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Abstract

Deep Neural Networks (DNNs) are often considered black boxes due to their

opaque decision-making processes. Concept Bottleneck Models (CBMs) aim to

overcome this by predicting human-defined concepts as an intermediate step be-

fore predicting task labels and thus enhancing the interpretability of DNNs. In a

human-machine setting, greater interpretability enables humans to improve their

understanding and build trust in a DNN. However, for interpretability to be

meaningful, concept predictions must be grounded in semantically meaningful

input features. For example, pixels representing a bone break should contribute

to the corresponding concept. Existing literature suggests that CBMs often rely

on irrelevant features or encode spurious correlations, leading us to question their

interpretations.

This thesis investigates how CBMs represent concepts and how dataset design and

model training influence their interpretability. We evaluate the impact of different

concept annotation configurations, emphasising the importance of dataset con-

figuration. Using synthetic and real-world datasets, we demonstrate that CBMs

can align concepts with semantically meaningful input features when trained ap-

propriately.

We analyse challenges w.r.t. concept correlation and input feature sensitivity,

where correlated concepts in training data can lead to concept representations

encoding extraneous information and increase concept sensitivity to unrelated in-

put features. To address the challenge of dataset design, we propose best practices

for training CBMs that ensure concepts are grounded in semantically meaning-

ful features, minimise leakage and maintain predictable concept accuracy under

i



Abstract

input feature manipulations.

We conducted the first human studies using CBMs to evaluate human interac-

tion in collaborative task settings. Our findings show that CBMs improve in-

terpretability compared to standard DNNs, leading to increased human-machine

alignment. However, this increased alignment did not translate to a significant

increase in task accuracy. Understanding the model’s decision-making process re-

quired multiple interactions, and misalignment between the model’s and human

decision-making processes could undermine interpretability and model effective-

ness in a collaborative setting.
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Chapter 1

Introduction

Deep Learning (DL) has transformed and will continue to be integrated into many

domains such as computer vision and natural language processing, in addition

to many industries including healthcare and finance. DL involved the training

of Deep Neural Networks (DNNs) that aim to mimic the networks of a human

brain with the artificial perceptron introduced in 1958 (Rosenblatt, 1958) and

Convolutional Neural Networks (CNNs) (a type of DNN) introduced in 1989

(LeCun et al., 1989). It was not until 2012 with AlexNet (Krizhevsky et al.,

2012) when DL and DNNs were shown to be highly accurate in computer vision

and hardware was feasible to train DNNs. This can be attributed to their current

popularity.

DNNs are often seen as black-box systems as the relationship between neurons

are non-linear (Benitez et al., 1997), meaning that the path they use to arrive

at an output, such as identifying an object in an image, is opaque to human

understanding. This opacity can lead to issues in critical applications, such as

healthcare, where ensuring that models learn meaningful features is crucial for

accuracy and trust. Trust will be hard to achieve if we cannot explain, and thus

understand, what the models are doing (Miller, 2019). Furthermore, regulatory

requirements, such as those under the General Data Protection Regulation, legally

require interpretability and transparency in Artificial Intelligence (AI) (European

Parliament and Council of the European Union, 2016).

Because DNNs are good at pattern matching, they can be used to automate repet-

itive tasks while humans will complete creative and problem-solving tasks. In a

human-machine collaborative setting, this could see improvements in productiv-
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ity and more accurate decision-making (Kamar, 2016). However, as discussed,

enabling a human to understand a black-box model’s decision-making process is

a challenging task, but without this understand effectiveness of human-machine

teams will be affected (Paleja et al., 2024). Assuming we have an DNN assisting

a human by giving a second opinion, we need the DNN to be equipped such that

the human can trust the DNN, as failure for trust to form will leave the DNN

being ignored. Equally, we do not want overtrust, as this may mean the human

does not override the DNN when it makes mistakes (Ososky et al., 2013).

Addressing the challenge of interpretability and building trust with DNN-based

models, the field of eXplainable Artificial Intelligence (XAI) has emerged with the

focus on developing methods and techniques that make DNNs more interpretable

and transparent (Adadi and Berrada, 2018). Several approaches have been pro-

posed to enhance the explainability of DNNs. One approach is gradient-based

attribution methods. These methods involve calculating the gradient of the out-

put with respect to the input features, thereby identifying which features most

influence the model’s predictions (Bach et al., 2015). This can be displayed in the

form of a saliency map which visually shows the regions of an input a DNN used

for an output prediction. An example of a saliency map is shown in Figure 1.1.

The goal of XAI is to make AI more transparent. Explanations should also be

designed for human consumption by aligning with the explainee’s beliefs, and

must not be overwhelming (Miller, 2019).

Saliency maps are not the only type of explanation; another approach involves

modifying the model architecture itself to improve interpretability. Concept Bot-

tleneck Models (CBMs)(Koh et al., 2020) are one such example. CBMs belong to

a broader class of Concept Models (CMs), which aims to improve interpretabil-

ity by structuring predictions around human-understandable components, called

concepts. These concepts often correspond to intermediate attributes of the task,

effectively splitting the prediction process into sub-tasks. The motivation for this

approach is to make model task predictions understandable to humans.
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Figure 1.1: Saliency maps visually represents the contribution of input

features for a task prediction by a DNN. The colour red is commonly

used to represent positive contribution, and the colour blue for negative

contribution. In this example input features are pixels from the image

on the left, and the saliency map on the right has highlighted the pixels

that contributed to the models output.

Recently, in XAI it has been estimated only around 20% of papers consider hu-

mans (Nauta et al., 2023). What is needed is additional research in the area of

human-machine collaboration that evaluates XAI methods and techniques with

a focus on verifying they are beneficial to human-machine collaborative settings.

Doing so would allow us to evaluate methods against human behaviour instead

of just automated evaluation techniques.

In this thesis, we focus on image classification tasks using CBMs. We examine

these models using XAI, both as a method to analyse how these models learn to

represent classes and concepts from their training data and as an additional com-

ponent that enhances their interpretability. Our approach includes automated

evaluation metrics and human studies on real-world tasks, providing a compre-

hensive understanding of CBM’s capabilities and their impact on human-machine

collaboration.
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1.1 Motivation

The primary motivation of this thesis is to explore how DNN-based models and

humans can effectively collaborate on shared tasks. In applications where humans

and DNNs work together, humans must be able to trust and understand the

decision-making process of DNNs. This is where XAI techniques and CBMs,

designed to be inherently interpretable, offer an advantage.

CBMs (Koh et al., 2020) have been positioned as improving human-machine col-

laboration as they are inherently interpretable (Koh et al., 2020). This capability

is enabled by the model predicting a vector of human-defined concepts which are

then directly used to predict a task label (see Figure 1.2). Concept predictions,

known as concept explanations, can be inspected to reveal how a model came

to a task prediction more easily. As the task label is predicted solely from a set

of predicted concepts, the predicted concept values can be updated by a human

operator, known as intervening. This can either correct concept predictions and

improve the models accuracy, or allow the operator to probe the CBM with vari-

ous combinations of concepts and inspect the updated predicted task label. This

enables the human to ask the model “what-if” questions, e.g., “What if the model

instead predicted these concepts?”. Interventions are a type of counterfactual ex-

planation (Koh et al., 2020) which in regards to XAI can help to answer why a

task prediction was made (Miller, 2019).

However, concept predictions may be misleading to humans interpreting the

model’s outputs if the model does not predict concepts based on the expected

set of input features, but the human assumes it does. For instance, consider a

model identifying bird species from images using concepts such as “beak shape” or

“wing pattern” (illustrated in Figure 1.2). A human might assume that the model

identifies these concepts using the same visual features they would rely on, such

as detailed patterns or proportions. In this thesis we use the term semantically

meaningful to define sets of input features with the same meaning of a concept
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Figure 1.2: CBMs predict concepts based on input features, and task

predict labels from the previously predicted concepts. Ideally the set

of input features used for concept predictions hold the same meaning

as the concept they are predicting.

label (Margeloiu et al., 2021). Alternatively, if the model uses unrelated visual fea-

tures such as background elements or other bird parts, this misalignment between

human and model decision-making could lead to incorrect interpretations of the

model’s predictions. This issue is not unique to bird identification and may arise

in other domains which may have higher stakes, such as medical diagnosis based

on X-ray images, where a radiologist might overtrust the model by assuming it

uses clinically relevant features to diagnose patients. For humans to make full use

of a model they will need to trust the model’s output, but a lack of understanding

of the causes for a decision may result in a loss of trust (Miller, 2019). To fully

realise the interpretability benefits CBMs provide, the ideal case is where con-

cepts are predicted from semantically meaningful input features which, in turn,

are aligned with human intuition.

During training, both the concepts and the task labels are supervised with the

model split into two parts, a concept encoder to map input features to concepts,

5



1.1 Motivation

and a task predictor to map concepts to task labels. Splitting the model during

training is what enables a human to intervene on the concept predictions at test

time, as the predicted concept values can be modified and then passed back

through the task predictor (Koh et al., 2020).

Despite the concept vector output, CBMs are unable to explain which input fea-

tures are used to predict concept (this is known as feature attribution), or which

concepts contribute to a task label. An XAI study for CBMs (Margeloiu et al.,

2021) used saliency maps and suggests that CBMs do not learn concepts as hu-

mans would expect (where feature attribution is applied to distinct regions of

the input), but instead feature attribution covers the entire input. However, the

authors only looked at saliency maps for concepts and not task labels. Addition-

ally, the authors did not provide a hypothesis or argument for what the models

have learned to predict concepts, and instead, they attributed their findings to

existing feature attribution techniques being “ill-equipped to study attribution

for concept bottleneck”. Further, they also limited their study to a single dataset

which does not account for all configurations of concept annotation possible in

training datasets.

We define semantically meaningful as the prediction of concepts based on the

minimum set of input features that share the same meaning. For instance, if the

concept “has black bill colour” is predicted as present, then the pixels representing

the birds bill should be the primary input features used. In contrast, if a CBM

predicts the concept “has black bill colour” using input features from the entire

body of the bird, its prediction is not semantically meaningful, as it includes

features from other bird parts unrelated to the bill. This definition is based on

the definition with the same name in (Margeloiu et al., 2021).

To explore CBMs interpretability thoroughly, this thesis introduces a new syn-

thetic dataset that allows us to control the configuration of concepts in the dataset

and how input features map to concepts, alongside using real-world datasets to

verify the findings beyond a synthetic domain. In particular we show how CBMs
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Figure 1.3: Arrows indicate required contributions to answer research

questions or support other contributions, while support arrows repres-

ent contributions or questions that feed into linked elements.

can be trained such that concepts are predicted using semantically meaningful

input features. We used multiple methods which provided a robust framework

for assessing CBMs interpretability in human-machine collaboration, evaluating

CBMs with qualitative metrics, quantitative metrics and human studies.

1.2 Research Questions

The research questions below outline the goals of this thesis, focusing on im-

proving the training of CBMs and improving their interpretability for humans.

These questions are referred to throughout the thesis using their identifiers (e.g.

RQ1). A summary of how these relate to each other and to research questions is

illustrated in Figure 1.3.

RQ1: How can we train a CBM to map semantically meaningful input features
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to concepts, and semantically meaningful concept predictions to task labels?

RQ2: How does the relationship between concepts and input features in the

training dataset influence the information encoded in learned concepts and the

model’s reliance on input features for predicting those concepts?

RQ3: Do Concept Models improve task accuracy and model interpretability in

a human-machine setting?

1.3 Contributions

RC1: We perform qualitative and quantitative analysis of CBMs, finding CBMs

are capable of learning semantically meaningful concept representations from

input features. This contribution partially addresses RQ1 and is covered in

Chapter 3.

RC2: We introduce and publish a new synthetic image dataset with fine-grained

concept annotations which we use to demonstrate instances when CBMs can learn

semantically meaningful concept representations and when they fail to do so. This

contribution partially addresses RQ1 and is covered in Chapter 3.

RC3: We expand on existing literature by looking at feature attribution both

from the input to the concept vector and from the concept vector to the task

output. This contribution partially addresses RQ1 and is covered in Chapter 3.

RC4: We perform an in-depth evaluation of CBMs revealing CBMs can be

trained to minimise the encoding of extraneous information in concept represent-

ations, and concepts can be resilient to irrelevant input feature alterations. We

demonstrate that CBMs generally learn underlying concept correlations present

in the training data. This contribution partially addresses RQ2 and is covered in

Chapter 4.
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RC5: We conclude that two factors are critical for CBMs to learn semantic-

ally meaningful input features: (i) accuracy of concept annotations and (ii) high

variability in the combinations of concepts co-occurring, that is, each concept in

a dataset should appear alongside a variety of others to help the model distin-

guish between them. This contribution partially addresses RQ2 and is covered in

Chapter 4.

RC6: We perform the first human studies using CBMs in a joint human-machine

task setting which analyses the interaction between humans and the CBM. We

find participants who performed interventions increased trust in a model, but this

trust was sometimes misplaced. Additionally, the CBM decision-making process

is not aligned to that of the humans. This contribution partially addresses RQ3

and is covered in Chapter 5.

RC7: We show providing concept explanations to humans increases both model

interpretability and task accuracy. In addition, interventions can be used to reveal

model bias. This upholds the model’s promise of increasing interpretability from

high-level concepts. This contribution partially addresses RQ3 and is covered in

Chapter 5.

1.4 Thesis Structure

Chapter 2 provides an introduction to the background material of research rel-

evant to CMs, XAI, AI, and human-machine collaboration.

Chapter 3 introduces our datasets and how we are using the configuration of

dataset annotations to confine models during training. By doing so we demon-

strate how the dataset can change the input features our models use for concept

predictions. Additionally, we evaluate CBMs decision-making process from pre-

dicted concepts to task labels.

Chapter 4 evaluates CBMs with regards to how much extra information is
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encoded into concepts, concept prediction resilience, and concept correlation.

Secondly, we identify required properties for datasets such that CBMs concept

prediction is aligned to human expectations and reduces undesired properties.

Chapter 5 introduces two human studies where we asked participants to inter-

act with a CBM to perform a task. The CBM in each of these tasks plays an

assistant to the human participant. The first study evaluates the model and ex-

planation abilities with expert users, while the second study evaluates the model

and explanation capabilities with lay people.

Chapter 6 summarises the contributions of this thesis and proposes future re-

search directions.
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Chapter 2

Background

This thesis investigates how human-machine collaboration can be improved by

(1) enhancing the interpretability of DNN-based models for human collaborators

and (2) aligning the machine and human decision-making processes. Central to

our research is the use of CBMs (Koh et al., 2020), designed to be inherently

interpretable.

Throughout this thesis, we use two key terms: CMs and CBMs. CMs refer to

a broad class of Machine Learning (ML) where, in addition to predicting the

primary task, the model also detects subcomponents (concepts) related to the

task. CBMs are a type of CMs and thus refers to a specific model architecture

that constrain the model to predict concepts, and use these to predict a final

downstream task. This chapter provides a comprehensive overview of key areas,

including CMs, XAI, and human-machine collaboration.

2.1 Concept Models

Standard DNNs act in a black-box manner, meaning the decision-making process

is opaque. In a human-machine collaboration setting this poses a challenge as the

human will find it difficult to understand the machine’s decision-making process

for task predictions. CMs address this issue by predicting concepts that are

connected to the task prediction. For instance, if we had a model that could

predict the type of bird in an image, a CM might predict concepts for the birds

wing colour and beak shape, all of which will be made available to a human

collaborator. This added layer of interpretability allows for increased human
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Category Paper

C
on

ce
pt

-g
ro

un
de

d
m

od
el

s
CBMs and functionally identical
frameworks

Koh et al. (2020)
Yuksekgonul et al. (2023)

Dominici et al. (2024)

Extended concept representations Lockhart et al. (2022)
Mahinpei et al. (2021)

Data efficiency

Belém et al. (2021)
Wang et al. (2023a)
Losch et al. (2019)

Chauhan et al. (2023)

Robustness and extended capabilities

Marconato et al. (2022)
Zarlenga et al. (2024)

Xu et al. (2024)
Kim et al. (2023b)
Chen et al. (2020)

Alvarez-Melis and Jaakkola (2018)

Prototype-based models

Wang et al. (2023b)
Chen et al. (2019)

Wang et al. (2024a)
Huang et al. (2024)

Language model based models

Yang et al. (2023)
Wang et al. (2024b)
Moayeri et al. (2023)

Oikarinen et al. (2023)
Rao et al. (2024)

Table 2.1: Summary of CMs.

oversight, critical in high-stakes domains such as medical diagnosis.

Early versions of CMs were introduced by Kumar et al. (2009) and Lampert et al.

(2009), although these introduced challenges compared to end-to-end DNNs. Ku-

mar et al. (2009) required each concept to have a large number of positive and

negative examples which makes it difficult to create a suitable training dataset.

Lampert et al. (2009) achieved a classification accuracy of 40.5% compared to

65.9% on a standard supervised training model in their experiments. The idea of

CMs was revisited by Koh et al. (2020) where they separated the concept predic-

tion and downstream task prediction, achieving a competitive accuracy in com-

parison to end-to-end DNNs. Since the introduction of these models, subsequent

designs have been introduced that aim to improve on one or more aspects of the

original design.
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Figure 2.1: Concept Bottleneck Models first predict the presence and

absence of a set of concepts that are then used to predict a task label.

We have introduced several CMs from the literature published after these early

CMs, which are separated into three categories which we summarise in Table 2.1.

Concept-grounded models are models that incorporate concepts as in interme-

diate part of a models decision making process. Prototype-based models learn

concepts as prototypical parts, and language model based models incorporate

Large Language Models (LLMs) into the model or training of a model.

Within Concept-grounded models, we have identified four subcategories: CBMs

and functionally identical frameworks, extended concept representations, data

efficiency, and robustness and extended capabilities. CBMs is a type of CM that

is from the CBMs and functionally identical frameworks subcategory as as this

type of model learns concepts as an intermediate step to predict task labels.

2.1.1 Concept Bottleneck Models

A CBM (Koh et al., 2020) takes an input which is passed through the concept

encoder model part, predicting a vector of concepts. Concept predictions are then

passed through the task predictor model part to predict a downstream task label.

Concept predictions are in the range of 0 to 1 where 0 means the model is confident

the concept is not present and a prediction of 1 means the model is confident the

concept is present. Predictions of 0.5 and above are counted as present. Concept

13
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predictions can be viewed by a human in addition to a task label prediction.

The vector of concept predictions is referred to as concept explanations. A CBM

prediction can be intervened by adjusting the concept outputs with new values

within the range 0 and 1 and then passing the new set of concepts back through

the task predictor to get a new downstream task label prediction. An overview

of the CBM architecture is shown in Figure 2.1.

CBMs are trained by supervising both the concepts and the downstream task.

Formally, given the training set {x(i), y(i), c(i)}ni=1 where we are provided with a

set of inputs x ∈ Rd, corresponding task labels y ∈ Y and vectors of k concepts

c ∈ Rk. A CBM in the form f(g(x)) maps the input space to the concept space

g : Rd → Rk and maps concepts to task labels f : Rk → Y . This is such that the

task label prediction is made using only the predicted concepts. The function g

refers to the prediction of c using the input x and the function f is the prediction

of y with the input of c.

During training the loss function Ltask : Y × Y → R , measures the discrepancy

between predicted and true task label, and the loss function Lconcepts : Rk×Rk →

R, measures the discrepancy between the predicted and true concepts. The three

training methods to train the model parts (the trained models are referred to as

ĝ and f̂) are illustrated in Figure 2.2 and detailed as follows:

The independent training method learns f̂ (equation 2.1) and ĝ (equation 2.2)

separately. During training f̂ will take the true value of c as an input and ĝ will

take the true value of x. At test time the output of ĝ will be the input for f̂ .

f̂ = arg minf

∑n

i=1
Ltask(f(c

(i)); y(i)) (2.1)

ĝ = arg ming

∑n

i=1
Lconcepts(g(x

(i)); c(i)) (2.2)

Sequential bottleneck training follows the same ĝ as independent training but f̂

14



2.1 Concept Models

(equation 2.3) is learned using the output of ĝ instead of the true value of c.

f̂ = arg minf

∑n

i=1
Ltask(f(ĝ(x

(i))); y(i)) (2.3)

The joint training method minimises the weighted sum of f̂ , ĝ for some value

λ > 0 as seen in equation 2.4. λ is a hyperparameter used to prioritise the loss

Ltask or Lconcepts. When λ approaches 0, the task prediction loss is prioritised and

when λ approaches ∞, concept loss is prioritised.

f̂ , ĝ =arg minf,g

∑n

i=1
Ltask(f(g(x

(i))); y(i))

+ λLconcepts(g(x
(i)); c(i))

(2.4)

Datasets used to train CBMs can either be configured with class-level concept

annotations or instance-level concept annotations (Koh et al., 2020). Class-level

concepts have concept annotations set to the classes, meaning all samples of one

class have the same concept values no matter if each sample of a class should have

the same concept values or not. Instance-level concepts have concept annotations

set to individual samples. This means instance-level concept annotations can

account for differences between samples within a class.

For example, let’s consider a dataset of flowers where the task label is the flower

species. With class-level concepts all roses might have the concept “is red” despite

that roses can come in other colours. With instance-level concept the concept “is

red” can be applied to only samples of roses of that colour while concepts for

other colours of roses can be applied where appropriate. An illustration of this is

provided in Figure 2.3.

Class-level concept annotations have the benefit of being cheap to add to a dataset

as only one set of concepts is required for each class. Instance-level concepts are

challenging to add to a dataset, especially if human annotation is required, or

there are a large number of samples to annotate.
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(a) Independent training

(b) Sequential training

(c) Joint training

Figure 2.2: CBM training methods. The input to the task predictor

f for the sequential and joint training methods is optionally preceded

with a sigmoid function to ensure all concepts are in the range 0 to 1.

As CBMs are only trained on task and concept labels they have no ground truth

as to what features they should use from input samples and instead are left to

discover this. This can lead to the model learning undesired representations of

concepts from input features as explored by Margeloiu et al. (2021) who analysed

a CBM trained on class-level concept annotations, and Marconato et al. (2022)

and Espinosa Zarlenga et al. (2023) who show CBMs can encode more information

for each concept than is required to predict themselves. This has the potential
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Input
Class-level concepts Instance-level concepts

Concept Value Concept Value

Is red Present Is red Present

Is pink Not present Is pink Not present

Is yellow Not present Is yellow Not present

Is red Present Is red Not present

Is pink Not present Is pink Present

Is yellow Not present Is yellow Not present

Is red Present Is red Not present

Is pink Not present Is pink Not present

Is yellow Not present Is yellow Present

Figure 2.3: Class-level concept annotations cannot account for visual

differences between samples of a dataset with the same task label, in

this case “rose”, unlike instance-level concept annotations.

of allowing concepts to be predicted from one another, or the importance of

concepts for task labelling to be unbalanced e.g. overly relying on one or more

concepts. Returning to our flowers example this may be seen by the concept

“has thorns” being predicted as present only when the concept “is red” is also

predicted as present, or the class for rose only being predicted if the concept “is

red” is predicted as present.

To the best of our knowledge, little attention has been given to how the con-

figuration of concept annotations in a dataset affects how CBMs learn concept

representations. Specifically, prior work does not explore the distinction between

instance-level and class-level concept annotations, treating the learned concept

representations of CBMs as if they are unaffected by the structure of concept

annotations. As instance-level concept annotations provide finer-grained, per-

sample attributes, how CBMs learn concept representations will be different to the

concept representations learned with class-level concept annotations. Instance-
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level concept annotations may constrain CBMs to only learn desired concept

representations. We discuss CM metrics and evaluation in Section 2.1.5 and re-

visit this issue in Chapters 3 and 4, where we examine the effects of different

concept annotation configurations.

2.1.2 Concept-Grounded Models

Post-hoc CBMs (Yuksekgonul et al., 2023) and AnyCBM (Dominici et al., 2024)

create a CBM by adding concept prediction and using the predicted concepts for

task prediction in a pre-trained standard DNN. Post-hoc CBMs utilise Concept

Activation Vectors (Kim et al., 2018) to learn concept representations. Mean-

while, AnyCBM trains a second model to translate a standard DNN embeddings

to a set of supervised concepts and then back to the embeddings. Both ap-

proaches enable model interpretability without reducing task accuracy and have

the advantage of allowing concept selection independently of the downstream task

thus reducing some of the challenges of acquiring a suitable dataset for training.

Post-hoc CBMs and AnyCBM keeps the same inherent interpretability and inter-

vention capability as CBMs. However, as the final model architecture is similar

to CBMs, they also have the same limitations as CBMs.

Several models add additional components to the standard CBM architecture to

handle situations where dataset concept annotations are inadequate to accurately

predict a downstream task. Sidecar CBMs (Lockhart et al., 2022) adds a com-

ponent which can bypass the concept vector when a set criterion is met, meaning

concepts are not suitable for task prediction. If this criterion is not met then

task predictions are made using concept predictions. Similarly, Hybrid CBMs

(Mahinpei et al., 2021) combines the concept vector with unsupervised outputs,

ensuring that the model can capture information that does not fit into the super-

vised concept labels. While these models improve model accuracy in scenarios

when concept annotations are not complete, the downside is a potential reduc-
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Figure 2.4: Concept Embedding Models learns two embeddings for

each concept: one (ĉ+i ) for when a concept is present, and another (ĉ−i )

for when a concept is absent. Only one embedding is active at a time.

A human can intervene on a CEM by changing which embedding is

active. This figure is from (Zarlenga et al., 2024).

tion in interpretability since not all model predictions will be explained through

concepts and thus will exhibit the same black-box nature CBMs were intending

to reduce.

Concept Embedding Models (CEMs) (Zarlenga et al., 2024) also identify rich

concept annotations in datasets are hard to create in addition to there often be-

ing a trade-off between accuracy, robust explanations and effective intervention.

Their proposed model architecture (illustrated in Figure 2.4), CEMs, includes

two embeddings for each concept: one for a concept being present, and another

against a concept being present. If a human wishes to intervene on a concept

prediction they can set the model to use only the concept embedding for the de-

sired concept presence rather than a weighted mix of the two embeddings. CEMs

are demonstrated to show similar or better accuracy to CBMs while also show-

ing strong intervention ability and robustness to incorrect concept intervention.

This is primarily done by including random interventions during training that

update predicted concepts with their ground truth values. Human testing would
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be required to show if this has a significant difference in a real-world use case.

Chen et al. (2020) proposed a separate approach from CBMs by introducing a

concept whitening module into a DNN. This module is trained to align predefined

concepts in the latent space, arranging them in orthogonal directions. This makes

DNNs interpretable by identifying training samples that are most activated along

a particular concept’s axis in the latent space, without lowering the model’s per-

formance on the downstream task. Concept Whitening also can be introduced

after a model is trained with little additional training required. Compared to

CBMs, Concept Whitening does not have the same dataset requirements as con-

cepts are introduced from a separate data source, but these models do not allow

user feedback such as the CBM intervention capability.

Losch et al. (2019) introduced Semantic Bottleneck Networks that are conceptu-

ally similar to CBMs, using a bottleneck to represent semantics extracted from

input features. Semantic Bottleneck Networks can be created by adding a bot-

tleneck layer to an existing model that already segments input features, thus

reducing the complexity that would otherwise be required to create a suitable

dataset. Unlike CBMs, Semantic Bottleneck Networks are created such that con-

cepts represent semantic segmentation of input features instead of the presence

of concepts. This means their applicability may be limited to domains where

semantic segmentation is not the primary concern.

Continuing with tackling the potential challenge of requiring a dataset to have

concept annotations for CBM training, weakly supervised multi-task learning

(Belém et al., 2021) aims to address the dataset challenge by first training a

model on a noisy dataset and then fine-tuning on noise-free samples. The noisy

dataset used by Belém et al. (2021) generates concepts based on rules for payment

transactions. This approach has shown significant improvements in performance

over models trained only on noise-free data, which is to be expected if there are

few noise-free samples. However, this method is dependent on the availability

of rules or heuristics to create the noisy labels, which may not be applicable in
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all domains. This is especially restrictive for image-based datasets where such

rules without analysing the content of an image may only apply rules at the

class-level. Alternatively, generating fine-grained concept labels would require a

concept detector similar to the one we aim to train, creating a circular dependency.

Interactive-CBMs (Chauhan et al., 2023) adds a human-in-the-loop element dur-

ing training, allowing the model to query a human collaborator for concept labels.

This approach reduces reliance on fully annotated datasets by introducing new

information during training, though it comes with increased training costs and

the need for domain expertise which may not be feasible in all domains.

Probabilistic CBMs (Kim et al., 2023b) tackle the problem of ambiguity in concept

predictions (e.g. concepts that do not maintain the same visual appearance

between samples) by adding uncertainty estimates to each concept prediction.

This allows the model to provide uncertainty predictions that can help distin-

guish between present concept predictions that look similar to training samples,

and present concept predictions that are not visually similar (e.g. hidden in the

input image). As this architecture is still similar to standard CBMs, they keep

the same limitations including concept annotation requirements.

Another approach that removes the need for concept supervision is Concept Bot-

tleneck Learners (Wang et al., 2023a), where a CM is equipped with an extractor

that identifies concept prototypes without ground-truth labels. As no concept

annotations are required for training, these models have the main advantage of

supporting a greater number of datasets compared to standard CBMs. When

trained on the Caltech-UCSD Birds-200-2011 (CUB) (Wah et al., 2011) dataset,

Concept Bottleneck Learner identified concepts that were consistently detected

using visually similar input features across samples in the dataset. However,

since the learned concepts are not directly supervised, they may not align with

human-understandable features, which would limit their interpretability.

Energy-based CBMs (Xu et al., 2024) enhance the interpretability of CBMs by
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combining CBMs with energy-based models (Lecun et al., 2006). During training,

energy-based CBMs learns concept embeddings (similar to CEMs), a task embed-

ding, and three energy networks: one that measures the compatibility between

an input and a task label, one between an input and a set of concepts, and one

between a set of concepts and a task label. All energy networks are optimised

to assign lower energy to compatible pairs. During inference, all embeddings and

energy functions are frozen. The model then predicts concept and task probabil-

ities by minimising the three energy functions. This helps capture inter-concept

interaction and provides a richer interpretation of how concepts contribute to

predictions than predictions made by a standard CBM. For example, when one

concept is intervened with a standard CBM the accuracy of related concept pre-

dictions may not change. Energy-based CBMs address this by assigning a low

energy value to concept configurations similar to those observed during training

and higher energy values to unobserved configurations. However, this approach

still suffers from the same dataset dependency as standard CBMs.

GlanceNets (Marconato et al., 2022) tackle the issue of concept representation

alignment, namely, alignment is the extent to which models learn to use human-

understandable features of data to predict concepts. A model is considered aligned

when the features it uses to predict concepts can be clearly and simply mapped

to real-world concepts recognisable by humans. These models include a decoder,

encoder and classifier in their model architecture. GlanceNets use concept super-

vision for training, but during test time they can reject samples where concepts do

not fit into the learned concept latent space (Sun et al., 2020). This makes them

more robust against information leakage which is a measurement of information

encoded in each concept above that which is required to accurately predict that

concept.

Self-explaining neural networks (Alvarez-Melis and Jaakkola, 2018) satisfy the

interpretability criteria of explicitness, faithfulness, and stability. Like CBMs,

these models use a concept encoder. However, self-explaining neural networks go
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a step further by also introducing relevance scores that explain the contribution

of each concept to the final prediction. The concepts and relevance scores form

an explanation for a given sample input. This makes explanations both explicit

and faithful, as these relevance scores are part of the model’s prediction mech-

anism and not generated post hoc. Self-explaining neural networks also satisfy

stability through the use of regularisation by adding a penalty to large changes

in the relevance scores when small changes are made to the model’s input. By

providing both the concepts and their relevance scores, Self-explaining neural

networks offer richer explanations than CBMs. However, Only CBMs allow for

human intervention by adjusting concept values.

2.1.3 Prototype-Based Models

Prototype-based models such as ProtoPNet (Chen et al., 2019), HQ-ProtoPNet

(Wang et al., 2023b), and MCPNet (Wang et al., 2024a) take a different approach

from CBMs, while also predicting a task label in a two-step process. Instead of

predicting the presence and absence of concepts, they learn a set of prototyp-

ical parts from their training data. These prototypes are directly comparable to

patches from the input, making the decision-making process interpretable. How-

ever, as these models do not predict a task label from the predicted presence of

prototypes, the ability to intervene on concept predictions is not possible. This

means a human collaborator will not be able to ask the “what if” questions that

CBMs enable.

A key advantage of prototype models is that they do not require concept labels for

training as a set number of prototypes are learned by minimising the latent space

between patches from the same class and maximising the latent space between

patches of other classes. This makes them compatible with larger datasets where

concept annotation might be expensive or infeasible to create. However, Pro-

toPNet and similar models do not support interventions.
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Recently CBMs and Prototype-based models have been combined to create an

enhanced CBMs (Huang et al., 2024). This architecture integrates prototypes

from prototype-based models and concept predictions from CBMs. This results

in a model that does not have the same concept annotation requirements as CBMs

while keeping the intervention capability from CBMs.

2.1.4 Language Model Based Models

LLMs, such as GPT-3 (Brown et al., 2020), are a type of DNN based on the trans-

former architecture (Vaswani et al., 2017). These models utilise self-attention

mechanisms to encode relationships across large sequences of data which can be

used to generate coherent text outputs. With sufficient training on large datasets,

LLMs demonstrate the ability to encode a substantial amount of world knowledge

(Jiang et al., 2020).

Recently CBMs have been integrated with LLM and Contrastive Language-Image

Pretraining (CLIP) (Radford et al., 2021). Models such as Label-Free CBMs

(Oikarinen et al., 2023), Language in a bottle (Yang et al., 2023), Text-to-Concept

models (Moayeri et al., 2023), and Align2Concept (Wang et al., 2024b) leverage

the ability to generate labels for concept annotations, and thus automate the an-

notation process of creating training data (Oikarinen et al., 2023). These methods,

for the most part, keep the same architecture as CBMs and therefore have the

same capabilities as their methods focus on the training data. Label-free CBMs

and Language in a bottle go as far as keeping the same CBM training methods.

Text-to-concept is trained differently by using an off-the-shelf DNN as a fixed

vision encoder alongside a pre-trained CLIP image encoder. By passing an image

dataset through both encoders, we can collect output pairs, which are then used to

train a linear alignment layer h(z) that maps the image encoding output from the

DNN to the CLIP space. To embed concepts, text prompts (e.g. “a red apple”) are

converted into individual concept vectors ck using a CLIP text encoder. Finally, to
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build the CBM, each image in a training dataset is passed through the DNN and

aligned to the CLIP space. Then, cosine similarities between the aligned image

representation and each concept vector are computed as: sk(x) = cos(h(f(x)), ck),

where f(x) is the DNN image encoder output and h is the linear aligner. The

similarity scores sk(x) are concatenated into a vector, which serves as an input to

train a linear classifier task predictor. As this approach can use an off-the-shelf

image encoder, the only parts requiring training are the alignment layer and the

task predictor.

Finally, Discover-then-Name (Rao et al., 2024) trains a model in three steps. (1)

using sparse autoencoders (Bricken et al., 2023), concepts are extracted from a

model that has not been trained on pre-specified concepts. (2) These concepts

are named. (3) a task predictor is trained on the named concepts.

While these methods reduce the dependency on concept annotations, they intro-

duce new challenges. Primarily, the generated concepts are not guaranteed to

align with human intuition, which can reduce the interpretability of the model.

Although this approach offers greater scalability, it may prove to not be suitable

for environments where guaranteed interpretability is required.

2.1.5 Concept Model Analysis

In the literature CMs have been analysed w.r.t. the input features used for

concept predictions and the information encoded into concepts. Measuring the in-

put features used for concept predictions has been previously explored by Margeloiu

et al. (2021) where they find their CBM does not predict concepts using semantic-

ally meaningful input features. However, they only use a single dataset and thus

one dataset configuration. Specifically, they only used a model trained on class-

level concepts and do not cover models trained on datasets with instance-level

concepts, or other dataset configurations. Figure 2.5 shows one of the results

from (Margeloiu et al., 2021) where it is clear the input features used for concept
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predictions are distributed over the entire bird in the image, and is not contained

to just the pixels representing the bird wing.

Figure 2.5: Post hoc saliency maps using the IG technique showing a

CBM trained on the CUB dataset does not predict the concept rep-

resenting the wing pattern of the bird using semantically meaningful

input features. This figure is from (Margeloiu et al., 2021).

Metrics proposed in the literature to analyse CMs without feature attribution

techniques measure either analyse information leakage (Mahinpei et al., 2021)

or concept feature sensitivity. Information leakage evaluates how independent

or orthogonal concepts are to one another. For instance, it may be desired for

concepts to be learned such that they are accurately predicted without predicting

other concepts (Bengio et al., 2013). Concept feature sensitivity, on the other

hand, measures how spatially localised concepts are (Raman et al., 2024). This is

to say whether concept predictions depend on specific input features, semantically

meaningful input features, and whether the predictions are robust to the addition

or removal of irrelevant input features. However, high concept feature sensitivity

does not imply high discriminatory power. A model can be sensitive to the same

input features across multiple concepts if those input features are shared. For

example, the concept for wing shape and wing colour may depend on the same

input features.
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Information leakage has been found to occur when CBMs are trained using the

independent and sequential methods (Mahinpei et al., 2021), and the joint train-

ing method (Margeloiu et al., 2021). Measuring concept leakage can be achieved

with a verity of metrics. First of all (Mahinpei et al., 2021; Margeloiu et al.,

2021) measured task accuracy after either some or all concepts required for ac-

curate task prediction were removed form the training data. Mahinpei et al.

(2021) also introduced concept purity which is a measurement of whether concept

predictions can be used to predict the labels of other concepts. Concept pur-

ity was extended by Espinosa Zarlenga et al. (2023) who introduces the Oracle

Impurity Score (OIS) and the Niche Impurity Score. These scores measure inter-

concept predictability w.r.t. the expected predictive performance of the dataset.

OIS is a measurement of whether a learned concept representation has the pre-

dictive power to predict other concepts compared to the expected predictability

from ground truth labels. The Niche Impurity Score is the predictive power of

multiple concepts. Finally, Marconato et al. (2022) evaluates models according

to the metric Disentanglement, Completeness and Informativeness (DCI) (East-

wood and Williams, 2018). Using DCI Marconato et al. (2022) trained models

with varying amounts of concept supervision. Marconato et al. (2022) observed

less entanglement as concept supervision increased during training.

CBMs have been found to suffer from information leakage with all of these met-

rics. However, as with feature attribution methods, most of these methods have

been evaluated with single dataset configurations, and have not compared models

explicitly on the training methods and dataset configuration combined.

Heidemann et al. (2023) introduced the metric Concept Removal Accuracy (CRA)

to analyse concept feature sensitivity. They define this metric as the number of

samples for which the model’s concept prediction changes from present to not

present when the input features for an unrelated concept are removed over the

total number of all true positive concept predictions. An example of this is shown
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(a)

acsCRA measures the change in concept

predictions as input features are removed.

In this example the concept for “has bill

color black” changes from a present predic-

tion to a non-present prediction with the

removal of semantically meaningful input

features. This figure is from (Heidemann

et al., 2023)1.

(b) Illustration of locality leakage, locality

masking, and locality intervention. This

figure is from (Raman et al., 2024)

.

Figure 2.6: CRA and concept locality examples.

in Figure 2.6a1 where the removal of input features for the bird beak and head

changes the values of predicted concepts. As this metric requires knowledge of

ground truth input features for each concept removed from an input Heidemann

et al. (2023) also defined the metric “difference in test accuracy” where the accur-

acy of two concepts are compared between two different subsets of a dataset: one

where both concepts are present or absent, and one subset where only one of the

concepts are present. Heidemann et al. (2023) found that a high correlation of

concept annotations in a dataset may lead a model to use one concept as a proxy

to predict others.

Alternatively, Raman et al. (2024) defined similar metrics that measures the ease
1Permission has been granted to use this figure from ©2023 IEEE
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with which a concept prediction can be modified by changing the input features.

They introduce three metrics; locality leakage, locality masking, and locality in-

tervention. Locality leakage captures a score which details how easy it is to change

a concept prediction by changing irrelevant input features. Locality masking is

very similar to CRA but masks input features that are both semantically meaning-

ful and irrelevant to concepts. Finally, locality intervention aims to understand if

the inter-concept correlation of a model’s training data is relied upon for concept

predictions. Examples of these metrics are shown in Figure 2.6b. Raman et al.

(2024) found locality leakage increased with both more layers in a DNN, and as

dataset complexity increased. They find locality masking made almost no change

with real-world datasets concept predictions and relevant vs irrelevant masking

differed by at most 5%. This seems to suggest their models use the whole input to

make predictions and do not rely on semantically meaningful input features. Loc-

ality intervention showed that when CBMs were trained on an increased number

of concept combinations seen during training it improved how robust a model was

when making concept predictions. Similar to other metrics, this was only eval-

uated with one dataset and thus their results may not represent models trained

on other datasets.

Huang et al. (2024) evaluates CBMs in regards to the trustworthiness of the

models predictions. Trustworthiness is a measurement of whether a model is

using the intended input features to make predictions or not. Their metric, called

concept trustworthiness score works by first predicting which region of an input

that a concept is predicted from and then comparing the predicted region to the

ground truth region. The metric computes the average number of instances where

the ground truth input feature region is inside the predicted region. This has some

similarities to The Pointing Game (Zhang et al., 2018), but instead of evaluating

whether the predicted input features are within the ground truth region, the

opposite is done. Huang et al. (2024) used their concept trustworthiness score to

compare various models, including CBMs, using the CUB dataset for which their
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CBMs performed poorly.

