R1 showed a positive correlation 
with fextra and De (r = 0.38, p < 0.0001) but only a weak association 
with neurite density (fneurite, with r = 0.18, FDR-adjusted p = 0.028, 
data not shown) while no significant relationship was found with neurite 
diffusivity (Din). The scatter plots of the SANDI parameters and R1 
across ROIs including the subcortical structures are shown in the Sup
plementary Materials. The inclusion of the subcortical structures 
increased the entity of the correlation between the signal fraction of 
soma and neurite compartments (fneurite, fsoma) and R1. In particular, 
the correlation between fneurite and R1 became statistically significant 
with the inclusion of the subcortical structures. On the other hand, the 
correlation between Rsoma and R1 decreased.

Within WM ROIs, moderate to strong positive correlations were 
observed between R1 and intra-neurite metrics, with Din (r = 0.62, p <
0.0001) and fneurite (r = 0.43, FDR-adjusted p = 0.019. The ROI volume 
was not related to R1 in GM (r = 0.05 and p = 0.52, Supplementary 
Materials, Figure S4a) but it was related with R1 in WM (r = 0.47, p =
0.002). The cortical thickness was not related to R1 in GM (r = -0.08, p =
0.32, Figure S4b), and the curvature was weakly related to R1 in GM (r 
= 0.17, p = 0.046, Figure S4c). The estimated beta coefficients of the 
regression analysis with the respective p-values are reported in Table 2. 
For the WM only the fneurite and Din were included as dependent var
iables because the other diffusion metrics did not show a significant 
correlation with R1 in the original analysis. A significant p-value of the 
β1 coefficient indicates that there is a linear relationship between the 
specific diffusion metric and R1 that is not explained by the confounding 
factors included in the model. In the GM, the correlations between fsoma 
and R1, fextra and R1, Rsoma and R1 and De and R1 remained signifi
cant after including the confounding factors. In the WM, the correlation 
between fneurite and R1 was not significant after including the ROI 
volume but the correlation between the intra-neurite diffusivity (Din) 
and R1 remained significant.

The subject-wise spatial correlation coefficient between SANDI 

Fig. 3. Scatter plots of SANDI metrics vs R1 in Gray and White Matter regions (GM and WM, respectively). The Pearson’s correlation coefficient between R1 
and SANDI metrics quantified in GM and WM regions is indicated (with FDR-adjusted p-values shown). Each marker represents, for a different brain region, the 
median across subjects of the regional median of the parameter. Error bars are standard errors (median absolute deviations/squared root of number of subjects). 
Markers and regression lines are shown in blue and red for GM and WM, respectively. Shaded areas represent 95 % confidence intervals.
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Table 2 
Beta coefficients of the regression analysis performed in GM considering the model in Eq. 7 and in WM considering the model in Eq. 8. The respective p-value is 
indicated in parentheses.

SANDI metric β0 (intercept) β1 (R1) β2 (ROI volume) β3 (cortical thickness) β4 (curvature)

GM fneurite 0.0088 (0.92) 0.19 (0.024) − 0.0081 (0.92) 0.14 (0.087) − 0.028 (0.75)
fsoma 0.0042 (0.96) ¡0.47 (<0.0001) − 0.039 (0.61) − 0.14 (0.056) 0.050 (0.53)
fextra − 0.010 (0.89) 0.39 (<0.0001) 0.0032 (0.97) 0.11 (0.16) − 0.026 (0.75)
Rsoma 0.0061 (0.94) ¡0.35 (<0.0001) − 0.10 (0.19) 0.13 (0.09) − 0.027 (0.75)
Din 0.0072 (0.93) − 0.097 (0.26) − 0.012 (0.89) 0.019 (0.83) 0.035 (0.70)
Dextra − 0.0076 (0.92) 0.42 (<0.0001) 0.054 (0.49) − 0.11 (0.14) − 0.061 (0.45)

WM fneurite <0.0001 (1) 0.30 (0.069) 0.27 (0.098) – –
Din <0.0001 (1) 0.53 (0.0003) 0.27 (0.052) – –

fneurite=signal fraction of the neurite compartment; fsoma=signal fraction of the soma compartment; fextra=signal fraction of the extra-neurite compartment; 
Rsoma=average size of cellular bodies; Din=intra-neurite diffusivity; De=extra-neurite diffusivity; GM=gray matter; WM=white matter.

Fig. 4. Subject-wise correlation coefficient between SANDI metrics and R1. Each marker represents the correlation coefficient between SANDI metrics and R1 in 
the Gray Matter (GM) or White Matter (WM) regions, for each subject. The grand mean ± standard deviation of r are indicated by the thick and dashed lines, 
respectively.

Fig. 5. Scatter plots of SANDI metrics vs R1 in Gray Matter across subjects. The Pearson’s correlation coefficient between SANDI metrics quantified in GM 
regions is indicated (with FDR-adjusted p-values shown). Each marker represents, for a different subject, the median across regions of the specific parameter. Error 
bars are standard errors (median absolute deviations/squared root of number of subjects). Markers and regression lines are shown in blue. Shaded areas represent 95 
% confidence intervals.
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metrics and R1 in both GM and WM is illustrated in Fig. 4. Including the 
subcortical structures did not affect significantly the results of the cor
relations between SANDI metrics and R1 across subjects, as shown in 
Figure S3. The scatter plots of global GM R1 and SANDI metrics across 
subjects are shown in Fig. 5. Each marker represents the median across 
regions of a given parameter for a different subject. A positive correla
tion was observed between fneurite and R1 (r = 0.67, FDR-adjusted p =
0.0056), while fsoma and R1 exhibited a negative correlation (r = -0.56, 
FDR-adjusted p = 0.024). Additionally, a negative trend was noted be
tween Rsoma and R1 (r = -0.48, FDR-adjusted p = 0.056). The distri
butions of correlation coefficients between R1 and SANDI metrics across 
subjects, for each gray matter ROI, are shown in Fig. 6.

4. Discussion

In this study, we tested the hypothesis that the GM microstructural 
characteristics, specifically its cytoarchitecture, contributed to R1 
contrast, determining associations between SANDI-derived diffusion 
metrics in GM and R1 in healthy subjects. R1 was derived using the 
MP2RAGE sequence, based on a mono-compartmental model of longi
tudinal magnetization recovery. The findings revealed distinct associa
tions between microstructural properties and R1 in GM and WM, 
providing complementary insights into cortical organization.

4.1. Diffusion data metrics and R1 mapping

Given that the diffusion protocol included b-values larger than 3000 
s/mm2, an assessment of data reliability was necessary. The evaluation 
of SNR confirmed that the signal remained above the noise floor, and the 

SNRdiff in the image without diffusion weighting was reasonable and 
comparable to a previous study evaluating SANDI metrics in healthy 
adults using the same clinical 3T scanner model (Schiavi et al., 2023).

Overall, the R1 values measured in this study aligned well with 
published benchmarks for healthy individuals at 3T, supporting the 
robustness of R1 mapping. In WM, R1 averaged 1.11 ± 0.03 s-1, in 
agreement with previously reported ranges (Berg et al., 2022; Weiskopf 
et al., 2013) In GM, R1 averaged 0.77 ± 0.02 s-1, in agreement with the 
values reported by Marques et al. (Marques et al., 2010) but (slightly 
exceeding the reported range of 0.61 - 0.75 s-1 (Berg et al., 2022; 
Weiskopf et al., 2013). This deviation may reflect methodological dif
ferences, such as variations in MRI acquisition protocols, segmentation 
techniques, or demographic characteristics of the studied cohort.

Overall, some of the SANDI metrics were comparable with the 
literature, while others were not. The average extracellular signal frac
tion (fextra) measured in this study was 0.36 ± 0.01 in GM and 0.31 ±
0.01 in WM, which are consistent with the literature: for instance, 
Schiavi et al. (Schiavi et al., 2023) observed fextra values of 0.40 in GM 
and 0.30 in WM, while Krijnen et al. (Krijnen et al., 2023) reported 
fextra values ranging from 0.23 - 0.52 in GM and 0.15 - 0.46 in 
normal-appearing WM, for diffusion times Δ = 19 and Δ = 49 ms, 
respectively. Similarly, the average neurite signal fraction (fneurite) 
measured in this study was 0.19 ± 0.01 in GM and 0.41 ± 0.02 in WM. 
These values fall well within the range reported by (Krijnen et al., 2023; 
Schiavi et al., 2023) for healthy individuals. The soma signal fraction 
(fsoma) measured in this study was 0.41 ± 0.01 in GM and 0.27 ± 0.01 
in WM. These values are higher than those reported by (Schiavi et al., 
2023), who observed fsoma values of approximately 0.27 in GM and 
0.15 in WM, and align more closely with the findings of Krijnen et al. 