2.1.6 Concept Model Summary

Overall we have introduced individual model architectures from the different cat-

egories of CMs in the literature. A number of these models are either based on or

similar to CBMs with similar capabilities. A different class of models, but with

some similar goals are prototype-based models although these do not offer inter-

ventions on predicted concepts. Finally, we have seen the start of LLM enhanced

models and training procedures that show promise for future research.

We have identified most papers tend to introduce architectural improvements

that increments on the CBM training methods and model capabilities, but this

leaves the training data unchanged. The term “garbage-in-garbage-out” could

be used here meaning if we are training CBMs on poor quality training data

then the trained models will also have lower performance for the metrics being

evaluated. CBMs, to the best of our knowledge, has not been analysed w.r.t. the

configuration of training data. In addition, we did not identify any papers that

looked at the representations CBMs learn end-to-end. It is currently unknown

how CBMs predict task labels from concept predictions.

In this thesis, we focus on the CBM architecture due to its intervention capabil-

ity which enables counterfactual explanations and thus helps to make a model’s

decision-making process interpretable. Prototype-based models and some Concept-

grounded models do not have this capability. Concept-grounded models, such as

Sidecar CBMs and hybrid CBMs, reduce interpretability by adding additional

unsupervised concept outputs. Other approaches, such as CEMs, share a similar

architecture and capabilities with CBMs, allowing our research findings to be ap-

plicable to them as well. Finally, Post-hoc CBMs and AnyCBM only introduce

new methods to create a CBM, and not a change in model architecture.

LLM approaches and enhanced CBMs were published after we had completed a
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significant amount of the research in this thesis. For instance, Enhanced CBMs

was published in March 2024 which was after most of the research in Chapter 3

and Chapter 4 had been concluded. Although we discuss them, we have not

actively focused on them in our methods and results.

2.2 Explainable Artificial Intelligence

DNNs are considered black boxes, meaning it is not feasible to know exactly

why a particular prediction was made. DNNs are black boxes as the interaction

between neurons is non-linear Benitez et al. (1997). DNNs are trained on data

with the goal of minimising or maximising a value, e.g. minimising error loss.

This means that although the internal representations learned by DNNs have

been proven to be highly accurate in many situations, they may contain undesired

properties. One example of this is where a model learned to predict huskies based

on snow appearing in the background of an image (Ribeiro et al., 2016b). In

addition, as DNNs are often trained without humans-in-the-loop, and as such,

the representations they learn from their training data may not be compatible

with humans Chattopadhyay et al. (2017).

In human-machine collaborative settings with a DNN-based agent, the black box

nature of the DNN will lead to challenges for humans to build an accurate mental

model of the DNN. A fundamental attribute of a successful human-machine team

is the ability of a human to recognise if the DNN will succeed or fail given an input

(Bansal et al., 2019). Avoiding the formation of an inaccurate mental model, or to

correct incorrectly formed ones, DNN-based agents need to be equipped to make

their decision-making process transparent such that humans can understand it

(Druce et al., 2021).

We use two primary terms regarding understanding the output from a DNN: in-

terpretability and explainability. Interpretability is the degree to which a human

can determine the cause of a decision Miller (2019); Doshi-Velez and Kim (2017).
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Interpretability helps a human build trust in the DNN, and can help move an

agent from environment to environment (e.g. from training to a real-world task)

Lipton (2018). Explainability is the ability of an artificial agent to reveal un-

derlying causes for output predictions. This is known as eXplainable Artificial

Intelligence (XAI) Miller (2019). Interpretability and explainability are often

used interchangeably and have a large overlap between their definitions (Molnar,

2022).

Interpretable AI and XAI aim to answer “why” a prediction was made by an

AI, and not just what was predicted (Miller, 2019). Analysing AI solutions with

metrics such as accuracy (the percentage of correct vs incorrect predictions an

AI makes) creates an incomplete picture of a model’s performance in real-world

tasks. Interpretability and XAI can expand our understanding of the underlying

decision boundaries behind a model’s predictions, and thus we can verify if a

model is suitable for real-world tasks (Doshi-Velez and Kim, 2017). Essentially,

interpretability and XAI enable us to look deeper into the underlying causes

behind a model’s predictions.

2.2.1 Techniques

Just because a model is described as being interpretable or explainable does not

guarantee all methods used to make these claims are made to the same stand-

ard. Interpretability, for instance, may be evaluated without human input. This

means the degree with which a model is interpretable may be an argument by

the researchers who claimed it (Doshi-Velez and Kim, 2017), or just that an ex-

planation is “good” Miller (2019), without verification beyond their automated

metrics. In fact, automated evaluation of explanation techniques has been shown

to not correlate to real human-machine collaborative performance (Nguyen et al.,

2021).

In addition, if we are evaluating a DNN we should recognise they are trained
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to find patterns in their training data which may not align with a human’s own

beliefs (Geirhos et al., 2019) and thus an explanation for a prediction may not be

relevant to the human or go against what they already know (Miller, 2019). This

calls into question whether models evaluated without human involvement truly

meet the definitions of interpretability and explainability previously outlined in

this section.

Explanations from the social sciences have been extensively researched with a

focus on humans giving and receiving them. Miller (2019) highlighted several

important findings for XAI that were not believed to be a current focus at the

time. These being (1) explanations are contrastive as a human will want to know

why an event happened over another event, (2) explanations are selected out of

possibly an infinite number of causes to just a few (3) probabilities probably don’t

matter as the most likely explanation may not always be the best for a human,

and (4) explanations are social as they are explained relative to the beliefs of the

receiver. In the time since this paper was published it has shown to have made

a significant impact on XAI and influenced new research (Liao and Varshney,

2022).

We can separate models for interpretability and XAI into two main groups: in-

trinsic interpretability and post hoc interpretability. Intrinsically interpretability

is a class of models where the structure of the model provides the interpretability

capabilities (such as decision trees (Breiman et al., 1984)). Post hoc interpretab-

ility models rely on techniques that are applied to a model after training.

Interpretability and explainability techniques can be split into two groups: model-

specific (such as Layer-wise Relevance Propagation (LRP) (Bach et al., 2015)

and Integrated Gradients (IG) (Sundararajan et al., 2017)) and model-agnostic

(Ribeiro et al., 2016a). Model-specific techniques can only be applied to certain

model classes (e.g. can only be applied to DNNs) whereas model-agnostic can

be applied to any model no matter the underlying technology. For this reason,

model-agnostic techniques are limited to only evaluating models based on the
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input and output data, and not any internal values or information about the

structure of a model, unlike model-specific methods which also have access to a

model’s internal operations.

Interpretability and explainability techniques can also be split into global and

local techniques. Global techniques are those that describe the behaviours and

decision boundaries on an entire model (Lipton, 2018). Local methods are limited

by only explaining why a model made a single output. We cannot generalise a

single local method output to an entire model (Arrieta et al., 2019; Lipton, 2018).

As this thesis focuses on DNNs, we pay particular attention to model-specific

methods and local explanation techniques. Current XAI techniques for DNN-

based agents have provided ways of examining models in modalities including

text, images, and explanation-by-example (Lipton, 2018).

One such XAI technique we used through this thesis to explain a model’s output is

with feature attribution where a value is applied to each input feature to indicate

its contribution to the models task label prediction. With images these can be

visualised using saliency maps (we provided an example of a saliency map in

Figure 1.1). model-specific feature attribution techniques include LRP Bach et al.

(2015) and IG Sundararajan et al. (2017) which uses the gradient of a DNN to

produce explanations. LRP in particular only redistributes feature attribution

from an output prediction to input features such that feature attribution is not

created or reduced. This allows the calculation of how much each input feature

contributed to the output label. This was demonstrated in (Taylor et al., 2020).

As feature attribution techniques are visualised with saliency maps, expanding

beyond this qualitative metric, we can combine feature attribution techniques

with other metrics to reveal additional insights. This includes Intersection over

Union (IoU) which was used by Saporta et al. (2022), and The Pointing Game

(Zhang et al., 2018). IoU evaluates how many feature attribution values are within

a defined region of an input, while The Pointing Game measures the number of
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times the highest feature attribution value is within a defined region of an input.

Despite CBMs being a type of DNN, they include intrinsic interpretability capab-

ilities. Specifically CBMs first predict a vector of human-understandable concepts,

which is then used to predict downstream task labels. This architectural design

enables the models to be interpretable. Returning to the desired XAI focuses

highlighted by Miller (2019), we believe CBMs align with point 1 (explanations

are contrastive) and point 4 (explanations are social). Interventions provide coun-

terfactual explanations (Koh et al., 2020) which can be used to reveal why one

task label was predicted over another, and the concept vector confines the model

decision-making process to use the presence and absence of concepts. This is

argued as being easier for a human to understand as it’s inline with their beliefs

(Koh et al., 2020).

2.2.2 Trust

Jacovi et al. (2021) defines human-machine trust as the perception that a ma-

chine is trustworthy for a task, combined with a human being vulnerable to the

machine’s actions. Trust is not binary but exists on a scale (Jacovi et al., 2021).

For instance, if a human consistently believes that an AI can complete a task to

the human’s expectations, the human has placed high trust in the AI. On the

other hand, if the human is not confident in the AI’s ability to complete tasks to

the human’s satisfaction, trust is low. Trust can also be given for specific situ-

ations. If an AI is perceived to be capable of completing a task for certain input

conditions but not others, trust will be high when the input conditions match

(Jacovi et al., 2021).

Building appropriate levels of trust requires time and interaction between a human

and AI to enable humans to understand an AI’s accuracy and decision boundaries.

This is achieved by equipping an AI with interpretability capabilities (Tomsett

et al., 2020). Trust is generally increased when an AI output is explicitly ex-
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plained (Miller, 2019). Even in cases where an AI is not consistently accurate,

transparency can help humans develop an appropriate level of trust (Jacovi et al.,

2021).

However, we should be careful not to purely maximise trust as it should be given

for the right reasons and not misplaced. Misplaced trust can eventually be lost,

which is challenging to regain (Ososky et al., 2013). Equally, overly high trust

may lead to users relying on AI systems even when the systems are unable to

complete tasks accurately (Jacovi et al., 2021). Insufficient trust can result in

underutilisation of an AI.

AIs with XAI capabilities can have varying levels of soundness and completeness

(Kulesza et al., 2013). A sound AI is accurate in completing its trained tasks,

while a complete AI reveals all underlying causes for its actions. Getting the right

balance between soundness and completeness is important for effective human-

machine interaction. Kulesza et al. (2013) demonstrated that sound and complete

models are ideal for building accurate mental models, while complete but unsound

models can result in accurate mental models but with reduced trust. Finally,

sound but incomplete models often lead to increased requests for clarification on

the AI’s actions. Additionally, increasing completeness can overwhelm humans,

highlighting the importance of designing AIs with outputs with the correct level of

detail such that they remain comprehensible and keep humans engaged (Kulesza

et al., 2015).

To increase the interpretability of an AI agent, therefore helping to build, trust

can be achieved by designing them to behave in a human-like way (Fel et al.,

2022). One approach to achieve this could be through the use a CM. Concept ex-

planations and interventions, such as those used by CBMs, improve completeness

in comparison to a standard DNN as they reveal the model’s decision-making

process (Koh et al., 2020).
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2.3 Human-machine Collaboration

In this section, we focus on humans and machines working together in a collab-

orative setting. We start with mental models which can be considered a social

capability (Miller, 2019) as it allows a human to gain an accurate understanding

of an AI agent. We also look at humans-in-the-loop and existing human studies in

the literature. Analysing human-machine collaboration with real humans is im-

portant as AI-AI teaming does not guarantee the same performance will translate

over to human-machine teams (Chattopadhyay et al., 2017).

2.3.1 Mental Modelling

The main factor to consider in human-machine collaboration is enabling human

agents to build a mental model of AI agents. A mental model is a cognitive rep-

resentation of an object’s internal mechanics. This allows the human to make

predictions about the object’s future states and thus aid in future interactions

(Johnson-Laird, 1986; Craik, 1943; Halasz and Moran, 1983; Norman, 1983).

Craik (1943) was the first to introduce the idea of internal models with Johnson-

Laird (1986) coining the name. Rouse and Morris (1986) later defined a mental

model as “mechanisms whereby humans generate descriptions of systems purpose

and form, explanations of a system functioning and observed system states, and

predictions of future system states” which encapsulates many different definitions.

We can use this definition of mental models for how humans perceive DNN-based

models.

As humans build mental models of objects they interact with, including DNN-

based agents, if a human is unable to build an accurate representation of a DNN

decision boundaries, the human could be misled to either accept misclassifications

or disregard its output entirely (Bansal et al., 2019). To improve the accuracy

of a mental model of a DNN-based agent a human will need the agent to be

capable of explanations Akula et al. (2019); Miller (2019). This means the DNN
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agent should be designed to enable both agents to complement each other (Bansal

et al., 2019) instead of just maximising the accuracy of the DNN agent. It has

been shown that human-machine performance can be lower than the DNN agent

on its own, suggesting humans may not trust the DNN agent, but introducing

XAI methods can improve team performance over just showing predicted labels

(Lai and Tan, 2019).

In this thesis, we primarily focus on human-machine collaborative settings where

the DNN agent is advising the human on what action should be performed, but it

is up to the human to make the final decision. Using an AI agent in an advisory

role, Bansal et al. (2019) evaluated human mental models of some AI agents.

They found that over time humans learned the error boundaries of the AI agents,

although explanations should not be overly complex as this can make evaluating

the AI just as much work as completing the task without the AI’s input.

2.3.2 Human-in-the-Loop

Although advances with DNNs in recent years have led to greatly improved ac-

curacy without the addition of humans (Brown et al., 2020; Silver et al., 2016;

Redmon et al., 2016), certain domains, such as healthcare, have higher stakes and,

as such, complete automation is undesired in case the DNN-based agent makes

a mistake. Introducing a human-in-the-loop provides the best of both worlds,

allowing the machine to enhance a human and has been shown to improve the

performance of DNN and human agents working individually (Reverberi et al.,

2022), although many studies show otherwise which may be attributed to worse

team cognition or a lack of trust (Schmutz et al., 2024).

Adding a human-in-the-loop has been evaluated during training (Chauhan et al.,

2023) and post-training. During training adding a human-in-the-loop can increase

the quality of training data by allowing the model to query the human about its

current ability (Russakovsky et al., 2015). For post-training human-in-the-loop,
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we are referring to a human and artificial agent working on a shared goal. A major

challenge however is ensuring efficient communication between the team members

(Miller, 2019; Schmutz et al., 2024). We can also not assume a well-performing

DNN agent is suitable for human collaboration as it has been shown that an

AI-AI team can outperform a human-machine team (Chattopadhyay et al., 2017;

Schmutz et al., 2024). A simple method to improve the human-machine perform-

ance is to train the human on the DNN before starting a task (Chandrasekaran

et al., 2017).

As already discussed in Section 2.2.1, evaluating DNN performance with auto-

mated metrics does not always correlate to higher performance with a human-

in-the-loop. The only suitable option to verify any automated metrics is with a

human-in-the-loop (Yadav et al., 2019). Some metrics include the Visual Tur-

ing Test (Geman et al., 2015) for visual AI and System Causability Scale (SCS)

(Holzinger et al., 2020) for systems with XAI capabilities.

Doshi-Velez and Kim (2017) proposed a taxonomy for the evaluation of inter-

pretability. This starts from functionally-grounded, but automated metrics to

application-grounded evaluations with real humans in real-world applications.

This taxonomy provides the groundwork to methodically evaluate an AI on auto-

mated metrics before verifying interpretability holds with real humans in a real-

world setting.

2.3.3 Human Studies

We have summarised the literature of human studies evaluating artificial agents

and XAI. XAI is evaluated in regards to trust, model understanding and Human-

machine team performance.

To robustly analyse the use of AI agents and XAI a taxonomy was proposed by

(Doshi-Velez and Kim, 2017) where they identified studies can be carried out

in three categories: application-grounded studies, human-grounded studies, and
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functionally-grounded studies. Application-grounded studies are studies evalu-

ating humans in a real-world task (e.g. medical diagnosis). Human-grounded

studies are studies that use real humans in a simplified task (e.g. multi-choice

questionnaires). Finally, functionally grounded studies are any study using auto-

mated metrics. This taxonomy acknowledges finding participants is more chal-

lenging than automated metrics, but you cannot fully understand how an AI will

be used in a real application without using real humans.

Trust of an AI agent can be measured as self-reported trust or observed trust

(Papenmeier et al., 2019). Both measurements can be used in the same study.

Self-reported trust can be collected with questionaries, whereas observed trust

may be quantified by measuring human and model agreement (Rong et al., 2024;

Wang and Yin, 2021; Lai and Tan, 2019). However, this metric does not account

for if that trust is deserved. To measure this the model’s accuracy should also be

considered (Wang and Yin, 2021). Trust in existing studies has been shown to

be largely dependent on the accuracy of the model (Yin et al., 2019), and overall

higher if the model is perceived to be more accurate than a human user.

Model understanding is the degree to which a human creates an accurate rep-

resentation of an AI agent decision boundaries. As previously mentioned this is

commonly discussed in regards to a human building a mental mental of the AI,

and XAI aids the creation of this. We may measure model understanding sub-

jectively or objectively (Cheng et al., 2019). Objective metrics require a suitable

task or subtask for humans to solve e.g. predicting a model output (Wang et al.,

2023a; Doshi-Velez and Kim, 2017), although this is not the only suitable metric

to evaluate model understanding (Rong et al., 2024). Subjective analysis can

be achieved with a questionnaire or otherwise by asking humans how well they

understand the model.

The overall aim of human-machine collaboration is to improve performance, effi-

ciency, or some other metric important for a given task. As we are evaluating a

human-machine team where the DNN-based agent is an assistant to the human,
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we will primarily use the accuracy of the human as they are the final decision-

maker. As accuracy is only objective, measuring it is achieved by evaluating the

desired metric for a task e.g. accuracy in a medical diagnosis task (Lai and Tan,

2019).

Some human studies has shown XAI to be beneficial to find model bias (Ribeiro

et al., 2016b; Adebayo et al., 2020), while others have found little benefit to users

(Kaur et al., 2020; Chandrasekaran et al., 2017). It seems that the use of current

XAI techniques individually does not fully facilitate their designed intentions.

Studies evaluating saliency maps have produced mixed findings. While some

work shows no benefit to including saliency maps, other studies suggest otherwise.

For example, Alqaraawi et al. (2020) found that saliency maps generated using

the LRP technique helped participants learn which image features their model

was sensitive to, enabling them to better predict the model’s output. However,

Nguyen et al. (2021) highlights that saliency maps can sometimes harm human-

machine collaboration, particularly for tasks requiring specialist knowledge. Their

study, along with (Jeyakumar et al., 2020), which involved a larger participant

count, and (Cai et al., 2019) found explanation-by-example to be a more effective

technique for developing model understanding. Despite the mixed evidence, XAI

techniques appear to improve human-machine teaming and mostly do not harm

performance.

Human studies using CBMs and similar model architectures can be placed into a

few categories; human concept preference (Barker et al., 2023; Ramaswamy et al.,

2023), concept explanations (Jeyakumar et al., 2023, 2022; Wang et al., 2023a;

Sixt et al., 2022; Dubey et al., 2022), human-in-the-loop (Mysore et al., 2023;

Nguyen et al., 2024) and bias discovery (Yuksekgonul et al., 2023; Midavaine

et al., 2024).

In studies on concept preference, Barker et al. (2023) investigated the concepts

humans identified in sample images, finding that human-selected concepts varied
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widely and performed worse when used by a CM on downstream tasks compared

to those chosen by the model. Similarly, Ramaswamy et al. (2023) found that

participants preferred smaller sets of concepts. They identified participants pre-

ferred using 32 or fewer concepts. This is consistent with completeness (Kulesza

et al., 2013), as discussed earlier in this chapter, where the model should not

overwhelm a human.

Next, concept explanations preference is a common theme for CM human studies

(Jeyakumar et al., 2023, 2022; Sixt et al., 2022; Dubey et al., 2022). Jeyak-

umar et al. (2022) demonstrated that participants favoured concept-based ex-

planations for a model trained on activity recognition. Participants were asked

to select the explanation they preferred from multiple options. However, Sixt

et al. (2022) reported that concept explanations performed poorly for bias dis-

covery, although their model was not a CBM. Similarly, Dubey et al. (2022)

found that concept explanations underperformed by approximately 5% compared

to their proposed method when participants were asked to predict the model’s

downstream task. Additionally, Jeyakumar et al. (2023) observed that the CBM

explanations were the least preferred among participants in a study involving

time-series data, though this result may not generalise to other modalities.

Beyond concept preference, some studies have investigated how humans interact

with CM in a collaborative task. Mysore et al. (2023) introduced a CBM inspired

recommender system that combined user provided concepts with automatically

generated ones to suggest relevant text documents. Their study included interven-

tions, leading to improvements of 20–47% in recommendation accuracy compared

to distance based approach. Nguyen et al. (2024) examined the effectiveness of

explanations in a visual correspondence model, CHM-Coor (Taesiri et al., 2022).

Participants interacted with static (could not adjust the models prediction) or

dynamic explanations (participant could select parts of the input image for the

model to focus on), finding little difference in performance (73.57% compared

to 72.68% accuracy). Additionally, participants often agreed with the model’s
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predictions regardless of if the model was correct or incorrect. Both of these

studies look at humans updating a models prediction, similar to interventions

with CBMs. As Mysore et al. (2023) model has more similarities to CBMs, their

findings suggest similar could be observed in an image modality.

For bias discovery, Yuksekgonul et al. (2023) used CBM-like architectures to study

human-guided pruning on a model where input samples had shifted (e.g. the cor-

relation of concepts co-occurring is changed after training). Participants selected

concepts to prune based on input samples and model predictions, outperforming

random pruning and only slightly less effective than fine-tuning or greedy per-

formance. This study was repeated by Midavaine et al. (2024) which found similar

results. Considering user pruning does not require access to the training data,

this technique shows its potential as a human-in-the-loop approach for addressing

data shifts and biases in similar settings.

From these studies we have identified no papers which look at CBMs or sim-

ilar model architectures that evaluate the capabilities of CBMs in a real-world

tasks. Most importantly it has not been shown how participants intervene on

concept predictions and whether these models are more interpretable than stand-

ard DNNs. In (Koh et al., 2020) they show the effectiveness of interventions and

how concepts and interventions can be used for counterfactual explanations, but

both of these points are yet to be validated in a human study. We expand on CM

human studies in Chapter 5.

2.4 Gap Analysis

In this section, we analyse the existing literature and highlight several gaps that

we discovered and will address in this thesis. While the interpretability of CBMs

have been extensively discussed, how their learned concept representations are

influenced by the configuration of concepts in their training data remains poorly

understood. Furthermore, although CBMs are considered inherently interpretable
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due to their ability to reveal the model’s decision-making process through concept

explanations and counterfactual explanations, these claims have not been valid-

ated with human users. This lack of validation represents a significant gap in the

literature that requires further investigation.

We identify that in a human-machine collaborative setting a DNN need to commu-

nicate their decision-making process in a human-compatible way, and as discussed,

CBMs are positioned to achieving this. However, we have also discussed how ex-

isting literature analysing CBM’s feature attribution has only been completed

with a limited set of training dataset configurations. For instance Margeloiu

et al. (2021) only analyses the feature attribution of a CBM trained on class-level

concepts. To the best of our knowledge there is no prior work which looks at

feature attribution of input features that contribute to a model’s output(s) with

CBMs trained on other datasets, such as ones with instance-level concepts [Gap

1]. To analyse this gap a dataset with with multiple configurations of concept

annotations, and ground truth segmentations of the corresponding input features

is required [Gap 2].

In addition, there are no papers that analyse which concept predictions CBMs use

to predict task labels [Gap 3]. As the interpretability of CBMs comes from the

addition of concept outputs and interventions, it is highly desired to understand

how concepts are used for task label predictions.

We address both input feature attribution and concept feature attribution in

Chapter 3, verifying our results with both qualitative and quantitive metrics.

We introduce a new dataset better suited to CBM training and evaluation, and

include an additional real-world image dataset which uses instance-level concept

annotations in our analysis.

As with feature attribution of input features from concepts predictions, informa-

tion leakage metrics are often used to compare CBMs to other model architectures.

We have identified the need to compare CBMs trained on different dataset con-
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figurations using this class of metric to get an overall picture of how CBMs learn

to represent concepts and the information they encode [Gap 4]. We complete this

in Chapter 4. This has allowed us to conclude how datasets for CBM training

should be configured to achieve concept prediction from semantically meaningful

input predictions, minimise the encoding of extraneous information in concept

representations, and show concept predictions can be resilient to irrelevant input

feature alterations [Gap 5].

Finally, We have looked at both human studies with CMs, and with XAI. This

has shown XAI does not always translate to large improvements in model inter-

pretability. Regarding CMs, Previous studies cover a range of model capabilities

and human preferences. However, we are left with a few questions. Firstly,

Barker et al. (2023) shows CBMs may use a different subset of concepts for a

downstream task prediction than a human completing the same task. This raises

the question of whether this occurs with our models and if it is important for

models and humans to predict tasks with the same concepts. The main concern

is interventions may not aid a human if the concepts the CM uses compared to a

human are significantly different. Next, most studies looked at concepts without

a task. The only exceptions to this was (Mysore et al., 2023) and (Nguyen et al.,

2024). Currently, there are no studies that explore human interaction with CMs

in a real-world task [Gap 6]. How humans interact with these models remains

unknown, including the use of interventions. Finally, with the introduction of

CBMs, the authors made claims about the benefit of human-machine teaming

and interpretability. These have not been verified with a human study [Gap 7].

Table 2.2 shows a summary of the research contributions (RCs), research questions

(RQs), gaps, and the corresponding chapter where we contribute to the literature.

A brief description of the items in Table 2.2 are as follows:

• RQ1 - Input feature mappings

• RQ2 - Encoded information
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• RQ3 - Human-machine collaboration

• RC1 - Semantically meaningful concept representations

• RC2 - Dataset to support concept analysis

• RC3 - End-to-end feature attribution

• RC4 - Concept representations and resilience

• RC5 - Dataset requirements

• RC6 - Human studies

• RC7 - Model interpretability

• Gap 1 - Dataset variation for feature attribution analysis

• Gap 2 - Configurable dataset for CBM analysis

• Gap 3 - Concept contribution to task label predictions

• Gap 4 - Encoded information in concept representations over multiple CBMs

• Gap 5 - Dataset configurations to achieve semantically meaningful concept

predictions, minimise extra encoded information and sensitivity to unrelated

input features

• Gap 6 - Human-machine interaction with a CM

• Gap 7 - Unverified human-machine teaming and interpretability claims

2.5 Summary

In this chapter, we have outlined current CMs in the literature which aims to

extend standard DNN architectures with additional capabilities to make them
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Contribution Question Gap Addressed

RC1 RQ1 Gap 1 Chapter 3.6

RC2 RQ1 Gap 2 Chapter 3.5.1

RC3 RQ1 Gap 3 Chapter 3.6

RC4 RQ2 Gap 4 Chapter 4.10

RC5 RQ2 Gap 5 Chapter 4.7

RC6 RQ3 Gap 6 Chapter 5

RC7 RQ3 Gap 7 Chapter 5

Table 2.2: Mapping of research questions, contributions and gaps.

more interpretable. We have discussed how XAI aims to aid in the human ability

to build a mental model of an AI agent, and finally AI, XAI and CM human

studies. Important to this thesis we have identified gaps with regards to un-

derstanding the representations of concepts CBMs learn, and their end-to-end

decision-making process. We have highlighted that we should not conclude our

evaluation with singular metrics, and thus we also evaluate CBMs in regards to

information leakage and input feature dependency. Finally, we have identified

the need for human studies to look at CBMs and their stated capabilities in a

real-world task, and to evaluate human interaction.
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Chapter 3

Feature Attribution in Concept

Bottleneck Models

3.1 Introduction

In this chapter, we present a comprehensive analysis of how CBMs feature attribu-

tion is applied to input features from concept predictions and concept predictions

from task label predictions w.r.t. the configuration of concepts in the models

training datasets. CBMs have been positioned as improving human-machine col-

laboration as they are inherently interpretable (Koh et al., 2020). This capability

is enabled by the model predicting a vector of human-defined concepts which are

then used to predict a task label. Concept predictions can be inspected to reveal

the decision-making process of a CBM task label prediction since the user can

probe the CBM with various combinations of concepts. However, concept pre-

dictions may be misleading to humans interpreting the machine’s outputs if the

model does not predict concepts based on their expected input features, but the

human assumes it does.

As previously mentioned in the Section 2.1.1, feature attribution values from

concept predictions have been found to be distributed over the entire input image

for a CBM trained on a dataset with class-level concept annotations. To address

if this finding is restricted to certain training configurations, or is applicable to

all trained CBMs, this chapter answers RQ1 (“How can we train a CBM to map

semantically meaningful input features to concepts, and semantically meaningful

concept predictions to task labels? ”). This question can be broken down into two
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sub-questions:

1. What dataset configurations, in particular concept annotations and concept

correlation, are required to train CBMs to learn semantically meaningful

mappings from input features to concept predictions, and from concept

predictions to predicted task labels?

2. What is the most effective CBM training method?

We focus on training CBMs on images containing visual features that depict

concepts. Expanding beyond the single model limitation of existing research we

train and evaluate CBMs on three distinct datasets with different constraints ap-

plied to concept annotations. These include two real-world image datasets and

one synthetic image dataset, covering both class-level and instance-level concept

annotations (an example of the differences between the difference concept an-

notation methods was illustrated in Figure 2.3). By answering RQ1 we make the

following contributions:

• RC1: We perform qualitative and quantitative analysis of CBMs, finding

CBMs are capable of learning semantically meaningful concept representa-

tions from input features.

• RC2: We introduce and publish a new synthetic image dataset with fine-

grained concept annotations which we use to demonstrate instances when

CBMs can learn semantically meaningful concept representations and when

they fail to do so.

• RC3: We expand on existing literature by looking at feature attribution

both from the input to the concept vector and from the concept vector to

the task output.
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This chapter contains work in our papers “Towards a Deeper Understanding of

Concept Bottleneck Models Through End-to-End Explanation”, and “Can we Con-

strain Concept Bottleneck Models to Learn Semantically Meaningful Input Fea-

tures? ”

3.2 Motivation

This chapter looks at the research gap regarding how different configurations of

concepts in training datasets influence CBM’s ability to learn concept repres-

entations from input features, as well as task labels from concept annotations.

For example, we examine which dataset configurations allow a model to predict

concepts using semantically meaningful input features. This gap was discussed

in Section 2.1.1 and Section 2.4. To achieve this we used gradient-based XAI

techniques, primarily LRP (Bach et al., 2015), as this uses the model architec-

ture and gradients of the models forward pass to work out feature attribution of

input features w.r.t. concept and task label predictions. We used this approach

rather than a proxy model, such as employed by the technique Local Interpretable

Model-agnostic Explanations (LIME) (Ribeiro et al., 2016b), as this does not

guarantee to show exactly which input features contributed to a model’s output.

In addition LRP groups attribution values to objects and not just individual

pixels (Samek et al., 2021), which we see as a useful property as we may assume

pixels representing concepts are grouped together in an input image. Groups of

attribution values should be easier to interpret for an end user as there is less

information to process compared to pixel-by-pixel attribution values.

CBMs are described as inherently interpretable, but as discussed in Chapter 2,

this leads us to assume concepts are predicted using the same input features as

a human performing the same task, e.g. it may be assumed a model will use the

pixels for a wing of a bird in an image to predict the concept for the wing colour.

CBMs inherent interpretability arises from concept explanations and the ability
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to intervene on concept predictions (Koh et al., 2020). Performing interventions

allows humans to explore task predictions with counterfactual concept explan-

ations. For instance, a human may correct a concept they believe the model

got wrong and inspect any changes in the predicted task label. Although task

predictions are made using concepts, and not input features from the original

input sample, task predictions still rely on the accuracy of concept predictions.

If concepts are not predicted using semantically meaningful input features then

it’s also possible that predicted task labels will use a different set of concepts

than a human would, e.g. require the inclusion of concepts that are not visible.

The main concern this creates is concepts could be learned such that there is a

correlation between concepts that are not observed in the real world, and thus a

model may be inaccurate outside of the models training data.

In Section 2.1.5 we discussed (Margeloiu et al., 2021) as the only work in the

literature that explored how feature attribution is applied to input features from

concept predictions. In particular, they found feature attribution values are dis-

tributed over the entire input image for concept predictions, and not localised to

a small area of the image (e.g. feature attribution values cover the entire image

of a bird instead of localised to the pixels representing the bird wing). How-

ever, their findings are narrow as they do not explore other class-level concept

datasets, or datasets with instance-level concepts. In addition they hypothesise

existing feature attribution methods are ill-equipped for CBM evaluation. We do

not have any indication if their findings hold for other datasets, and if existing

feature attribution techniques are indeed the limiting factor.

As discussed in Section 2.4, we have not identified any papers that evaluate

feature attribution from predicted task labels to predicted concepts. Without

this analysis it is unclear which concept predictions models use to predict task

labels, and whether these are aligned to human decision-making.

We have identified most research looking at CMs focus on the training method or

model architecture, as identified in Section 2.1, but it remains unclear if CBMs
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and similar models are incapable of representing concepts using human aligned

input features. Therefore we see a need to investigate how CBMs learn concept

representations when trained on datasets with concept configurations other than

class-level concepts. In this chapter we focus on exploring learned concept rep-

resentations with datasets configured with class and instance-level concepts, in

addition to the accuracy and correlation of concept annotations. We also evalu-

ate which concepts are used for downstream task label predictions, and how these

align to ground truth concept values. Further, we utilise additional metrics to

provide a quantitive evaluation of the otherwise qualitative results saliency maps

provide.

3.3 Feature Attribution

In its simplest form when a DNN performs a forward pass input features, such as

pixels from images, are passed from layer to layer in the model where the input of

each layer is the output of the previous layer (Krizhevsky et al., 2012). As part of

this process a gradient will be computed which we can utilise with XAI techniques

such as LRP (Bach et al., 2015) or IG (Sundararajan et al., 2017) (as introduced

in Section 2.2.1) to produce a local explanation to reveal how much each input

feature contributed to the task prediction. We can visualise the explanation as a

saliency map.

As discussed in Section 2.1, CBMs are expected to predict concepts using input

features with the same meaning. However, Margeloiu et al. (2021) indicates this is

not the case with models trained on datasets using class-level concept annotations.

Margeloiu et al. (2021) demonstrated their model assigned feature attribution val-

ues over the entire input image instead of confined to the semantically meaningful

input features. Margeloiu et al. (2021)’s model was trained on CUB (Wah et al.,

2011), a popular dataset for CBM research. Most concepts in CUB represent

bird parts, however, if the image is cropped, or the bird changes appearance with
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gender or age, concepts may no longer match the visual appearance in the image.

As detailed in Section 2.4, we have not identified prior work that analyses if the

configuration of concepts in a dataset can confine a CBM to predict concept using

semantically meaning input features. For instance, datasets with instance-level

concepts avoid the inaccurate concept annotations seen with CUB as concepts

can be fine-grained, only marking concepts to present when their visual repres-

entations can be identified in the input. We cannot jump to the conclusion that

instance-level concepts are all you need. The original CUB dataset (before (Koh

et al., 2020) modified it with class-level concepts) had instance-level concepts, but

these were noisy (Koh et al., 2020) which itself may restrict a CBM from learning

to map semantically meaningful input features to concepts.

In addition to concept explanations, we can also look at which concepts contrib-

uted to task predictions. Concept predictions from the output of a CBM concept

encoder are used as the input features to the model’s task predictor. Using XAI

techniques, we can identify the contributions of concepts for the task prediction.

This may be interpreted as the rules the model has learned to map concepts to the

downstream task. For instance, CBMs may learn that for the task class “Mallard”,

the concept for a green head and orange feet need to be present. With some XAI

techniques, such as LRP, feature attribution values that are propagated through

a model are conserved (Bach et al., 2015). As such, we can take this a step further

and convert the attribution values to show the proportion of the contribution of

each concept w.r.t. the predicted downstream task label.

3.4 Methods

Before we move onto the experiment set-up we must remind ourselves of RQ1:

“How can we train a CBM to map semantically meaningful input features to

concepts, and semantically meaningful concept predictions to task labels?”
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RQ1 fundamentally ask whether a CBM can predict concepts and task labels in

alignment with the presence of semantically meaningful features in the input data.

These features may include visually identifiable elements in an image correspond-

ing to concepts, or concept annotations indicating the presence of concepts in

the dataset. Sub-question 1 and 2 then asks what the requirements are for a

CBM to learn to make predictions using semantically meaningful features. These

requirements could be related to the dataset configuration in Sub-question 1 or

the training method in Sub-question 2.

To address RQ1, we need to evaluate if different dataset configurations and each

CBM training method (independent, sequential and joint) enable a model to

learn to map semantically meaningful input features to concepts. For dataset

configurations specifically, we will need to include datasets with class-level concept

annotations (e.g. CUB (Wah et al., 2011)) where all samples of a class shares the

same concept vector, and datasets with instance-level concept annotations (e.g.

in our synthetic Playing Cards dataset) where concepts are annotated on a per

sample basis. Concept annotations must include ground truth knowledge of the

semantically meaningful input features associated with each concept. This ground

truth information is necessary to validate that the learned feature mappings align

with the ground truth input features that represent each concept. Given the

challenges of defining ground truth features in some domains (e.g. emotions

associated with images of faces), we limit our datasets to images with concepts

representing visually identifiable attributes. A complete list of the datasets we’ve

used for evaluation is detailed in Section 3.5.1.

We have used feature attribution techniques to evaluate which input features a

CBM uses for concept and task predictions. As we detailed in Section 2.2.1, fea-

ture attribution techniques can reveal the contributing input features for a CNN

prediction and have been useful to highlight model bias (Ribeiro et al., 2016b).

As we intend to reveal the input features used for concept and task predictions,

this capability aligns with our requirements to answer RQ1. Additionally, we

54



3.4 Methods

used model-specific techniques such as LRP (Bach et al., 2015) as these use the

model itself instead of a proxy model to produce feature attribution values. Com-

pared to model-agnostic methods this will be a better representation of the true

input features used for a model prediction. For consistency, we display positive

attribution values in red and negative attribution values in blue.

Answering RQ1 requires quantitative results. As discussed in Section 2.2.1,

feature attribution techniques, produce local explanations of model predictions.

While visualising explanations as saliency maps provide a qualitative evaluation of

model behaviour. For quantitive evaluation we measured the alignment between

the feature attribution applied to input features and ground truth concept loc-

ations, and then averaged the individual results across testing dataset samples.

This aggregation helps assess whether model predictions rely on semantically

meaningful features and concepts.

We produced quantitive results with three metrics:

1. We adapted The Pointing Game evaluation technique (Zhang et al., 2018)

to measure the distance between the highest feature attribution value and

the ground truth input feature point for concepts.

2. We evaluated the proportion of feature attribution values that overlapped

ground truth concept locations.

3. We used IoU to evaluate which concepts were used for task predictions.

These measurements are necessary as they allow us to quantify how effective

a CBM is able to make predictions using input features that are semantically

meaningful to a prediction.
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3.5 Experiment Set-up

As discussed in the literature review, we have identified CBMs have not been

explored in regards to how they represent concepts, and how concepts are used

to predict task labels. To evaluate CBMs we need to train models on multiple

datasets with suitable evaluation techniques that reveal the learned concept rep-

resentations and decision-making process. We discuss the datasets and evaluation

setup based on XAI techniques in this section.

3.5.1 Datasets

We trained and evaluated our models on three datasets: CUB (Wah et al., 2011),

a bird image dataset with class-level concepts showing visual attributes, playing

cards, a new synthetic image dataset we’ve introduced to evaluate CBMs with

accurate concept annotations, and CheXpert (Irvin et al., 2019), an image dataset

which has instance-level concepts representing visual attributes of each input

image. These datasets are summarised in Table 3.1.

These three datasets are necessary for our evaluation of CBMs as they represent

a number of different configurations of datasets that a CBM can be trained from.

Starting with CUB, this dataset has class-level concepts and thus demonstrates

cases when concepts may not have a visual representations in the input images.

Next, Playing cards show situations when concept annotations are always ac-

companied by a visual representation in the input image. Playing cards include

variations of class and instance-level concept annotations and vary the correlation

of concepts present at the same time. Finally, CheXpert represents a real-world

dataset where concept annotations are accompanied by a visual representation in

the input image.

These datasets are sufficient for our evaluation as they contain all required vari-

ations of concept annotations to align with our motivations. Specifically, they
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CUB Class-level 11,788 112 200
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Poker cards Instance-level 10,000 52 6

Random cards Instance-level 10,000 52 6

Class-level Poker cards Class-level 10,000 11 6

C
he

X
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rt

Instance-level CheXpert Instance-level 224,316 13 2

Class-level CheXpert
(three concepts)

Class-level 44,974 13 2

Class-level CheXpert
(four present concepts)

Class-level 21,760 13 2

Class-level CheXpert
(five present concepts)

Class-level 636 13 2

Table 3.1: Summary of datasets.

include instance and class-level concepts, a variance in co-occurring concepts

(quantified using the Pearson correlation coefficient, as detailed in Section 4.5),

instances where concepts are accompanied by a visual representation, and in-

stances where they are not. These align with our motivations as they allow us

to separate individual changes in concept configurations and thus measure their

effect to train CBMs to learn to predict concepts using semantically meaningful

input features.

3.5.1.1 CUB

*CUB (Wah et al., 2011) is a dataset containing 11,788 images of birds. Each

image is accompanied by attributes representing the visual features of the bird.