Fig. 6. Distribution of correlation coefficients between SANDI metrics and R1 across subjects for various Gray Matter regions (ROIs). Histograms of the 
Pearson’s correlation coefficients between R1 and SANDI metrics across-subjects, for each gray matter ROI.
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(Krijnen et al., 2023), who reported fsoma values of 0.55 and 0.33 in GM 
(averaged across cortical and deep GM) and 0.43 and 0.26 in 
normal-appearing WM of healthy controls, for diffusion times Δ = 19 
and Δ = 49 ms, respectively. The soma radius (Rsoma) measured in this 
study was 13.00 ± 0.14 μm in GM and 13.08 ± 0.17 μm in WM 
exceeding the range reported by (Krijnen et al., 2023; Schiavi et al., 
2023). Schiavi et al. observed Rsoma values of 12.68 μm in GM and of 
10.02 μm in WM, while Krijnen et al., reported Rsoma values of 10.10 in 
GM and 10.23 - 10.33 in normal - appearing WM for diffusion times Δ =
19 and Δ = 49 ms, respectively. The small difference in Rsoma between 
GM and WM in the present study could reflect the insensitivity of the 
diffusion protocol to true compartment differences, rather than a bio
logically meaningful similarity. This would affect particularly WM es
timates, where cell body density (fsoma) is lower and the axonal 
components dominate the diffusion signal. Finally, the intra- and 
extra-neurite diffusivities (Din and De, respectively) measured in this 
study were respectively underestimated and overestimated by approxi
mately 30–35 % with respect to (Schiavi et al., 2023) while (Krijnen 
et al., 2023) did not provide explicit Din and De values, limiting a direct 
comparison.

When comparing the SANDI-derived diffusion metrics obtained in 
this study for GM and WM with values reported in literature for healthy 
subjects, we must consider that: first, the diffusion time employed (given 
by Δ − δ/3, with Δ diffusion gradient separation and δ diffusion gradient 
duration, which in our case is roughly 31 ms) modulates the sensitivity 
of the diffusion sequence to inter-compartmental water exchange; sec
ond, the values yielded by the multi-parametric fitting of diffusion data 
at different gradient strengths were obtained by fixing the intra-soma 
diffusivity (Dis) to a value of 3 µm²/ms, without directly constraining 
the upper bound in the fit; third, methodological differences in the data 
acquisition (e.g., the number and arrangement of b-shells) and analysis 
(e.g., the fitting algorithm used to extract the SANDI metrics) potentially 
affect the estimation of the diffusion metrics. Due to the first point, the 
diffusion time employed in the sequence slightly influences the esti
mated fraction of the three diffusive compartments. Regarding the sec
ond point, simulations and in vitro experiments have shown that the 
fitting remains stable across a wide range of Dis values, from 0.1 to 3 
μm²/ms, with only minimal variations in the estimated parameters 
(Palombo et al., 2020). Finally, regarding the third point, the discrep
ancies in parameter estimates can arise first of all from the use of 
different b-values in the diffusion protocol. Indeed, while Schiavi et al.’s 
protocol employed 0/500/1000/2000/3000/4000/6000 s/mm2, our 
protocol included a b-value of 200 s/mm2, but did not include a b-value 
of 3000 s/mm2. Future studies regarding the impact of adding more 
b-values between 200 and 1000 s/mm2 are warranted. Another source of 
difference between our results and those reported in Schiavi’s and 
Krijnen’s studies lies in the fitting approach. While we used a machine 
learning non-linear fitting, the other two studies employed a linearized 
and heavily regularized version of the fitting using the AMICO frame
work. This difference in methodology can lead to slightly different 
parameter estimates.

4.2. Associations between R1 and diffusion-derived metrics

The associations between R1 and SANDI metrics could be 
confounded by some macroscopic tissue characteristics, such as cortical 
thickness, the volume of the region, water content and iron content 
contributing to R1 contrast (the latter two were not quantified in the 
present study). Although the use of median values in the ROI is less 
sensitive to outliers and therefore more robust to ‘noise’, it is important 
to take into account the potential confounding factors in the correlation 
analysis. In GM, across ROIs, a significant negative correlation was 
observed between R1 and soma-related metrics, with lower R1 values 
corresponding to higher fsoma and larger soma radii (Rsoma), as 
depicted in Fig. 3. These results were significant even when controlling 
for GM ROI volume, cortical thickness and curvature (Table 2).

We can only speculate that these findings suggest that less myelin
ated regions tend to harbor larger neuronal somas, and that this may 
reflect differences in network functionality across cortical areas (Turner, 
2019). A potential link to learning remains thus only a hypothesis that 
requires further investigation. In this hypothetical view, such a rela
tionship may represent a functional adaptation, where cortical areas 
with lower myelination maintain larger somas to support higher meta
bolic demands and synaptic plasticity. Such structural variations across 
the cortex could contribute to differential processing and learning ca
pacities in different brain regions, underscoring the potential role of GM 
myelination in facilitating neuroplasticity, as regions with varying 
myelination levels may exhibit different capacities for adaptation and 
learning. The association between larger neuron sizes and lower mye
lination (assuming that the measured R1 depends on myelin content, 
among other factors) may suggest that specific cortical regions are 
structurally optimized for distinct functional roles, potentially influ
encing how information is processed within the brain. In this way, the 
variability in GM myelination across the human cortex could be pivotal 
in supporting complex cognitive functions (Call and Bergles, 2021; 
Dicke and Roth, 2016). These explanations remain, however, specula
tive. Another possible reason why more densely myelinated regions 
would present smaller soma density and soma size could be linked to 
regional differences in cell type composition that may also influence 
soma size estimates. Indeed, the smaller size of oligodendrocyte cell 
bodies densely packed in the voxel would decrease the ‘apparent’ Rsoma 
measured with MRI (which represents a volume weighted mean of the 
cell sizes within a given voxel).

Moreover, considering the median across ROIs and the correlation 
across subjects, a positive correlation was observed between fneurite 
and R1 (r = 0.67, FDR-adjusted p = 0.0056), while fsoma and R1 
exhibited a negative correlation (r = -0.56, FDR-adjusted p = 0.024). 
These results indicate that individuals with higher global R1 in GM also 
exhibit a higher intensity fraction of neurites, and a lower intensity 
fractions of somas, which is in line with the fact that R1 depends, among 
other factors, on the myelin content (and the intensity fraction of neu
rites is proportional to the density of myelinated fibers), and suggests 
that myelination patterns in the cortex are influenced by different 
neuron intrinsic factors, other than the size, such as neuronal identity, as 
shown in literature (Call and Bergles, 2021). Additionally, a negative 
trend was noted between Rsoma and R1 (r = -0.48, FDR-adjusted p =
0.056), which was marginally significant (Fig. 5).

Finally, in the WM, a strong positive correlation was found between 
R1 and the intensity fraction and the diffusivity of the intra-neurite 
compartment (namely, fneurite and Din). After controlling for the con
founding effect of ROI volume, only the association between Din and R1 
remained significant (Table 2). These results reinforce the notion that 
the intra-neurite diffusivity serves as a reliable proxy for myelin content 
in WM. The observed associations highlight how diffusion-weighted 
imaging has the potential to capture changes in microstructural integ
rity related to myelination, which is crucial for understanding both 
neurodevelopmental processes and age-related changes in brain struc
ture (Salat et al., 2005; Song et al., 2002). The strong positive correla
tions found in WM suggest that as myelin content increases, so do the 
intra-neurite characteristics reflected by Din. This relationship is crit
ical for elucidating how WM integrity supports efficient neural 
communication across different brain regions.

4.3. Limitations and implications for future research

One of the primary limitations of this study stems from the physical 
and technical constraints of the 3 T scanner used, which has a maximum 
gradient strength of 80 mT/m. Achieving a maximum b-value of 6000 s/ 
mm2 required a gradient pulse duration (δ) of 28 ms and a time between 
pulses (Δ) of 40 ms, resulting in an effective diffusion time (Δ – δ/3) of 
approximately 31 ms. This diffusion time is around 50 % longer than the 
20 ms recommended in previous studies (Jelescu et al., 2022; Olesen 
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et al., 2022; Palombo et al., 2020), where a non-exchanging multi-
compartment model can be used with minimal bias due to unaccounted 
exchange mechanisms. The use of longer gradient pulses (28 ms) and 
diffusion times (31 ms) in this study could result in unaccounted ex
change between neurites and the extracellular compartment (occurring 
in the order of 20–50 ms in vivo, according to animal studies by (Jelescu 
et al., 2022)). Using the Neurite Exchange Imaging (NEXI) model to 
simulate the impact of such exchange, we estimated that the unac
counted exchange between diffusion compartments in SANDI could lead 
to a potential underestimation of fneurite by up to 8 % and De by up to 
16 %, and an overestimation of Rsoma by up to 4 %. However, while 
these exchange effects cannot be disregarded at the diffusion time 
employed, their contribution to bias in parameter estimates is likely 
lower than or comparable to the noise-related bias for SNR∼100, which 
is the case of this study (Schiavi et al., 2023).