We have provided an example of a sample from the dataset in Figure 3.1. For
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Input Present concepts

has_bill_shape::all-purpose

has_wing_color::grey

has_upperparts_color::grey

has_underparts_color::grey

has_back_color::grey

has_tail_shape::notched_tail

has_head_pattern::plain

has_breast_color::grey

has_eye_color::black

has_bill_length::shorter_than_head

has_forehead_color::grey

has_under_tail_color::grey

has_belly_color::grey

has_size::small_(5_-_9_in)

has_shape::perching-like

has_tail_pattern::solid

has_primary_color::grey

has_leg_color::black

has_bill_color::black

has_crown_color::grey

has_wing_pattern::multi-colored

Figure 3.1: Example CUB sample with the task label

“olive_sided_Flycatcher”, with concept that are annotated as

present. Any concept not listed from the full 112 available in the

dataset are not present in this sample

our study, we are using a modification by (Koh et al., 2020) which altered the

attributes to be set at the class-level which were selected using majority voting.

This was to remove noise in the original annotations. In total, there are 112

concepts and 200 task labels. Images were centre-cropped and resized to 299 x
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299 pixels for training. The official splits were modified with 20% of the original

training samples moved to a new validation set. The test set was not modified.

3.5.1.2 Playing cards

(a) Random cards (b) Poker cards (c) Class-level poker cards

Figure 3.2: Samples from the Playing cards dataset.

Playing cards is a synthetic image dataset we introduced to analyse CBMs free of

inaccurate concept annotations. The dataset consists of multiple image variations,

of which we use three in this thesis: Random cards, Poker cards, and Class-level

poker cards. Example samples can be seen in Figure 3.2. Each variation consists

of 10,000 images where concepts represent playing cards, and task labels represent

hand ranks in the game Three Card Poker (of Odds, 2024). In our dataset cards

are placed onto a random background image as we did not want to introduce an

unintentional bias the models could learn.

In the card game hand ranks are formed by holding three playing cards at the

same time in what is called a card hand. Players aim to beat the dealer by having

a card hand with a lower probability than the dealer. For instance, the card hand

with the rank “flush” has a 4.96% probability of occurring and thus beats the card

hand with the rank “pair” which has a probability of 16.94%. Players place bets

on if they believe their hand ranks higher than the dealer.

Concepts for Random cards are selected at random from the full 52 possible play-
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ing cards present in a standard deck of playing cards, with no repeats. This

ensures that there is no correlation between which concepts occur together; how-

ever, it introduces a class imbalance in the dataset. For instance, the class “high

card” has 5191 training samples, while the class “straight flush” has 20 training

samples.

For Poker cards, task classes are balanced, with concepts selected from the sets

of triplets available based on the class used in each sample. This results in some

concepts appearing together more often than others. For example, there are 48

unique triplets of concepts for the class “straight flush,” while this class has 1166

training samples.

Class-level poker cards have the same task classes as Random cards and Poker

cards but use only 11 concepts instead of 52, with one triplet of concepts used for

each task class. Some concepts are only used for one task class, while others are

used for many. We have listed the full concepts and relations to task classes in

Table 3.2, and show which concepts appear together in Figure 3.3 using a Chord

diagram. Each concept is linked to other concepts that appear together, with

the thickness of each link representing the number of samples where concepts

co-occur.

Each image variation has a 70%-30% split between training and validation images.

Random cards and Poker cards use instance-level concepts, while Class-level poker

cards use class-level concepts. In all cases, if a concept is annotated as present,

then it is visible in the corresponding image.

During training we transform training sample images using a random flip (both

horizontal and vertical), apply a colour jitter to the brightness, contrast, satur-

ation, and hue, and randomly convert them to a greyscale image. Samples are

scaled to 299 by 299 pixels.

The dataset is publicly available1 along with the code to generate the dataset2.
1Playing cards dataset: https://huggingface.co/datasets/JackFurby/playing-cards
2Playing cards dataset generator: https://github.com/JackFurby/playing-card-
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Task label Concepts

Straight Flush 2 of ♡, 3 of ♡, and 4 of ♡

Three of a Kind 4 of ♣, 4 of ♢, and 4 of ♠

Straight 3 of ♡, 4 of ♣, and 5 of ♢

Flush 4 of ♢, 6 of ♢, and 9 of ♢

Pair 5 of ♣, 5 of ♢, and 10 of ♡

High Card 4 of ♠, 5 of ♢, and 10 of ♡

Table 3.2: Concepts for class-level poker cards are arranged such that

some are used for one task class while others are used for many task

classes

Figure 3.3: Class-level poker cards has concepts organised so that cer-

tain concepts consistently appear together (e.g. Two of Hearts, Three

of Hearts, and Four of Hearts), while others co-occur with a range of

concepts (e.g. Five of Diamonds will co-occur with the Five of Clubs in

some sample images, and the Four of Spades in other sample images)

concept-generator
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3.5.1.3 CheXpert

CheXpert (Irvin et al., 2019) is a real-world image dataset with visually rep-

resented observations. Each sample has 14 observations such as “fracture” and

“edema”, of which 12 are pathologies. The other two observations are “support

devices” (e.g., a pacemaker) and “no_findings.” We use 13 of these observa-

tions as concepts, while the observation “no_findings” is used as the task label.

“No_findings” is positive if all pathologies are not annotated as present. We have

provided an example sample with concept annotation in Figure 3.4.

CheXpert has instance-level concepts and contains 224,316 chest X-ray images.

We use the official dataset splits from (Irvin et al., 2019), which include 223,414

training images, 234 validation images, and 668 test images. Training annota-

tions were automatically generated from radiology reports. Observations were

labelled as 1 when confidently present, 0 when confidently not present, and -1

when uncertain. To translate these labels into binary annotations, we used U-

ones annotations, which set any missing values to 0 and any uncertain annotations

to 1. Validation images were labelled by three board-certified radiologists, while

test images were labelled by eight board-certified radiologists. Both validation

and test images include only binary annotations.

We also created a modified version of the dataset with class-level concepts, using

the most common concept vector for samples with three, four, and five con-

cepts present. Class-level CheXpert has 44,974 samples, 21,760 samples, and 636

samples for three, four, and five concepts present, respectively. We refer to the

original version of CheXpert as instance-level CheXpert and the modified version

as class-level CheXpert.

During training, samples are randomly rotated by up to 15 degrees, translated

by up to 5% of the overall image width and scaled by up to 5%. All samples are

resized to 512 by 512 pixels.
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Input Concepts Class label

Enlarged cardiomediastinum:

present

Cardiomegaly: present

Lung opacity: present

Lung lesion: present

Edema: not present

Consolidation: not present

Pneumonia: not present

Atelectasis: present

Pneumothorax: not present

Pleural effusion: present

Pleural other: not present

Fracture: not present

Support devices: present

No Findings:

True

Figure 3.4: Example CheXpert sample with concept annotations and

class label.

3.5.2 Models

All of our models use a similar structure and the same training methods specified

in (Koh et al., 2020). Keeping the overall model structure consistent between

models allows us to measure the effect the dataset has on training a CBM, and

thus answer RQ1. The models structure starts with the concept encoder which

receives an input and outputs a concept vector with one value for each concept.

This is followed by an optional sigmoid function which receives the concept vector

as an input and outputs concept predictions. The sigmoid function increases

the independence of concept representations (Espinosa Zarlenga et al., 2023).

Finally, this is followed by the task predictor which receives concept predictions

if a sigmoid function is used, or the concept vector if it is not, as an input and

outputs a task prediction. We use Binary Cross Entropy loss to train the concept
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Training method LR Optimizer Batch size λ Epochs

Independent & sequential
concept encoder

0.01 SGD 32 N/A 500

Independent task predictor 0.001 SGD 32 N/A 500

Sequential task predictor 0.001 SGD 32 N/A 1000

Joint 0.001 SGD 32 0.99 1000

Table 3.3: CUB models training hyperparameters.

encoder, and Cross Entropy loss for the task predictor. Concept accuracy is the

average binary accuracy of concept predictions with a 0.5 threshold. We repeated

training 5 times for Playing cards and CheXpert models, and 3 times for CUB

models. For some experiments, such as those involving saliency maps, we use the

model with the highest concept accuracy.

CUB models were trained using the three CBM methods; independent, sequential

and joint, where independent models have a sigmoid layer between the two model

parts, while both sequential models and joint models either had the sigmoid layer

or passed the output from the concept encoder model part directly to the task

predictor model part. We used the same hyper-parameters used in (Koh et al.,

2020) which are detailed in Table 3.3, and a modified repository than that used

in (Koh et al., 2020) for training the models3. The averaged concept and task

accuracies are shown in Table 3.4. Each model trained on CUB used a Visual

Geometry Group (VGG)-16 architecture (Simonyan and Zisserman, 2015) for the

concept encoder model part and a single linear layer for the task predictor model

part.

Playing cards models use a VGG-11 architecture with batch normalisation (Si-

monyan and Zisserman, 2015) for the concept encoder and two linear layers with a

ReLU activation function for the task predictor. We trained these models to min-

imise the concept and task loss. We used Weights and Biases Sweeps (Biewald,
3CUB model training repository: https://github.com/JackFurby/VGG-Concept-

Bottleneck
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Training method Concept accuracy Task accuracy

Independent 96.85 (±0.1) 77.51% (±0.4)

Sequential without sigmoid 96.85% (±0.1) 75.35% (±0.08)

Sequential with sigmoid 96.72% (±0.1) 77.28% (±0.59)

Joint without sigmoid 96.12% (±0.08) 78.75% (±0.65)

Joint with sigmoid 94.87% (±0.03) 75.35% (±0.31)

Table 3.4: Summary of CUB models.

2020) to find optimal hyper-parameters for training each of our models which is

summarised in Table 3.5. This was configured with a Bayesian search method

to optimise the parameters. The parameters were starting Learning Rate (LR)

(between 0.1 and 0.001), optimizer (between Adam (Kingma and Ba, 2014) and

Stochastic Gradient Descent (SGD)), LR patience (between 3, 5, 10 and 15 epochs

of no improvement in loss) and λ value between 0.9 and 1.0. Each sweep ran until

we stopped seeing improvements in the model accuracy, about 30 iterations per

sweep. To compare CBMs with standard DNNs we also trained models on Poker

cards using the same model architecture but without concept loss. All average

model accuracies are shown in Table 3.6.

The standard DNNs model shows significantly lower task and concept accuracies

compared to all other models. This difference is because the model shares the

same architectural design, including the bottleneck layer, yet it is not trained

with any concept supervision. While the CBMs are trained to learn meaningful

concept representations, the standard DNN is trained end-to-end only with task

supervision. As a result, the model is restricted by the bottleneck layer but lacks

the necessary concept-level guidance to make efficient use of it, leading to both

reduced concepts and task accuracies.

CheXpert models use a Densenet121 architecture (Huang et al., 2017) for the

concept encoder which is initialised with pre-trained weights from ImageNet and

two linear layers with a ReLU activation function for the task predictor which
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Training
method

Dataset LR Opti-
mizer

Batch
size

LR
pati-
ence

λ Epochs

Independent &
sequential
concept encoder

Random
cards

0.03 SGD 32 15 N/A 200

Independent &
sequential
concept encoder

Poker cards 0.02 SGD 32 15 N/A 200

Independent &
sequential
concept encoder

Class-level
poker cards

0.0825 SGD 32 3 N/A 100

Independent
task predictor

Random
cards

0.01 Adam 32 5 N/A 200

Independent
task predictor

Poker cards 0.01 Adam 32 5 N/A 200

Independent
task predictor

Class-level
poker cards

0.064 Adam 32 5 N/A 100

Sequential
task predictor

Random
cards

0.059 Adam 32 5 N/A 200

Sequential
task predictor

Poker cards 0.046 Adam 32 15 N/A 200

Sequential
task predictor

Class-level
poker cards

0.0846 Adam 32 10 N/A 100

Joint Poker cards 0.025 SGD 32 15 0.98 300

Joint Class-level
poker cards

0.0398 SGD 32 15 0.867 100

Standard DNN Poker cards 0.088 SGD 32 15 0 300

Table 3.5: Playing cards training hyperparameters.

is not pre-trained. We trained these models to maximise the Area Under the

receiver operating characteristic Curve (AUC) of concept predictions, following

previous work (Ye et al., 2020; Chauhan et al., 2023), and minimise the task loss.

We trained our models with the hyper-parameters in Table 3.7. CheXpert models

were trained using the independent/sequential method for the concept encoder,

and the sequential method for the task predictor. Models trained with the joint

method used a sigmoid layer between the two model parts. Average model metrics

are shown in Table 3.8.
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Training
method

Dataset Average
concept
accuracy

Average
task

accuracy

Independent Random cards 99.94% (±0.01) 99.17% (±0.09)

Sequential Random cards 99.92% (±0.04) 97.46% (±0.76)

Independent Poker cards 99.96% (±0.01) 99.42% (±0.03)

Sequential Poker cards 99.92% (±0.05) 98.80% (±0.28)

Joint Poker cards 99.87% (±0.05) 96.01% (±0.21)

Independent Class-level
poker cards

99.98% (±0.01) 99.96% (±0.04)

Sequential Class-level
poker cards

99.98% (±0.014) 99.95% (±0.05)

Joint Class-level
poker cards

100% (±0) 100% (±0)

Standard DNN Poker cards 50.25% (±1.31) 67.14% (±0.58)

Table 3.6: Playing card models averaged accuracy and standard devi-

ation. All values are rounded to 3 decimal places

Training method LR Optimizer Batch
size

λ Epochs

Sequential concept encoder 0.001 Adam 14 N/A 3

Sequential task predictor 0.001 Adam 14 N/A 3

Joint 0.001 Adam 14 0.99 3

Table 3.7: CheXpert models training hyperparameters.

3.5.3 LRP Configuration

A prominent XAI technique we use to calculate input feature attribution is LRP.

LRP uses the term relevance to describe the contribution of individual input

features or neurons to a specific output prediction, as redistributed through the

layers of a model. Relevance is directly comparable to feature attribution. In this

thesis, we will use the term relevance specifically to describe the contributions

calculated using LRP, while referring to the final outputted values as feature

67



3.5 Experiment Set-up

Training
method

Dataset version Concept
accuracy

Task
accuracy

Sequential Instance-level 75.77 (±1.12) 84.70 (±0.63)

Joint Instance-level 74.70 (±1.22) 85.15 (±0.62)

Sequential Class-level with 3
present concepts

59.18% (±8.80) 95% (±0.69)

Sequential Class-level with 4
present concepts

63.90% (±9.75) 95.71% (±1.43)

Sequential Class-level with 5
present concepts

65.28% (±9.05) 96% (±1.33)

Joint Class-level with 3
present concepts

56.47% (±2.89) 96.76% (±1.16)

Joint Class-level with 4
present concepts

60.39% (±4.16) 97.14% (±2.67)

Joint Class-level with 5
present concepts

61.95% (±4.17) 95.33% (±1.63)

Table 3.8: CheXpert models averaged accuracy and standard deviation.

All values are rounded to 2 decimal places

attribution.

LRP supports rules which change how relevance is propagated from a prediction

back to the input (Bach et al., 2015; Montavon et al., 2019). With rule selec-

tion, we aim to produce saliency maps that accurately explain the input features

leading to concept predictions. Using a single uniform LRP rule across the entire

model yielded misleading results where, no matter which concept we attempted

to visualise, we were presented with a saliency map which is seemingly similar to

the next. This was most noticeable with the LRP-αβ rule. However, alternative

rules also had the added drawback of appearing noisy, making the explanation

less understandable to a human collaborator (Montavon et al., 2019). In general,

singular LRP rules applied to an entire model results in explanations that are

not class-discriminative (Gu et al., 2019; Kohlbrenner et al., 2019). Changing

to composite rules rectifies this issue, allowing us to visualise feature attribu-

tion values of input features that both contributed positively and negatively to
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Figure 3.5: Singular LRP rules can result in saliency maps that are

distinctly similar between output classes. This similarity does not oc-

cur with composite rules. Positive attribution values are shown in red

and negative attribution values are shown in blue.

the concept prediction, with each concept saliency map being distinctly different

from the others. Composite rules allow LRP rules to be applied to individual

layers in a DNN (Montavon et al., 2019). An example of singular and composite

rules can be seen in Figure 3.5 where, with an input of people in canoes and a
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Figure 3.6: Different LRP rules are applied to individual layers in the

VGG model architecture we use for some concept encoders.

bridge in the background. Using just the rule α1β0 the saliency maps for “canoe”

and “suspension bridge” predictions are the same, whereas using composite rules

the prediction for “suspension bridge” applies positive attribution values to the

bridge and negative values to the people in canoes. For the class “canoe” the

feature attribution values are reversed.

Throughout the thesis, we have used LRP rules similar to (Montavon et al.,

2019) for the concept encoder. These rules are: LRP-αβ, where α = 1 and

β = 0, where α and β controls the contribution of positive and negative relevance

respectively, for the first convolutional layers, LRP-ϵ for the middle convolutional

layers and LRP-0 for the top linear layers (Bach et al., 2015), as seen in Figure 3.6.

These rules avoided feature attribution being applied on a pixel-by-pixel basis as

observed with single LRP rules and instead attribution values are applied to

regions of the input Samek et al. (2021).

In addition to the concept encoder, we can also utilise LRP for the task predictor

to analyse feature attribution applied to predicted concepts. As the task predictor

for our models is only comprised of one or two layers we have opted to use LRP-

70



3.6 Results

0 for the entire model part as this will propagate both positive and negative

relevance. LRP ensures relevance is conserved as it is propagated backwards

through a model (Bach et al., 2015; Montavon et al., 2019) which we can use

to compute the proportion each concept contributed to the task prediction. We

calculated the proportion of contribution P for k concepts in the concept input

using the relevance R that is propagated backwards to each concept C from the

task classification, as shown in equation 3.1. Each value of Pk is weighted similarly

to the method used by (Taylor et al., 2020) but instead of applying the weighting

to two modalities, we apply the weighting to k concepts. As each concept is a

single value we do not need to account for imbalance in concept proportions.

Pk =
Xk∑k
n=1Xn

(3.1)

where

Xk =
Rk

Ck

(3.2)

3.6 Results

With our CBMs, training data, and XAI based evaluation techniques detailed

we now show qualitative results for feature attribution as saliency maps and

quantitative results where we average the relevance attribution w.r.t. the ground

truth values, where the datasets allow.

These results help to answer Sub-question 1 as we evaluate each of our CBMs,

paying particular attention to how the configuration of concepts in the training

data changes how a CBM applies feature attribution values to input features from

concept predictions.
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3.6.1 Input Feature Attribution

3.6.1.1 CUB

We start by producing saliency maps for our CUB models. Figure 3.7 shows

the feature attribution applied to input features for a range of concepts which

a human would expect to map to distinct regions of the input. Specifically,

these are concepts that identify a particular part (e.g. wing or beak) of a bird

instead of the bird as a whole (e.g. bird size). Regardless of the training method

used, the saliency maps indicate that the models have not learned how to map

distinct regions in the input to concept labels. Feature attribution is generally

distributed over the entire bird although, an observation with our models is the

eyes of the bird appear to be the most common group of input features where

feature attribution values are either highly positive or negative.

Concepts with similar predictions also appear to share similar saliency maps. This

is evident in Figure 3.7 with the independent and sequential models and concepts

“has_crown_color::brown” and “has_wing_shape::pointed-wings” which have a

predicted concept value of 0.9973 and 0.9980 respectively to four decimal places.

For the joint-without-sigmoid model, “has_back_color::brown” has a predicted

concept value of 0.9918 and “has_breast_pattern::solid” has a predicted concept

value of 0.9975. The similarity between saliency maps likely means that each

model has learned the same input features can accurately predict different con-

cepts.

Our results confirm CBMs trained on the CUB dataset do not learn distinct

regions from the input to concepts, as Margeloiu et al. (2021) showed. This is

likely due to the training data or training methods not constraining the model to

do so. Like regular bottleneck models (Grezl et al., 2007), CBMs will typically

only keep the most important input features, in this case, to fit the concept vector,

but leave the CBM to select which input features to use. In addition, by using

class-level concepts the model learns the concept vector but not if a concept is
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Figure 3.7: Concept saliency maps for the input image of a Bewick

Wren where concepts are correctly predicted. Positive attribution val-

ues are shown in red, negative attribution values are shown in blue

and the predicted concept value to four decimal is placed below each

saliency map (a value of 0.5 or higher means the concept was predicted

as present). In general, feature attribution is not applied to input fea-

tures that a human would associate each concept with.
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Figure 3.8: The version of the CUB dataset used in this thesis has class-

level concept annotations. This results in some samples having concept

annotations that do not represent the visual representation of concepts

in the sample. In this example the downstream task class Mallard has

concepts for both male (left image) and female (right image) ducks

that are not shared by both genders.

present and visible in a given sample. Koh et al. (2020)’s version of CUB also has

incorrect concepts. For example, the class “Mallard”, as seen in Figure 3.8, has the

same concept vector for males and females despite the visual differences between

them. For example, the concept “has_wing_color::white” is correct for male

Mallard ducks but not females, while the concept “has_upperparts_color::brown”

is true for female Mallard ducks but not males. Concept ambiguity has also been

identified by (Kim et al., 2023b). If concepts are not carefully considered when

designing a dataset then there could be concepts that always appear together,

potentially causing unintentional concept correlations, concepts that only appear

for one downstream task, opening a shortcut the model may use for downstream

task prediction, or concepts that do not have a visual representation in the input.

We hypothesise that using a dataset with accurate and well-defined concepts,

a CBM can learn concepts such that feature attribution values are applied to

semantically meaningful input features.
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Beyond individual saliency maps, we also evaluated our CUB models with a mod-

ified version of The Pointing Game (Zhang et al., 2018) which we have named

The Distance Pointing Game. The Pointing Game counts hits and misses of

whether the point with the highest feature attribution value of a given sample

explanation is placed in a defined region, the ground truth, resulting in an accur-

acy measurement. Our version measures the distance between the point with the

highest attribution value and the ground truth point. This was necessary because

CUB includes bird part locations, but does not provide bird part bounding boxes.

We present the results as an average distance. Our technique does not replace

The Pointing Game, but instead, it satisfies a different situation; when you have

ground truth points. By using our evaluation technique, we can quantify whether

an explanation technique for a given model’s output is primarily focusing on a

ground truth point. We can also rank feature attribution techniques or mod-

els, which enables us to analyse whether our CUB models are applying feature

attribution to semantically meaningful input features. We used the explanation

technique IG with a SmoothGrad noise tunnel (Smilkov et al., 2017) using a batch

size of 25 and a standard deviation of 0.2, similar to (Margeloiu et al., 2021), LRP,

and a baseline gradient method (Simonyan et al., 2014).

We measured the average distance using our independent model, due to that

model having the highest concept accuracy, using the validation dataset split.

Results are shown in Figure 3.9. Lower average distance shows increased align-

ment between saliency maps and ground truth bird part locations. IG has around

a 3rd higher average distance compared to both LRP and the baseline gradient

for most bird parts while LRP and the baseline have similar average distances. To

remove noisy saliency maps we also show the average distance of the shortest 10%

of distances which follows the same story as the overall distance averages. While

IG assigns attribution values to individual pixels, LRP with our rules groups

feature assigns attribution values to regions of input features. As a result, LRP

saliency maps are filtering out noisy attribution values from the input image.
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Figure 3.9: Distance Pointing Game results comparing LRP, IG and

a baseline gradient method. LRP and gradient has a shorter average

distance for most bird parts compared to IG. This remains the same

for when averaging the shortest 10% of distances.

However, the average distance hovers around 100 pixels away from the ground

truth point with LRP and, considering the input images are 299 by 299 pixels in

size, this could still fall outside of the concept in the input image, adding to what

we observed in Figure 3.7 with attribution values generally covering the entire

bird.

3.6.1.2 Playing cards

CBMs trained on CUB only explores a single configoration of concept annotations

in a dataset. To conclude whether CBMs can learn to predict concepts using

semantically meaningful input features we also need to look at other datasets.

For the first of these, we used our dataset Playing cards. Playing cards is a

synthetic dataset where we can ensure concept annotations always describe the

visual representations of concepts in each sample. Figure 3.10 shows concept

saliency maps using the XAI technique LRP for Random cards and Poker cards
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Figure 3.10: Concept saliency maps show positive feature attribution

values are applied to the expected input features for CBMs while dis-

tributed over all playing cards for the standard DNN.
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CBMs. The input features with the highest feature attribution values are symbols

on the playing cards with negative feature attribution distributed over the other

playing cards. Specifically, positive feature attribution values are distributed to

the input features that correctly represent concepts. As we do not specify which

input features the model should use for each concept, and we can see the models

have selected features within the boundaries of each specified playing card, we

consider these reasonable input features for the model to use. Our standard DNN

was unable to localise feature attribution values to individual playing cards and

instead distributed attribution values over all three cards present.

In Figure 3.11 and Figure 3.12 we show saliency maps for models trained on

Class-level poker cards. Similar to (Margeloiu et al., 2021), and as shown by

us with CUB, most concepts from our Class-level poker cards models did not

apply attribution values to semantically meaningful input features. However, a

few concepts were an exception. Namely, the concepts “Four of Clubs” and “Four

of Spades” as seen in Figure 3.11 with our independent and sequential models are

observed to apply high amounts of attribution to the corresponding semantically

meaningful input features. As Class-level poker cards assigns some concepts to

a single task label, while others appear for many, the input features the model

should use for each concept prediction may be ambiguous. For instance, the

concepts Two and Four of Hearts always appear together and therefore the model

has no way of separating the pixels for one concept from the other, while the

concept “Four of Clubs” may appear with the “Four of Diamonds” and “Four of

spades”, or with the “Three of Hearts” and “Five of Diamonds”. In this case,

the model has a far better chance of learning the semantically meaningful input

features for the concept “Four of Clubs”.

RQ1, and specifically Sub-question 1, cannot be answered with qualitative eval-

uation techniques. To answer RQ1 we need to quantitatively analyse whether

our playing card models are applying feature attribution to semantically mean-

ingful input features. We measured the proportion of feature attribution applied
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Figure 3.11: For most concepts, such as “Four of Diamonds”, the

model’s saliency maps do not align with semantically meaningful input

features. However, for some concepts, like “Four of Clubs” and “Four of

Spades”, the same CBM uses input features aligned with semantically

meaningful input features.

to concepts’ visual representations in comparison to the total feature attribution

applied to all concept input features. For Playing cards, this is the feature at-

tribution applied to one playing card compared to all three playing cards in a

given sample. If the proportion of positive feature attribution is high, and the

proportion of negative feature attribution is low, then the model has learned to

predict concepts using semantically meaningful input features. We repeated this

measurement using the 5 training repeats for each dataset variant and presented
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Figure 3.12: Some input features can be used to predict multiple con-

cepts such as the ground truth pixels for the concept “Five of Clubs”.

the averaged result.

The plot in Figure 3.13 shows the proportion of feature attribution for our in-

dependent and sequential models where each point represents a single concept.

There are two distinct clusters, one for the standard DNN and one for both Ran-

dom cards and Poker cards. Random cards and Poker cards cluster has the highest

proportion of positive feature attribution, with most points being between 70%

and 80%, while the lowest proportion of negative feature attribution falls between

10% and 30%.

The standard DNN has far less positive feature attribution values and slightly

more negative feature attribution values, both around 30% to 40%. As the feature
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Figure 3.13: Random cards and Poker cards both have a high positive

proportion of feature attribution, indicating the models have learned

a semantically meaningful mapping from input features to concepts,

unlike standard DNN and most concepts for class-level poker cards.

attribution for the standard DNN saliency maps appears distributed over all

ground truth concept input features, the proportion being close to 30% is expected

as 33% would show feature attribution has been applied evenly to all concept input

features. The standard DNN points are positioned close to the baseline Playing

cards CBMs will need to pass before we can consider them to have learned to map

input features to semantically meaningful concept outputs. Combining this plot

with the saliency maps we saw in Figure 3.10 confirms the CBMs have learned

to apply feature attribution values to semantically meaningful input features for

both Random cards and Poker cards.

The points for Class-level poker cards are not clustered together. Most concepts

have a low proportion of positive feature attribution, meaning feature attribution

values are not applied to semantically meaningful input features. However, a

few concepts, “Four of Spades”, “Four of Clubs” and “Five of Clubs” have a high

proportion of positive feature attribution. For the concepts “Four of Spades” and
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Figure 3.14: Poker cards has a high positive proportion of feature attri-

bution, indicating the models have learned a semantically meaningful

mapping from input features to concepts, unlike standard DNN and

most concepts for Class-level poker cards.

“Four of Clubs”, this confirms what we saw in Figure 3.11, that a semantically

meaningful concept mapping has been learned. The same cannot be said for the

concept “Five of Clubs” as other concepts apply positive feature attribution values

to the pixels representing this concept, such as the concepts “Five of Diamonds”

and “Ten of Hearts” as seen in Figure 3.12, which inflates the positive proportion

of feature attribution seen. Class-level poker cards reveal the challenge of creating

a dataset with enough constraints for the model to learn semantically meaning-

ful concept mappings. Even though the concepts “Four of Spades” and “Four of

Clubs” show it possible for a CBM to learn semantically meaningful concept map-

pings with class-level concepts, the consistency in feature attribution proportions

with Random cards and Poker cards shows the advantage instance-level concepts

can provide.

We repeated the proportion of feature attribution for joint models in Figure 3.14.

As with independent and sequential playing card models, our joint models con-
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tinue to apply a high proportion of feature attribution to semantically meaningful

input features for Poker cards, while Class-level poker cards show a high propor-

tion of feature attribution to semantically meaningful input features for the same

concepts that received a high proportion in Figure 3.13. As Random cards are

only used to train the concept encoder for independent and sequential models, it

has not been included in Figure 3.14. The same data is used for the standard

DNN across both plots to indicate the baseline when our models no longer use

semantically meaningful input features to predict concepts.

3.6.1.3 CheXpert

Unlike a synthetic domain, perfect concept annotations are not guaranteed in

a real-world setting. Applying what we have learned from the Playing cards

dataset, the question that now stands is does the same hold for a real-world

image dataset with similar concept annotation properties? To answer this we

have trained CBMs on CheXpert. This dataset contained chest X-ray images

with concepts representing visual observations. As uncertain or missing values

in the dataset are set to present, some concept annotations will be inaccurate

and we may assume there are some additional inaccurate concept annotations

caused by the annotations originally being generated using an automated labeller

(Irvin et al., 2019). For our results in Figure 3.15, we used our models trained on

Instance-level CheXpert and the saliency mapping technique Guided Grad-CAM

(Selvaraju et al., 2017) as Grad-CAM techniques have been shown to outperform

other XAI techniques with this dataset (Saporta et al., 2022). To validate that

the models have mapped concepts to semantically meaningful input features we

used ground truth segmentations from (Saporta et al., 2022). These were created

by two board-certified radiologists and ensure our conclusions are made w.r.t.

expert opinion.

Our results show concepts trained on Instance-level CheXpert can map con-

cepts to semantic input features for models trained with both the independ-
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(b) Joint model

Figure 3.15: Concept saliency maps for chest X-rays with Instance-level

CheXpert shows reasonable localisation of concepts to ground truth

segmentations of the input image. The number beneath each saliency

map is the concept prediction made by the model where a value of 0.5

or above means the model predicted the concept as present.

ent/sequential method in Figure 3.15a and joint method in Figure 3.15b. The

concepts for “lung opacity”, “atelectasis” and “pleural effusion” all should be ob-

servable with observations in the lung, “cardiomegaly” observed by an enlarged

heart, and “support devices” by the observation of an object that is not part of

the body (e.g. a pacemaker). From the samples we show, most concepts map

to features within the ground truth segmentation such as with the saliency maps

for the concepts “atelectasis” and “pleural effusion”. The concept “cardiomegaly”

is localised to a portion of the segmentation, while “support devices” missed the

ground truth segmentation. In the case of “support devices”, the model may have
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(a) Sequential Class-level chexpert trained with three concepts annotated as present

Edema Pleural
Effusion

Support
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0.98301 0.98212 0.9829 0.98315

(b) Sequential Class-level CheXpert trained with four concepts annotated as present

Consolidation Pleural
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Devices

Lung
Opacity

Atelectasis

0.94323 0.94379 0.94084 0.94531 0.9433

(c) Sequential Class-level chexpert trained with five concepts annotated as present

Figure 3.16: Concept saliency maps for a CBMs trained with the se-

quential method on Class-level CheXpert (all three versions) shows

each model use similar input features to predict all present concepts

for a given input image. Concept predictions are beneath each saliency

map where 0.5 or above means concept as is predicted as present.

missed the semantic input features as they are hard to spot in this sample com-

pared to a pacemaker which would also be annotated as the same concept. It’s

also worth pointing out that the concept “support devices” was not predicted as
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(a) Joint Class-level chexpert trained with three concepts annotated as present
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(b) Joint Class-level CheXpert trained with four concepts annotated as present
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(c) Joint Class-level CheXpert trained with five concepts annotated as present

Figure 3.17: Concept saliency maps for CBMs trained with the joint

method on Class-level CheXpert (all three versions) shows each model

use similar input features to predict all present concepts for a given

input image. Concept predictions are beneath each saliency map where

0.5 or above means concept as is predicted as present.

present as seen by the value beneath the saliency map being lower than 0.5. The

main takeaway from Figure 3.15 is the saliency maps for Instance-level CheXpert

are distinctly different to each other and do not appear to be using the same
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input features for every concept prediction, unlike Class-level CheXpert as we see

in Figure 3.16 and Figure 3.17 where all concept saliency maps highlight similar

input features irrespective of the concept being predicted.

The proportions of positive feature attribution in our sequentially trained Ch-

eXpert models are shown in Figure 3.18a, and for joint trained models in Fig-

ure 3.18b. These figures compare positive feature attribution applied to ground

truth segmentations versus the entire image. Since positive and negative feature

attributions were nearly identical in proportion, we excluded negative proportions

from the plots. Unlike LRP, Guided Grad-CAM assigns feature attribution on a

pixel-by-pixel basis which means both positive and negative feature attribution

values are placed close together, as seen in the saliency maps for our CheXpert

models.

On average, the positive proportion of feature attribution (indicated by black lines

in the figures) tops out just below 40% for Instance-level CheXpert and between

20% to 30% for Class-level CheXpert. For concepts such as “consolidation” and

“atelectasis”, Instance-level CheXpert shows a higher alignment between feature

attribution and ground truth segmentations than Class-level CheXpert, whereas

Class-level CheXpert performs better for the concept “lung opacity”.

The lower proportion of alignment for Class-level models is caused by the same

input features being used to predict multiple concepts. For instance, if a model

primarily uses pixels associated with “lung opacity” to predict all concepts, the

feature attribution for “lung opacity” will result in a high alignment, while other

concepts will have a lower alignment of attribution values. Saliency maps for

our Class-level CheXpert models confirm that these models rely on the same

input features across multiple concepts, indicating the dataset does not constrain

the CBM to use semantically meaningful features. In contrast, Instance-level

CheXpert does not consistently predict concepts using semantically meaningful

features.
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(a) Sequential model

(b) Joint model

Figure 3.18: Instance-level CheXpert has more positive feature attribu-

tion applied to ground truth segmentations than Class-level CheXpert

for most concepts, thus demonstrating models trained on Instance-

level CheXpert used semantically meaningful input features to predict

concepts more often than models trained on Class-level CheXpert.
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Returning to RQ1, class-level CheXpert uses the same input features for all

concept predictions, as with our models trained on Class-level poker cards and

CUB. Therefore, we conclude that a dataset must include a clear link between

input features and concept annotations for a model to predict the presence of

concepts based on semantically meaningful input features. Instance-level concept

annotations promotes this. Using Instance-level playing cards we demonstrated

the scenario where concept annotations perfectly align with ground truth input

features. On the other hand, the assumed inaccuracies in CheXpert’s ground

truth concept annotations emphasise the need for accurate alignment between

concept annotations and visually identifiable input features. This also highlights

the limitation factor for training CBMs that the dataset is difficult to produce,

as previously discussed in Chapter 2.1.

3.6.2 Concept Feature Attribution

So far we have focused on explaining concept encoder predictions and assessing

whether CBMs use semantically meaningful input features. Beyond concept pre-

dictions, CBMs also predict task labels, which can be evaluated using methods

similar to those applied in our input feature attribution analysis. For this evalu-

ation, we used LRP, as we can utilise its conservation property to work out the

proportion of contribution for each concept prediction.

These results contribute RQ1 by analysing the requirements for CBMs to predict

task labels using semantically meaningful concepts labels. These results specific-

ally answer Sub-question 2 as the three CBM training methods changes whether

a models task predictor model part receives ground truth concept value as an in-

put (independent training methods), or concept predictions (sequential and joint

training methods).
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3.6.2.1 CUB

Figure 3.19 shows the saliency maps for our CUB models concept predictions.

In this figure, the saliency maps are represented as a segmented line where the

leftmost segment corresponds to the first concept, and the rightmost segment

corresponds to the last, with concepts ordered by their index.

The results highlight samples for the independent, sequential with sigmoid, and

joint with sigmoid models often apply positive feature attribution values to con-

cepts predicted as present, with almost no feature attribution applied to concepts

predicted as absent. This indicates that these models rely primarily on the pres-

ence of predicted concepts to predict task labels, and applied little weighting to

the absence of concepts.

The sequential without sigmoid and joint without sigmoid models both show a

different pattern of feature attribution. These models often assign negative at-

tribution values to concepts predicted as present and positive values to concepts

predicted as not present. This suggests the learned mapping of concept predic-

tions to task labels uses the absence of concepts when predicting task labels,

instead of the presence of concepts. Feature attribution values are not flipped for

all samples in the test dataset, although it occurs most of the time.

The key difference between these two groups of models is the use of the sigmoid

function. Models with a sigmoid function between the model parts have feature

attribution patterns aligned with concept presence. Models without a sigmoid

function use concept absence in their task label predictions.

As previously discussed, LRP enables us to calculate the contribution of each

predicted concept w.r.t. the predicted task label. For the same input as used in

Figure 3.19, the top three concepts contributing to the final class predicted with

the independent model are as follows: has_upperparts_color::white at 6.04%,

has_primary_color::yellow at 5.83%, and has_tail_pattern::multi-colored at 5.39%

with a total of 38 concepts contributing to the final classification. By calculat-
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Input

(a) Independent

(b) Sequential without sigmoid

(c) Sequential with sigmoid

(d) Joint without sigmoid

(e) Joint with sigmoid

Figure 3.19: Task label saliency maps for a correctly predicted Bal-

timore Oriole input. Each vector has 112 segments, one for each

concept input. Positive feature attribution values are shown in red

and negative attribution values are shown in blue. The independent,

sequential with sigmoid and joint with sigmoid models only apply pos-

itive attribution values to concept predicted as present. The joint

without sigmoid and sequential without sigmoid models apply positive

attribution values to concepts predicted as not present and negative

attribution values to concepts predicted as present.

ing the concept contributions we are revealing the decision-making process of the

task predictor such that a human can take this into their decision-making when

interacting with a CBM.

3.6.2.2 Playing cards

Task prediction saliency maps for Playing cards continue the same story as CUB

where if a sigmoid function is part of the CBM then feature attribution is only

applied to the concepts predicted as present. If a sigmoid function is not part of

the model then concepts predicted as present receive a negative feature attribution

while concepts not predicted as present receive positive feature attribution values.
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Input

(a) Poker cards independent

(b) Poker cards sequential

(c) Poker cards joint without sigmoid

(d) Poker cards joint with sigmoid

(e) Random cards independent

(f) Random cards sequential

(g) Standard DNN

Figure 3.20: Task predictor saliency maps for models trained on play-

ing cards. Each vector has 52 segments, one for each concept input.

Positive feature attribution values are shown in red and negative attri-

bution values are shown in blue. Models that use a sigmoid function

between the two models parts apply attribution values to concepts

predicted as present, while models without a sigmoid function applies

negative attribution values to concept predicted as present and positive

attribution values to concepts predicted as not present. The standard

DNN does not apply attribution values to any concept in particular as

it was trained without concept loss.

These observations can be seen in Figure 3.20 and Figure 3.21. For our Playing

card models, we use a sigmoid function in all models. The only exception is our

joint models which have a version with a sigmoid function, and a version without

one. As the saliency maps for models with and without sigmoid are consistent

across models trained on different datasets, it is clear a sigmoid activation should

be used to ensure a positive attribution values are applied to concepts predicted
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Input

(a) Independent

(b) Sequential

(c) Joint with sigmoid

Figure 3.21: Task predictor saliency maps for models trained on class-

level poker cards. Each vector has 11 segments, one for each concept

input. Positive feature attribution values are shown in red and negative

attribution values are shown in blue. As all models use a sigmoid

function between the two models parts they all applied attribution

values to concepts predicted as present.

as present. As the standard DNN did not use concept loss during training, and

therefore was left to set the weights of the concept vector to best fit the task

output. Feature attribution values are distributed over the entire concept vector

for this model.

3.6.2.3 CheXpert

The CheXpert task predictor saliency maps continue some of the same story as

CUB and Playing Cards. As with these datasets, only positive feature attribution

values are applied to concepts. All CheXpert models use sigmoid functions. How-

ever, CheXpert differs in that nearly all concepts receive a higher-than-expected

feature attribution value as seen by the saliency maps showing most segments as

red. Concepts predicted as present have the highest attribution values (darker

red segmentations), with concepts predicted as not present lower values (light red

segmentations). The lower distinction of feature attribution may be explained by

the lower model accuracy of the CheXpert models.
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Independent

Sequential

Joint with sigmoid

(a) Instance level CheXpert

Independent

Sequential

Joint with sigmoid

(b) Class level CheXpert with 3 con-

cepts present

Independent

Sequential

Joint with sigmoid

(c) Class level CheXpert with 4 con-

cepts present

Independent

Sequential

Joint with sigmoid

(d) Class level CheXpert with 5 con-

cepts present

Figure 3.22: Task prediction saliency maps for CheXpert apply posit-

ive feature attribution values to most concepts in the concept vector,

although the highest attribution values are those that are also pre-

dicted as present.
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3.6.2.4 Concept Feature Attribution Alignment

To quantitatively measure task prediction feature attribution, we used the Inter-

section over Union (IoU) metric, also known as the Jaccard similarity coefficient.

Like the proportion of feature attribution metric applied to the concept encoder,

IoU evaluates how closely feature attribution values align to ground truth con-

cepts annotation from the dataset. We have defined how we’re using IoU in

Equation 3.3, where A represents ground truth concepts annotated as present

and B represents predicted concepts with a feature attribution value between

the maximum value observed in a sample and 10% of that maximum. The 10%

threshold ensures that only concepts contributing meaningfully to task predic-

tions are included while excluding those with very low attribution.

IoU =
|A ∩B|
|A ∪B|

(3.3)

IoU values are displayed in Table 3.9 for all models trained with CUB, Playing

cards and CheXpert using a sigmoid function. As we did not train models using

the joint training method with the Random cards dataset, this value is blank in

the table. The values in the table are averaged by performing the IoU calculation

with each set of model weights from the repeated training runs for each dataset.

The highest IoU values are for models trained on Playing cards with only small

difference between Random cards and Poker cards. CUB also has a high IoU

value while CheXpert models has low IoU values. As CheXpert is a challenging

dataset for the models to learn (the concept accuracy for all CheXpert models

does not exceed 76%), a low IoU value is to be expected. Comparing the different

training methods, joint models generally have a lower IoU, apart from CheXpert

models. Independent models almost consistently have the highest IoU values, but

this is only narrowly ahead of sequential models.

In addition to our CBMs that includes a sigmoid function, we evaluated our

models without a sigmoid function: our standard DNNs trained on Poker cards,
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Independent 0.849 0.991 0.988 1.0 0.155 0.122 0.177 0.21

Sequential 0.841 0.935 0.969 0.966 0.168 0.12 0.168 0.199

Joint 0.781 - 0.887 1.0 0.164 0.15 0.219 0.261

Table 3.9: IoU values for models and datasets. All models have a

sigmoid function between the model parts. The independent training

method achieves the highest IoU value for models trained on datasets

with instance-level concepts.

sequential models trained on CUB, and joint models trained on both CUB and

Poker cards. These configurations achieved IoU values of 0.057, 0.102, 0.248,

and 0.008, respectively. These results are far lower than those of models that

include a sigmoid function, corroborating our earlier observations from saliency

map comparisons. Although the non-zero IoU values indicate some overlap in

feature attribution applied to predicted concepts, the overall low scores suggest

that such occurrences are rare.

As the only change between our models is regarding how they are trained, we can

answer Sub-question 2. The best training method to train a CBM task predictor

is with the independent method, and a sigmoid function should not be used with

the CBM. As independent models are trained using ground truth values that are
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either 0 or 1, the models have a clearer training signal. The sequential and joint

training methods will provide concept values between 0 and 1. Training models

on ground truth concept values also ensures all concepts are accurate, which may

not be the case if the task predictor is trained using the output of the concept

encoder.

3.7 Discussion

The findings presented in this chapter address RQ1: “How can we train a CBM

to map semantically meaningful input features to concepts, and semantically

meaningful concept predictions to task labels?”.

Through our analysis, we demonstrate that it is possible to train CBMs to pre-

dict concepts using semantically meaningful input features, and task labels using

concept predictions aligned with ground truth concept annotations. This discus-

sion expands RQ1 by addressing the two sub-questions:

1. What dataset configurations, in particular w.r.t. concept annotations, are

required to train CBMs to learn semantically meaningful mappings from

input features to concept predictions, and from concept predictions to pre-

dicted task labels?

2. What is the most effective CBMs training method?

3.7.1 Dataset Configurations Requirements

Starting with training a CBM to map semantically meaningful input features

to concept predictions, the configuration and annotations of the dataset play a

crucial role. Our experiments revealed two primary factors that influence the

success of this mapping:
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• Concept variance: The variance in which concepts appear together in the

training data significantly affects a CBM’s ability to learn semantically

meaningful mappings from input features to concept predictions. In this

chapter, we highlighted this with class-level vs. instance-level concept an-

notations. Class-level concepts often result in multiple concepts appearing

together, sometimes exclusively, across all training samples. CUB is a clear

example of this, where the model learned to use input features of the entire

bird for all concept predictions, as these were the most consistent input fea-

tures throughout training. To promote the learning of semantically mean-

ingful concept representations, concepts should vary across samples so that

the model learns to distinguish each concept individually.

• Accurate concept annotations: Ensuring that concept annotations correctly

reflect the presence of concept semantically meaningful input features in the

input image is foundational to training a model to learn semantically mean-

ingful mappings. Without precise annotations that reflect visual features in

the input, the model will struggle to learn the intended mappings as it will

lack a strong training single from the data. This is understood by remind-

ing ourselves these models are only provided with concept annotations for

supervision during training. As with concept correlation, class-level concept

annotations make accurate concept annotations difficult to achieve, espe-

cially when a dataset includes real-world images that cannot ensure the

image subject is completely visible.

For a CBM to learn a semantically meaningful mapping from concept predictions

to task labels the dataset has limited impact. Overall all of the datasets in our

experiments produced an accurate task predictor model part. However, a key

consideration to highlight is concept vectors have to be distinct to ensure task

labels can be accurately learned. If two task classes have the same concept vector

then the task predictor will not be able to distinguish between them.
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Overall these factors answer Sub-questions 1. To train a model to learn semantic-

ally meaningful mappings from input features to concept predictions the dataset

has to configure concepts to minimise excessive concept correlation and ensure

present concepts are accompanied with a visual representation. This is easier

to achieve with instance-level concepts and could be considered impractical for

class-level concepts.

3.7.2 Effective Training Methods

Our analysis of training methods for CBMs found that although all training meth-

ods (independent, sequential and joint) successfully trained CBMs, the independ-

ent method resulted in a model that most accurately aligned feature attribution

from task prediction to ground truth concept values. This training method avoids

balancing task and concept accuracy, as with the joint training method, or relies

on concept predictions that may be inaccurate. The independent training method

provides the task predictor with a clear training signal of which concepts should

map to each task label.

Furthermore, we identified the use of a sigmoid function in a model enhances the

alignment of feature attribution values with ground truth concepts. This layer

in the model has the potential to improve interpretability by ensuring the model

uses the presence of concepts to predict task labels.

These findings answer Sub-questions 2. The most effective method to train a

CBM is the independent training method. In addition, placing a sigmoid function

between the two model parts can confine a CBM to use the presence of concepts

in its decision-making process.
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3.8 Limitations

In the analysis of CBMs conducted in this chapter we have identified several

limitations.

3.8.1 Datasets

We evaluated CBMs using three datasets: CUB, Playing cards, and CheXpert. As

discussed in Section 3.5.1, these datasets cover a range of configurations, enabling

us to analyse the effect of dataset attributes on model performance. However, we

have identified two limitations from the datasets:

Firstly, expanding the evaluation to include additional datasets would allow for

a more comprehensive analysis of concept correlation and concept annotation

quality. For instance, additional datasets would increase the number of variations

of concept correlation in our analysis and thus could provide increased insights

into the generalisability of our findings.

Secondly, While our models trained on CheXpert performed inline to those in

the literature (Saporta et al., 2022), they showed significantly lower accuracy

compared to models trained on CUB and Playing cards. This difference in model

accuracy highlights challenges associated with training CBMs on real-world data-

sets. Evaluating additional real-world datasets could provide further insights into

the viability of CBMs beyond synthetic settings.

3.8.2 Methods

The methods used in this chapter are all feature attribution techniques. Despite

these revealing which input features are used for concept and task predictions,

their local explanation nature means we cannot evaluate how model predictions

change with input manipulation or other shifts in images. We are restricted to
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measuring concept attribution with the samples available in the dataset, which

may not cover all situations observed in the real-world.

3.9 Summary

This chapter evaluates CBMs through the application of XAI techniques. Spe-

cifically, we analyse both the concept encoder and task predictor, focusing on

how feature attribution values are distributed across input features from concept

predictions, and concepts from task label predictions.

In our evaluation, we compared how feature attribution aligns with ground truth

concept segmentations from the dataset. Beginning with the concept encoder,

we investigated how concepts are predicted based on the presence of semantically

meaningful input features. We trained CBMs on three datasets: CUB, Playing

cards, and CheXpert.

Models trained on datasets with class-level concept annotations (CUB, Class-level

Poker cards, and Class-level CheXpert) applied feature attribution values to se-

mantically irrelevant input features, for example, across the entire bird in each

CUB sample. We argue this is due to different issues from each dataset: CUB

contains concept annotations that often fail to represent the visual content of

the images, while concept annotations in Class-level Poker cards and Class-level

CheXpert have a high inter-concept correlation, making it difficult for the model

to distinguish which input features correspond to individual concepts. In con-

trast, models trained on datasets with instance-level concept annotations (Ran-

dom cards, Poker cards, and Instance-level CheXpert) demonstrated strong align-

ment between concept predictions and semantically meaningful regions within

sample images. These datasets provide more accurate annotations that directly

reflect what is visually present in each sample. Random cards and Poker cards

showed near-perfect alignment, likely due to minimal annotation noise, while

alignment in Instance-level CheXpert was slightly lower, reflecting some inac-
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curacies in the concept annotations, expected in a non-synthetic dataset. These

differences between models trained on different datasets were consistent across

both individual saliency map results and the aggregated results.

We achieved training CBMs to predict concepts using semantically meaningful in-

put features by ensuring concept annotations were accurate and ensuring a high

correlation between concepts in the dataset was avoided. Mapping input fea-

tures to semantically meaningful concepts does not depend on the use of class or

instance-level concepts. Instead, it relies on ensuring that if a concept is annotated

as present, it is also visually identifiable in the corresponding image. However,

our findings demonstrate that achieving such mappings is more straightforward

with instance-level concept annotations.

Predicting concepts using semantically meaningful input features benefits inher-

ent interpretability as we can be sure the model is predicting concepts for the right

reasons. If a CBM makes concept predictions using input features with the same

meaning, we can argue the model will be easier to build trust with as concept

predictions will use the expected input features from a human perspective.

Saliency maps from the predicted task label back to the concept vector show

CBMs are capable of applying high feature attribution values to concepts aligned

with the ground truth concept annotations. We analysed feature attribution and

found CBMs should be trained using the independent training method, or where

that is not suitable, use a sigmoid function between the concept encoder and

task predictor. By doing so we can maximise the alignment of positive feature

attribution values to ground truth concept labels annotated as present. We also

demonstrate the ability to calculate proportional concept contributions to task

labels.
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Chapter 4

Robust Concept Representations

4.1 Introduction

If we can train CBMs to learn semantically meaningful input features by confining

the models using training data with adequate concept annotations, we may also

assume these models learn concepts to be disentangled such that one concept

cannot be used to predict another concept, or the removal of unrelated input

features to have minimal impact on the prediction of a concept. Essentially we

intend CBMs to learn to predict concepts as independent outputs and resilient

to the removal or addition of unrelated input features, or combinations of con-

cepts not seen during training. For instance, if the training data often includes

pacemakers alongside heart conditions, we wouldn’t want the model to predict a

heart condition solely because it detected a pacemaker. Doing so could lead to

inaccurate detection of undiagnosed heart issues.

In this chapter we analyse CBMs w.r.t. the information encoded within concepts

and how susceptible concepts are to changing input features. In Chapter 3 we

primarily use local explanations. These are limited in their capability as they

cannot tell us about a DNN as a whole (Arrieta et al., 2019), and reliance solely on

feature attribution techniques for evaluation can be misleading (Adebayo et al.,

2018; Sixt et al., 2020), or on a single metric instead of getting a consensus

from multiple metrics to get a complete picture. We have analysed CBMs with

additional evaluation metrics to obtain a comprehensive understanding of how

they encode concept representations.

This chapter answers RQ2 (“How does the relationship between concepts and
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input features in the training dataset influence the information encoded in learned

concepts and the model’s reliance on input features for predicting those concepts? ”)

which can be broken-down into the following sub-questions:

1. How does the configuration of concepts in the training dataset affect in-

formation leakage of learned concepts?

2. How does the configuration of concepts in the training dataset affect input

feature dependence?

By answering RQ2 we make the following contributions:

• RC4: We perform an in-depth evaluation of CBMs revealing CBMs can

be trained to minimise the encoding of extraneous information in concept

representations, and concepts can be resilient to irrelevant input feature

alterations. We demonstrate that CBMs generally learn underlying concept

correlations present in the training data.

• RC5: We conclude that two factors are critical for CBMs to learn semantic-

ally meaningful input features: (i) accuracy of concept annotations and (ii)

high variability in the combinations of concepts co-occurring, that is, each

concept in a dataset should appear alongside a variety of others to help the

model distinguish between them.

This chapter contains work introduced in our paper “Can we Constrain Concept

Bottleneck Models to Learn Semantically Meaningful Input Features? ”

Below is a list of acronyms and their meanings that are predominantly used in

this chapter.

CRA Concept Removal Accuracy

DCI Disentanglement, Completeness and Informativeness
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MNIST Modified National Institute of Standards and Technology

MSE Mean Squared Error

OIS Oracle Impurity Score

SSIM Structural Similarity Index

4.2 Motivation

The motivation of the work in this chapter is to understand how CBMs encode

concept representations they learn from their training data. We approach this

from two angles: (1) understanding what information is encoded in concept out-

puts, and (2) the sensitivity concept predictions are to modified input features.

As introduced in Section 2.1.5, metrics to analyse CBMs without feature attribu-

tion measure either information leakage (Mahinpei et al., 2021) or concept feature

sensitivity. We have separated these two measurements by defining information

leakage as the degree of which additional information is encoded in concept out-

puts than is required to predict the concepts themselves, and concept feature

sensitivity as how reliant concept predictions are to the presence of input features

other than those for the concepts themselves (i.e. are concepts only reliant to the

presence of their respective semantically meaningful input features). We expand

on these classes of metrics in Section 4.3 and Section 4.4.

Information leakage originates from disentanglement metrics (Bengio et al., 2013),

where it’s generally desired for concepts to only encode information that is re-

quired to predict themselves. With CBMs we can hypothesise the worst case

scenario would be when all concepts can be predicted from just a single concept,

or for the task label can only be predicted if all relevant concepts are present

together. Both situations suggest the model has learned that certain concepts

always co-occur, resulting in task class predictions with little to no variance in
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(a) Example of poor information leakage

which may result in a model that can only

predict a downstream class if all relevant

concepts are present.

(b) Example of good information leakage

which may result in a model that can pre-

dict concept, even if some concepts are

missing.

Figure 4.1: Example of good and poor information leakage.

their concept vectors. This is illustrated in Figure 4.1a where the model can only

make an accurate task prediction if all concepts are predicted as present, even

if some of those predictions are incorrect given the concepts visible in the input

image. On the other hand, the best-case scenario would have no extra inform-

ation encoded into each concept which in turn would mean the decision-making

process for task label predictions should rely on a combination of present and

not present concepts with the model still able to reason correctly even the set

of present concepts is not complete (e.g. a model may be able to predict the

type of bird despite not having a present concept prediction for the tail). This

ideal case is illustrated in Figure 4.1b. Overall, by analysing information leakage

we aim to understand if the concept representations a CBM has learned encodes

extra information than is required to accurately predict the concepts themselves

(Mahinpei et al., 2021).

Similar to concept predictions from semantically meaningful input features dis-

cussed in Chapter 3, another desired property of CBMs is for concept encoders to

learn how concepts are spatially localised (Raman et al., 2024). This is such that

concepts are predicted using semantically meaningful input features and are not

modified by the addition or removal of unrelated input features. Depending on

how a CBM is deployed the input to the model may have, or may include different
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(a) Example of a model with poor

concept feature sensitivity. The

concept for forehead is predicted as

present despite the black mask over the

corresponding input features.

(b) Example of a model with good

concept feature sensitivity. The

concept for forehead is not predicted

as present with a mask over the corres-

ponding input features.

Figure 4.2: Example of good and poor concept feature sensitivity.

concept combinations not seen during training. Taking bird identification as an

example, an image of a bird may crop out bird parts, the bird may be orientated

such that some bird parts are hidden, or the bird may be behind an object. If a

CBM is resilient to these kinds of inputs then concepts should still be predicted

with high confidence only if they are visible in the input. However, if a CBM is

not resilient then some concept predictions may change despite remaining identi-

fiable in the input image. We have illustrated these cases in Figure 4.2 whereas

in Figure 4.2a the concept for the forehead is still predicted as present despite a

mask over the corresponding input features as an example of poor feature sens-

itivity. In Figure 4.2b the concept for the forehead is not predicted as present as

an example of good feature sensitivity.

Finally, concluding the analysis in Chapter 3, information leakage analysis and

concept feature sensitivity analysis, we have identified several best practices to fol-

low for future CBM research and model training. Impotently these best practices

identify the conditions and required attributes in a dataset to ensure concepts

are predicted with semantically meaningful input features, minimise information
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leakage, and reduce undesired feature sensitivity.

4.3 Information Leakage

In the literature, the following metrics have been used to analyse CBMs and

similar model types:

Mahinpei et al. (2021) evaluates information leakage with CBMs. Their metric

looks at task-blind training such as independent and sequential training. In their

paper, concepts required for task prediction were removed from the dataset with

their metric measuring the task accuracy after training with the missing concepts

added back to the dataset. In their experiment they used the Modified National

Institute of Standards and Technology (MNIST) dataset where the model pre-

dicted whether a digit was odd or even, with two binary concepts “is four” and “is

five”. All “fours” and “fives” digits were removed for training which should have

made the task accuracy a random guess (50%) but instead the accuracy they

measured was (69%) and thus information leakage occurred. A similar experi-

ment was performed by Margeloiu et al. (2021) with the joint training method

and gradually removing concepts from the dataset. As with the task-blind train-

ing methods (such as CBM independent training), concept leakage was observed

with the joint training method.

Mahinpei et al. (2021) also introduced the idea of concept purity which measures

whether concept predictions can be used to predict the labels of other concepts.

They test this with a model with additional unsupervised outputs to capture

information that does not fit into the concept space. They find information

leakage still occurs with models trained using task-blind training methods.

Marconato et al. (2022) evaluates models according to the metric DCI (Eastwood

and Williams, 2018). They train CBMs with varying amounts of concept supervi-

sion and measure the resulting accuracy, alignment (how similar the models and
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humans’ semantic representations are to each other) and explicitness scores (how

well a linear regressor fits the concepts in the dataset). To be expected, they

observed less entanglement as concept supervision increased during training.

Espinosa Zarlenga et al. (2023) introduces OIS and Niche Impurity Score to meas-

ure concept purity. OIS builds on the purity measurement by Mahinpei et al.

(2021) and measures inter-concept predictability w.r.t. the expected predictive

performance of the dataset. Espinosa Zarlenga et al. (2023) argues their metrics

are better suited to CBMs than alternative disentanglement metrics, primarily be-

cause other disentanglement metrics assume all entanglement is undesired which

ignores correlation in the ground truth concept annotations.

The main idea of OIS is to asses whether concept representations can predict

one another in line with what would be expected from the ground truth concept

annotations. This helps determine if the relationships of learned concepts reflect

the actual relationships in the training datasets.

to compute OIS, the divergence of two matrices is measured:

1. An oracle matrix that measures how well ground truth concepts can predict

each other.

2. A purity matrix that measures how well learned concepts can predict ground

truth concepts.

These matrices are created by training a series of helper models which receive

either ground truth concepts or predicted concepts and minimise the loss of pre-

dicting ground truth concepts. If OIS results in a value of 0 then learned con-

cepts do not encode any more or less information than the ground truth concepts.

However, a value of 1 means each learned concept can perfectly predict all other

concepts.

While OIS focuses on impurities encoded into single concept representations,
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Niche Impurity Score considers impurities within subsets of concepts, offering

an alternative perspective on concept purity.

4.4 Concept Feature Sensitivity

As discussed in Section 2.1.5 concept feature sensitivity evaluates the degree to

which concepts are predicted using input features that are correlated to the occur-

rence of concepts but are unrelated to their prediction. A high feature sensitivity

would mean a concept prediction has a high reliance on input features that should

not cause any change to the concept prediction. A low feature sensitivity would

mean only the input features representing a concept can cause that concept to be

predicted as present or not present.

Heidemann et al. (2023) introduced the metric CRA which measures the number

of samples for which the model’s concept prediction changes from present to not

present when the input features for an unrelated concept are removed over the

number of all true positive concept predictions. Heidemann et al. (2023) only

produced qualitative results with their metric and instead used a second metric,

difference in test accuracy, for quantitive results. This metric measures how

concept accuracy changes when trained on one subset of a dataset (e.g. where

concept A and B are both present at the same time), while tested where only one

concept is present (e.g. just concept A). Heidemann et al. (2023) found that a

high correlation of concept annotations in a dataset may lead a model to use one

concept as a proxy to predict others.

Raman et al. (2024) also aimed to measure concept feature sensitivity with a

similar metric to CRA which they called locality masking. Locality masking

also measured how concept accuracy changed when input features for concepts

were masked, but extended CRA by masking input features both semantically

meaningful (referred to as locality-relevant masking) and irrelevant to a concept

(referred to as locality-irrelevant masking). They found masking made little dif-
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ference to concept prediction accuracy which means their model had learned to

use input features unrelated to concepts to maintain accurate concept accuracy.

Overall, these results suggest CBMs are incapable of being sensitive to only the

semantically meaningful input features. However, as commonly discussed in the

literature, these papers do not show results on a range of datasets. Heidemann

et al. (2023) only uses the dataset CUB, while Raman et al. (2024) uses the

datasets CUB and COCO (Lin et al., 2014) where concepts are the objects in

each scene. Both of these datasets are problematic with CUB using class-level

concept annotation, while the concepts in COCO have a high potential of being

correlated to the rest of the scene (e.g. a bike on a road). It remains unseen

how sensitive a CBMs is to concepts trained on a wider range of datasets with

different configurations of concept annotations.

4.5 Methods

This chapter answers RQ2: “How does the configuration of concepts in the train-

ing dataset affect encoded information in learned concepts, and input feature

dependence for concept predictions?” This question builds on RQ1 answered in

Chapter 3. RQ2 is focused on the learned representations of concepts by CBMs.

To address RQ2 we used the datasets introduced in Section 3.5.1. Namely we

evaluated CBMs trained on the CUB, Playing cards, and CheXpert datasets.

This gives us the same variance in dataset configurations to establish how the

dataset affects learned concept representations.

To assess information leakage we used the OIS metric, implemented via helper

models formed of a two-layer ReLU multi-layer perceptron with 32 activations in

the hidden layer. Each helper model was trained on a single concept where the

input was the concept value (between 0 and 1) and predicted the values of all

other concepts. The helper models are trained to minimise the loss of predicting
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all other concept values. We repeated the process and averaged individual OIS

results to remove any run-to-run inconsistency.

The OIS metric was chosen because it captures inter-concept predictability within

the dataset, while also capturing if correlations are unavoidable as the correlations

are present in the dataset. OIS also disentangles inter-concept correlations within

the dataset from inter-concept correlations observed in concept predictions, which

allows us to analyse these factors separately in our conclusions.

For feature sensitivity, we used the CRA metric to measure the impact of masking

semantically meaningful, and semantically irrelevant input features associated

with a given concept on predictions of other concepts. For each concept(s) that

was masked in the input, we measured the change from present to not present

predictions for all other concepts.

We used two masking types based on those introduced by Raman et al. (2024):

single-concept masking, where only input features relevant to a single concept are

removed; and multi-concept masking, where input features for all but one concept

are removed. By using the two making types we can evaluate whether a model is

sensitive to both the removal of semantically meaningful input features, and the

removal of irrelevant input features.

Before discussing our results, it is important to understand the correlation between

concepts within the datasets. To this end, we show the Pearson correlation coef-

ficient for all pairs of concepts in each dataset and the dataset variation used for

training concept encoders. The results are visualised as matrices, where the x

and y axes correspond to the respective concept pairs.

Starting with CUB in Figure 4.3, the correlation between a concept and itself

(diagonal elements) has an average correlation of 1 and off-diagonal elements

correlation averaging to 0.014. This appears to show a dataset with minimal

correlation between concepts. However, inspecting smaller groups of concept pairs

reveals additional smaller diagonals of highly correlated concepts that appear in a
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Figure 4.3: Pearson correlation coefficient of the CUB dataset.

regular pattern. In Figure 4.4a we have cropped the matrix to show one of these

small diagonals. This diagonal shows a high correlation for concepts representing

the bird’s underparts colour on the x-axis, and breast colour on the y-axis where

both bird parts are brown. As these small diagonals appear at regular intervals,

and concepts in the dataset are organised by bird parts, these small diagonals

show there is a high correlation between bird parts that have the same colour.

Additionally, there is one horizontal bar, and one vertical bar of low correla-

tion shown in Figure 4.3 from concepts 76 to 89. A section of one of these is

shown in Figure 4.4b. These concepts all represent “has_wing_shape” (concepts

76 and 77), “has_size” (concepts 78 to 80), “has_shape” (concepts 81 and 82),

“has_back_pattern” (concepts 83 to 85), “has_tail_pattern” (concept 86 to 88)

and “has_belly_pattern” (concept 89). The common attribute among these con-

cepts is they represent the size, shape and pattern of a bird or bird part and

therefore does not appear more often with one colour or another.

Next, the correlation between pairs of concepts for our Playing cards dataset is
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(a) Pearson correlation coefficient of the

CUB dataset cropped to show concept

pairs with a high correlation

(b) Pearson correlation coefficient of the

CUB dataset cropped to show concept

pairs with low correlation

Figure 4.4: Some concept pairs show high correlation while others do

not.

shown in Figure 4.5. The average diagonal correlation is 1 for all dataset versions

and an off-axis correlation of -0.02, -0.02 and -0.097 for Poker cards, Random cards

and Class-level poker cards respectively. Starting with Poker cards in Figure 4.5a,

apart from the centre diagonal elements we see little correlation between concepts.

However, additional diagonal lines are going across the entire matrix showing a

low but noticeable correlation. They occur at regular intervals with a spacing of 4

concepts between each diagonal line. The diagonal lines near the centre diagonal

line have a higher correlation with diagonal lines showing less correlation as they

get further away from the centre. This dataset was constructed to balance the task

classes, resulting in some card combinations appearing more often than others.

The combinations that were repeated the most were card hands for the task label

“straight flush” where 48 card combinations were repeated around 37 times each.

This task label means there are three suited cards in sequence. Concepts in the

dataset are ordered first by card rank and then by card suit. This means every 4th

concept represents a new card rank (e.g. the first 4 concepts are for the card rank

“2” and then the next 4 concepts are for the card rank “3”). This is not the only
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(a) Pearson correlation coefficient for

pairs of concepts in poker cards

(b) Pearson correlation coefficient for

pairs of concepts in random cards

(c) Pearson correlation coefficient for

pairs of concepts in class-level poker

cards

Figure 4.5: Pearson correlation coefficient for pairs of concepts in the

Playing cards dataset.

task label that requires all concepts to have the same suit or rank, but these have

fewer card combination repeats. As the number of card combinations increases,

the correlation between concepts decreases. This explains why the correlation is

highest close to the centre diagonal. Essentially the task label “straight flush”

will have to include concepts close together whereas “straight” does not have this

constraint. Figure 4.5a shows the concept correlation has picked up the repeated

hand ranks that are a by-product of balancing task labels.
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(a) Pearson correlation coefficient for

pairs of concepts in instance-level Ch-

eXpert

(b) Pearson correlation coefficient for

pairs of concepts in class-level CheX-

pert with 3 present concepts

(c) Pearson correlation coefficient for

pairs of concepts in class-level CheX-

pert with 4 present concepts

(d) Pearson correlation coefficient for

pairs of concepts in class-level CheX-

pert with 5 present concepts

Figure 4.6: Pearson correlation coefficient for pairs of concepts for the

CheXpert dataset. White represents concept pairs where one or more

concepts were not present for all samples.

As Random cards do not balance task labels there is no pattern observed in the

concept correlation matrix in Figure 4.5b. Apart from the centre diagonal ele-

ments with high correlation, all off-diagonal elements have almost no correlation.

Class-level poker cards show several concept pairs with high correlation. All of

the concept pairs with high correlation align with the concept occurrences in the
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dataset as seen in Table 3.2. Any concept pairs that only occur together e.g. “6

of Diamonds” and “9 of Diamonds” (concepts 8 and 9) have a concept correlation

of 1, while concept pairs that do not exclusively occur together have a lower

correlation in line with how many other concepts they occur with. Concept pairs

that never occur together have a negative correlation.

Finally, for CheXpert we have displayed the concept correlation for the 4 versions

of the dataset in Figure 4.6. Starting with Instance-level CheXpert in Figure 4.6a,

most concept pairs have a little correlation. As all concepts relate to observations

in the chest this is to be expected some concepts are more likely to occur together

e.g. “enlarged_cardiomediastium” (concept 0) and “cardiomegaly” (concept 1) are

both enlargements of the heart. Two concepts, “Pleural_other” (concept 10) and

“fracture” (concept 11) have distinctly lower correlations than other concepts.

“Pleural_other” occurs infrequently in the dataset. In the test dataset split that

we used to create these matrices it occurs 8 times. “fracture” also occurs infre-

quently (6 times in the test dataset split) and is the only concept that is not

related to an organ and thus we would not expect it to appear more often with

an observation found with an organ. Moving to our Class-level CheXpert data-

sets we observe a concept correlation of 1 for all concepts that are present. We

could not compute the correlation for any other concepts as they are not present

in every sample. These concept pairs are shown as white in the matrices.

4.6 Experiment Set-up

In this chapter, we used the same datasets and models as described in Chapter 3.

Namely, we use the datasets CUB, Playing cards, and CheXpert, including the

same dataset variations. The VGG model architecture for the CUB and Playing

card models concept encoders, and Densenet121 model architecture for CheXpert

models.

As detailed in Section 4.5, our OIS results are averaged over multiple runs of
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(a) Example CUB masks with a ra-

dius of half the distance to the nearest

concept. Where multiple body parts

represent one concept, multiple masks

are applied

(b) Example CUB masks with a ra-

dius of the full distance to the nearest

concept. Some concept for CUB will

have a single mask to cover the relev-

ant input features

(c) Example Playing cards mask. Each

mask covers an entire playing card

(d) Example CheXpert mask. Each

mask fills a human segmentations

Figure 4.7: CRA single concept masking covers the input features for

one concept.

results. Specifically, we generate results using the training repeats we created for

each dataset, with each model weight used to generate an OIS result 3 times for

a total of 15 OIS runs for Playing cards and CheXpert, and 9 for CUB.

CRA masks concepts by changing each input feature value that’s semantically

meaningful to a concept. Formally, each concept j can be predicted by a set of

semantically meaningful input features aj ⊆ x, where x ⊆ Rd represents the set
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of all input features (e.g., pixels in the input image). The set a is the smallest

subset of x that is sufficient to predict concept j. We apply zero masks, meaning

that for each input feature η ∈ aj, we set η = 0.

For the Playing cards and CheXpert datasets, we have ground truth pixel masks

for each concept, whereas, for CUB, only the x and y coordinates of bird parts

are available. To address this, we applied circular masks where the radius either

extends to the nearest bird part or is set to half the distance between parts.

Our method differs from (Raman et al., 2024), which based mask sizes on the

image dimensions. Instead, by calculating the radius from the relative position

of bird parts, we better accommodate variations in bird size, shape and image

perspective. Concepts in CUB may require multiple bird parts to be masked (e.g.

eye colour will apply a mask to both eyes if visible).

Single-concept masks cover input features for a single concept, while multi-concept

masks cover input features for all concepts before revealing those relevant to a

single concept. Multi-concept masks are applied in this way as some concept

semantically meaningful input features overlap. An example of single-concept

masks for all datasets is shown in Figure 4.7, and multi-concept masks in Fig-

ure 4.8.

We used single-concept masks to evaluate the model’s sensitivity to removing

specific concept input features. In contrast, multi-concept masks were used to as-

sess the model’s sensitivity when only the input features associated with a single

concept were retained. Together, these two masking strategies offer complement-

ary insights: single-concept masks reveal the importance of individual concept

input features, while multi-concept masks assess the model’s dependence on in-

put features for a single concept and its sensitivity to the absence of input features

associated with other concepts.
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(a) CUB masks with a radius of half

the distance to the nearest concept loc-

ation and are applied to all bird parts

apart from those relevant to the selec-

ted concept.

(b) CUB masks with a radius equal to

the distance of the nearest concept loc-

ation and are applied to all bird parts

apart from those relevant to the selec-

ted concept.

(c) Two out of the three playing cards

are covered when multi-concept masks

are applied.

(d) All human segmentations are

masked before removing the mask for

a selected concept segmentation.

Figure 4.8: Example multi-concept masks for each dataset. All concept

input features are masked apart from the features for a single concept.
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Dataset OIS

CUB 0.125 (±0.004)

Random cards 0.206 (±0.031)

Poker cards 0.193 (±0.019)

Class-level poker cards 0.261 (±0.018)

Instance level CheXpert 0.506 (±0.016)

Table 4.1: OIS is a metric for measuring additional or lacking informa-

tion in learned concepts compared to the ground truth concepts. Lower

OIS values indicate that the information in the model’s learned con-

cepts are more aligned with the ground truth concepts. Models trained

on CUB and Poker cards encode the least difference in information

from learned concepts compared to ground truth concepts which is

closely followed by Random cards. Instance-level CheXpert encode

the most difference from learned concepts compared to ground truth

concepts. We show the standard deviation for OIS in brackets.

4.7 Results

4.7.1 Concept Purity

To assess inter-concept impurity across different datasets and models, we meas-

ured the OIS for CUB, Poker cards, Random cards, Class-level Poker cards, and

Instance-level CheXpert. Table 4.1 summarises the results. Among these, CUB

models had the lowest impurity, while the Instance-level CheXpert models showed

the highest OIS with a value close to 0.5. This suggests that the inter-concept

predictability of the learned concepts in CheXpert differs significantly from the

dataset’s concept annotations.

For Playing card models, those trained on Poker cards slightly outperformed

models trained on Random cards, indicating models trained on Poker cards can

better align concept outputs to the ground truth concept annotation in the data-
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set. Within the three variations of Playing card models, the Class-level Poker

card models had the highest impurity.

Since OIS is based on the expected inter-concept predictability from the concept

annotations in each dataset, if several ground-truth concepts are highly correl-

ated and the model’s concept outputs reflect the same correlation, the OIS will

show low impurity. However, if the concept representations capture different

inter-concept predictability between concept pairs, the OIS will indicate higher

impurity. As we have shown, Random cards have a higher OIS than Poker cards.

We can infer that this difference is because the Random cards’ concept encoder

is trained on the Random cards version of the dataset, but tested on Poker cards.

This means the concept representation Random card models have learnt may

have avoided capturing the imbalance of co-occurring concepts as seen previously

in Figure 4.5a.

Our findings on synthetic datasets align with prior research (Espinosa Zarlenga

et al., 2023), where the authors achieved an OIS of approximately 0.2 on their

datasets.

To understand OIS values more thoroughly, we need to break down the metric

into its components, for which we present the oracle and purity matrices that

make up the OIS for each model. These matrices organise concepts by their

index along the x and y axes, with each element representing the AUC value of

the concept on the y-axis predicting the concept on the x-axis. Centre diagonal

elements correspond to a concept predicting itself.

4.7.1.1 CUB

Our CUB models, as shown in the oracle and purity matrices in Figure 4.9, show

high AUC values for diagonal elements from concept 0 to concept 112, indicating

that each concept contains sufficient information to accurately predict themselves.

Additionally, we observe smaller diagonals at regular intervals throughout the
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(a) Instance-level CUB oracle matrix (b) Instance-level CUB purity matrix

Figure 4.9: The oracle and purity matrices for CUB are similar to one

another and also has a strong resemblance to the correlation of concepts

in the dataset. Each concept has encoded the required information to

predict itself and other similar concepts such as those for other bird

parts of the same colour.

matrices, showing periodic, but regular, clusters of inter-concept predictability.

In addition, between concepts 76 and 89 there is a noticeable reduction in inter-

concept predictability. When compared to the inter-concept correlations in the

dataset (Figure 4.3), the regions of high inter-concept predictability closely align,

which suggests the CBM concept encoder has learned the correlations of concepts

in the training data.

Comparing the oracle and purity matrices, we observe minimal differences between

them. This alignment directly contributes to the low OIS and shows the model’s

concept predictions are nearly as accurate in predicting ground truth concepts

as the ground truth concepts themselves. In other words, the model effectively

mirrors the predictive relationships found in the ground truth data.
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(a) Poker cards oracle mat-

rix

(b) Random cards oracle

matrix

(c) Class-level poker cards

oracle matrix

(d) Poker cards purity mat-

rix

(e) Random cards purity

matrix

(f) Class-level poker cards

purity matrix

Figure 4.10: Oracle and purity matrices for Random cards, Poker cards

and Class-level poker cards. The oracle matrices show inter-concept

predictability of ground truth concepts while the purity matrices show

inter-concept predictability of learned concepts w.r.t. ground truth

concepts. Poker cards show numerous diagonals of non-random inter-

concept predictability. Class-level poker cards show a high level of

inter-concept predictability for a few concepts within learned concept

representations that did not exist in the oracle matrix.

4.7.1.2 Playing Cards

The matrices for our Playing card models are shown in Figure 4.10. All oracle

matrices show a strong predictability for each concept predicting themself by the

centre diagonal elements all being close to 1. In the oracle matrix for Poker

cards (Figure 4.10a), we observe additional diagonals of elements with AUC val-
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ues below 0.5. This shows the presence of non-random relationships between

different concepts. In contrast, the oracle matrix for Random cards only shows

the centre diagonal has high inter-concept predictability, with all off-diagonal

elements showing random inter-concept predictability.

The off-diagonal elements in the purity matrix for Poker card models (Figure 4.10d)

show the relationships between certain concepts are non-random. Each of these

concept pairs also appears in Figure 4.10a. Hence, it is clear Poker card models

have learned the same inter-concept predictability that exists in the training data.

In contrast, these off-diagonal elements of non-random correlation are significantly

reduced in the Random cards models purity matrix (Figure 4.10e), reflecting the

absence of inter-concept predictability that exists in the Random cards dataset.

The purity matrices for Poker cards and Random cards align with the higher OIS

value for Random cards in Table 4.1. The higher OIS indicates a lack of expected

information for inter-concept predictability for models trained on Random cards

compared to the structured patterns seen in Poker cards ground truth concepts.

As for Class-level poker cards, the oracle matrix (Figure 4.10c) displays most

ground truth concept pairs having a low inter-concept predictability. In par-

ticular, these represent concept pairs where the concepts never co-occur in any

sample. These concept pairs in the dataset have a negative correlation, and as

such, the low inter-concept predictability of concepts aligns with the negative cor-

relation of ground truth concepts. Concept pairs in Figure 4.10c that have high

inter-concept predictability, e.g. “Four of Hearts” (index 4) and “Two of Hearts”

(concept 0), align to concepts that exclusivity co-occur. Concepts that co-occur

with multiple sets of concepts have a slightly lower inter-concept predictability.

The purity matrix (Figure 4.10f) shows higher AUC values overall, indicating that

the learned concepts encode more information than the ground truth concept la-

bels. As the ground truth concepts are either 0 or 1, but the predicted concepts

can have a value between 0 and 1, the predicted concepts allow for more inform-

ation to be encoded. For example, the concept “Four of Clubs” (index 2) can
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predict the presence of the “Six of Diamonds” (index 8) and “Nine of Diamonds”

(index 9), despite no explicit task-related connection.

4.7.1.3 CheXpert

Finally, the oracle and purity matrices for Instance-level CheXpert are shown

in Figure 4.11. As expected, the oracle matrix shows a high OIS values for the

centre diagonal elements, indicating that each ground truth concept has sufficient

information to predict itself. Additionally, the inter-concept predictability of the

non-centre diagonal element aligns reasonably well with the correlations observed

in the dataset in Figure 4.6.

In contrast, the purity matrix shows a notably large difference from the oracle

matrix, starting with the absence of a centre diagonal with high (or low) AUC

values. This shows the information the model has learned for individual concepts

is not enough to accurately predict themselves. Instead, there is a mixture of

AUC values across the matrix. A few concepts, such as “edema” (concept 4),

“atelectasis” (concept 7), and “pleural_effusion” (concept 9) on the y-axis, and

“lung_opacity” (concept 2) on the x-axis show some alignment with the dataset’s

inter-concept predictability, but overall, the purity matrix suggests that the model

has not learned the inter-concept predictability that exists in the ground truth

concept values.

The models used for the purity matrix do not exhibit particularly high accuracy,

with the sequential model achieving an average concept accuracy of 75.765%.

This explains the greater variability observed in the purity matrix compared to

the oracle matrix. Certain concepts, such as “support_devices” (concept 12), may

be easier to predict due to their distinct visual differences, while other concepts

may appear together more often, or share similar parts on the input image.
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(a) Instance-level CheXpert oracle mat-

rix

(b) Instance-level CheXpert purity

matrix

Figure 4.11: The oracle matrix shows high OIS values along the center

diagonal which are absent from the purity matrix. The purity matrix

shows mixed AUC values suggesting the model struggles to learn in-

dividual or inter-concept predictability. The difference in the purity

and oracle matrices reflects the model’s average concept accuracy of

75.77%.