Secondly, the fitting approach to derive the diffusion-metrics via 
SANDI model (linear and regularized fitting versus machine learning 
non-linear fitting, for instance) can lead to slightly different parameter 
estimates. To improve comparability and harmonization across studies, 
future research should adopt consistent fitting strategies. Additionally, 
refining noise and distortion correction algorithms in the DWI pre
processing phase and comparing different machine learning algorithms 
for diffusion-metrics estimation could further improve the robustness of 
the obtained findings.

A third limitation of the present study is represented by the premises 
of the MP2RAGE technique to map R1, i.e., the assumption that each 
voxel comprises a single spin pool of water molecules, whose signal 
recovery after excitation can be theoretically described by a mono- 
exponential behavior. This model faces limitations due to factors like 
the complexity of tissue composition and the influence of magnetization 
transfer effects (van Gelderen et al., 2016). Indeed, myelin has a com
plex structure with bound water molecules and different T1 relaxation 
properties than free water. Moreover, T1 relaxation in WM is not solely 
determined by myelin. Factors like tissue iron content (Gelman et al., 
2001), water-to-macromolecule ratio, i.e. effectively the water content, 
axonal density, and the size of axons (Harkins et al., 2016) can also 
influence T1. Besides that, we acknowledge that mono-exponential fits 
of longitudinal relaxation may oversimplify the inherently 
multi-exponential nature of the GM, characterized by a complex 
cytoarchitecture with a higher density of cell bodies, dendrites and 
synapses (Jamarik et al., 2022).

As pertains to WM, other approaches exist to estimate both the short 
and long longitudinal relaxation components, such as inversion recovery 
fast-spin echo (IR-FSE) with multiple inversion times, or an MP2RAGE 
pulse sequence opportunely tuned, as shown in Rioux et al. (Rioux et al., 
2016). In this work the authors estimated the expected bias in measuring 
the long T1 component as a function of the chosen TIs. This bias could 
not be determined in our case, as only the first TI was in the range tested 
by the authors. Future work will focus on exploring the biexponential 
relaxation in both WM and GM using clinically viable sequences such as 
MP2RAGE.

For the present study, which examined correlations between 
MP2RAGE-derived ‘apparent’ R1 and SANDI-derived metrics, assuming 
that inaccurate modeling introduced a systematic bias of the quantified 
R1 per tissue type (Saunders et al., 2025), correlations are expected to be 
preserved. Besides that, the role of confounding factors such as water 
and iron content, contributing to R1 contrast can be determined by using 
additional protocols. Future studies would ideally combine T1 mapping 
with complementary indices such as proton density or quantitative 
magnetization transfer, which better disentangle water content and 
macromolecular contributions.

Finally, by performing a post hoc power analysis on our data, the 
achieved power in detecting significant correlations between SANDI 
metrics and R1, given our sample size of N = 20 (assuming a single tail 
test and a coefficient of determination R2=0.25, taking into account the 
correlation between fsoma and R1) is 76 %. Based on this analysis, our 

study is slightly underpowered, bringing a slightly higher risk of missing 
true effects (or finding significant correlations between SANDI metrics 
and R1).

Despite these limitations, our results highlight a significant associa
tion between cortical R1 and diffusion-derived microstructural metrics, 
highlighting the utility of combining R1 mapping with SANDI-based 
diffusion modeling and underlining the contribution of GM cytoarchi
tecture into R1 contrast. Future research should explore whether these 
relationships hold in clinical populations, particularly in conditions 
characterized by demyelination or altered cortical microstructure, such 
as Multiple Sclerosis or other neurodegenerative disorders (Schmierer 
et al., 2008; Shafee et al., 2015). Investigating longitudinal changes in 
R1 and SANDI-derived metrics could provide valuable insights into 
disease progression and treatment response, proving useful also for 
advancing research in personalized medicine. Another important di
rection for future studies should focus on the relationship between 
learning-induced microstructural changes, as reflected by SANDI met
rics and R1. Such research could provide further insights into the pro
cesses driving brain adaptability and resilience, shedding light on the 
dynamic nature of structural and functional plasticity in the human 
brain.