4.7.1.4 CBMs Learns The Inter-concept Predictability From Their

Training Data

RQ2, and sub-question 1 in particular, asks how the dataset affects information

leakage. The OIS results demonstrates all of our models suffer from at least

minor information leakage. In our case this is evidence from the inter-concept

predictability of concept outputs. Our models trained on CUB, Random cards,

and Poker cards, resulted in a low OIS indicate that the models effectively learn

relationships between related concepts observed in the dataset. However, a low

OIS also indicates a model has learned the inter-concept predictability of the data

they were trained on. Examples of this occurring with our models include high

inter-concept predictability in CUB, such as bird parts sharing similar colours,

or Poker cards models accurately capturing the concepts that have a greater
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frequency of co-occurring. Both instance and class-level concepts can learn the

underlying inter-concept predictability in a dataset.

CBMs predict concepts with continuous concept outputs (values between 0 and 1).

This allows concept outputs to encode richer inter-concept relationships compared

to binary outputs from the dataset. This is particularly evident for the models

trained on the Class-level Poker cards dataset, where continuous outputs enable

indirect inter-concept predictability between concepts. For example, the model

links the concept “Six of Diamonds” (concept 8) indirectly to the concept “Four

of Clubs” (concept 2) by utilising their shared co-occurrence with the concept

“Four of Diamonds”. Specifically, “Four of Clubs” may encode the presence of “Six

of Diamonds” through varying concept values: 0.6–0.7 when “Four of Diamonds”

is present (indicating “Six of Diamonds” is absent) and 0.8–1.0 when “Four of

Diamonds” is absent (indicating “Six of Diamonds” is present).

This behaviour is not observed for models trained on CUB, likely due to the

higher number of concepts and the resulting complexity encoding additional con-

cepts in each concept value. In datasets with many concepts or significant cros-

sover in concept co-occurrence, the capacity to encode inter-concept information

into learned concept representations is reduced, as the additional concepts create

ambiguity over what concept values mean unless there is a direct co-occurrence

link.

The key takeaway from the OIS results is that CBMs learn similar inter-concept

predictability to the training data. This means that if concepts in a dataset

facilitated inter-concept predictability then a CBM will learn this and the trained

model will exhibit an equivalent degree of information leakage. While this may

not cause harmful effects when the training data accurately reflects real-world

scenarios, it may lead to bias in trained models if real-world scenarios have a

different frequency of concepts to the training data. In such situations, CBMs

may struggle to represent concepts appropriately, making them unsuitable for

their intended applications.
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(a) CUB concept prediction correlation (b) Poker cards concept prediction cor-

relation

(c) Random cards concept prediction

correlation

(d) Class-level poker cards concept pre-

diction correlation

(e) Instance-level CheXpert concept

prediction correlation

Figure 4.12: The correlation of predicted concepts closely mirroring

the dataset’s concept correlations.
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The results from the Random cards dataset demonstrate that it is possible to

mitigate some of these drawbacks. By separating the concept dataset and task

dataset, the resulting model did not learn the same representations of concepts

that was preset in the task dataset (Poker cards). This avoided some of the bias

Poker cards models learned which allowed them to predict the co-occurrence of

concepts that appeared more often in the dataset.

Expanding on the purity matrices, in Figure 4.12 we evaluate the Pearson correl-

ation coefficients between predicted concepts and ground truth concept annota-

tions across the datasets. Most models achieve strong alignment, with predicted

concept correlations closely mirroring the dataset’s concept correlations. This

includes models trained on CheXpert where the predicted concept correlations

for the most part reflect the dataset’s underlying structure, except the centre di-

agonal. This was to be expected considering the model’s lower concept accuracy.

To quantitatively evaluate alignment, we use the Structural Similarity Index

(SSIM) metric (Wang et al., 2004), which compares both structural similarity

and the values of concept pairs. We used SSIM instead of Mean Squared Er-

ror (MSE) as MSE only captures element-wise differences and does not account

for structural patterns in the data. SSIM, by contrast, considers local spatial cor-

relations, making it more appropriate for structured matrices. For example, even

if the individual values in the oracle and purity matrices did not match, SSIM

can detect the similarity of structural patterns, such as the diagonals we have

observed with Porker cards matrices. We show the results in Figure 4.13 where

we performed two comparisons: (1) oracle and purity matrices alignment, and

(2) the alignment between predicted concepts correlations and dataset concept

correlations.

For oracle and purity matrices, models trained on datasets with class-level concept

annotations have a higher SSIM scores than instance-level models. The higher

SSIM scores for class-level concepts reflect how these models were able to capture

both the concept pairs and AUC values in the learned concept representations.
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Figure 4.13: Purity and oracle matrices show a closer alignment for

models trained on datasets with class-level concept annotations than

models trained on datasets with instance-level concept annotations

where the models capture much of the structure but show increased

noise in purity matrices. Dataset concept and predicted concept cor-

relation SSIM shows high alignment for all models, apart from those

trained on CheXpert.

The instance-level models trained on Playing cards were able to align much of the

structure between the two matrices, but the purity matrices introduced a greater

amount of noise.

For predicted concept correlation vs. dataset concept correlations, most models

achieve high SSIM, confirming strong alignment with dataset concept structures.

However, CheXpert achieves an SSIM of 0.5, indicating moderate alignment.

While this value suggests CheXpert captures some similarities between predicted

concept pairs and ground truth concept pairs, it also highlights there are key

differences. As previously discussed, this is due to the model concept accuracy.

Importantly, an SSIM of 0.5 means predicted concept correlations are not reversed

(SSIM equal to -1) or void of all similarities (SSIM equal to 0).
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4.7.2 Concept Removal Accuracy

Sub-question 2 from RQ2 asks how training data affects input feature depend-

ence. To answer this we evaluated how changes in input features affect concept

accuracy using the CRA metric (Heidemann et al., 2023) and locality masking

techniques (Raman et al., 2024). By using this metric we assess whether concepts

that are predicted as present change to not present when relevant input features

are removed, and whether concept predictions remain predicted as present when

irrelevant input features are masked.

As previously mentioned, we used two types of masking based on the masking op-

tions defined in (Raman et al., 2024): single-concept masking and multi-concept

masking. Single concept masking is similar to Raman et al. (2024)’s concept-

relevant masking, where we apply a mask to cover a single concept with semantic-

ally meaningful input features. In this case, we expect only the accuracy of the

masked concept to decline, which demonstrates a model has learned to predict

concepts using semantically meaningful input features. Multi-concept masking is

based on Raman et al. (2024)’s concept irrelevant masking, where we mask all but

one concept’s input features, and the expected output would see the unmasked

concept accuracy to maintain high, while the masked concepts accuracies to be

low.

Our use of CRA is mathematically defined in Equation 4.1. The CRA value,

denoted as Ri|j, measures the change in accuracy of concept i when the input

features corresponding to the concept(s) j are masked. Specifically, we measure

the fraction of true positive concept predictions for i (TPi) where the concept

predictions ĉi ∈ TPi changes from present to not present (ĉi drops below 0.5)

when input features for concept j are masked. This is calculated over the total

number of true positive predictions for concept i.

Ri|j =
|{ĉi ∈ TPi | ĉi|j >= 0.5 ∧ ĉi|¬j < 0.5}|

|TPi|
(4.1)
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Single-concept masking will see i set to the concept being measured and j the

single concept masked. When i and j are the same the masks are equivalent

to concept-relevant masks. Multi-concept masking will see i set to the concept

being measured and j set to all concepts that are masked. We always exclude one

concept from j. If i and j are the same then multi-concept masking is equivalent

to concept irrelevant masking.

Our results are presented in a matrix where the y-axis represent the concepts

whose input features are either masked or retained, and the x-axis correspond

to target concepts being evaluated. Our results are averaged over the repeated

training runs for each dataset. The matrix elements show the average CRA for

each concept pair, with white squares representing concept pairs that are not

present in the dataset. A perfect CRA result for single concept masking would

show a CRA of 1 for all concepts along the centre diagonal elements, while all

other concepts would have a CRA of 0. We’d expect to see the opposite for

multi-concept masking.

4.7.2.1 CUB

Starting with models trained of the CUB dataset, we produced the CRA by

placing circular masks over concept locations using two different radius sizes: full

radius masks where the radius of each circle extends to the next nearest concept

location, and half radius masks where the radius is set to half the distance to the

next nearest concept location. We used two different mask sizes as the ground

truth input features for each concept are not explicitly provided and thus by

using two mask sizes we can analyse the difference in change of concept accuracy

between the two.

As shown in Figure 4.14, both half and full radius masks for single-concept mask-

ing have minimal impact on the accuracy of predicting the corresponding concept.

Our results show CUB does not match a perfect CRA. All concepts change from
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(a) Full radius single-concept masks (b) Half radius single-concept masks

(c) Full radius multi-concept masks (d) Half radius multi-concept masks

Figure 4.14: Concepts for models trained on CUB are not sensitive

to semantically meaningful input features being masked in the input,

while sensitive to all but the semantically meaningful input features

being masked.

a present prediction to a not-present prediction at a similar rate, irrespective of

which concept is masked. In total only 13.1% of concept predictions change from

present to not present with full radius masks (Figure 4.14a), and 5.8% with half

radius masks (Figure 4.14b). This makes sense as full-radius masks will cover a

larger amount of the bird in each image than half-radius masks and thus there

will be more information left in the input for half-radius masks that the model

can use for concept predictions.
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When we remove concepts 90 through 95, which correspond to the primary bird

colour, we observe a significant drop in CRA across most concepts, with nearly

all concept predictions changing from present to not present. This is due to

these concepts placing masks over most of the bird’s visual representation. Thus,

masking most input features for the model is required to accurately predict any

concept.

Concepts 78 to 82 are blank as these concepts are for bird sizes and shapes and

would require a mask placed over all concept input features. Since these concepts

do not correspond to any specific bird part, they were excluded from CRA.

Multi-concept concept masks, for the most part, show the reverse of the single-

concept masks. Figure 4.14c shows the CRA results with full-radius masks, and

Figure 4.14d shows the results with half-radius masks. In most cases, the model’s

prediction changes from identifying most concepts as present to absent. Concepts

90 through 95 show almost no reduction in concept accuracy, as the majority of

each bird remains visible in each image.

In addition, with multi-concept masks, we see concepts that represent bird parts

that are black, such as concept 19 (“underparts color black”) and concept 34

(“upper tail color black”), do not change their concept prediction no matter which

concept input features are masked. As the masks are black in colour, they blend

into the parts of the input image they are supposed to mask, allowing the model

to use the masked regions to maintain accuracy.

With circular masks, we expect some overlap between masked input features

and those irrelevant to the target concept. Despite this, we do not observe any

discernible noise in the results. With single-concept masks, we might expect

additional concepts to lose present predictions if the mask covers input features

relevant to other concepts. On the other hand, with multi-concept masks, we

might expect some concepts to retain present predictions if their input features

are only partially masked. In both cases, we do not observe these effects with
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(a) Poker cards single-

concept mask

(b) Random cards single-

concept mask

(c) Class-level poker cards

single-concept mask

(d) Poker cards multi-

concept mask

(e) Random cards multi-

concept mask

(f) Class-level poker cards

multi-concept mask

Figure 4.15: Concepts for model trained on Poker cards and Random

cards are sensitive to the removal of semantically meaningful input

features. Concepts for models trained on Class-level poker cards are

mostly not sensitive to semantically meaningful input features.

either half-radius or full-radius masks.

4.7.2.2 Playing Cards

For Playing cards CRA (Figure 4.15), we have first separated the results between

the models trained on datasets with instance-level concept annotations and class-

level concept annotations. In both Poker cards and Random cards, we observe

that when a single concept is masked, only the corresponding concept shows a

reduction in accuracy. Other concept pairs show little to no change in their

predictions, which suggests that removing semantically meaningful input features
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exclusively impacts the corresponding concept predictions.

Similarly, for the multi-concept mask, we observe that only the remaining concept

is still predicted as present. However, there are some exceptions. In both Poker

cards and Random cards, certain concepts do not follow this pattern, as shown by

the green diagonal in Figure 4.15d and Figure 4.15e. These diagonals are spaced

four concepts away from the centre, and thus we can conclude they relate to

the downstream class “Three of a kind” appearing more often than other classes

in the dataset. In any case, the presence of the model continuing to predict

a masked concept is lower than how often it does not predict the presence of

a masked concept. We also observe a vertical line with Poker cards for multi-

concept masks. Similarly, this is not a general case for all concept predictions

and only affects two of our five models trained on this dataset version, so is likely

caused by a run-to-run variation.

Class-level poker cards largely confirm prior observations: the input features used

to predict each concept are not always semantically meaningful. Figure 4.15c

shows that for most concepts, predictions remain unchanged when semantically

meaningful input features are masked. The exceptions to this are the concepts

“Four of Clubs” (concept index 2), “Four of Spades” (concept index 5), and “Five

of Clubs” (concept index 6). These same concepts also show high proportions of

positive feature attribution values in Figure 3.13, reinforcing the idea that the

model is capable of learning semantically meaningful input features to predict

concepts with class-level concepts, but this capability is very limited. Even for

these concepts “Four of Clubs” and “Four of Spades” do not consistently change

from a present prediction to a not-present prediction when semantically mean-

ingful concepts are masked.

Other concepts show varying behaviour with single-concept masks. Some concept

predictions change from present to not present when unrelated input features

are masked, demonstrating the model’s overly sensitive to unrelated input fea-

tures. Alternatively, other concept predictions remain the same regardless of
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which concept is masked. In this case, the model has learned multiple sets of

input features can accurately predict the same concept. For instance, the “Ten

of Hearts” (concept index 10) demonstrates prediction changes when unrelated

input features are masked, while “Two of Hearts” (concept index 0) never changes

its prediction.

Turning our attention to CRA with multi-concept masks, as shown in Figure 4.15f,

we observe some concepts CRA are an inverse of the CRA they achieved with

single concept masks. For the concepts “Four of Clubs”, “Four of Spades”, and

“Five of Clubs” this again confirms the model has limited ability to learn the

intended input features for concepts. However, for other concepts, we see no

change in CRA (such as the concept “Two of Hearts”), once again demonstrating

the models can use multiple sources of input features to predict such concepts.

Overall it remains clear models trained on Class-level poker cards do not generally

predict the presence or absence of concepts based on semantically meaningful

input features, and are sensitive to irrelevant input features.

4.7.2.3 CheXpert

Finally, for models trained on the CheXpert dataset, we present the CRA for both

our instance-level and class-level trained models (see Figure 4.16 for instance-level

results and Figure 4.17 for class-level results). Starting with the instance-level

results, there are several cases where no CRA value is available. These missing

values occur when no ground-truth positive predictions exist, or when concept

segmentations are not available for the concept being removed/kept. For example,

“pleural_other” (concept 10) and “fracture” (concept 11) appear only 8 and 6

times respectively in the test dataset, while “pneumonia” (concept 6) appears 14

times. There is little opportunity for these concepts to appear alongside other

concepts.

Single concept masks (Figure 4.16a) show most concepts do not switch from a
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(a) Instance-level CheXpert single

concept masks

(b) Instance-level CheXpert multi-

concept masks

Figure 4.16: Concepts for models trained on Instance-level CheXpert

demonstrate that most predictions do not change from present to not

present, regardless of the concepts masked. However, some concepts

such as “support_devices” (concept 12) do not follow this trend as re-

moving semantically meaningful input features reduced accuracy, while

other concept predictions remain unaffected.

present to not present prediction, both for semantically meaningful concept masks

and unrelated concept masks. For semantically meaningful concept masks, this

suggests that there is duplicate information in the input images that allows the

model to maintain accurate predictions when masks are applied. This is sup-

ported by CRA results for concept the concept “support_devices” (concept 12).

“Support_devices” is the only non-organic based concept which also has distinct-

ive shapes and features that the models may learn to identify with ease compared

to the other concepts. Removing semantically meaningful input features for this

concept significantly impacts its accuracy. In addition, other concept predictions

remain unchanged when this concept is masked.

Multi-concept concept masks for CheXpert (Figure 4.16b), show that when all

but one concept is masked, the model changes concept predictions from present

to not present around 50% of the time for less than 25% of concepts. As expec-
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(a) Single-concept mask for class-level

CheXpert with three concepts present

(b) Multi-concept masks for class-level

CheXpert with three concepts present

(c) Single-concept masks for class-level

CheXpert with four concepts present

(d) Multi-concept masks for class-level

CheXpert with four concepts present

(e) Single-concept masks for class-level

CheXpert with five concepts present

(f) Multi-concept masks for class-level

CheXpert with five concepts present

Figure 4.17: Concepts for models trained on Class-level CheXpert are

not sensitive to the removal of semantically meaningful input features,

while also maintaining concept accuracy when all other input features

are masked. These models highlight the models have identified multiple

sources of input features can be used to predict each concept.
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ted, this shows the models are less accurate at predicting more concepts than we

observed with single-concept masks. As most concept input features are masked

there is an increased likelihood of masking all relevant features for each concept

being measured. The centre diagonal of concepts is also showing concepts re-

maining almost unchanged. This demonstrates that the models have learned the

importance of specific input features for concepts. However, when we consider

both masking types, it is clear the models have learned to use multiple sources of

input features to maintain accurate concept predictions.

4.7.2.4 Concept Bottleneck Models can respect concept locality

To quantitatively measure a model’s sensitivity to concept input features, and

thus answer RQ2 Sub-question 2, we compared single-concept mask matrices to

an identity matrix, and multi-concept masks to a complement identity matrix. A

high MSE between these matrices and their respective identity matrices indicates

that the model has not learned to predict concepts using semantically meaningful

input features. Since MSE is sensitive to the balance between diagonal and off-

diagonal elements, there are more off-diagonal elements than diagonal ones, we

separated these groups of elements to evaluate two key behaviours:

1. How much does the accuracy of concepts fall when their corresponding input

features are removed.

2. How resilient concept predictions are when unrelated input features are

masked.

Figure 4.18a shows the MSE for single-concept masks. The Random and Poker

card models achieve near-zero MSE across all elements. In contrast, the Class-

level Poker card model showed significantly higher MSE, with values over 0.7

for diagonal elements and just under 0.2 for off-diagonal elements. These res-

ults quantify the misalignment for concept prediction sensitivity being tied to
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(a) MSE for CRA with single concept masks

(b) MSE for CRA with multi-concept masks

Figure 4.18: MSE for CRA shows models trained on instance-level

consistently achieve lower MSE compared to models trained on class-

level concepts.
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semantically meaningful input features. Unrelated input features do not show as

large of a misalignment. This shows the models are somewhat resilient to the

removal of unrelated input features.

For CUB models and CheXpert models, the MSE values indicate a similar mis-

alignment, with semantically meaningful features often ignored for their respect-

ive concept predictions, while unrelated input features resulting in a low MSE

indicate concepts are sensitive to the removal from unrelated input features. As

Instance-level CheXpert models MSE value is between 0.5 and 0.6, these models

show concepts are sensitive to the masking of semantically meaningful input fea-

tures just over 40% of the time. The same is not observed with CUB models where

we observed only 10% to just over 20% of concepts changing from present to not

present prediction after semantically meaningful input features were masked.

The MSE for multi-concept masks is shown in Figure 4.18b. As with single-

concept masks, the Random and Poker card models achieve very low MSE,

demonstrating robust alignment with semantically meaningful input features and

robustness against unrelated input features. Class-level Poker card models show

a significantly higher MSE compared to the Instance-level Playing card mod-

els for both centre diagonal elements and non-centre diagonal elements, further

confirming a lack of alignment in concept feature sensitivity.

Equally, CUB models also reflect misalignment between semantically meaningful

input features and concept predictions, and robustness against unrelated input

features. In the case of CheXpert models, class-level models show a high MSE

for off-diagonal elements. In comparison, Instance-level CheXpert models show

reduced diagonal MSE, highlighting they are more sensitive to masking of relevant

input features compared to models trained on the class-level dataset.

The MSE for centre diagonal elements with multi-concept masks is consistently

lower than that for single-concept masks. This indicates that models can rely

on semantically meaningful input features to make accurate concept predictions
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when all other concept regions are masked. However, the higher MSE observed in

single-concept masks continues to demonstrate that these same models are also

using unrelated input features to predict concepts. In other words, models with

high MSE under single-concept masking but low MSE under multi-concept mask-

ing have learned redundancy for which input features are required for concept

predictions. For instance, a model predicting the concept of a bird wing might

use semantically meaningful input features of the wing when available (contrib-

uting to a low MSE for multi-concept masks) but also rely on input features for

the bird’s body or head in the absence of wing pixels (contributing to a high MSE

for single concept masks).

Overall we have observed CBMs are sensitive to the removal of semantically

meaningful input features and are resilient to the removal of irrelevant input

features when the training data includes a consistent mapping between input

semantically meaningful input features and concept annotations. This follows the

same dataset attribution that allows a model to learn to predict concepts using

semantically meaningful input features, as identified in Chapter 3. We found

that models trained on instance-level concepts consistently achieved a lower MSE

compared to models trained on class-level concepts. Secondly, concept sensitivity

to input features is not significantly affected by the addition of limited inter-

concept correlation in the dataset as evidenced by the performance of the Random

and Poker card models, both of which achieve a low MSE. Finally, In line with

prior research (Raman et al., 2024), we find that high concept accuracy does not

always correlate with models using semantically meaningful input features for

concept predictions, as evidenced by both models trained on Class-level poker

cards and CUB.
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4.8 Discussion

This chapter addresses RQ2: “How does the configuration of concepts in the

training dataset affect encoded information in learned concepts and input feature

dependence for concept predictions?”. Overall, as with predicting concepts using

semantically, meaningful input features in Chapter 3, we find the dataset used

for CBM training affects how the model learns concept representations. CBMs

can be trained such that additional information encoded into individual concepts

is minimised, and concept accuracy cannot be manipulated with the addition or

removal of irrelevant input features. Expanding RQ2, we introduced two sub-

questions:

1. How does the configuration of concepts in the training dataset affect in-

formation leakage of learned concepts?

2. How does the configuration of concepts in the training dataset affect input

feature dependence?

4.8.1 How Does the Configuration of Concepts in the Train-

ing Dataset Affect Information Leakage of Learned

Concepts?

Using OIS we revealed the purity of concept predictions made using CBMs trained

on our three datasets. By analysing these results we revealed the capability for

CBMs to learn the underlying correlation of concepts in their training data. If the

dataset includes correlation between concepts then a CBM is capable of learning

this correlation in their concept predictions. This means CBMs will suffer from

information leakage if the training dataset does not restrict it.

For a CBM to be trained such that information leakage is minimised concepts

in the dataset should be balanced both in occurrence and in co-occurrence with
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other concepts. We showed CBM learned concepts were able to predict ground

truth concepts similar to the Pearson correlation coefficient of the concepts in

the training data. A simple method to minimise unbalanced co-occurrence of

concepts in a dataset would be to balance dataset samples according to the Pear-

son correlation coefficient. Ensuring a balanced dataset is more important when

there are fewer concepts in a dataset, as demonstrated with Class-level poker

cards compared to CUB, as it allows for indirect relationships between concepts

to be learned by the model.

4.8.2 How Does the Configuration of Concepts in the Train-

ing Dataset Affect Input Feature Dependence?

Our analysis of input feature sensitivity using CRA showed the correlation of

concepts in a CBM’s training dataset had a limited impact. Small correlations

between concepts, such as Poker cards and Random cards, did not lead to a

significant difference between the trained models CRA. On the other hand, a high

correlation between concepts does have an impact on input feature dependence.

For our models trained on datasets with class-level concept annotations, concepts

were both insensitive to the removal of relevant input features and sensitive to

the removal of irrelevant input features.

4.8.3 Concept Bottleneck Model Training Best Practices

Following the results shown both in this chapter and in Chapter 3 we have

provided some best practices to train a CBM which predicts concepts using

semantically meaningful input features, minimises concept leakage, and where

concepts are not sensitive to erroneous input features:

• Concept correlation: Concept annotations should not have a correlation

between concepts unless that correlation is intended or required. As shown
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by the oracle and purity matrices, unintended concept correlation can lead

to unrelated concepts accurately predicting each other. In extreme cases,

it can obscure which input features are semantically meaningful, as seen in

Chapter 3 with saliency maps for models trained with class-level concepts.

However, some correlation between concepts will not significantly degrade

model performance, as evidenced by the results comparing Random cards

and Poker cards. Since our evaluation did not cover an extensive range of

concept correlations, we leave a more thorough investigation to future work.

• Ensuring concept annotations and visualisations are consistent: Unlike pre-

vious studies, we restricted some of our datasets so we could ensure con-

cepts’ visual representations were present in sample images. Following this

requirement helps to ensure there is a clear training signal for CBMs to

learn semantically meaningful concept representations.

We also recommend the use of instance-level concept annotations over class-level

concept annotations. Although we show training a CBM to map input features

to concepts semantically is possible with class-level concept annotations, such as

the concepts “Four of Spades” and “Four of Clubs”, we demonstrate it’s far easier

to achieve semantically meaningful concept mappings with instance-level concept

annotations.

4.9 Limitations

4.9.1 Dataset

This chapter uses the same datasets as we used in Chapter 3. While these data-

sets were sufficient for our analyses, their constraints limited the generalisability

of our findings. For instance, the datasets used feature fixed levels of correla-

tion between concepts, which restricted our ability to analyse how fine-grained
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variations of concept correlation affected a model’s ability to reduce feature sens-

itivity to irrelevant concepts. Incorporating a dataset with fine-grained concept

correlation adjustments would have enabled this additional analysis. This may

be achieved with synthetic datasets such as Playing cards by systematically lim-

iting which cards may appear together. However, achieving this with real-world

datasets poses a large challenge as it adds further constraints to data collection

in addition to those already imposed by the need for concept annotations.

Furthermore, the inclusion of an additional real-world dataset with instance-level

concepts could have provided analysis to enhance the robustness of our findings

with models trained on CheXpert.

4.9.2 Methods

We analysed information leakage with the OIS metric which is a measurement of

concept purity. A core part of this metric is using the AUC value. This metric

presented limitations when applied to the Class-level CheXpert dataset. Specific-

ally, the AUC calculation requires that every concept in the dataset be present at

least once. Due to this constraint, we were unable to measure information leakage

for this dataset variation.

4.10 Summary

In this chapter, we extend our analysis of CBMs w.r.t. information encoded into

concept representations, and reliance on semantically meaningful input features

to make concept predictions. We start by looking at the correlation of concept

occurrences in the datasets before using metrics that measure information leakage

and concept correlation in our trained CBMs. We continue to use three datasets:

CUB, Playing cards, and CheXpert and as such have measured how different
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dataset concept configurations can change how the models learn to represent

concepts.

As in Chapter 3, the introduction of our Playing cards dataset shows the capabil-

ity of CBMs if the dataset only has concepts represented by semantically meaning-

ful input features. If a CBM makes predictions using semantically mapped input

features, we can argue the model will be easier to build trust with as concept

predictions will use the input features that match human expectations.

This chapter answers RQ2 (“How does the relationship between concepts and input

features in the training dataset influence the information encoded in learned con-

cepts and the model’s reliance on input features for predicting those concepts? ”).

CBMs are reliant to the configuration of concepts in the dataset. We show CBMs

are capable of learning to encode concepts inline to the inter concept correla-

tion of concept in their training data, and instance-level concept annotations are

required for predictable input feature dependence.

We show how learned concept representations can encode correlations between

concepts from the dataset which may lead to concepts being predicted based on

the presence or absence of other concepts. If this is to be avoided the correlation

of concepts in the dataset should be considered and can be mitigated by splitting

the training of the two model parts to learn concepts and the downstream task

independently, allowing the dataset to train the concept encoder can be balanced

separately than the dataset used to train the task predictor.

Finally, we also analyse how concept accuracy changes when concepts are masked.

We show instance-level concepts are vital for ensuring concept accuracy changes

in a predictable manner i.e. only the semantically meaningful concepts change

from a present prediction to a not-present prediction when masked. We also

show the correlation of concepts in a model’s training data plays a minimal role

in ensuring concepts are predicted using semantically meaningful input features.
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Chapter 5

The Impact of Concept

Explanations and Interventions on

Human-machine Collaboration

5.1 Introduction

After a CBM makes a prediction a human collaborating with the model will be

able to inspect the concept explanations to help understand the model’s decision-

making process, making these models inherently interpretable. In domains such as

healthcare this may be used to answer why a downstream task was predicted. The

concept explanations also introduce the capability for a human collaborator to

intervene in the concept predictions and inspect how these change the downstream

task prediction. A human collaborator can correct mistakes the model made when

predicting concepts, or otherwise ask what-if questions in regards to the model

downstream task prediction if the model had a different set of concept predictions.

In Chapters 3 and 4 we used XAI and disentanglement metrics to show what

configurations of concept annotations are required for datasets to confine CBMs to

learn concepts such that concepts are predicted solely using semantic meaningful

input features and with minimal information leakage. By using these findings to

train CBMs we have argued these models are capable of meeting their original

promise of interpretability. In the paper introducing CBMs, the authors made

claims of improved human collaboration (Koh et al., 2020), but human studies

to show this are limited and instead compare CBMs to other model architectures
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(Jeyakumar et al., 2023; Dubey et al., 2022), or complete tasks such as selecting

the concepts participants believe the model detected Wang et al. (2023a). Only

a few studies analyse the class of CMs with collaborative tasks (Mysore et al.,

2023; Nguyen et al., 2024).

This chapter presents two human studies where we analyse CBMs in a collab-

orative setting. We answer RQ3 (“Do Concept Models improve task accuracy

and model interpretability in a human-machine setting? ”). We have broken this

questions down into the following sub questions:

1. Do test-time interventions improve human task and concept accuracy?

2. Do interventions increase the interpretability of CBMs?

3. Are CBMs trusted?

By answering RQ3 we make the contributions RC6 and RC7:

• RC6: We perform the first human studies using CBMs in a joint human-

machine task setting which analyses the interaction between humans and

the CBM. We find participants who performed interventions increased trust

in a model, but this trust was sometimes misplaced. Additionally, the CBM

decision-making process is not aligned to that of the humans.

• RC7: We show providing concept explanations to humans increases both

model interpretability and task accuracy. In addition, interventions can be

used to reveal model bias. This upholds the model’s promise of increasing

interpretability from high-level concepts.

Our first study is in the domain of Dermatology with experts in that field. Our

second study asked participants to play games of blackjack and involved parti-

cipants who were not necessarily experts at playing the game. In both studies
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the CBM is acting in an advisory role. This chapter contains work in our pa-

per “The Impact of Concept Explanations and Interventions on Human-machine

collaboration”.

Below is a list of acronyms and their meanings that are predominantly used in

this chapter.

Acc Accurate model

CExp Concept Explanation

CExp+Int Concept Explanation with Interventions

CExp+Int+SMap Concept Explanation with Interventions and Saliency maps

DDI Diverse Dermatology Images

Inacc Inaccurate model

NoExp No Explanations

NoInt No Interventions

SUS System Usability Scale

WithInt With Interventions

5.2 Motivation

In this chapter, we look at the research gap analysing the original promises of

interventions improving model task accuracy and CBM interpretability made in

(Koh et al., 2020). We achieve this by running two human studies, both of which

use a CBM as an AI assistant to suggest the action a human participant should

take. Running human studies means we can evaluate human interaction which
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cannot be automated with non-human metrics (Yadav et al., 2019; Rong et al.,

2024; Schmutz et al., 2024).

CBMs are positioned as being inherently interpretable, but as discussed in Chapter 2,

this primarily comes down to two aspects of the model architecture and capabil-

ities. Firstly, the models predict high-level concepts which are argued as aligning

the model with a human understanding of the same task. This allows a human to

understand what contributing components a model detects for a task label pre-

diction. Secondly, interventions will enable humans to ask “what if these concepts

were predicted instead?” This counterfactual explanation capability is argued to

reveal the model’s decision-making process. Linking back to (Miller, 2019), in-

terventions can be considered as contrastive explanations as humans can modify

concept values to understand why one task label was predicted instead of another.

From the CBM capabilities mentioned here, if automated metrics are to be be-

lieved, we may expect improved model accuracy as incorrect concept predictions

are replaced with their correct values from interventions. Further, if the model

task accuracy improved from intervention, trust in the models may increase. In

addition, as bias can be identified from model predictions (Adebayo et al., 2020),

CBMs may help humans identify model bias by inspecting updated task label

predictions.

From the literature discussed in Chapter 2, we identified two papers, (Mysore

et al., 2023; Nguyen et al., 2024), that asked participants to interact with a CM

to complete a task, and no papers that looked at evaluating the interpretability

or capabilities of CBMs. This leaves human interaction and CBM capabilities

unexplored apart from automated metrics that, as just discussed, may not be a

good representation of human interaction. Further, in a different human study,

it was found that the concepts a model uses for task predictions may not be the

same as those humans would use (Barker et al., 2023). It remains unknown if this

applies in a collaborative setting and if it impacts human-machine team accuracy.

Although our findings from Chapter 3 and Chapter 4 suggest CBMs can make
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Figure 5.1: Flow chart to show the interaction participants in our

studies can have with a model.

predictions aligned with human decision-making, we need to evaluate the models

with real humans to verify they are indeed interpretable. Therefore, this chapter

is focused on exploring this research gap. Further, we have the question about

how humans interact with CBMs in general. This includes how their capabilities

compare to standard DNNs, and how humans perform interventions.

We created a flow chart to show the interaction participants can have with a model

before labelling samples in Figure 5.1. Participants have the option of interacting

with the model, performing interventions (participants can either update pre-

dicted concept values or leave them unchanged), and labelling the sample. When

labelling the sample they may select the initial model task label before interven-

tions, the final model task label prediction, an intermediate task label prediction,
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or a task label the model did not predict. This flow chart helps to answer Sub-

question 2 and Sub-question 3 as it can highlight if human selected task labels

are aligned with the model because of model interaction, or just by chance.

Although we used CBMs, all of our findings also apply to other CMs with inter-

vention capabilities and that predict task labels in the same feed-forward fashion

from input to concepts, to task label. Namely these are Concept Embedding

Models Zarlenga et al. (2024), Sidecar CBMs Lockhart et al. (2022), and hybrid

CBMs Mahinpei et al. (2021).

5.3 Related Work

In Section 2.3.3 we discussed human studies evaluating CMs. Here we have rein-

troduced these studies and expand on the literature to inform the direction and

design of our studies. Several previous studies have analysed CBMs and similar

model architectures with human participants. These can be placed into several

categories; human concept preference (Barker et al., 2023; Ramaswamy et al.,

2023), concept explanations (Jeyakumar et al., 2023, 2022; Wang et al., 2023a;

Sixt et al., 2022; Dubey et al., 2022), human-in-the-loop (Mysore et al., 2023;

Nguyen et al., 2024) and bias discovery (Yuksekgonul et al., 2023; Midavaine

et al., 2024). A summary of studies is provided in Table 5.1.

5.3.1 Human Concept Preference

Barker et al. (2023) explores human concept selection with the dataset CUB. In

their experiment they asked participants to select concepts they thought were

relevant to the downstream task classification, finding a large variance in the

number of concepts selected. These concepts also performed worse when used

by a model predicting the downstream task than concepts the model selected.
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Barker et al.,

2023

human concept
preference

30 Identify concepts
participants select
as relevant

Participants selected
concepts varied and
were less effective

Ramaswamy

et al., 2023

human concept
preference

125 Explore concept
reasoning capacity

Participants are slower
and less accurate with
more concepts

Jeyakumar

et al., 2023

concept
explanations

75 Explore explanation
format preference

With time-series-data
concept explanations
ranked lower than
other formats

Jeyakumar

et al., 2022

concept
explanations

- Explore explanation
format preference

With video data
concept explanations
were preferred

Wang et al.,

2023a

concept
explanations

50 Test if participants
understand model-
learned concepts

Participants
understood
learned concepts

Sixt et al., 2022 concept
explanations

240 Identify important
features via
explanations

Concept explanations
performed poorly

Dubey et al.,

2022

concept
explanations

150 Predict model
decisions from
explanations

CBMs performed 5%
worse than their
custom model

Mysore et al.,

2023

human-in-the-
loop

20 Evaluate
recommendation
quality post-
intervention

Interventions improved
recommendations
(20–47%)

Nguyen et al.,

2024

human-in-the-
loop

150 Compare static vs
dynamic
explanations

Little difference in
performance

Yuksekgonul

et al., 2023,

Midavaine et al.,

2024

bias discovery 30 Test participant
ability to fix
CBM bias

participants detected
and corrected
model bias

Table 5.1: Summary of human studies. Number of participants is

provided where available.
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Barker et al. (2023) believed this was because the concepts humans selected were

generic, and were not informative to the downstream task.

Ramaswamy et al. (2023) evaluates concept explanation complexity, the number

of concepts a human can reason with. In their study, they asked participants

to (1) select concepts they thought were present in an input, and (2) select the

concept explanations they prefer when the explanations have varying numbers

of concepts. Ramaswamy et al. (2023) made two key findings relevant to our

studies. Firstly, by showing more concepts, participants took longer to recognise

them and were generally worse at doing so. The time increase is expected as

there are more concepts to make a judgement for, but the decreased performance

in recognising concepts present in a sample shows humans are better at making

fewer judgements. The author’s second finding was that the preferred number

of concept explanations was 32 or less. As many datasets have more than 32

concepts, CUB, to name one, we need to ensure either fewer concepts are used in

our models, or an optimal selection technique is used to maximise the usefulness

of concept explanations while remaining below this threshold.

5.3.2 Concept Explanations

Explanation preference is a common theme for CBM human studies (Jeyaku-

mar et al., 2023, 2022; Sixt et al., 2022; Dubey et al., 2022). These compare

CBM concept explanations with other explanation types and model architectures.

Jeyakumar et al. (2022) ran a study asking participants about their preferred ex-

planation format for activity recognition from videos. The authors found the top

two explanation methods were concept explanation with and without attention,

where attention is how important a concept is to a downstream task prediction.

This study shows promise for concept-based explanations.

Sixt et al. (2022) conducted a human study to evaluate explanation techniques for

bias discovery. They found that concept explanations performed poorly, achiev-
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ing accuracy below a random guess. However, since the model used was not

a CBM and the concepts were discovered automatically, this finding may not

translate over to concepts in CBMs. Similarly, Dubey et al. (2022) compared

CBM concept explanations with posthoc explanations and their own method, in

a study participants guessed the model’s downstream task prediction based on

the explanations provided. Despite a training phase designed to help participants

build a mental model of the artificial agent, CBMs performed approximately 5%

worse than the authors’ method. However, the dataset used (CUB) is known to

be unsuitable for CBM training, as discussed in Chapter 3. Lastly, Jeyakumar

et al. (2023) examined human preferences for explanation formats in a model

trained on input sensors. Participants consistently ranked CBM explanations as

the least preferred, though this finding may not generalise to other modalities

due to the author’s use of non-image, time-series data.

Besides concept preference, one study asked participants to identify what concepts

a model had learned (Wang et al., 2023a). Although the authors did not use a

CBM, their model architecture is similar. They found their model was able to

learn human identifiable concepts, and with saliency maps annotations, their

model was close to the performance of manual human annotated samples.

5.3.3 Human-in-the-Loop

Out of all the studies we found, only two asked participants to interact with

a model to help perform a task (Mysore et al., 2023; Nguyen et al., 2024). In

(Mysore et al., 2023) the authors introduce a recommender system inspired by

CBMs and trained on text. A human provides an input of documents similar to

what they are looking to be recommended. The model then computes concepts

from the provided documents, in addition to human-provided concepts, before

recommending similar documents. The human can interact with the concepts the

model uses to adjust the recommendations, similar to interventions with CBMs.
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In their human study Mysore et al. (2023) found their artificial agent to be ef-

fective at improving the recommendations participants received by 20-47% after

tuning by the artificial agent compared to initial concept values. This was bet-

ter than a distance-based recommendation agent that they compared to, which

improved recommendations by 18-40% from the initial recommendations. The

initial recommendations from the author’s artificial agent were also better than

the comparison agent.

Nguyen et al. (2024) examined the effectiveness of explanations generated by the

CHM-Coor model architecture (Taesiri et al., 2022), a visual correspondence-

based classifier that divides input images into patches before predicting a task

class. Participants were shown static or dynamic explanations alongside the

model’s predictions and asked to accept or reject them. Static explanations sup-

ported samples with patch annotations, while dynamic explanations allowed users

to adjust the model’s focus by selecting patches for re-analysis by the model. The

study found little difference in accuracy between the dynamic group (73.57%) and

the static group (72.68%), both far below perfect accuracy. Additionally, parti-

cipants often agreed with the model’s predictions regardless of if the model was

correct or incorrect.

5.3.4 Bias Discovery

Using a model architecture similar to a CBM, the authors in (Yuksekgonul et al.,

2023) ran a human study, which was repeated by Midavaine et al. (2024), where

they asked participants to improve a model performance when the task data has

been shifted from the training data. Participants were shown scenarios where a

class had been shifted and had to select a subset of concepts to prune from the

model given input and concept predictions.

Improvements in accuracy from human pruning showed to be better than random

pruning and only mildly worse than fine-tuning and greedy pruning. Considering
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human pruning does not require knowledge or access to the training data, this

shows the potential of using humans-in-the-loop for situations similar to this.

5.4 Methods

In this chapter we answer RQ3: “How do the claimed improvements to task

accuracy and counterfactual explanations through the use of CBM interventions

translate to a human-machine settings where the model is used as an assistance

to a human operator?” This is broken down into three sub questions that we

introduced in Section 5.1.

In our studies, we used CBMs although, as the studies only reveal the model

outputs and capabilities, our findings are also applicable to any CM architecture

that supports task predictions from concepts and interventions.

We ran two human studies: (1) An expert study where participants had extensive

knowledge about the task domain (skin disease diagnosis) where the model acted

as a second opinion. (2) A lay-person study with a general task (Playing games of

Blackjack), involving participants with experience levels ranging from novices to

skilled individuals, but none being professionals. The model also acted as a second

opinion, but could also serve as a guide for participants with less experience.

By running two studies we were able to compare results in these two similar, but

distinct settings. Both of the studies require participants to complete a task with

an AI agent they can use to assist them. Following the taxonomy by (Doshi-

Velez and Kim, 2017), our lay-person study is human-grounded as we do not use

expert participants and use a simulated task, while the expert study is application

grounded as we use both expert participants and a real-world task.

For our studies, we split participants into several groups which are detailed in

Table 5.2. Due to the smaller number of participants, the expert study had

two groups, whereas the lay-person study had eight groups. Returning to our
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Expert study Lay-person study

Participant groups Participant groups

Accurate model (Acc) Inaccurate model (Inacc)

CExp+Int NoExp NoExp

CExp+Int+SMap CExp CExp

CExp+Int CExp+Int

CExp+Int+SMap CExp+Int+SMap

Table 5.2: Participants in the expert study were split into two groups,

both with access to the same model. Participants in the lay-person

study were split into eight groups where the model used and explana-

tions provided were varied.

sub-questions, these require us to analyse the use of interventions and the in-

terpretability and trust of CBMs. Therefore, both groups for the expert study

included participant access to interventions and instead we varied the model’s

explanation completeness (Kulesza et al., 2013). As we did not have the same

limitation on the number of participants in the lay-person study we also included

groups that had access to a different model and included groups with no model

explanations and just concept explanations.

We use the following acronyms to separate each participant group:

Acc Accurate model (lay-person study only).

Inacc Inaccurate model (lay-person study only).

NoExp No explanations (lay-person study only).

CExp Predicted task label and concept explanations (lay-person study only).

CExp+Int Concept Explanation (CExp) plus Intervention capability.

CExp+Int+SMap CExp+Int plus Saliency maps.
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WithInt Participants who performed interventions or samples where interven-

tions were performed.

NoInt Participants who did not perform interventions or samples where no in-

terventions were performed.

Acc and Inacc are placed before the model output and feature capabilities. With

Interventions (WithInt) and No Interventions (NoInt) are placed after model out-

put and feature capabilities. For example, participants using the accurate Black-

jack model with concept explanations and interventions, and who performed

interventions would be referred to as Acc-Concept Explanation with Interven-

tions (CExp+Int)-WithInt.

5.5 Experiment Set-up

Our first human study looked at participants with expert knowledge in dermato-

logy. This allowed us to evaluate a CBM in a setting where the human will have

the required expertise to complete the task without model input, but the CBM

will act as a second opinion.

The second study did not need participants to have any specialist knowledge and

as such some participants will have minimal knowledge about Blackjack while

others will have good knowledge of the game. The model was made available to

all participants but did not require participants to interact with it.

The studies1 share a lot of similarities including participants are not required to

have any knowledge about computer science, AI, or XAI. The studies also share a

similar interface, which includes reducing the number of concepts initially shown

to participants as recommended by Ramaswamy et al. (2023). We also ordered

concepts by prediction value and hid additional concepts in a scrollable list.
1Additional details about the study designs and ethics are included in the Appendix in

Section B.3
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Figure 5.2: Example AI brief show to participants.

Both studies start with a short demographic survey asking participants’ for their

age, gender, computer science experience and skin disease identification/blackjack

experience. Computer science experience and skin disease identification/blackjack

experience are recorded using a Likert scale (Likert, 1932). Following the demo-

graphic survey participants were briefed on how the model works (see Figure 5.2

for an example from the lay-person study) and followed a tutorial so they know

how to participate in the study and interact with the model (see Figure 5.3 for an

example from the lay-person study). Following this participants completed the

study task, and finally completed a closing survey.

5.5.1 Expert Study

Throughout the design and development of the expert study we consulted with

a dermatologist from the University Hospital of Wales. Their feedback enabled
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Figure 5.3: Example study tutorial shown to participants.

us to refine the study and find participants. Regarding the study design, their

feedback lead to two key developments:

1. Study task: We initially designed a classification task, but this was changed

to a diagnosis task. This change is inline with the typical objectives doctors

will perform in their job.

2. Sample image selection: The initial sample images we selected from the

dataset had varying resolutions, some were out of focus, and they contained

a mixture of skin diseases. With the guidance from the dermatologist we

164



5.5 Experiment Set-up

selected images that were of higher quality, in focus, and had a limited focus

of skin diseases to include.

5.5.1.1 Dataset

Skincon (Daneshjou et al., 2022b) is a real-world image dataset with 48 clin-

ical concepts, of which we have kept 22 that have 50 or more occurrences in the

dataset. Concepts were selected by two dermatologists using standard descriptive

terms such as “plaque” and “scale”. We have provided an example sample with

concept annotation in Figure 5.4. Skincon was created by combining two data-

sets: Fitzpatrick 17k (Groh et al., 2021a) and Diverse Dermatology Images (DDI)

(Daneshjou et al., 2022a), with Skincon adding concept annotations. Skincon has

instance-level concepts and contains 3886 images, 3230 from (Groh et al., 2021a)

and 656 from (Daneshjou et al., 2022a). For downstream task labels, we use the

malignant label which is provided for both of the original datasets. We split the

dataset into train, validate and test splits. Fitzpatrick 17k was randomly split so

80% of the samples were used for training and 20% for validation. All samples

from the DDI dataset were used for testing. We also removed 10 images from

the Fitzpatrick 17k samples before splitting the data which were used in the hu-

man study. These images had the attribute “seborrheic keratosis” or “malignant

melanoma”. In total, we had 2574 training samples, 644 validation samples and

656 test samples. During training, samples were randomly rotated by up to 15

degrees, translated by up to 5% of the overall image width and scaled by up to

5%. All samples were resized to 512 by 512 pixels.

5.5.1.2 Model

Skincon models use a Densenet121 architecture (Huang et al., 2017) for the

concept encoder which was initialised with pre-trained weights from ImageNet,

and two linear layers with a ReLU activation function for the task predictor which
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Input Concepts

Papule: not present

Plaque: present

Pustule: not present

Bulla: not present

Patch: not present

Nodule: not present

Ulcer: not present

Crust: not present

Erosion: not present

Atrophy: not present

Exudate: not present

Telangiectasia: not present

Scale: not present

Scar: not present

Friable: not present

Dome-shaped: not present

Brown: present

White: not present

Purple: not present

Yellow: not present

Black: not present

Erythema: not present

Figure 5.4: Example sample from the Skincon dataset with concept

annotations.

was not pre-trained. The concept encoder was trained to maximise the AUC

of concept predictions, while the task predictor was trained to minimise task

loss. To find optimal hyper-parameters for training we used Weights and Biases

Sweeps (Biewald, 2020) configured with a Bayesian search method. The paramet-
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Training method LR Optimizer Batch
size

LR
patience

Epochs

Independent concept encoder 0.00053 SGD 32 10 100

Independent task predictor 0.0593 Adam 32 10 100

Table 5.3: Skincon training hyperparameters.

Training method Concept accuracy (%) Task accuracy (%)

Independent 91.235 88.474

Table 5.4: Skincon model accuracy. All values are rounded to 3 decimal

places.

ers optimised in the sweeps were starting LR (between 0.1 and 0.0001), optimizer

(between Adam (Kingma and Ba, 2014) and SGD), LR patience (between 3, 5,

10 and 15 epochs of no improvement in loss). The sweep ran until we stopped

seeing improvements in the model accuracy, about 30 iterations. The final hyper-

parameters are summarised in Table 5.3 and the accuracy of the model we used

in the study in Table 5.4.

5.5.1.3 Human Study Design

For the expert study 12 participants were asked to label images from the Skincon

dataset (Daneshjou et al., 2022b). We selected 10 images that originated from

Fitzpatrick 17k (Groh et al., 2021a) as we found these were of higher quality than

images that originated from DDI (Daneshjou et al., 2022a). We excluded images

that were out of focus and limited images to those with the label “malignant

melanoma” and “seborrhoeic keratosis” as a dermatologist would typically look to

diagnose a patient. The task labels “malignant” and “benign” in the dataset are

sometimes used as a benchmark for machine accuracy (Daneshjou et al., 2022b;

Groh et al., 2021b), but these are unnatural for a medical expert to use. For

instance, it would be very odd to go to a doctor’s appointment and only be
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Figure 5.5: Expert study participant demographic.

told if your condition was okay or bad. We trained our model on “malignant”

and “benign”, but these were labelled as “malignant melanoma” and “seborrhoeic

keratosis” for the study as by selecting the 10 images we used from subgroups

of the dataset we can guarantee all “malignant” represent “malignant melanoma”,

and all “benign” samples represent “seborrhoeic keratosis”.

All participants were either doctors, consultants or trainees with expertise in der-

matology. Participants were located across Wales as we recruited participants via

our contact in the Welsh National Health Service. The breakdown of demograph-

ics in Figure 5.5 shows that, unsurprisingly all participants have either said they

agree or strongly agree they can diagnose skin diseases from images. Computer

experience has a greater variance of experience but most participants either say

they are neutral regarding having a good experience with computing or disagree-

ing with the statement.

Task: 10 images were shown to participants in a random order. Participants

were asked to diagnose the skin condition in each image in addition to selecting

how they used the AI assistant with the following options:
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• I was influenced by the AI’s suggestion

• I was influenced by the concepts the AI detected

• I was not influenced by the AI

The AI use options were designed to capture whether participants selected labels

based on the model’s outputs or disregarded them. Alongside the images, parti-

cipants were provided with the model’s outputs, which included a predicted task

label, predicted concepts, and an intervention slider for each concept. Adjusting

any intervention slider automatically updated the model’s predicted task label to

reflect the changes. An example of the interface is shown in Figure 5.6.

At the end of the study, all participants completed a closing survey. The first

part of the closing survey asked participants to complete SCS (Holzinger et al.,

2020) questions. These questions are used as a measurement of quality for AI

explanations, and use a similar question design to System Usability Scale (SUS)

(Brooke, 1995). These questions use a Likert scale. The second part of the survey

asked participants to type any other feedback regarding the AI and explanations.

We specifically prompt them that this could include how accurate they perceived

the AI agent was, and how useful the concept explanations and interventions

were.

Variations: As previously detailed, we split participants into two groups. One

with the default CBM model outputs and access to interventions (CExp+Int),

while the second group also had access to saliency maps (Concept Explanation

with Interventions and Saliency maps (CExp+Int+SMap)). These saliency maps

were created using Guided Grad-CAM (Selvaraju et al., 2017) to highlight pixels

contributed for and against each concept prediction. The two concept explana-

tions outputs are shown in Figure 5.7.
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Key

1: Sample image

2: AI agent output class label

3: Sample labels and AI use options for the participant to select

4: Concept outputs, salience map and intervention slider

Figure 5.6: Expert study platform interface with key components la-

belled.

170



5.5 Experiment Set-up

(a) Model outputs and access to interventions

(CExp+Int)

(b) Model outputs, access to interventions, and sali-

ency maps (CExp+Int+SMap)

Figure 5.7: Expert study concept output variations.

5.5.2 Lay-person Study

The lay-person study was created to test CMs with a greater number of par-

ticipants allowing us to include additional variables for model correctness and

completeness. The task, playing games of Blackjack, required no specialist ex-

pertise, enabling us to recruit participants without the domain-specific skills that

were necessary in the expert study.

5.5.2.1 Dataset

Blackjack is a dataset we introduced similar to the Playing cards dataset in-

troduced in Chapter 3. Concepts in Blackjack represent the sum of card values

in the player’s card hand, whether the player has an “Ace” card which can have

the value 11, the dealer’s first card, and if the dealer has multiple cards. The

task labels in Blackjack represent the best move available to the player accord-

ing to the single deck strategy guide for the Blackjack card game (Shackleford,

2023). These labels are hit (the player gets another card), stand (the player ends
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the game with the cards they currently have), surrender (the player forfeits their

hand but also half the loss they would get if they lost to the dealer), and bust (the

player’s cards sums to more than 21). We balanced the task labels which means

the occurrences of concept labels are not equal. As observed with Poker cards,

this should have minimal effect on the concept representations a CBM learns. We

order samples such that they represent full games in Blackjack when placed in

sequential order. As such we are able to extract samples to simulate full games

during our study.

We created two variations of Blackjack: standard Blackjack, and mixed Blackjack.

Standard Blackjack has cards drawn from a single deck of playing cards, whereas

mixed Blackjack draws most cards from a single deck of playing cards, apart from

all “Ace” and “Seven” cards which are drawn from a deck of cards with a different

appearance. This allowed us to artificially reduce the accuracy of a model trained

on the mixed Blackjack version when tested on standard Blackjack. Each dataset

variation has 10,000 samples which are split into training samples and test samples

with a 70%-30% split respectively. Both variations have instance-level concepts.

Example samples can be seen in Figure 5.8.

We transformed training samples with a random flip (both horizontal and ver-

tical), applied a colour jitter to the brightness, contrast, saturation and hue, and

randomly converted samples to grey scale. Samples are scaled to 299 by 299

pixels. The dataset is publicly available2 along with the code to generate the

dataset3.

5.5.2.2 Models

Blackjack models used a VGG-11 architecture with batch normalisation (Si-

monyan and Zisserman, 2015) for the concept encoder and two linear layers with
2Blackjack dataset: https://huggingface.co/datasets/JackFurby/blackjack
3Blackjack dataset generator: https://github.com/JackFurby/blackjack-dataset-

generator
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(a) Standard Blackjack (b) Mixed Blackjack

Figure 5.8: Example samples from the Blackjack dataset.

a ReLU activation function for the task predictor. Blackjack models were trained

to minimise the concept and task loss. Due to the similarities between the Black-

jack and Playing cards datasets, we reused the training parameters from Poker

cards, which we have summarised in Table 5.5. Model accuracies are shown

in Table 5.6. We trained two models: one on Standard Blackjack to create a

model with high concept and task accuracy, and one on Mixed Blackjack with

low concept accuracy when “Ace” and “Seven” cards are present. These models

are the Acc model and Inacc model respectively.

Training method LR Optimizer Batch
size

LR
patience

Epochs

Independent concept encoder 0.02 SGD 32 15 200

Independent task predictor 0.01 Adam 32 5 200

Table 5.5: Blackjack training hyperparameters.
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Training
method

Training
dataset

Concept accuracy (%) Task accuracy (%)

Independent Standard
Blackjack

99.818 98.874

Independent Mixed
Blackjack

96.434 81.306

Table 5.6: Blackjack models accuracies. All models were tested on

Standard Blackjack and values are rounded to 3 decimal places.

Figure 5.9: Lay-person study participant demographic.

5.5.2.3 Human Study Design

We recruited 104 participants, primarily by posting on university forums, no-

ticeboards, mailing lists, and social media. Participants had to be 18 years old

or older as detailed in the studies ethics approval. Although most of our par-

ticipants were recruited from university forums, we have a mixture of students,

members of staff and people without association with the university. We recorded

participants’ computing ability and blackjack ability using a Likert scale. A full

breakdown of demographics is shown in Figure 5.9.
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Key

1: Concept outputs, salience map and intervention slider

2: Game rules, participant score and game counter

3: Sample image

4: AI agent output class and concept labels

5: Move selection and AI use options for the participant to select

Figure 5.10: Lay-person study platform interface with key components

labelled.

Task: Each participant played 15 games of Blackjack, 1 of which was without the

model enabled while the other 14 allowed participants to interact with the model.
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Like with the expert study, the AI assistant suggested actions for participants to

take, in this case, what moves the participant should play.

During the study, games of Blackjack were randomly selected from 100 games that

were pre-generated. Each game had between 1 and 7 moves. Each game had cards

drawn from a single standard deck of cards, and cards were replaced in the deck at

the start of each game. We made some minor modifications to the game including

the removal of betting, although participants still had a score which increased or

decreased based on the number of wins and losses. Participants could select one

of three moves during each game: (1) hit which gives them another card, (2)

stand which ends the game with their current cards, and (3) surrender which

ends the current game and loses half the number of points a lost game would lose.

In addition to labelling samples, participants also selected how they used the AI

assistant with the following options:

• I was influenced by the AI’s suggestion

• I was influenced by the concepts the AI detected

• I was not influenced by the AI

As with the expert study, the AI use options allowed us to capture how parti-

cipants used the model. An example of the study interface is shown in Figure 5.10.

Finally, all participants completed a closing survey. The first part of the survey

included the SUS (Brooke, 1995) questions followed by the SCS (Holzinger et al.,

2020) questions. These questions used a Likert scale. As with the expert study,

we also include a text box for participants to add any other comments about the

model and how they interacted with it.

Variations: All participants had full access to their own card hands and the

dealer’s first card. Participants were split into eight groups with four versions of

the model output and capabilities. An example of the four interface variations
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that are shown to participants is shown in Figure 5.11. The eight participant

groups are:

• Acc-No Explanations (NoExp): Accurate model with only predicted task

label

• Acc-CExp: Accurate model with predicted task label and three concepts

• Acc-CExp+Int: Accurate model with predicted task label, all concepts and

the ability to perform interventions

• Acc-CExp+Int+SMap: Accurate model with predicted task label, all con-

cepts, the ability to perform interventions, and each concept saliency map

• Inacc-NoExp: Inaccurate model with only predicted task label

• Inacc-CExp: Inaccurate model with predicted task label and three concepts

• Inacc-CExp+Int: Inaccurate model with predicted task label, all concepts

and the ability to perform interventions

• Inacc-CExp+Int+SMap: Inaccurate model with predicted task label, all

concepts, the ability to perform interventions, and each concept saliency

map

As the study only used samples from standard blackjack, the inaccurate model

would often predict hands with the cards “Ace” or “seven” incorrectly. Participants

were evenly split between the accurate and inaccurate models as one of the mo-

tivations for this study, in addition to Sub-question 1, was to see what class labels

would be predicted after intervening on concept predictions (Koh et al., 2020). If

the model was always accurate then there would be less motivation to perform

interventions.
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(a) Only task predictions (NoExp) (b) Task predictions and top three concept

predictions (CExp)

(c) Task predictions, concept predictions

and interventions (CExp+Int)

(d) Task predictions, concept predic-

tions, interventions and saliency maps

(CExp+Int+SMap)

Figure 5.11: Lay-person study model output variations.

5.5.3 Evaluation Methodology

We evaluated our human studies with a mixture of objective and subjective met-

rics to analyse interventions, trust, interpretability, and human-machine perform-

ance. Starting with interventions we first need to understand how and when these

are made. We have classified interventions into two categories: error correction

and feature adjustment. Error correction interventions are made to concepts that

participants see as incorrect and thus we define this intervention type as concepts

that are intervened a maximum of once per sample where the intervened concept

value c̄ is in the range 0 ≤ c̄ ≤ 0.1 or 0.9 ≤ c̄ ≤ 1. The thresholds 0.1 and 0.9

were selected as they are close to the maximum and minimum limits to reflect
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decisiveness, but accommodate for minor inaccurate interactions (e.g. clicking on

the wrong part of the intervention slider). Feature adjustments are all other in-

terventions which include concepts that are intervened more than once in a given

sample, or where the intervened concept value is in the range 0.1 < c̄ < 0.9. Fea-

ture adjustment interventions are when the participant is not certain the model

has incorrectly predicted the presence of a concept, or where they are inspecting

changes to task label predictions.

We have also assigned the following labels to understand how concept values

change with interventions:

• Binary change: Measure whether a concept changes from present to not

present, or from not present to present.

• Changed model task label: Measure whether an intervention changes the

predicted task label.

• Magnitude: Measure how much each intervention changes the concept value

by.

• Cumulative Change: Measure the total change from the model predicted

concept value to the final intervened concept value.

• Reversal: Measure whether the final intervened concept value is close to

its initial value when a concept has had multiple interventions for a given

sample.

Our objective metrics primarily used intervention data and which concepts were

seen by participants. We tracked interventions by participants, and interventions

over time in order to evaluate if the rate of interventions increased or decreased

over time. For trust, we evaluated participant and model concepts and task label

alignment. If the model and human have the same concepts and task labels for a

large proportion of samples we can argue the human participants trust the model
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which we can label as justified and unjustified based on if the model was correct

or not (Wang and Yin, 2021; Lai and Tan, 2019). We also analysed the label the

participants submit in comparison to ground truth labels from the dataset.

In the paper introducing CBMs (Koh et al., 2020) they made two statements

about CBM capabilities. Firstly, the models are interpretable because the models

predict high-level concepts which are in tern interveneable. This enables humans

to obtain counterfactual explanations. Secondly, the authors evaluated interven-

tions with a metric they called test-time intervention. This metric looked at

the change in task error as concept values were updated and replaced with their

ground truth values. We looked at both of these by first evaluating interven-

tions as discussed previously in this section. In addition, we repeated test-time

intervention with participant data which allowed us to evaluate the intervention’s

ability to improve task and concept accuracy in a real-world setting.

5.6 Results

5.6.1 Expert Study

Out of our 12 participants, 120 samples were labelled with 2,051 concepts recorded

as seen and 93 interventions were made. 7 of the participants performed inter-

ventions with the other 5 not using the model intervention capability. The count

of interventions by participants can be seen in Figure 5.12a where there is a clear

difference in the number of interventions between CExp and CExp+Int+SMap

participants. Out of the participants who performed interventions, CExp+Int

participants performed an average of 22.5 interventions across 10 samples with a

standard deviation of 10.38, while CExp+Int+SMap participants performed an

average of 3.67 interventions across 10 samples with a standard deviation of 2.08.

Unsurprisingly, the number of interventions increased as more concepts were seen,

as shown in Figure 5.12b.
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(a) Total number of interventions performed grouped by participant.

(b) Number of concepts seen compared to the number of interventions per sample.

Figure 5.12: Most interventions are preformed by participants without

access to saliency maps, and the number of interventions performed

increase with the number of concepts seen.

A summary of interventions is displayed in Table 5.7. CExp+Int Participants

performed 58.5% interventions to correct what they believed were errors in the

predicted concepts with the other 41.5% of interventions made to explore the

concept space. Out of the feature adjustment interventions, 17.6% of interventions

were reversed with 64.5% of feature adjustment interventions kept. Out of samples

with at least one intervention, 2.78 concepts were intervened per sample. Half of

all interventions change a concept prediction from present to not present, or the

other way around. Interventions changed a concept value on average by around
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All 93 48 45 2.91 2.50 44 14 11 0.48 0.5

CExp+Int 82 48 34 3.04 2.78 41 12 6 0.49 0.52

CExp+Int+SMap 11 0 11 2.20 1 3 2 5 0.39 0.11

Table 5.7: Breakdown of interventions performed in the expert study.

0.5. 14.6% of interventions changed the model’s task prediction which could

suggest the model is not very sensitive to the concepts participants intervened

on.

CExp+Int+SMap participants made far fewer interventions with all interventions

classified as feature adjustments. Almost all interventions were made to a single

concept per sample with that intervention reversed back to the model-predicted

concept value. Compared to CExp+Int participants, all interventions appear to

be exploring the model sensitivity to changes in concept values, but one concept

at a time. As the only difference between the two groups was the addition of

saliency maps, the change in how interventions are performed suggests that sali-

ency maps helped participants analyse concepts more efficiently, leading to fewer

interventions that were focused on exploring model concept sensitivity.

5.6.1.1 Human-machine Task Alignment

An objective metric of trust is the alignment between the humans and model task

outputs (Wang and Yin, 2021; Lai and Tan, 2019). By measuring if participants
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All 80.8 (±3.6) 77.5 (±3.8) 77.8 (±8.2) 65.6 (±8.5)

CExp+Int 81.7 (±5.0) 76.7 (±5.5) 81.8 (±8.4) 70.4 (±9.0)

CExp+Int+SMap 80.0 (±5.2) 78.3 (±5.4) 60.0 (±24.5) 40.0 (±24.5)

NoInt 81.8 (±4.1) 81.8 (±4.1) - -

WithInt 78.1 (±7.4) 65.6 (±8.5) 77.8 (±8.2) 65.6 (±8.5)

CExp+Int-NoInt 81.8 (±6.8) 81.8 (±6.8) - -

CExp+Int-WithInt 81.5 (±7.6) 70.4 (±9.0) 81.8 (±8.4) 70.4 (±9.0)

CExp+Int+SMap-NoInt 81.8 (±5.2) 81.8 (±5.2) - -

CExp+Int+SMap-WithInt 60.0 (±24.5) 40.0 (±24.5) 60.0 (±24.5) 40.0 (±24.5)

Table 5.8: Expert study human-machine task alignment.

are labelling samples the same as the CBM we can argue if they trust the model

or not. To further reinforce if alignment is helping the human-machine team, we

can also compare participants accuracy where higher alignment and accuracy can

highlight trust being justified.

Alignment is calculated as the average number of samples where the participant’s

selected label matches the model’s predicted label, or labels if a participant used

interventions. Alignment is separated into four groups: (1) Overall alignment

which reflects alignment with any model prediction, i.e. participant selected la-

bels matches at least one model predicted label for a given sample. (2) Initial

alignment which considers only the model’s task label prediction before interven-

tion, (3) final alignment which considers the model’s task label predictions after

all interventions have occurred, and (4) intermediate alignment which captures

alignment with any intermediate label when a sample has been intervened upon
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two or more times. Alignment results are shown in Table 5.8.

Overall human-machine alignment ranges from 60% to 81.8%. We see a drop from

81.7% to 80% for CExp+Int+SMap participants and CExp+Int participants re-

spectively, and 81.8% to 78.1% for participants who did not perform interventions

compared to those who did. Splitting with and without interventions and the ex-

planation versions shows that saliency maps and interventions have a small drop

in mean alignment, while saliency maps and interventions have a far larger fall in

interventions (but also a far larger standard error).

Human-machine alignment does not increase from the initial model label to the

final model label. Where we see an increase in human-machine alignment is

between the initial model label and intermediate labels. As the standard error

often overlaps the data subsets these results are not conclusive. Therefore, we

will extend our discussion with the lay-person study.

These results show interventions reduce the frequency of instances where parti-

cipants agree with the CBM’s labels. However, interventions clearly influence par-

ticipants’ labelling decisions, as alignment with the initial model labels is consist-

ently lower than the overall alignment. In fact, the initial model alignment with

interventions (65.6%) is close to the true accuracy of the model without interven-

tions (70%). These findings indicate that interventions help participants calibrate

their trust in the model towards the appropriate amount to align with the model’s

true accuracy. Without interventions, participants appear to be over-trusting the

model. A one-tailed t-test reveals statistical significance with a p-value of 0.03,

below the 0.05 threshold, confirming that the absence of interventions led to in-

creased alignment in this study. However, the difference in alignment between

CExp+Int and CExp+Int+SMap participants was not statistically significant (p-

value of 0.59), suggesting that the addition of saliency maps had no meaningful

impact on alignment than providing concept explanations alone. However, a lar-

ger study may confirm otherwise.
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Figure 5.13: CExp+Int participants mostly selected the task label

aligned to the initial model task label. If interventions were preformed

on a sample then the proportion of samples where the participant label

aligned with the initial model task prediction falls slightly.

Figure 5.14: CExp+Int+SMap participants mostly sided with the

model initial task label prediction. A few samples were labelled with

a task label the model did not predict, and no samples were labelled

with the final task label predicted.
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All 78.3 (±2.4) 88.3 (±4.6) 68.3 (±3.9)

CExp+Int 75.0 (±3.4) 83.3 (±8.0) 66.7 (±4.2)

CExp+Int+SMap 81.7 (±3.1) 93.3 (±4.2) 70.0 (±6.8)

NoInt 78.0 (±3.7) 88.0 (±8.0) 68.0 (±8.0)

WithInt 78.6 (±3.4) 88.6 (±5.9) 68.6 (±4.0)

CExp+Int-NoInt 75.0 (±5.0) 80.0 (±20.0) 70.0 (±10.0)

CExp+Int-WithInt 75.0 (±5.0) 85.0 (±9.6) 65.0 (±5.0)

CExp+Int+SMap-NoInt 80.0 (±5.8) 93.3 (±6.7) 66.7 (±13.3)

CExp+Int+SMap-WithInt 83.3 (±3.3) 93.3 (±6.7) 73.3 (±6.7)

Table 5.9: Expert study human task

accuracy.

We can visualise how each sample is labelled by following to the flow chart

in Figure 5.1. Interaction with the model is labelled as “observed interaction”,

This includes samples where participants either selected their task label as being

influenced by the model or where they performed at least one intervention on

that sample. CExp+Int participants (Figure 5.13) nearly equally split samples

between interacting with the model and not interacting with it. For most samples,

participants’ final labels aligned with the initial model predictions. However,

when participants performed interventions, they were more likely to select an

alternative label or a label predicted by the model in a future iteration. This pat-

tern continued for participants with access to saliency maps (Figure 5.14). This

continues to suggest interventions influence a humans decision-making process.

If appropriate trust is given to the model, we should expect human accuracy to
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Figure 5.15: AI use shows participants start off not using the model

with usage increasing a little over time.

be higher than that of the model, as we may assume that appropriate trust means

a participant aligns with the model when it is accurate, and selects a different

label when it is inaccurate. We show human accuracy in Table 5.9. Accuracy

is averaged by participant, assuming that participants build a mental model of

the model over time. Even when participants did not explicitly use the model’s

prediction for an individual sample, they may still have been influenced by it in

their decision-making process. For instance, they may recognise when the model

is incorrect without the need to perform interventions.

Overall, CExp+Int participants achieved an accuracy of 75% with

CExp+Int+SMap participants achieving an accuracy of 81.7%, indicating that

the additional information provided by saliency maps aids decision-making. Eval-

uating the impact of interventions on task accuracy, participants who did not use

interventions achieved an accuracy of 78%, while those who did use interventions

achieved a slightly higher accuracy of 78.6%. This suggests that interventions

either match or slightly enhance participant performance, contributing to im-

proved participant accuracy.

When comparing CExp+Int+SMap and CExp+Int participants, the former con-
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sistently outperformed the latter. The accuracy improvement from saliency maps

was greater than the difference between participants who used interventions and

those who did not. While we do not have the sample size to show statistical

significance (A one-tailed t-test resulted in a p-value of 0.09 for accuracy being

higher if participants had saliency maps, and a p-value of 0.46 if participants per-

formed interventions), the observed trends suggest that both saliency maps and

interventions provide a distinct advantage for participants completing the study.

Additionally, saliency maps and interventions appear to complement each other.

Participants with access to both achieved the highest accuracy of any group.

Human-machine alignment with participant stated AI use (whether participants

selected they were influenced by the model suggestions, detected concepts, or not

influenced by the model) in Figure 5.15 shows that participants initially stated

the model suggestions or detected concepts did not influence them. The stated

AI use then increased slightly over time as the study progressed. Although we

may expect AI use to be high, we are reminded participants are knowledgeable

in skin disease identification so the models outputs may not be needed for all

samples.

5.6.1.2 Interventions Over Time

If a participant is interacting with a model we may expect the number of interven-

tions to decrease over time. Essentially, when they first start using the CBM they

will have no understanding about how sensitive the model is to concept values.

Over time we’d expect participants to start to build some understanding about the

models and thus their interaction may decrease as they will be exploring concept

sensitivity less. In Figure 5.16 we show the average number of interventions per

sample with the standard error. For both participant groups the number of inter-

ventions starts high before falling. For CExp+Int+SMap participants, this drops

to 0, while for CExp+Int participants, they continue to intervene with concept

values throughout the 10 samples they see.
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Figure 5.16: Participants in the expert study started by performing 2.5

- 3 interventions per sample. The number of interventions decreases

over the next four samples before rising again for participants without

saliency maps. Participants with saliency maps, for the most part, do

not perform any more interventions.

These results suggest that participants initially have a high engagement with the

model, but their engagement declines over time as they build a mental model of

its behaviour. The difference between CExp+Int+SMap and CExp+Int parti-

cipants indicates that saliency map explanations provide additional insights into

the model’s concept predictions. This additional information may explain the

rapid decline in interventions among these participants which does not recover.

In contrast, CExp+Int participants experience a sharp decline in interventions,

followed by a gradual increase for later samples. Without access to saliency maps

explanations about the model’s concept predictions, these participants appear

to be incentivised to use interventions as a means of understanding the model’s

decision-making process.
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5.6.1.3 Test-time Intervention and Concept Accuracy

In (Koh et al., 2020) the authors evaluate if interventions can improve task accur-

acy with a metric they call test-time intervention. Although in their evaluation

CBMs show improvements in task performance, they only used ground truth

concept values for interventions. Therefore, it remains unknown how interven-

tions improve task performance when interventions are made by humans, and

thus interventions may be made to concepts that the model is not sensitive to, or

may not result in a concept value being set to 0 or 1.

In the motivation section, we discussed (Barker et al., 2023) where they found

CBMs may not apply the same weight to concepts for task labels as humans

would. Therefore we hypothesise interventions performed by humans may not

see the same improvements in task performance in comparison to the automated

metric.

By repeating the test-time intervention metric with participants from our studies

we can show if human performed interventions improve the task accuracy of

CBMs, and thus confirms if the automated metric results from (Koh et al., 2020)

also holds with humans. Alternatively, if our results show no improvement, or a

decrease to the model task accuracy we can show there is a misalignment between

humans and the model’s sensitivity to concepts.

In Figure 5.17 we show test-time intervention results comparing the average task

accuracy of our participant groups with interventions to the task accuracy without

interventions. In Koh et al. (2020), their test-time intervention results showed task

accuracy increased with interventions. So we do not include samples that were

not intervened on we only included the same samples between with interventions

and without. For example, if participants intervened on concepts for samples 1

and 3 but not 2, we only work out the task accuracy for samples 1 and 3. As par-

ticipants performed 2 - 3 interventions on average when they did not have access

to saliency maps, or 2 with saliency maps, we cannot draw any firm conclusions
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Figure 5.17: Test-time interventions for the expert study on average

does not improve the accuracy of the CBM without interventions. The

error bars shows the standard error for per participant accuracy. As

model accuracy is group per model, these lines do not include error

bars.

if interventions improve task accuracy past these intervention counts.

Task accuracy does not improve with interventions compared to no interventions.

When 1 - 3 interventions are performed task accuracy is close to matching the

accuracy of the CBM with no interventions, and outperforms the model with 1

intervention for CExp+Int+SMap participants. However, as the error bars show

the range of task accuracy with interventions ranges from higher to lower than

the model alone with no interventions, it is clear these results will require further

evidence from the lay-person study. The final insight this result tells us is with

more interventions the task accuracy starts to increase for CExp+Int participants,

but with few participants, we cannot conclude if this is a significant result.

In addition to measuring changes in task accuracy, we can also measure the

change in concept accuracy. Figure 5.18 illustrates the precision and recall for
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(a) Concept precision

(b) Concept recall

Figure 5.18: Interventions match or exceed the concept precisions and

recall of the model prediction without interventions.

concepts separated by the two participant groups. Notably, interventions lead

to an increase in precision for CExp+Int participants. Despite the small sample

size, the error bars consistently show that the mean precision with interventions
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is higher than without them. Interestingly, the same trend is not observed for

CExp+Int+SMap participants: their interventions do not improve concept ac-

curacy, but also did not lower the task accuracy as seen in Figure 5.17.

A similar pattern is observed with recall. For both participant groups, recall with

interventions either matches or exceeds the recall of the CBM concept predictions

alone.

When combining these findings with the test-time intervention results for task

accuracy, it becomes clear that the CBM is not aligned to changes in concept

values for the concepts participants are adjusting. Although interventions often

make concept vectors more accurate, task accuracy does not reflect this improve-

ment. Instead, task accuracy generally remains the same or slightly decreases.

This aligns with the findings in (Barker et al., 2023), suggesting that the con-

cepts that CBMs use for task label predictions are not aligned with the concepts

humans perform interventions on. Assuming participants intervene on concepts

that they expect to be critical for making a task prediction if the concepts used

by the model and those targeted by human interventions were aligned, we would

expect task accuracy to remain stable. However, we observe a slight reduction in

overall accuracy, indicating a misalignment between the two.

5.6.1.4 System Causability Scale and Participant Comments

We used the SCS (Holzinger et al., 2020) to get a subjective rating of explanation

suitability (all questions are detained in the Appendix, Table B2). We have

provided several subsets of participant responses in Table 5.10. The overall score,

computed as the average of participants’ summed responses normalised by the

maximum possible score, is between 0 and 1 where 0.68 indicates an average

response (Holzinger et al., 2020). Individual questions use a Likert scale ranging

from 1 for “strongly disagree” to 5 for “strongly agree”. Almost all overall scores

are either 0.68 or slightly below. The only exception to this is the subset of
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Factors in data 3.09 3.00 3.20 3.00 3.20 2.80 3.33

Understood 3.73 3.33 4.20 3.67 3.80 3.60 3.83

Change detail level 3.18 3.67 2.60 3.50 2.80 2.80 3.50

Need support 3.64 3.33 4.00 3.50 3.80 4.00 3.33

Understanding causality 3.00 3.17 2.80 3.33 2.60 2.80 3.17

Use with knowledge 3.45 3.50 3.40 3.50 3.40 3.00 3.83

No inconsistencies 3.00 3.17 2.80 3.00 3.00 2.60 3.33

Learn to understand 3.55 3.50 3.60 3.50 3.60 3.20 3.83

Needs references 3.73 3.67 3.80 3.50 4.00 3.60 3.83

Efficient 3.45 3.67 3.20 3.67 3.20 3.40 3.50

Overall score 0.68 0.68 0.67 0.68 0.67 0.64 0.71

Table 5.10: Likert Scores for SCS questions.

participants who selected “strongly agree” as their experience at classifying skin

diseases this subset of participants’ overall score is 0.71.

Looking into the score for individual questions, we can see most questions aver-

aged to be between high 2 and high 3, which would map to the Likart options

“disagree”, “neutral”, and “agree”. Out of the questions, a few stand out. Start-

ing with change detail level (I could change the level of detail on demand), this

was rated higher for CExp+Int participants, those who performed interventions,

and participants who self-rated their experience at skin disease identification as

“strongly agree”. This aligns with our observations of interventions as these were

primarily performed by CExp+Int participants. It is clear that if participants

perform interventions, they understand this impacts the detail a model provides.

Out of participants who rated their experience as “strongly agree”, 57% of them
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used interventions.

Need support (I did not need support to understand the explanations) was the

highest rated question overall with all participant groups rating 3.33 or higher.

The highest ratings for these questions were made by CExp+Int+SMap parti-

cipants, showing the potential benefit saliency maps provide to help participants

interpret the model’s concept predictions. The second group of participants to

highly rate these questions were participants who answered their skin disease

identification experience to be “agree”. Out of these participants, 60% (with two

of these participants performing almost 60 interventions) used interventions, sug-

gesting their increased interaction with the model improved their understanding

of the model.

Finally, efficient (I received the explanations in a timely and efficient manner)

was also consistently rated slightly over 3, which aligned with the “neutral” option.

As discussed, with our test-time intervention results, this suggests participants

recognised the concepts they intervened with were not aligned with the model

decision-making process. Participants who performed interventions answered this

question with a slightly higher score than those who did not perform interventions,

but overall all participants did not perceive the model to improve explanation

efficiently.

We also asked participants for any other comments, with the suggestion these

could be about the CBM accuracy and explanation details. These highlighted

participants’ understanding of the model and study as a whole. Regarding ex-

planations one participant said “I am not sure what you mean by ‘explanations’

hence marked neutral for most of them” which is telling of why the SCS scores

could be around 0.68. Although concepts were described as explanations in the

study, this may not be a typical term for people outside of AI and ML domains.

We also had participants saying they “didn’t use the concepts at all” while oth-

ers noted the challenge of labelling images as there was no patient history to go

along with the images. Finally, one participant said “AI may be helpful for either
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non-dermatologists or students” which indicates concepts are most useful when a

human is not a domain expert or is otherwise unsure about how to label a sample.

Overall these comments highlight a mixed response between participants. 42%

of participants did not comment on the model output or explanations, while 33%

questioned the usefulness or meaning of concepts, and 17% were either positive or

negative about the model. The negative comment about the model is that model

was too confidant or inaccurate. Saliency maps or interventions were not discussed

by any participants. As one-third of participants questioned the usefulness or

meaning of concepts, more work should be made where both ML practitioners

and domain experts (e.g. medical experts) work together to ensure new research

aligns with the expectations of humans and target demographics. In the case of

CMs, this should focus on the concepts a model uses, and how these concept are

used for a model decision-making process.

5.6.2 Lay-person Study

For our lay-person study out of the 104 participants 1,560 games of Blackjack were

played with 1,456 of those games including a model to suggest moves to play, while

the other 104 games were played without a model output. 11,600 concepts were

recorded as seen and 243 interventions were performed by 23 participants out of

52 who had the capability to do so. The count of interventions by participants can

be seen in Figure 5.19a. 65.4% of interventions are performed on the inaccurate

model, with the remaining 34.6% of interventions performed on the accurate

model. This indicates participants are still engaging with the models even if

they accurately predict most concepts, and thus it suggests participants are still

motivated to use interventions to interpret the model decision-making process.

As with the expert study, there is a small correlation between samples seen and

interventions performed (Figure 5.19b).