5. Conclusions

We found that microstructural metrics derived from the SANDI 
model fitting of diffusion-weighted data are significantly associated with 
R1 estimated via MP2RAGE. The observed correlations support the role 
of GM cytoarchitecture in shaping R1 contrast in GM and highlight the 
potential of SANDI to probe cortical microstructure related to myeli
nation. Moreover, the findings highlighted the structural diversity of 
cortical GM, potentially linked to its role in supporting neuroplasticity 
and complex cognitive functions. The correlations found in WM vali
dated the utility of diffusion metrics as reliable biomarkers for assessing 
myelin integrity in WM.

Continued methodological advancements are necessary to refine 
diffusion-based metrics and expand their applicability in both research 
and clinical settings, and to make advantage of clinically viable methods 
optimized to be sensitive to different relaxation components. By 
addressing current limitations and integrating multi-parametric and 
multimodal imaging approaches, future studies will contribute to a 
deeper understanding of the structural and functional architecture of the 
brain in both health and disease.
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Jamarik, J., Vojtǐsek, L., Schwarz, D., 2022. Uncovering cortical layers with multi- 
exponential analysis: a region of interest study. In: 2022 30th European Signal 
Processing Conference (EUSIPCO). Presented at the 2022 30th European Signal 
Processing Conference (EUSIPCO), pp. 1353–1356. https://doi.org/10.23919/ 
EUSIPCO55093.2022.9909806.

Jelescu, I.O., de Skowronski, A., Geffroy, F., Palombo, M., Novikov, D.S., 2022. Neurite 
Exchange Imaging (NEXI): a minimal model of diffusion in gray matter with inter- 
compartment water exchange. Neuroimage 256, 119277. https://doi.org/10.1016/j. 
neuroimage.2022.119277.

E. Bliakharskaia et al.                                                                                                                                                                                                                         NeuroImage 320 (2025) 121466 

11 

https://doi.org/10.1016/j.neuroimage.2025.121466
https://doi.org/10.1016/j.neuroimage.2021.118183
https://doi.org/10.1002/nbm.3841
https://doi.org/10.1002/nbm.3841
https://doi.org/10.1016/j.neuroimage.2022.119092
https://doi.org/10.1016/j.neuroimage.2022.119092
https://doi.org/10.1038/s41467-021-25035-2
https://doi.org/10.1002/mrm.25210
https://doi.org/10.1016/j.neuroimage.2016.12.051
https://doi.org/10.1016/j.neuroimage.2016.12.051
https://doi.org/10.1136/jnnp.2003.021915
https://doi.org/10.1002/nbm.3549
https://doi.org/10.1098/rstb.2015.0180
https://doi.org/10.1002/jmri.20969
https://doi.org/10.1002/jmri.20969
https://doi.org/10.1002/hbm.20082
https://doi.org/10.1002/hbm.20082
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1002/1522-2594(200101)45:1&tnqh_x003C;71::aid-mrm1011&tnqh_x003E;3.0.co;2-2
https://doi.org/10.1002/1522-2594(200101)45:1&tnqh_x003C;71::aid-mrm1011&tnqh_x003E;3.0.co;2-2
https://doi.org/10.1038/nature18933
https://doi.org/10.1016/j.neuroimage.2013.03.060
https://doi.org/10.1016/j.neuroimage.2013.03.060
https://doi.org/10.1016/j.neuroimage.2018.12.044
https://doi.org/10.1016/j.neuroimage.2018.12.044
https://doi.org/10.1002/mrm.25709
https://doi.org/10.1002/mrm.26765
https://doi.org/10.1002/mrm.26765
https://doi.org/10.23919/EUSIPCO55093.2022.9909806
https://doi.org/10.23919/EUSIPCO55093.2022.9909806
https://doi.org/10.1016/j.neuroimage.2022.119277
https://doi.org/10.1016/j.neuroimage.2022.119277


Jenkinson, M., Beckmann, C.F., Behrens, T.E.J., Woolrich, M.W., Smith, S.M., 2012. FSL. 
Neuroimage 62, 782–790. https://doi.org/10.1016/j.neuroimage.2011.09.015.

Jones, D.K., 2010. Diffusion MRI. Oxford University Press.
Jones, D.K., Basser, P.J., 2004. Squashing peanuts and smashing pumpkins”: how noise 

distorts diffusion-weighted MR data. Magn. Reson. Med. 52, 979–993. https://doi. 
org/10.1002/mrm.20283.
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