A breakdown of interventions for the lay-person study is shown in Table 5.11.
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(a) Count of interventions performed per participant

(b) Number of interventions performed compared to number of concepts seen

Figure 5.19: Most interventions (65.4%) are preformed by participants

with the inaccurate model, and the number of interventions performed

increase with the number of concepts seen.

Most participant groups perform both error correction and feature adjustment

interventions. Participants with the accurate model primarily perform feature

adjustment interventions which we expected as the model will rarely predict con-

cepts incorrectly. Therefore these participants are exploring the model’s sens-
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All 243 83 160 4.05 2.42 152 29 60 0.58 0.53

Acc-CExp+Int 55 11 44 3.93 2.71 38 8 7 0.59 0.57

Inacc-CExp+Int 73 47 26 3.48 2.57 41 8 20 0.56 0.52

Acc-CExp+Int+SMap 29 0 29 4.83 1.50 17 5 8 0.52 0.11

Inacc-CExp+Int+SMap 86 25 61 4.53 2.32 56 8 25 0.62 0.58

Table 5.11: Breakdown of interventions performed in the lay-person

study.

itivity to concepts. Participants with the inaccurate model perform almost an

equal number of error correction interventions (47.2%) and feature adjustment

interventions (52.7%).

The intervention patterns show CExp+Int+SMap participants performed slightly

more interventions on average (4.53–4.83) than CExp+Int participants (3.48–3.93).

CExp+Int+SMap participants primarily intervened on 1–2 concepts per sample,

while CExp+Int participants intervened on 2–3 concepts. Binary interventions

were predominantly used with inaccurate models, likely due to the higher num-

ber of error correction interventions performed (47 compared to 11 for accurate

models).

Interestingly, reversal interventions remained high for inaccurate models, which

might suggest that participants needed to perform additional interventions to

build a mental model of the model. Additionally, it could indicate a misalign-

ment between the participant and model decision-making processes. E.g. if the
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participant did not agree with the resulting task label prediction from the model

after an intervention was performed. Despite the higher number of binary inter-

ventions for inaccurate models, participants in all groups changed the model task

label at similar rates (5–8 per group).

5.6.2.1 Human-machine Task Alignment

Measuring if participants are labelling samples the same as the CBMs we show

the alignment of task labels in Table 5.12. Alignment with all samples averages

77.3% which perhaps seems a little low considering the model task accuracy is

99.8% and 96.4% for the accurate and inaccurate model respectively. However,

as participants are playing a game, they may have strategies that are not aligned

with the training data. Splitting the samples between those with interventions

and those without, without interventions maintains an average alignment of 77.1%

while with interventions increases to 86.7%.

Splitting between the participant groups we can see the accurate model consist-

ently result in higher alignment than the inaccurate model. With interventions,

human-machine alignment is consistently higher than without interventions.

We also analysed alignment w.r.t. participants’ self-reported Blackjack skill, as

shown in Table 5.13. Among participants who selected strongly disagreed, dis-

agreed, or neutral, alignment remained between 74.3% and 79.2% for the ac-

curate model, and 74.5% and 75.4% for the inaccurate model, both with over-

lapping error bars. Participants with strongly disagree skill aligned with the

accurate model more often than participants with other skill levels. This may

show these participants are less confident and thus are more likely to rely on the

model’s predictions. Participants with a skill level of agree or strongly agree both

showed a higher alignment with the accurate model compared to lower skill levels,

while their alignment with the inaccurate model was consistent with lower skill

participants. These results show that although alignment increases for skilled
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All 77.3 (±0.8) 77.1 (±0.8) 81.5 (±5.3) 83.3 (±4.9)

NoInt 77.1 (±0.8) 77.1 (±0.8) - -

WithInt 86.7 (±4.4) 76.7 (±5.5) 81.5 (±5.3) 83.3 (±4.9)

Acc 80.1 (±1.1) 80.0 (±1.1) 93.8 (±6.2) 90.0 (±6.9)

Inacc 74.6 (±1.2) 74.3 (±1.2) 76.3 (±7.0) 80.0 (±6.4)

Acc-NoExp 79.8 (±2.2) 79.8 (±2.2) - -

Inacc-NoExp 70.4 (±2.6) 70.4 (±2.6) - -

Acc-CExp 84.5 (±2.0) 84.5 (±2.0) - -

Inacc-CExp 73.9 (±2.5) 73.9 (±2.5) - -

Acc-CExp+Int-NoInt 78.8 (±2.4) 78.8 (±2.4) - -

Acc-CExp+Int
-WithInt

92.9 (±7.1) 78.6 (±11.4) 90.0 (±10.0) 92.9 (±7.1)

Inacc-CExp+Int-NoInt 74.8 (±2.5) 74.8 (±2.5) - -

Inacc-CExp+Int
-WithInt

76.2 (±9.5) 66.7 (±10.5) 73.7 (±10.4) 71.4 (±10.1)

Acc-CExp+Int+SMap
-NoInt

76.0 (±2.5) 76.0 (±2.5) - -

Acc-CExp+Int+SMap
-WithInt

100 (±0.0) 100 (±0.0) 100 (±0.0) 83.3 (±16.7)

Inacc-CExp+Int+SMap
-NoInt

78.5 (±2.4) 78.5 (±2.4) - -

Inacc-CExp+Int+SMap
-WithInt

89.5 (±7.2) 78.9 (±9.6) 78.9 (±9.6) 89.5 (±7.2)

Table 5.12: Lay-person study human-machine task alignment.

participants, the overall trends remain close to the average alignment across all

participants.

Finally, we observed a general increase in alignment between the initial and final
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Acc-Strongly
Disagree

79.2% (±2.5) 79.2% (±2.5) - -

Inacc-Strongly
Disagree

74.8% (±2.1) 74.3% (±2.1) 78.6% (±11.4) 73.3% (±11.8)

Acc-Disagree 74.3% (±3.4) 74.3% (±3.4) 66.7% (±33.3) 66.7% (±33.3)

Inacc-Disagree 75.4% (±2.7) 75.0% (±2.7) 50.0% (±22.4) 83.3% (±16.7)

Acc-Neutral 77.5% (±2.5) 77.5% (±2.5) 100.0% (±0.0) 100.0% (±0.0)

Inacc-Neutral 74.5% (±2.5) 74.5% (±2.5) 100.0% (±0.0) 100.0% (±0.0)

Acc-Agree 84.3% (±1.8) 83.8% (±1.8) 100.0% (±0.0) 92.9% (±7.1)

Inacc-Agree 73.1% (±2.9) 72.7% (±2.9) 81.2% (±10.1) 82.4% (±9.5)

Acc-Strongly
Agree

82.3% (±3.6) 82.3% (±3.6) 100.0% (±0.0) 100.0% (±0.0)

Inacc-Strongly
Agree

76.6% (±6.2) 76.6% (±6.2) - -

Table 5.13: Lay-person study human-machine task alignment with par-

ticipant Blackjack skill.

model task predictions for all groups. The only notable exceptions to this were

for Acc-CExp+Int+SMap participants, and participants whose skill rating was

Strongly disagree and using the accurate model. In both cases, these participants

intervened on the accurate model. It is therefore plausible for them to align with

the model’s initial task prediction, as interventions would only lower the model’s

task accuracy.

These findings demonstrate that interventions improve human-machine task align-

ment. We performed a one-tailed t-test with the null hypothesis that interventions

do not increase alignment and the alternative hypothesis that they do *increase
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Figure 5.20: Most samples labelled by Acc-CExp+Int participants

agreed with the initial model task prediction, irrespective if they in-

teracted with the model or not.

alignment. The test resulted in a p-value of 0.041 when including all participant

groups and 0.04 when focusing only on participants capable of performing in-

terventions. Since both values are below our significance threshold of 0.05, we

can accept our alternative hypothesis and conclude that interventions improving

human-machine alignment is statistically significant. Further, we also perform a

t-test evaluating the significance of providing just concept explanations compared

to no explanations. Participants in the group CExp had a higher human-machine

alignment compared to participants in the NoExp group with a p-value of 0.036.

Finally, to assess whether participants’ self-reported Blackjack skill influenced

alignment, we performed a one-way Analysis of Variance test. This test produced

an F-statistic of 1.636 and a p-value of 0.162, showing that participant skill level

does not significantly change alignment.

Overall, these results highlight the potential of both interventions and concept ex-

planations to increase human-machine task alignment. In addition, the difference

in performance between participants with and without interventions is greater

than the difference between the accurate and inaccurate models.

Figures 5.20, 5.21, 5.22, and 5.23 visualise how each sample is labelled for Acc-

CExp+Int, Inacc-CExp+Int, Acc-CExp+Int+SMap, and Inacc-CExp+Int+SMap
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Figure 5.21: Most samples labelled by Inacc-CExp+Int participants

agreed with the initial model task prediction, irrespective if they in-

teracted with the model or not. Compared to the accurate model,

more samples without observed interaction resulted in an alternative

task label to the model prediction selected.

participants, respectively, based on the flowchart in Figure 5.1. Across all parti-

cipant groups, a similar number of game moves were made with and without the

model’s ouput and explanations. This suggests that while participants do not al-

ways rely on the model, they use it when they find it useful. As some participants

playing styles are different from the model’s, the largest number of alternative

task labels are when participants do not interact with the model.

An unexpected observation was the number of labels selected by participants who

(1) had observed model interaction but selected the initial model label without

performing interventions, and (2) selected an alternative label without perform-

ing interventions. These findings suggest that concept explanations enable par-

ticipants to evaluate the model’s decision-making process without the need for

counterfactual explanations, allowing them to either accept or reject the model’s

task predictions.

Comparing alignment in Table 5.12 to task accuracy in Table 5.14, we observe

that participants without access to a model had the lowest task accuracy among

all participant subsets. When models were enabled, participants who performed
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Figure 5.22: Most samples labelled by Acc-CExp+Int+SMap parti-

cipants agreed with the initial model task prediction. Most labels

disagreeing with the initial model task label prediction did not include

model interaction.

Figure 5.23: Most samples labelled by Inacc-CExp+Int+SMap par-

ticipants agreed with the initial model task prediction, with most of

these for samples that included model interaction but no interventions.

As with the accurate model, most alternative task labels selected were

for samples without model interaction.

interventions did not achieve higher task accuracy than those who did not, despite

the increase in alignment previously discussed. However, accurate models showed

an observable improvement in human accuracy. In particular, participants using

the accurate model had higher task accuracy when they did not perform interven-
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Data Subset Accuracy (%)

AI disabled 74.4 (±3.9)

All 83.6 (±0.9)

WithInt 83.3 (±1.1)

NoInt 84.7 (±1.8)

Acc 84.6 (±2.7)

Inacc 78.1 (±3.2)

Acc-NoExp 84.6 (±2.7)

Inacc-NoExp 78.1 (±3.2)

Acc-CExp 91.0 (±2.4)

Inacc-CExp 81.4 (±1.6)

Acc-CExp+Int-NoInt 86.6 (±3.3)

Acc-CExp+Int-WithInt 83.8 (±2.9)

Inacc-CExp+Int-NoInt 75.7 (±4.6)

Inacc-CExp+Int-WithInt 84.3 (±1.8)

Acc-CExp+Int+SMap-NoInt 83.4 (±2.4)

Acc-CExp+Int+SMap-WithInt 83.4 (±6.4)

Inacc-CExp+Int+SMap-NoInt 83.5 (±2.9)

Inacc-CExp+Int+SMap-WithInt 86.6 (±3.6)

Table 5.14: Lay-person study task accuracy averaged by participant.

tions, while for the inaccurate model, the opposite was observed. This indicates

participants are more likely to trust a model if they perform interventions, which,

in the case of the accurate model from this study, leads to over-trust.

We also show accuracy for participants separated by their self-reported Blackjack

skill in Table 5.15. As with alignment, there is not a large difference between

participants of different skill levels. Participants with a skill level of Agree and

Strongly Agree achieved the highest accuracy of any skill level. A one-way Ana-

lysis of Variance test resulted in an F-statistic of 1.613 and a p-value of 0.177,

showing that participant skill level does not significantly change human task ac-
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Data Subset Accuracy (%)

Acc-Strongly Disagree, 93.1% (±2.8)

Inacc-Strongly Disagree 90.1% (±4.2)

Acc-Disagree 93.8% (±3.0)

Inacc-Disagree 80.5% (±4.9)

Acc-Neutral 91.4% (±2.8)

Inacc-Neutral 90.2% (±3.3)

Acc-Agree 96.1% (±1.7)

Inacc-Agree 89.7% (±3.2)

Acc-Strongly Agree 89.2% (±7.4)

Inacc-Strongly Agree 95.5% (±4.5)

Table 5.15: Lay-person study task accuracy with participant Blackjack

skill and averaged by participant.

curacy.

Participants in the CExp group demonstrated a statistically significant improve-

ment in task accuracy compared to those in the NoExp group. Using a one-tailed

t-test we comparing the two groups, resulting in a p-value of 0.042, which is

below the significance threshold of 0.05. This result suggests that providing de-

tected concepts alone helps participants interpret the model and identify obvious

mistakes.

In contrast, participants in the CExp+Int and CExp+Int+SMap groups achieved

lower task accuracy with the accurate model compared to CExp participants,

but higher task accuracy with the inaccurate model. These findings indicate

that interventions improve task accuracy when the model makes incorrect pre-

dictions. However, when the model is accurate, interventions appear to mislead

participants, reducing their overall accuracy.

Performing a one-tailed t-test to compare participants who performed interven-

tions to those who did not resulted in a p-value of 0.27, indicating no statistically
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significant difference in task accuracy for participants who used interventions

compared to those who did not across all groups. In addition, only comparing

task accuracy for participants who performed interventions to those who did not

but had access to interventions, resulted in a p-value of 0.195, which also fails

to meet our significance threshold. While we observed a trend of higher average

accuracy among participants using interventions, these results are not statistic-

ally significant, and we cannot conclude that interventions directly improve task

accuracy.

Overall, our findings indicate that concepts are beneficial for improving human-

machine alignment and this leads to improvements in human accuracy. Inter-

ventions are beneficial for increasing human-machine task alignment but do not

result in a statistically significant increase in task accuracy. Overtrust can occur

when participants perform interventions with an accurate model. Interventions

provide the largest benefit when the model makes incorrect concept predictions

and thus the increased alignment from interventions with this model leads to a

higher human accuracy.

5.6.2.2 Interventions Over Time

Interventions performed in order of games played are displayed in Figure 5.24.

To observe the trend of interventions we average the number of interventions

performed over three games. When the models make accurate concept predictions

(Figure 5.24a), the average number of interventions per sample starts at 2 for

CExp+Int+SMap participants, and 0 for CExp+Int participants. Over time the

average number of interventions performed per sample seen decrease to around 0

- 1.

An exception to this general trend of decreasing interventions occurs between

games 13 and 14, where participants in the Acc-CExp+Int group display a spike

in interventions. This is caused by game 13, where the average number of inter-
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(a) Correctly predicted concepts

(b) Incorrectly predicted concepts

Figure 5.24: Interventions performed by participants show a decline

over time when the models correctly predict concepts. This is evidence

participants initially explore the model’s capabilities and sensitivity to

concept values. When the models incorrectly predict concepts the

number of interventions performed remains constant.
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ventions is 7, with a standard error of ±2 and thus, this spike is not representative

of all participants.

For incorrect concept predictions, both participant groups with the inaccurate

model consistently performed around 2 interventions per sample. These results

demonstrate participants identify concepts that need to be intervened on while

ignoring the concepts that are correctly predicted by the models.

Overall, similar to the expert study, we observe more interventions at the begin-

ning of the study, even if concepts are correctly predicted by the model. This

shows that participants initially explore the model’s capabilities and sensitivity

to concept values before developing a mental model and reducing the number of

interventions performed to where it is required.

5.6.2.3 Test-time Intervention and Concept Accuracy

In Figure 5.25 we show the test-time intervention results for both our accurate

model and inaccurate model. We compare our participant groups that had access

to interventions to the model task accuracy without interventions. As with the

expert study, we do not include samples that were not intervened on to calculate

the model task accuracy.

Starting with the accurate model in Figure 5.25a, as expected, the model alone is

fixed at 100% accuracy. Acc-CExp+Int and Acc-CExp+Int+SMap participants

achieve almost the same task accuracy as each other when performing interven-

tions. Between 1 and 3 interventions the task accuracy falls slightly but overall

remains around 90-100%. As interventions enable participants to learn about the

model’s sensitivity to changing concept predictions, this observed task accuracy

is expected. While accuracy declines further with more interventions, we cannot

draw further conclusions due to limited data. Only a single sample was intervened

on 6 or more times.
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(a) Accurate model

(b) Inaccurate model

Figure 5.25: Test-time interventions for the lay-person study shows

interventions match the accurate model accuracy, and makes a small

increase to the inaccurate model accuracy.

With the inaccurate model in Figure 5.25b we can see the model task accur-

acy ranges from 80% to 100% for Inacc-CExp+Int+SMap, and 70% for Inacc-

CExp+Int. For participants in these groups, interventions either match or in-
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crease the model task accuracy. From 1 to 4 interventions, we can see a clear be-

nefit to participants intervening on concept predictions which increases the model

task accuracy. After 4 interventions there is little deviation from the model task

accuracy with no interventions. Inacc-CExp+Int+SMap-WithInt stays around

100%, while Inacc-CExp+Int-WithInt falls to 0%. As with the accurate model,

conclusions after 4 interventions are limited due to insufficient data. Specifically,

Inacc-CExp+Int+SMap-WithInt participants only performed 4 or more inter-

ventions on 6 samples which dropped to 1 sample after 7 interventions. Inacc-

CExp+Int-WithInt participants performed 4 or more interventions on just one

sample.

Concept precision and recall with interventions are shown in Figure 5.26. Start-

ing with the accurate model we have more insight into how interventions change

concept accuracy. Figure 5.26a shows interventions are lowering the percentage of

correctly predicted present concepts (e.g. by setting concepts from not present to

present). Precision only decreases as interventions increase. As the bars for stand-

ard error overlap, there is not a meaningful difference between CExp+Int+SMap

participants and CExp+Int participants. Moving to Recall in Figure 5.26b, inter-

ventions start off by lowering recall before increasing from 4 interventions. This

shows that over time participants appear to be attempting to correct concept

values. In other words, this is evidence participants are exploring the model’s

sensitivity to concept values. However, we also need to draw attention to the

increased size of error bars which highlights that not all participants followed this

pattern.

With the inaccurate model, the precision of concepts with interventions is con-

sistently higher than without interventions. Both participant groups increase

concept precision by 15 to 20% over the initial model concept predictions. Over-

all interventions show a meaningful increase to concept precision when the model

incorrectly predicts concepts. Concept recall in Figure 5.26d tells the same story.

Interventions improve concept recall over the model with no interventions. With
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(a) Accurate model precision (b) Accurate model recall

(c) Inaccurate model precision (d) Inaccurate model recall

Figure 5.26: Interventions with the accurate model mostly resulted in

an initial decrease for concept precision and recall. However, recall

increased after the initial decrease. Interventions with the inaccurate

model increased both precision and recall.

saliency maps, this increase with recall is up to 100% accuracy, while without

saliency maps it decreases a little over time, but is still far higher than the model

with no interventions. As before, after 4 interventions we do not have enough

samples to make any further conclusions.

Combining concept test-time intervention results with task accuracy test-time

intervention results, we can clearly see interventions lower both concept accuracy

and task accuracy when the model is accurate. We hypothesise that participants
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used interventions to better understand the model’s decision boundaries; however,

this may lead to over reliance on the model’s task predictions and ultimately de-

crease human task accuracy. This highlights a limitation of current intervention

mechanisms: they override the model’s concept predictions. As concept predic-

tions also serve as a form of model confidence, once overridden, this information is

lost. In contrast, with an inaccurate model, interventions improve concept accur-

acy and either maintain or increase task accuracy. This may still reflect some over

reliance on the model’s task predictions. However, as concept accuracy improves

and the task predictor does not have any known biases, task performance does

not decrease. It is also possible that with inaccurate models, incorrect concept

predictions are more apparent to participants, making it easier to decide when to

intervene.

5.6.2.4 System Causability Scale and Participant Feedback

Responses from the SCS questions for the lay-person study are shown in Table 5.16.

All overall scores are 0.70 or above with the lowest at 0.70 for CExp+Int-WithInt

and CExp+Int+SMap-WithInt participants, and 0.71 for Inacc-NoExp parti-

cipants. The highest score was 0.78 for Acc-CExp participants. Surprisingly,

participants with the accurate model but no concept explanations overall score

was 0.74 which matches some of the other participant groups who had access to

concepts and interventions.

For the factors in data question (I found that the data included all relevant known

causal factors with sufficient precision and granularity), Inacc participants con-

sistently scored lower than Acc participants. However, the score gap narrowed

when interventions and saliency maps were introduced, indicating that additional

information was helpful for causal evaluation. Interestingly, participants who per-

formed interventions tended to score lower than those who did not, suggesting

that performing interventions might not improve a participant’s perceived causal

understanding.
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Factors in data 3.39 3.08 2.85 3.92 3.69 3.62 3.50 3.23 3.25 2.87 3.25

Understood 4.18 4.08 4.15 4.31 4.31 4.23 4.17 4.08 4.08 4.13 4.08

Change detail
level

2.91 2.69 2.31 2.77 2.38 3.38 3.50 3.31 3.00 3.13 3.00

Need support 3.77 3.92 3.92 3.77 3.62 3.54 4.17 3.54 3.75 3.61 3.75

Understanding
causality

3.51 3.15 3.38 3.62 3.46 3.31 3.75 3.46 4.00 3.43 4.00

Use with
knowledge

3.99 4.15 3.92 4.23 3.62 3.92 3.92 3.85 4.33 3.91 4.33

No
inconsistencies

3.59 3.77 3.38 4.15 3.54 3.54 3.08 3.77 3.42 2.96 3.42

Learn to
understand

4.06 4.31 4.15 4.00 4.15 3.92 4.00 3.92 4.00 3.74 4.00

Needs references 3.64 4.00 3.77 3.85 3.46 3.54 3.33 3.54 3.58 3.13 3.58

Efficient 4.24 4.08 3.85 4.15 4.62 4.15 4.42 4.08 4.58 4.26 4.58

Overall score 0.75 0.74 0.71 0.78 0.74 0.74 0.76 0.74 0.76 0.70 0.76

Table 5.16: Lay-person study Likert scores for SCS questions.

Understood (I understood the explanations within the context of my work.), learn

to understand (I think that most people would learn to understand the explana-

tions very quickly), and efficient (I received the explanations in a timely and ef-

214



5.6 Results

ficient manner) received consistently high scores. However, WithInt participants

answered Understood and learn to understand questions with a lower score than

NoInt participants. In particular learn to understand received the lowest score

out of all participants subsets if the participants performed interventions. Similar

to our previous discussion, this highlights interventions may not be aligned with

human understanding. In this case, this result indicates interventions are not

easy to understand.

The mixed responses continue with Understanding causality (I found the explan-

ations helped me to understand causality) where scores generally improved with

the inclusion of explanation techniques. However, for use with knowledge, scores

were higher for NoInt participants, implying that interventions might have intro-

duced confusion in what concepts mean or reflected a mismatch between model

and participant strategies.

The no inconsistencies (I did not find inconsistencies between explanations) ques-

tion saw lower scores for inaccurate models, likely reflecting participants’ recogni-

tion of model errors as inconsistencies. Again, participants performing interven-

tions scored this question lower, reinforcing concerns about the alignment between

the model and participants’ understanding. Finally, the needs references question

decreased with additional explanation techniques but was lowest for participants

performing interventions, which adds to the growing results suggesting concepts

may not be aligned or fully understood by participants.

The SCS results highlight that incorporating concepts improves participants’ un-

derstanding of causality, with model outputs generally being well understood.

Participants also agreed that the explanations allowed for greater control over

detail levels. However, interventions also received low scores for multiple ques-

tions, suggesting participants struggled to understand how concept values influ-

enced task labels, and how concepts influence the model’s decision-making pro-

cess. This may indicate either a lack of alignment between model reasoning and

participants’ understanding of the task or insufficient clarity in the intervention
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design.

We also provide participant comments to provide additional insights. Participants

in the NoExp group generally found the AI’s suggestions “very helpful” or “useful

to a certain degree.” However, one participant noted that they “do not remember

any explanations as to what the AI was doing.” This response aligns with the

study design, as only the task label output was provided to these participants.

When predicting task labels, participants were not guaranteed to gain insight

into the causes of incorrect predictions, leading one participant to conclude that

the “AI agent was mostly correct by statistical analysis.” However, repeated

interactions meant some participants were able to identify some model biases,

such as the observation that “the AI seemed to always assume an ace was 1.”

Participants in the CExp group appreciated the model’s ease of use, stating it

was “easy to use and understand.” Despite the addition of some concept pre-

dictions for the model’s decision-making process, participants expressed a desire

for a “more detailed explanation,” noting that its absence “made it hard to trust

the AI suggestions.” One participant highlighted that a probabilistic breakdown

would have improved their interaction. While concept values were not directly

revealed, some participants noticed symptoms of model inaccuracies, such as “the

AI was slightly inconsistent with its counting,” though they did not determine

the underlying cause.

In the CExp+Int group, participants commented “the AI was detailed in explain-

ing its rationale behind decisions”. However, others found the suggestions “useful

but incomplete”, and suggested that “a more complete explanation of why a cer-

tain decision was recommended would be appreciated”. Participants were better

equipped to identify the causes of model bias due to the additional concepts de-

tails and intervention capability provided. For instance, they could “easily detect

when the system was wrong about the captured concepts” or noted challenges like

the model “struggling to read the player card values in a few instances”. However,

this ability was not universal, as some participants still believed the AI was occa-
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sionally incorrect, without expanding to what they believed the model bias was.

One participant also found interventions “confusing” and they “didn’t understand

the point of it”. This further reinforces our discussion that research practitioners

and users should collaborate when designing models for human-machine settings.

Participants from the CExp+Int+SMap group provided no explicit feedback on

the use or utility of saliency maps, suggesting these were overlooked. From our

results previously discussed, saliency maps do not harm human collaboration and

show small improvements over no saliency maps.

Presenting participant’s comments quantitatively we show the percentage of par-

ticipants per group that mention the model or explanations in Table 5.17. In

particular, we counted participants’ comments that mentioned the model bias,

explanations, and whether they found the model useful or not. If no comment

was provided, or it did not cover one of these topics we counted their response as

a “no comment”.

Out of the participant groups, those who had access to interventions were most

likely to identify the model bias with these participants also finding the concept

explanations the most useful. Comments about model usefulness appeared to

be primarily tied to the participant’s existing skill, and whether the model was

accurate or not. A few participants commented about using the model until they

lost a game, at which point they would start ignoring it. No participants identified

all biases with the inaccurate model, but a number of participants identified an

incorrect bias where they believed the model was miscounting cards. Although

this is correlated with the model bias, these participants did not identify the cause

of the incorrect card totals.

The participant feedback corroborates our findings that CBMs enhance inter-

pretability by revealing model inner workings by breaking down an end-to-end

DNN with an intermediate output of high-level concepts. However, while CBMs

are more interpretable than a standard DNN, their decision-making process and

sensitivity to concepts are often hidden unless users actively intervene on a model
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to inspect changes to the task label. As shown by our test-time intervention res-

ults, a human will often have to make multiple interventions to reliably correct

any model’s inaccurate predictions. We have identified future research should

evaluate whether the delivery of concepts and models reasoning presents a bar-

rier to human understanding and undermines trust in the model.

As we had previously stated, the model and participants may have learnt different

stargates for how to play Blackjack. This was commented on by participants

too who said the model “did not fit into my existing strategies for the game.”

This misalignment highlights a gap in human-machine collaboration, where the

AI’s decision-making process must be transparent and compatible with human

decision-making for effective interaction.

218



5.6 Results

D
at

a
Su

bs
et

Identifiedfullmodelbias(%)

Identifiedpartialmodelbias(%)

Identifiedincorrectmodelbias(%)

Nocommentaboutmodelbias(%)

Explanationuseful(%)

Explanationpartiallyuseful(%)

Explanationnotuseful(%)

Nocommentaboutexplanation(%)

Modeluseful(%)

Modelnotuseful(%)

Nocommentaboutmodel(%)

A
cc

-N
oE

xp
7.

7
0

7.
7

84
.6

7.
7

0
0

92
.3

15
.4

7.
7

76
.9

In
ac

c-
N

oE
xp

0
15

.4
7.

7
76

.9
0

0
7.

7
92

.3
30

.8
23

.1
41

.2

A
cc

-C
E

xp
0

0
7.

7
92

.3
15

.4
0

0
84

.6
30

.8
0

69
.2

In
ac

c-
C

E
xp

0
15

.4
15

.4
69

.2
7.

7
0

7.
7

84
.6

15
.4

15
.4

69
.2

A
cc

-C
E

xp
+

In
t

7.
7

0
23

.1
69

.2
23

.1
0

0
76

.9
15

.4
15

.4
69

.2

In
ac

c-
C

E
xp

+
In

t
0

53
.8

15
.4

30
.8

7.
7

15
.4

7.
7

69
.2

15
.4

7.
7

76
.9

A
cc

-C
E

xp
+

In
t+

SM
ap

30
.8

0
7.

7
61

.5
7.

7
7.

7
15

.4
69

.2
38

.5
15

.4
46

.2

In
ac

c-
C

E
xp

+
In

t+
SM

ap
0

38
.5

7.
7

53
.8

7.
7

15
.4

15
.4

61
.5

38
.5

0
61

.5

T
ab

le
5.

17
:

S
u
m

m
ar

is
in

g
co

m
m

en
ts

m
ad

e
by

p
ar

ti
ci

p
an

ts
in

th
e

la
y-

p
er

so
n

st
u
d
y.

M
or

e
p
ar

ti
ci

p
an

ts
w

it
h

ac
ce

ss
to

co
n
ce

p
ts

an
d

in
te

rv
en

ti
on

s
id

en
ti

fi
ed

th
e

m
od

el
b
ia

s,
an

d
fo

u
n
d

co
n
ce

p
t

ex
p
la

n
at

io
n
s

to
b
e

u
se

fu
l.

219



5.7 Discussion

5.7 Discussion

From our human studies evaluating CBMs, we observed mixed results regard-

ing interpretability and task performance with human collaboration. While our

findings reinforce CBMs interpretability with participants who utilised concepts

and interventions to explore the concept space and inspect task predictions, task

accuracy improvements were inconsistent. Notably, increases in concept accuracy

and task alignment through interventions did not consistently translate into an

increase in task accuracy. In this section we discuss our results w.r.t. RQ3 and

the three related sub-questions.

5.7.1 Do Test-time Interventions Improve Human Task and

Concept Accuracy?

Test-time interventions found mixed results across models. In most cases, task ac-

curacy with 1 to 3 interventions matched or slightly underperformed the model’s

accuracy with no interventions, which further declined in task accuracy as the

number of interventions increased. We did not observe any improvements in task

accuracy in the expert study, while in the lay-person study, we only observed im-

provements when the model had a known bias. However, interventions generally

helped participants understand the model’s decision-making process.

Unlike the automated metrics reported in prior work (Koh et al., 2020), we did not

observe consistent accuracy improvements as interventions increased for humans

performing interventions. Further, as our expert study is more closely aligned to

situations where AI may be deployed in the real world, it suggests interventions

may lead to decreases in task accuracy instead of increases for more complex

tasks.

Despite the limited increase in task accuracy, test-time interventions with human

participants consistently lead to increases in concept accuracy. In the expert
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study, both precision and recall improved with interventions, outperforming or

matching the model task accuracy with no interventions performed. Similarly, in

the lay-person study participants improved precision and recall for the inaccurate

model, though we, as expected, observed lower precision and recall after interven-

tions for the accurate model which were corrected in the precision results. These

findings indicate that participants effectively corrected concept predictions, even

when this did not directly lead to an increase in task accuracy.

Our findings support results from (Barker et al., 2023), suggesting that CBMs

task predictions may use different concepts than humans use. While interventions

successfully correct concept predictions, their limited improvements in task accur-

acy indicate that task-relevant concepts in CBMs are either not fully understood

or misaligned with human intuition. Future research should explore methods to

align CBM task reasoning with human understanding to better leverage their

interpretability benefits.

5.7.2 Do Interventions Increase the Interpretability of Concept

Bottleneck Models?

In the expert study, interventions were almost evenly split between error cor-

rection and feature adjustments. Further, intervention frequency decreased over

time, suggesting that participants initially relied on interventions to understand

the model but required fewer interventions as they developed a mental model of

its behaviour. This aligns with the idea that CBMs improve interpretability.

Participants with access to saliency maps performed fewer interventions overall,

which were mostly reversed with subsequent interventions. This suggests that

saliency maps provided sufficient insight into the model’s behaviour to reduce

the need for interventions. However, participants also reported they placed little

weight on the model’s predictions, implying that participants preferred their own

intuition than relying on the model. For deployments of CM systems this means
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the current format of concept explanations and interventions likely will not be

utilised to their full extent. Future work should look into how this class of model

can be adapted for improved human interaction.

Regarding the lay-person study, for participants using the accurate models, inter-

ventions were primarily feature adjustments, with nearly 75% involving changes

to concept presence. However, the number of intervention reversals was unexpec-

tedly low compared to total interventions. We would have expected the reversal

number to be close to half the total interventions to indicate all interventions are

reverted. However, as observed with the concept recall, concepts are corrected

over time which indicates participants are using the interpretability of concepts

to improve their understanding of the model. More interventions, including re-

versals, were performed with the inaccurate model. In addition, some participant

comments included praise for understanding how the model made decisions.

While we observe a decline in interventions over time in both studies, part of this

decline may be attributed to the novelty of interventions, with engagement nat-

urally decreasing as participants became more familiar with the task. Although

we cannot entirely rule out this effect, the fact that the decline is not uniform,

particularly in the lay-person study, where interventions remained higher when

concepts were incorrectly predicted suggests that participants were not merely

losing interest but actively leveraging interventions to improve their understand-

ing of the model.

Our findings support the claim that CBMs improve interpretability by allowing

users to interactively query and adjust concept predictions. Interventions enable

users to understand the model’s sensitivity to concept values and the resulting

task predictions. However, we identified limitations in the efficiency of this pro-

cess. Interventions require users to take an active role in seeking explanations and

iteratively probing the model’s concept sensitivity, which may not be practical or

obvious for all users or applications. In addition, providing concept predictions

without interventions results in similar improvements in task accuracy compared
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to a standard DNN, with interventions only adding value when a model has an

obvious bias. We suggest future research should look at the delivery of concept

explanations to ensure they are efficiently provided to humans.

5.7.3 Are Concept Bottleneck Models Trusted?

As trust is a difficult metric to measure, we have opted to use alignment as a

proxy (Rong et al., 2024). We hypothesised that alignment should increase when

participants perform interventions as we may assume participants will continue to

perform interventions until they agree with the model task output. To quantify

if human-machine alignment is justified we compared alignment to participant

accuracy. If alignment is high the participant accuracy should also be higher

than participant accuracy with low alignment.

In the expert study, participants who did not use interventions aligned to the

model’s predictions 81% of the time, which is 11% higher than the model’s accur-

acy. This suggests over-trust. In contrast, participants who used interventions

were aligned to the model’s initial task prediction 66% of the time, 4% lower than

the model’s accuracy. Alignment then increased by almost 13% after interven-

tions. This shows interventions increased the trust given to the model. Trust

for participants who performed interventions is also better justified compared to

participants who did not use interventions. Accuracy was higher for participants

who used interventions compared to those who did not.

For the lay-person study, alignment was generally lower than the model’s ac-

curacy before interventions. This does not necessarily imply a lack of trust in

the model as we know participants may use different strategies than that of the

models. When participants used interventions, alignment increased significantly

across all participant groups. This increase in alignment also translated into im-

proved task accuracy for participants with the inaccurate model, showing the

increase in alignment, and thus trust was justified. However, participants using
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the accurate model did not see the same increase in human task accuracy which

shows interventions can also lead to overtrust.

Separating interventions from concept explanations, participants without the abil-

ity to perform interventions showed increased alignment for the accurate model

compared to the inaccurate model. Participants in both of these groups were also

able to show an increase in human task accuracy. This shows by just providing

some of the model decision-making process our participants were able to better

justify their trust in the models.

The trends of alignment and task accuracy are conflicting between the studies. We

hypothesis this is because in the expert study the model outputs were used purely

as a second opinion as the participants would have sufficient expertise in the task

domain. As this is not guaranteed in the lay-person study we believe participants

may follow the model if they are unsure themselves. This is a concerning point if

these models are deployed in situations where humans are not domain experts.

5.8 Limitations

This study has several limitations that should be considered when interpreting

the results. These limitations fall into three main categories: participant-related,

methodological, and task constraints.

5.8.1 Participant-Related Limitations

The expert study involved a small number of participants due to the difficulty

involved with recruiting domain specialists. As a result, findings from this study

are not statistically significant and should be interpreted as exploratory. To

address this, we conducted a larger lay-person study and drew parallels between

the two groups to provide additional context.
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5.8.2 Data Limitations

The expert study lacked access to patient history, high-quality diagnostic images,

or multiple image views that are typically available in clinical settings with tools

such as (Nextech Systems, 2024) that combine images and patient history in one

place. To mitigate this, the task was simplified to distinguish between “malignant

melanoma” and “seborrhoeic keratosis”, which have clear visual differences.

Although we collect objective results for participant behaviour, we did not collect

all subjective results such as perceived trust, confidence in the model, or pre-

dictions of the model’s outputs. While participant comments were intended to

capture these insights, many responses lacked the desired detail which limited our

ability to perform detailed analysis.

5.8.3 Task Limitations

Participants in the lay-person study played games of Blackjack while interacting

with a model. While the game simplified the creation of the CBM based agent

where we could be sure of its correctness, and that concept was predicted using

semantically meaningful input features, we could not assess overall game success

because winning or losing can depend on luck, even when optimal moves are

made. While this does not limit our ability to evaluate actions based on the

optimal moves, it also leads to participants having their own preferences and play

styles. As we observed, this resulted in lower-than-expected alignment between

participants and the model.

5.9 Conclusion

In this chapter we ran the first studies to evaluate how humans use CBMs. These

studies ask participants to complete a task with a CBM as an assistant. Our
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analysis is focused on how concepts are interacted with and the interpretability

of these models. In particular we evaluate (1) if concept interventions increase the

models task accuracy, (2) do concepts interventions increase model interpretabil-

ity, and (3) are CBMs trusted.

This chapter answers RQ3: Do Concept Models improve task accuracy and model

interpretability in a human-machine setting? We find CBMs do not translate

to increased model task accuracy in a human-machine setting, but this model

architecture and other CMs are shown to increase both the interpretability and

trust with the model’s task label predictions.

We conducted two studies: a small-scale study with dermatology experts, and

a larger lay-person study using a Blackjack-based task. A CBM acted as an

AI assistant in both settings, providing either diagnostic suggestions or strategic

game moves. From these studies, we draw three main conclusions:

Firstly, interventions significantly improved concept accuracy but had limited

impact on task accuracy. This suggests a misalignment between the concepts

humans find useful, and the concepts the model’s task predictor used to label

samples. Addressing this misalignment is critical to improving the effectiveness

of human-machine teams.

Next, we show the initial promise of interpretability from high-level concepts and

interpretability is upheld with CMs. However, as this required participants to

engage in interventions, this highlights a need for CBMs to present their decision-

making process more proactively, reducing the cognitive effort required from hu-

mans. In addition, much of the interpretability can be provided by just providing

concept predictions.

Finally, using alignment as a proxy for trust, we found that interventions led to

higher trust. In this expert study this higher trust lead to increased task ac-

curacy. In the lay-person study increased trust lead to higher task accuracy for

participants with the inaccurate model, but lower task accuracy for participants
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with the accurate model, thus showing overtrust. Providing just concept explan-

ations without the ability to intervene did not result in overtrust. This highlights

the importance of interpretable models, that are evaluated with human parti-

cipants, to enable the creation of trust that is suitably applied to a model.
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Chapter 6

Conclusion and Future Work

In this chapter, we summarise the contributions of this thesis, reflect on how these

contributions address the original research questions, and discuss future research

in this research area.

This thesis has evaluate the interpretability and effectiveness of CBMs for human-

machine collaboration. We have addressed research gaps addressing how these

models, and other similar CMs, are trained and analysing their capabilities in real-

world human studies. Despite their proposed potential, early research questioned

their interpretability, and no human studies had validated their claimed benefits

of improvements to model task accuracy or interpretability in a human-machine

collaborative environment. This thesis focused on three core areas: (1) identifying

the dataset attributes required to train them to learn to predict concepts using

semantically meaningful input features, (2) Investigating input feature attribution

and information leakage, and (3) Conducting the first human studies to evaluate

how CBMs are used in real-world human-machine tasks.

6.1 Research Questions and Contributions

6.1.1 Concept Bottleneck Model Feature Attribution

Our first research question and its linked contributions are as follows:

RQ1: How can we train a CBM to map semantically meaningful input

features to concepts, and semantically meaningful concept predictions

to task labels?
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RC1: We perform qualitative and quantitative analysis of CBMs,

finding CBMs are capable of learning semantically meaningful concept

representations from input features.

RC2: We introduce and publish a new synthetic image dataset with

fine-grained concept annotations which we use to demonstrate in-

stances when CBMs can learn semantically meaningful concept rep-

resentations and when they fail to do so.

RC3: We expand on existing literature by looking at feature attribu-

tion both from the input to the concept vector and from the concept

vector to the task output.

In Chapter 3, we used XAI techniques to analyse the input feature attribution for

concept predictions and the concept feature attribution for task predictions. Dir-

ectly answering RQ1, we can train CBMs to map semantically meaningful input

features to concepts by training these models on datasets with a clear link between

input features and task labels, void of ambiguous links (e.g. concepts annotated

as present but without the corresponding visual representation in sample images).

Further, CBMs can be trained to map semantically meaningful concept predic-

tions to task labels by training these models with a sigmoid function between the

two model parts and by using the independent training method.

Our findings reveal that the properties of the dataset significantly influence how

CBMs learn concept representations. Specifically, we demonstrate that ensuring

concepts have consistent and clear representations in input images enables CBMs

to predict concepts based on semantically meaningful input features (RC1). The

availability of instance-level concept annotations helps to facilitate the training

of CBMs. Additionally, we show that the independent training method and in-

cluding a sigmoid function between the two model parts produces a model that

closely aligns feature attribution applied to concept predictions and the ground
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truth concept values (RC3). The configuration of concepts in a dataset does not

significantly effect the alignment between concept predictions feature attribution

and ground truth values.

To support these findings, we created a new synthetic image dataset based on

playing cards, where the concepts correspond to individual cards (e.g. Three of

Hearts), and the task is to classify card hands for the game Three Card Poker

(RC2). We identified the need for this dataset because existing image data-

sets were often too noisy or lacked the required information for evaluation. Our

dataset includes multiple variations which changed the inter-concept correlation,

and used either class-level concept annotations, or instance-level concept annota-

tions. Importantly for our analysis, we included ground truth segmentations for

semantically meaningful pixels.

6.1.2 Input Feature Sensitivity and Information Leakage

Our second research question and its associated contributions are as follows:

RQ2: How does the relationship between concepts and input features

in the training dataset influence the information encoded in learned

concepts and the model’s reliance on input features for predicting

those concepts?

RC4: We perform an in-depth evaluation of CBMs revealing CBMs

can be trained to minimise the encoding of extraneous information

in concept representations, and concepts can be resilient to irrelevant

input feature alterations. We demonstrate that CBMs generally learn

underlying concept correlations present in the training data.

RC5: We conclude that two factors are critical for CBMs to learn

semantically meaningful input features: (i) accuracy of concept an-
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notations and (ii) high variability in the combinations of concepts co-

occurring, that is, each concept in a dataset should appear alongside

a variety of others to help the model distinguish between them.

In Chapter 4, we analysed CBMs by examining the information encoded in learned

concept representations and the reliance concept predictions are to the inclusion

of semantically meaningful input features. As in Chapter 3, we evaluated CBMs

trained on three datasets: CUB, Playing Cards, and CheXpert. This enabled

us to investigate how concept configurations influence the representations that

CBMs learn with respect to these two key metrics.

To answer RQ2, we identified several critical findings for how the configuration

of concepts affects the information encoded into CBMs:

1. CBMs are sensitive to inter-concept correlation in the training data. Our

experiments evaluating concept leakage revealed that high inter-concept cor-

relations lead to the encoding of additional information in concept predic-

tions (RC4).

2. CBMs can achieve resilience to modifications of irrelevant input features

when trained on instance-level concept annotations (RC4).

Additionally, we detail the properties datasets require to ensure CBMs are trained

to predict concepts using semantically meaningful input features, minimise in-

formation leakage, and reduce concept predictions changing from the modification

of irrelevant input features (RC5). Each concept in the dataset should consist-

ently align with a clear link to, input features to provide an strong training signal.

Additionally, the training dataset should include a high verity of co-occurring

concept combinations.

These findings pose implications for creating CBMs for real-world applications.

Primarily, limiting training to datasets with instance-level concept annotations
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limits these models for domains with readily available datasets, or datasets where

their creation is easy (e.g. synthetic or those with a small number of samples).

Future work is required to expand the suitability of these models to datasets

outside of these constraints.

6.1.3 Human Studies

Our third research question and its linked contributions are as follows:

RQ3: Do Concept Models improve task accuracy and model inter-

pretability in a human-machine setting?

RC6: We perform the first human studies using CBMs in a joint

human-machine task setting which analyses the interaction between

humans and the CBM. We find participants who performed interven-

tions increased trust in a model, but this trust was sometimes mis-

placed. Additionally, the CBM decision-making process is not aligned

to that of the humans.

RC7: We show providing concept explanations to humans increases

both model interpretability and task accuracy. In addition, interven-

tions can be used to reveal model bias. This upholds the model’s

promise of increasing interpretability from high-level concepts.

To address RQ3, we conducted two human studies to evaluate how humans in-

teract with CBMs in real-world tasks. These studies focused on the effectiveness

of interventions for improving both task accuracy and the interpretability of the

model’s decision-making process. The first study was small in scale and involved

recruiting dermatology experts to participate. The second study was larger in

scale and used lay participants playing games of Blackjack.
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We find that the claimed increase in model task accuracy by performing interven-

tions does not translate to a human-machine setting. Participants who performed

interventions corrected errors in the model’s concept predictions, achieving higher

concept accuracy. This highlights a misalignment between the CBM’s and human

decision-making processes. Despite this misalignment, CBMs prove to be inter-

pretable and are trusted more than non-interpretable models. Additionally, par-

ticipants who performed interventions achieved a higher task accuracy. However,

the corresponding improvement in task accuracy was small and not statistically

significant (RC6).

On the other hand, the capability of CBMs to improve interpretability through

concept predictions was upheld (RC7). Participants with access to concept ex-

planations trusted the model’s predictions more than those without. Participants

who had access to concept predictions but could not intervene achieved a stat-

istically significant increase in task accuracy compared to those without concept

explanations. This demonstrates that concept predictions alone can improve hu-

man understanding of a model, even without direct interaction.

Participants with access to interventions actively explored the concept space,

evaluated the models using counterfactual explanations and were able to identify

and correct concept errors. Despite this, participants are required to initiate this

capability of the model which leads to a small improvement in task accuracy

which was not statistically significant.

6.2 Future Work

This section outlines future research directions building on the findings of this

thesis. The primary focus is advancing CMs and their integration in to human-

machine collaborative settings. We present this in three subsections: Model and

dataset enhancements, human-machine collaboration, and generative model en-

hancements.
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6.2.1 Model and Dataset Enhancements

Chapters 3 and 4 demonstrated that while CBMs can learn to predict concepts

using semantically meaningful input features, achieving this often requires data-

sets with specific properties. This includes a comprehensive set of concept an-

notations, which can be resource-intensive to produce. These limitations restrict

scalability beyond specialised contexts, as also identified by (Kazhdan et al., 2021;

Oikarinen et al., 2023; Selvaraj et al., 2024; Zang et al., 2024; Ismail et al., 2024).

Recent advancements like CLIP (Radford et al., 2021) have been proposed to

address this limitation by automating dataset annotation (Kim et al., 2023a).

Further, CLIP has been combined with LLMs to generate concepts for train-

ing CMs, and filtering irrelevant ones (Oikarinen et al., 2023; Yang et al., 2023;

Wang et al., 2024b). However, these methods do not guarantee that generated

concepts consistently correspond to semantically meaningful input features, as

seen in (Oikarinen et al., 2023), where the concept “long tail with white stripes”

failed to align with an image where the tail was obscured.

Future work should focus on improving the alignment of generated concepts to

semantically meaningful regions of input data while minimising inter-concept cor-

relation. Generative models, such as Generative Adversarial Networks (Goodfel-

low et al., 2014) or diffusion models (Dhariwal and Nichol, 2021), is an alternative

path of future research that could reduce dependence on large annotated datasets

by generating dataset samples with similar visual properties to manually annot-

ated datasets. No matter which direction future research goes, it is important to

validate using the same class of metrics introduced in this thesis to ensure they

capture the intended representations of concepts.

Additionally, models could benefit from enhancements in architecture and training

methods to align their learned representations of concepts with human-interpretable

features. For example, Enhanced CBMs (Huang et al., 2024), uses a prototype

model to localise concepts to image regions through patch-based comparisons.
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Similarly, replacing the standard CNN feature extractor with model architec-

tures designed for object detection, such as You Only Look Once (Redmon et al.,

2016), could enable the model to detect the presence and absence of concepts

more effectively while removing the limitations caused by the dataset. Models

such as (Losch et al., 2019), already employ this approach.

An alternative approach that may align the machine’s decision-making process

with the humans would be the introduction of hybrid models that combine DNN-

based models with interpretable neuro-symbolic approaches (Roig Vilamala et al.,

2021). Specifically, the CBM concept encoder would be paired with a symbolic

task predictor. This would allow the concept encoder to detect the presence of

concepts, while the task predictor will predict task labels based on the concept

predictions. Because the symbolic component is rule-based and inherently inter-

pretable, the decision-making process can be inspected to ensure it aligns with

domain knowledge or human reasoning, and adjustments can be made if misalign-

ment is found.

6.2.2 Human-machine Collaboration

Chapter 5 demonstrated that CMs with concept explanations and interventions

enhance interpretability, but interventions impose the need to be performed mul-

tiple times to reveal a model’s sensitivity to concepts. Future work should focus on

the development of models that transparently communicate their decision-making

processes, reducing the need for extensive human interaction.

One of the key limitations of our studies was the limited number of participants

for the expert study. Expanding this research to a large-scale expert study in a

high-stakes domain, or a domain that requires input from multiple agents, would

validate findings and explore whether interventions can be proven to increase task

accuracy.

Finally, human studies are not common in AI research (Nauta et al., 2023) des-
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pite being crucial for validating interpretability claims. Future research must

incorporate evaluation with human participants, ideally in real-world tasks to

ensure that interpretability methods are both technically sound and practically

applicable (Doshi-Velez and Kim, 2017).

6.2.3 Generative Model Enhancements

As previously discussed, LLMs offer opportunities to enhance the creation of data-

sets or otherwise facilitate automatic data annotation. A second area of future

research we’ve identified is integrating CMs with generative models. This can en-

able the generated outputs of a resulting model to contain human-understandable

concepts as demonstrated by Ismail et al. (2024). The model architecture Ismail

et al. (2024) introduces demonstrates the potential of combining generative mod-

els with interpretable concept outputs, which can ensure the outputs a model

generates are predictable. Additionally, the concept vector can aid in model

debugging. However, this approach still requires training data with concept an-

notations, which is the same limitation as with CBMs.

Another avenue for generative models to address is the misalignment issues iden-

tified in our human studies. Because CBMs are trained on ground truth concept

values, applying interventions post-training often results in out-of-distribution

concept vectors. However, to the best of our knowledge, there are no datasets

with intervention annotations. Incorporating human-in-the-loop methods during

training has been shown to reduce annotation dependency (Russakovsky et al.,

2015; Chauhan et al., 2023). For CBMs, LLMs could simulate human-performed

interventions, including varying confidence levels (concept values between 0 and

1). These simulated interventions could be integrated into a modified training

process, enabling models to better handle human collaborative settings.
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Appendix

Appendices

In this appendix, we provide further details on datasets, model architectures and
training methods, and additional results to supplement the content of this thesis.
All experiments were run on two workstations. The first has two 12GB NVIDIA
GeForce GTX 1080 Ti GPUs, Intel(R) Core(TM) i9-7900X CPU @ 3.30GHz and
64GB of system memory. The second workstation has a single 24GB NVIDIA
Quadro RTX 6000 GPU, Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz and
64GB of system memory. The machines run Ubuntu LTS. We estimate around
700 hours are required to train models and run all experiments, which includes
training multiple models for each dataset. All random seeds to train models were
selected using the shuf command to select a number between 0 and 1000.

A Feature Attribution

In Chapter 3 we evaluated our models with saliency maps. Extending the results
in this chapter we have present additional saliency maps here that represent the
feature attribution applied to input features from concepts.

A.0.1 CUB Input Feature Attribution

We show several concept predictions that cover concepts correctly predicted as
present, concepts incorrectly predicted as present, concepts correctly predicted
as not present and concepts incorrectly predicted as not present. Concepts
correctly predicted as present are all concepts in Figure A1, “has_bill_shape
::dagger” and “has_underparts_color::white” in Figure A2 and “has_bill_length
::shorter_than_head” in Figure A3. Concept incorrectly predicted as present
are “has_tail_pattern::solid” in Figure A2 and “has_upperparts_color::brown”,
“has_breast_pattern::striped”, “has_bill_color::grey” and “has_breast_pattern
::striped” in Figure A3. Concepts correctly predicted as not present include “has

257



A Feature Attribution

_wing_pattern::spotted” in Figure A2 and “has_bill_shape::dagger” and “has
_wing_color::grey” in Figure A4. Finally, concepts incorrectly predicted as not
present are “has_wing_pattern::multi-colored” in Figure A2 and “has_leg_color
::buff”, “has_underparts_color::white” and “has_forehead_color::black” in Fig-
ure A4.

The general case for feature attribution from the concept vector back to the input
image most salient regions, input features the model used for prediction(s), do not
align to what a human may apply feature attribution values to. Instead, we can
see the model makes concept predictions from the entire bird such as in Figure A1
for the independent and sequential models, or seemingly unrelated parts of the
bird image as shown in Figure A2 where the eye of the bird is a particularly
important feature to the concept predictions. With our models and LRP feature
attribution results, the eye of the bird appears to be a common input feature to
receive relevance.

Concepts with similar prediction values often share similar saliency maps, as
shown in Figure A1 for the Independent and Sequential models and the con-
cepts has_upperparts_color::brown, has_breast_pattern::striped and has_bill
_length::shorter_than_head for the joint-with-sigmoid model in Figure A3. Al-
though not a perfect match, and not occurring every time, positive and negative
feature attribution values can reverse from concept to concept for the same input
image and model, such that if a concept is predicted as present, then the areas
that are have positive feature attribution values may have negative values for a
concept predicted as not present. An example of this can be seen in Figure A2 for
the model joint-without-sigmoid and the concepts has_underparts_color::white
and has_wing_pattern::spotted.

Rarely concepts can appear to map to regions aligned with a human’s own un-
derstanding of a concept such as in Figure A2 for the concept has_bill_shape
::dagger and the model joint-with-sigmoid. In isolation, this may mislead a hu-
man to believe the model has made a prediction using the correct input features
when in reality the same input features are also being used for other concept
predictions which can be seen in some of the other saliency maps for the same
input image and model.

Finally, from these saliency maps, we can see the models do not need to see the
presence of a bird part to make a prediction about it, such as with the concept
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has_bill_length::shorter_than_head in Figure A3.
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A.1 Playing Cards Input Feature Attribution

Here we show additional concept saliency map results for our instance-level play-
ing card models in Figure A5, A6, A7, and A8. Most saliency maps focus on
the playing card that are semantically meaningful to its corresponding concept.
All saliency maps generated with LRP show positive relevancy attributed to the
correct playing card for each concept to satisfy semantically meaningful feature
mapping, while both IG variations show good localisation. IG with a smoothgrad
squared noise tunnel applies little relevance in general and highlights a different
card for the concept “King of Hearts” in Figure A7.

We provide examples of all task classes for class-level poker card saliency maps to
show variations between all concept predictions. These can be seen in Figure A9,
A10, A11, A12, A13 and A14. Most concepts do not apply relevance to the
semantically meaningful input features. An exception is the concept “Four of
Clubs” as seen in Figure A11.
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(b) Straight flush task label

Figure A5: Independent / sequential model trained on Poker cards.
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(b) Straight flush task label

Figure A6: Independent / sequential model trained on Random cards.
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(b) Straight flush task classification

Figure A7: Joint model trained on Poker cards.

267



A Feature Attribution

Input King of Hearts Nine of
Diamonds

Ace of Clubs

LR
P

IG
w

it
h

Sm
oo

th
gr

ad
IG

w
it

h
Sm

oo
th

gr
ad

sq
ua

re
d

(a) High card task label

Input Ace of Spades Two of Spades Three of Spades

LR
P

IG
w

it
h

Sm
oo

th
gr

ad
IG

w
it

h
Sm

oo
th

gr
ad

sq
ua

re
d

(b) Straight flush task label

Figure A8: Standard DNN model trained on Poker cards.
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Figure A9: Class-level poker cards predicting concepts with the task
label Straight flush.

269



A Feature Attribution

Input Four of Clubs Four of
Diamonds

Four of Spades

LR
P

IG
w

it
h

Sm
oo

th
gr

ad
IG

w
it

h
Sm

oo
th

gr
ad

sq
ua

re
d

(a)

Input Four of Clubs Four of
Diamonds

Four of Spades

LR
P

IG
w

it
h

Sm
oo

th
gr

ad
IG

w
it

h
Sm

oo
th

gr
ad

sq
ua

re
d

(b)

Figure A10: Class-level poker cards predicting concepts with the task
classification of Three of a kind.
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Figure A11: Class-level poker cards predicting concepts with the task
label Straight.
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Figure A12: Class-level poker cards predicting concepts with the task
label Flush.
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Figure A13: Class-level poker cards predicting concepts with the task
label Pair.
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Figure A14: Class-level poker cards predicting concepts with the task
label High card.
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A.2 CheXpert Input Feature Attribution

Here we show additional saliency map results for our CheXpert models to visu-
alise feature attribution from concept predictions propagated to input features.
Most saliency maps for models trained on instance-level CheXpert apply feature
attribution values to input features within ground truth segmentations regions.
Models trained on Class-level CheXpert apply feature attribution values to the
same input features irrespective of which concept prediction is being analysed.
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Figure A19: Saliency maps from a class-level CheXpert with three
concept present, trained using the sequential CBM method. The num-
ber beneath the saliency map is the concept prediction which is in the
range of 0 and 1.
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Figure A20: Saliency maps from a class-level CheXpert with three
concept present, trained using the sequential CBM method. The num-
ber beneath the saliency map is the concept prediction which is in the
range of 0 and 1.
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Figure A21: Saliency maps from a class-level CheXpert with four
concept present, trained using the sequential CBM method. The num-
ber beneath the saliency map is the concept prediction which is in the
range of 0 and 1.

282



A Feature Attribution

Edema Lung Opacity Pleural Effusion Support Devices

IG
w

it
h

Sm
oo

th
gr

ad
sq

ua
re

d
IG

w
it

h
Sm

oo
th

gr
ad

gr
ad

-C
A

M

0.94589 0.94416 0.94416 0.94479

Figure A22: Saliency maps from a class-level CheXpert with four
concept present, trained using the sequential CBM method. The num-
ber beneath the saliency map is the concept prediction which is in the
range of 0 and 1.
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A.3 CUB Concept Feature Attribution Proportions

Feature attribution values propagated from the task label prediction to the concept
vector can also be visualised with saliency maps. We include saliency maps results
in Section 3.6. As feature attribution is conserved, we also computed the contri-
bution each concept prediction made to the predicted task label. We include a
complete breakdown of concept contribution for the saliency maps in Figure 3.19
in Table A1, Table A2, Table A3 and Table A4.

The table of concept contributions contains each concept ID, concept vector pre-
dictions, LRP feature attribution value, and concept contributions. The tables
are sorted to display the concept with the highest contribution to the predicted
task label first, followed by concepts in descending order of contribution. The
concept vectors for each model are split into 112 segments, one for each concept
in the dataset, with the segment most to the left of each saliency map in Fig-
ure 3.19 representing the concept with ID 0 and the segment most to the right
representing the concept with ID 111.
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18 has_underparts_color::yellow 1.0 0.0728 6.933%
110 has_wing_pattern::striped 1.0 0.0696 6.623%
88 has_tail_pattern::multi-colored 1.0 0.0658 6.27%
99 has_bill_color::grey 1.0 0.0628 5.977%
72 has_belly_color::yellow 1.0 0.0615 5.855%
47 has_throat_color::black 1.0 0.0525 4.995%
31 has_tail_shape::notched_tail 1.0 0.0516 4.911%
96 has_leg_color::grey 1.0 0.0498 4.745%
61 has_under_tail_color::black 1.0 0.0476 4.533%
8 has_wing_color::white 1.0 0.047 4.476%
38 has_head_pattern::plain 1.0 0.0469 4.463%
106 has_crown_color::black 1.0 0.043 4.095%
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67 has_nape_color::black 1.0 0.0424 4.04%
93 has_primary_color::black 1.0 0.0423 4.031%
7 has_wing_color::black 1.0 0.0416 3.961%
28 has_back_color::black 1.0 0.0412 3.925%
57 has_forehead_color::black 1.0 0.0374 3.56%
22 has_breast_pattern::solid 1.0 0.0274 2.612%
13 has_upperparts_color::black 1.0 0.024 2.286%
52 has_bill_length::shorter_than_head 1.0 0.023 2.187%
89 has_belly_pattern::solid 1.0 0.0198 1.881%
82 has_shape::perching-like 1.0 0.0128 1.218%
78 has_size::small_(5_-_9_in) 1.0 0.0094 0.897%
81 has_shape::duck-like 0.0 0.0 0.837%
54 has_forehead_color::brown 0.0 0.0 0.77%
50 has_eye_color::black 1.0 0.0079 0.751%
27 has_back_color::yellow 0.0 0.0 0.509%
24 has_breast_pattern::multi-colored 0.0 0.0 0.502%
64 has_nape_color::brown 0.0 0.0 0.339%
102 has_crown_color::blue 0.0 0.0 0.281%
59 has_under_tail_color::brown 0.0 0.0 0.272%
66 has_nape_color::yellow 0.0 0.0 0.221%
95 has_primary_color::buff 0.0 0.0 0.19%
30 has_back_color::buff 0.0 0.0 0.189%
44 has_breast_color::buff 0.0 0.0 0.187%
85 has_back_pattern::multi-colored 0.0 0.0 0.18%
29 has_back_color::white 0.0 0.0 0.154%
9 has_wing_color::buff 0.0 0.0 0.142%
0 has_bill_shape::dagger 0.0 0.0 0.0%
1 has_bill_shape::hooked_seabird 0.0 0.0 0.0%
2 has_bill_shape::all-purpose 0.0 0.0 0.0%
3 has_bill_shape::cone 0.0 0.0 0.0%
4 has_wing_color::brown 0.0 0.0 0.0%
5 has_wing_color::grey 0.0 0.0 0.0%
6 has_wing_color::yellow 0.0 0.0 0.0%
10 has_upperparts_color::brown 0.0 0.0 0.0%
11 has_upperparts_color::grey 0.0 0.0 0.0%
12 has_upperparts_color::yellow 0.0 0.0 0.0%
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14 has_upperparts_color::white 0.0 0.0 0.0%
15 has_upperparts_color::buff 0.0 0.0 0.0%
16 has_underparts_color::brown 0.0 0.0 0.0%
17 has_underparts_color::grey 0.0 0.0 0.0%
19 has_underparts_color::black 0.0 0.0 0.0%
20 has_underparts_color::white 0.0 0.0 0.0%
21 has_underparts_color::buff 0.0 0.0 0.0%
23 has_breast_pattern::striped 0.0 0.0 0.0%
25 has_back_color::brown 0.0 0.0 0.0%
26 has_back_color::grey 0.0 0.0 0.0%
32 has_upper_tail_color::brown 0.0 0.0 0.0%
33 has_upper_tail_color::grey 0.0 0.0 0.0%
34 has_upper_tail_color::black 0.0 0.0 0.0%
35 has_upper_tail_color::white 0.0 0.0 0.0%
36 has_upper_tail_color::buff 0.0 0.0 0.0%
37 has_head_pattern::eyebrow 0.0 0.0 0.0%
39 has_breast_color::brown 0.0 0.0 0.0%
40 has_breast_color::grey 0.0 0.0 0.0%
41 has_breast_color::yellow 0.0 0.0 0.0%
42 has_breast_color::black 0.0 0.0 0.0%
43 has_breast_color::white 0.0 0.0 0.0%
45 has_throat_color::grey 0.0 0.0 0.0%
46 has_throat_color::yellow 0.0 0.0 0.0%
48 has_throat_color::white 0.0 0.0 0.0%
49 has_throat_color::buff 0.0 0.0 0.0%
51 has_bill_length::about_the_same_as_head 0.0 0.0 0.0%
53 has_forehead_color::blue 0.0 0.0 0.0%
55 has_forehead_color::grey 0.0 0.0 0.0%
56 has_forehead_color::yellow 0.0 0.0 0.0%
58 has_forehead_color::white 0.0 0.0 0.0%
60 has_under_tail_color::grey 0.0 0.0 0.0%
62 has_under_tail_color::white 0.0 0.0 0.0%
63 has_under_tail_color::buff 0.0 0.0 0.0%
65 has_nape_color::grey 0.0 0.0 0.0%
68 has_nape_color::white 0.0 0.0 0.0%
69 has_nape_color::buff 0.0 0.0 0.0%
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70 has_belly_color::brown 0.0 0.0 0.0%
71 has_belly_color::grey 0.0 0.0 0.0%
73 has_belly_color::black 0.0 0.0 0.0%
74 has_belly_color::white 0.0 0.0 0.0%
75 has_belly_color::buff 0.0 0.0 0.0%
76 has_wing_shape::rounded-wings 0.0 0.0 0.0%
77 has_wing_shape::pointed-wings 0.0 0.0 0.0%
79 has_size::medium_(9_-_16_in) 0.0 0.0 0.0%
80 has_size::very_small_(3_-_5_in) 0.0 0.0 0.0%
83 has_back_pattern::solid 0.0 0.0 0.0%
84 has_back_pattern::striped 0.0 0.0 0.0%
86 has_tail_pattern::solid 0.0 0.0 0.0%
87 has_tail_pattern::striped 0.0 0.0 0.0%
90 has_primary_color::brown 0.0 0.0 0.0%
91 has_primary_color::grey 0.0 0.0 0.0%
92 has_primary_color::yellow 0.0 0.0 0.0%
94 has_primary_color::white 0.0 0.0 0.0%
97 has_leg_color::black 0.0 0.0 0.0%
98 has_leg_color::buff 0.0 0.0 0.0%
100 has_bill_color::black 0.0 0.0 0.0%
101 has_bill_color::buff 0.0 0.0 0.0%
103 has_crown_color::brown 0.0 0.0 0.0%
104 has_crown_color::grey 0.0 0.0 0.0%
105 has_crown_color::yellow 0.0 0.0 0.0%
107 has_crown_color::white 0.0 0.0 0.0%
108 has_wing_pattern::solid 0.0 0.0 0.0%
109 has_wing_pattern::spotted 0.0 0.0 0.0%
111 has_wing_pattern::multi-colored 0.0 0.0 0.0%

Table A1: Concept predictions, feature attribution value and contribution shown
in Figure 3.19 (a).
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18 has_underparts_color::yellow 1.0 -0.1877 5.833%
110 has_wing_pattern::striped 1.0 -0.1963 5.464%
61 has_under_tail_color::black 1.0 -0.2436 4.412%
88 has_tail_pattern::multi-colored 1.0 -0.1373 3.972%
72 has_belly_color::yellow 1.0 -0.1321 3.865%
99 has_bill_color::grey 1.0 -0.1431 3.845%
7 has_wing_color::black 1.0 -0.1715 3.504%
27 has_back_color::yellow 0.0 0.1915 3.079%
102 has_crown_color::blue 0.0 0.1872 2.879%
31 has_tail_shape::notched_tail 1.0 -0.068 2.83%
66 has_nape_color::yellow 0.0 0.1447 2.508%
4 has_wing_color::brown 0.0 0.1324 2.492%
89 has_belly_pattern::solid 1.0 -0.0759 2.394%
50 has_eye_color::black 1.0 -0.0686 2.385%
24 has_breast_pattern::multi-colored 0.0 0.1207 2.295%
92 has_primary_color::yellow 0.0 0.1228 2.272%
54 has_forehead_color::brown 0.0 0.1943 2.249%
33 has_upper_tail_color::grey 0.0 0.1258 2.154%
52 has_bill_length::shorter_than_head 1.0 -0.0771 2.061%
22 has_breast_pattern::solid 1.0 -0.0534 2.05%
81 has_shape::duck-like 0.0 0.1482 2.008%
106 has_crown_color::black 1.0 -0.1019 1.972%
94 has_primary_color::white 0.0 0.0939 1.931%
59 has_under_tail_color::brown 0.0 0.145 1.911%
29 has_back_color::white 0.0 0.1195 1.828%
74 has_belly_color::white 0.0 0.0612 1.741%
44 has_breast_color::buff 0.0 0.1213 1.73%
47 has_throat_color::black 1.0 -0.0882 1.672%
64 has_nape_color::brown 0.0 0.1165 1.582%
85 has_back_pattern::multi-colored 0.0 0.0994 1.414%
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19 has_underparts_color::black 0.0 0.0716 1.41%
38 has_head_pattern::plain 1.0 -0.0705 1.41%
75 has_belly_color::buff 0.0 0.0689 1.354%
96 has_leg_color::grey 1.0 -0.0554 1.174%
14 has_upperparts_color::white 0.0 0.0525 1.141%
62 has_under_tail_color::white 0.0 0.0591 1.117%
93 has_primary_color::black 1.0 -0.0594 1.094%
98 has_leg_color::buff 0.0 0.074 1.046%
5 has_wing_color::grey 0.0 0.0671 1.028%
95 has_primary_color::buff 0.0 0.0753 0.978%
57 has_forehead_color::black 1.0 -0.0476 0.957%
9 has_wing_color::buff 0.0 0.0784 0.945%
30 has_back_color::buff 0.0 0.07 0.86%
104 has_crown_color::grey 0.0 0.0548 0.859%
0 has_bill_shape::dagger 0.0 0.054 0.842%
87 has_tail_pattern::striped 0.0 0.0585 0.744%
26 has_back_color::grey 0.0 0.0418 0.702%
28 has_back_color::black 1.0 -0.0373 0.616%
80 has_size::very_small_(3_-_5_in) 0.0 0.0236 0.397%
10 has_upperparts_color::brown 0.0 0.0133 0.269%
107 has_crown_color::white 0.0 0.0162 0.239%
67 has_nape_color::black 1.0 -0.0101 0.184%
90 has_primary_color::brown 0.0 0.0093 0.149%
39 has_breast_color::brown 0.0 0.011 0.138%
55 has_forehead_color::grey 0.0 0.0011 0.017%
1 has_bill_shape::hooked_seabird 0.0 -0.0 -0.0%
2 has_bill_shape::all-purpose 0.0 -0.0 -0.0%
3 has_bill_shape::cone 0.0 -0.0 -0.0%
6 has_wing_color::yellow 0.0 -0.0 -0.0%
8 has_wing_color::white 1.0 0.0 -0.0%
11 has_upperparts_color::grey 0.0 -0.0 -0.0%
12 has_upperparts_color::yellow 0.0 -0.0 -0.0%
13 has_upperparts_color::black 1.0 0.0 -0.0%
15 has_upperparts_color::buff 0.0 -0.0 -0.0%
16 has_underparts_color::brown 0.0 -0.0 -0.0%
17 has_underparts_color::grey 0.0 -0.0 -0.0%
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20 has_underparts_color::white 0.0 -0.0 -0.0%
21 has_underparts_color::buff 0.0 -0.0 -0.0%
23 has_breast_pattern::striped 0.0 -0.0 -0.0%
25 has_back_color::brown 0.0 -0.0 -0.0%
32 has_upper_tail_color::brown 0.0 -0.0 -0.0%
34 has_upper_tail_color::black 0.0 -0.0 -0.0%
35 has_upper_tail_color::white 0.0 -0.0 -0.0%
36 has_upper_tail_color::buff 0.0 -0.0 -0.0%
37 has_head_pattern::eyebrow 0.0 -0.0 -0.0%
40 has_breast_color::grey 0.0 -0.0 -0.0%
41 has_breast_color::yellow 0.0 -0.0 -0.0%
42 has_breast_color::black 0.0 -0.0 -0.0%
43 has_breast_color::white 0.0 -0.0 -0.0%
45 has_throat_color::grey 0.0 -0.0 -0.0%
46 has_throat_color::yellow 0.0 -0.0 -0.0%
48 has_throat_color::white 0.0 -0.0 -0.0%
49 has_throat_color::buff 0.0 -0.0 -0.0%
51 has_bill_length::about_the_same_as_head 0.0 -0.0 -0.0%
53 has_forehead_color::blue 0.0 -0.0 -0.0%
56 has_forehead_color::yellow 0.0 -0.0 -0.0%
58 has_forehead_color::white 0.0 -0.0 -0.0%
60 has_under_tail_color::grey 0.0 -0.0 -0.0%
63 has_under_tail_color::buff 0.0 -0.0 -0.0%
65 has_nape_color::grey 0.0 -0.0 -0.0%
68 has_nape_color::white 0.0 -0.0 -0.0%
69 has_nape_color::buff 0.0 -0.0 -0.0%
70 has_belly_color::brown 0.0 -0.0 -0.0%
71 has_belly_color::grey 0.0 -0.0 -0.0%
73 has_belly_color::black 0.0 -0.0 -0.0%
76 has_wing_shape::rounded-wings 0.0 -0.0 -0.0%
77 has_wing_shape::pointed-wings 0.0 -0.0 -0.0%
78 has_size::small_(5_-_9_in) 1.0 0.0 -0.0%
79 has_size::medium_(9_-_16_in) 0.0 -0.0 -0.0%
82 has_shape::perching-like 1.0 0.0 -0.0%
83 has_back_pattern::solid 0.0 -0.0 -0.0%
84 has_back_pattern::striped 0.0 -0.0 -0.0%
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86 has_tail_pattern::solid 0.0 -0.0 -0.0%
91 has_primary_color::grey 0.0 -0.0 -0.0%
97 has_leg_color::black 0.0 -0.0 -0.0%
100 has_bill_color::black 0.0 -0.0 -0.0%
101 has_bill_color::buff 0.0 -0.0 -0.0%
103 has_crown_color::brown 0.0 -0.0 -0.0%
105 has_crown_color::yellow 0.0 -0.0 -0.0%
108 has_wing_pattern::solid 0.0 -0.0 -0.0%
109 has_wing_pattern::spotted 0.0 -0.0 -0.0%
111 has_wing_pattern::multi-colored 0.0 -0.0 -0.0%

Table A2: Concept predictions, feature attribution value and contribution shown
in Figure 3.19 (b).
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72 has_belly_color::yellow 0.9978 -0.2795 5.794%
96 has_leg_color::grey 0.9965 -0.2105 4.723%
88 has_tail_pattern::multi-colored 0.9989 -0.2308 4.306%
57 has_forehead_color::black 0.9999 -0.2625 3.759%
99 has_bill_color::grey 0.9851 -0.1078 3.269%
69 has_nape_color::buff 0.0001 0.2265 3.119%
24 has_breast_pattern::multi-colored 0.0026 0.1461 3.112%
89 has_belly_pattern::solid 0.9941 -0.1176 2.912%
7 has_wing_color::black 0.9999 -0.2148 2.835%
27 has_back_color::yellow 0.0009 0.1558 2.812%
95 has_primary_color::buff 0.0 0.2461 2.79%
25 has_back_color::brown 0.0003 0.1782 2.751%
8 has_wing_color::white 0.9896 -0.0925 2.578%
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34 has_upper_tail_color::black 0.0649 0.053 2.525%
110 has_wing_pattern::striped 0.9894 -0.089 2.489%
18 has_underparts_color::yellow 0.9971 -0.1111 2.419%
66 has_nape_color::yellow 0.0014 0.1234 2.38%
38 has_head_pattern::plain 0.9989 -0.1259 2.352%
0 has_bill_shape::dagger 0.0 0.1915 2.278%
61 has_under_tail_color::black 0.9996 -0.1301 2.141%
2 has_bill_shape::all-purpose 0.0947 0.0373 2.098%
35 has_upper_tail_color::white 0.0002 0.1445 2.094%
3 has_bill_shape::cone 0.0007 0.1081 1.878%
29 has_back_color::white 0.0001 0.1338 1.77%
93 has_primary_color::black 0.989 -0.0611 1.726%
5 has_wing_color::grey 0.0 0.1405 1.675%
75 has_belly_color::buff 0.0 0.1441 1.674%
46 has_throat_color::yellow 0.0001 0.1172 1.672%
70 has_belly_color::brown 0.0 0.1598 1.602%
106 has_crown_color::black 0.9992 -0.0889 1.596%
13 has_upperparts_color::black 0.9996 -0.0959 1.564%
105 has_crown_color::yellow 0.0 0.1339 1.499%
82 has_shape::perching-like 0.9999 -0.1037 1.429%
45 has_throat_color::grey 0.0001 0.1096 1.424%
20 has_underparts_color::white 0.0018 0.0646 1.3%
87 has_tail_pattern::striped 0.0002 0.0683 1.037%
58 has_forehead_color::white 0.0 0.1111 0.993%
50 has_eye_color::black 0.9955 -0.0417 0.984%
6 has_wing_color::yellow 0.0 0.1033 0.949%
90 has_primary_color::brown 0.0 0.1013 0.949%
47 has_throat_color::black 0.9982 -0.044 0.883%
60 has_under_tail_color::grey 0.0002 0.0559 0.852%
28 has_back_color::black 0.9996 -0.0524 0.84%
53 has_forehead_color::blue 0.0 0.0669 0.75%
100 has_bill_color::black 0.0675 0.0148 0.716%
71 has_belly_color::grey 0.0 0.0588 0.699%
65 has_nape_color::grey 0.0 0.0624 0.626%
49 has_throat_color::buff 0.0 0.0678 0.624%
37 has_head_pattern::eyebrow 0.0 0.0537 0.532%

294



A Feature Attribution

78 has_size::small_(5_-_9_in) 0.9997 -0.0252 0.399%
52 has_bill_length::shorter_than_head 0.9854 -0.0105 0.317%
109 has_wing_pattern::spotted 0.0 0.0365 0.315%
101 has_bill_color::buff 0.0 0.0297 0.313%
98 has_leg_color::buff 0.0 0.032 0.304%
31 has_tail_shape::notched_tail 0.9097 -0.0053 0.294%
1 has_bill_shape::hooked_seabird 0.0 0.0201 0.215%
17 has_underparts_color::grey 0.0 0.0036 0.038%
76 has_wing_shape::rounded-wings 0.1 0.0005 0.027%
4 has_wing_color::brown 0.0 -0.0 -0.0%
9 has_wing_color::buff 0.0 -0.0 -0.0%
10 has_upperparts_color::brown 0.0 -0.0 -0.0%
11 has_upperparts_color::grey 0.0 -0.0 -0.0%
12 has_upperparts_color::yellow 0.0003 -0.0 -0.0%
14 has_upperparts_color::white 0.0002 -0.0 -0.0%
15 has_upperparts_color::buff 0.0 -0.0 -0.0%
16 has_underparts_color::brown 0.0 -0.0 -0.0%
19 has_underparts_color::black 0.0 -0.0 -0.0%
21 has_underparts_color::buff 0.0 -0.0 -0.0%
22 has_breast_pattern::solid 0.808 0.0 -0.0%
23 has_breast_pattern::striped 0.0 -0.0 -0.0%
26 has_back_color::grey 0.0 -0.0 -0.0%
30 has_back_color::buff 0.0 -0.0 -0.0%
32 has_upper_tail_color::brown 0.0 -0.0 -0.0%
33 has_upper_tail_color::grey 0.0 -0.0 -0.0%
36 has_upper_tail_color::buff 0.0 -0.0 -0.0%
39 has_breast_color::brown 0.0 -0.0 -0.0%
40 has_breast_color::grey 0.0 -0.0 -0.0%
41 has_breast_color::yellow 0.0015 -0.0 -0.0%
42 has_breast_color::black 0.0022 -0.0 -0.0%
43 has_breast_color::white 0.0 -0.0 -0.0%
44 has_breast_color::buff 0.0 -0.0 -0.0%
48 has_throat_color::white 0.0 -0.0 -0.0%
51 has_bill_length::about_the_same_as_head 0.001 -0.0 -0.0%
54 has_forehead_color::brown 0.0 -0.0 -0.0%
55 has_forehead_color::grey 0.0 -0.0 -0.0%
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56 has_forehead_color::yellow 0.0 -0.0 -0.0%
59 has_under_tail_color::brown 0.0 -0.0 -0.0%
62 has_under_tail_color::white 0.0 -0.0 -0.0%
63 has_under_tail_color::buff 0.0 -0.0 -0.0%
64 has_nape_color::brown 0.0 -0.0 -0.0%
67 has_nape_color::black 0.9982 0.0 -0.0%
68 has_nape_color::white 0.0 -0.0 -0.0%
73 has_belly_color::black 0.0 -0.0 -0.0%
74 has_belly_color::white 0.0058 -0.0 -0.0%
77 has_wing_shape::pointed-wings 0.0001 -0.0 -0.0%
79 has_size::medium_(9_-_16_in) 0.0 -0.0 -0.0%
80 has_size::very_small_(3_-_5_in) 0.0001 -0.0 -0.0%
81 has_shape::duck-like 0.0 -0.0 -0.0%
83 has_back_pattern::solid 0.1099 -0.0 -0.0%
84 has_back_pattern::striped 0.0001 -0.0 -0.0%
85 has_back_pattern::multi-colored 0.0 -0.0 -0.0%
86 has_tail_pattern::solid 0.0072 -0.0 -0.0%
91 has_primary_color::grey 0.0 -0.0 -0.0%
92 has_primary_color::yellow 0.0008 -0.0 -0.0%
94 has_primary_color::white 0.0004 -0.0 -0.0%
97 has_leg_color::black 0.0004 -0.0 -0.0%
102 has_crown_color::blue 0.0 -0.0 -0.0%
103 has_crown_color::brown 0.0 -0.0 -0.0%
104 has_crown_color::grey 0.0 -0.0 -0.0%
107 has_crown_color::white 0.0 -0.0 -0.0%
108 has_wing_pattern::solid 0.0001 -0.0 -0.0%
111 has_wing_pattern::multi-colored 0.0202 -0.0 -0.0%

Table A3: Concept predictions, feature attribution value and contribution shown
in Figure 3.19 (c).
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99 has_bill_color::grey 0.9999 0.0758 7.551%
88 has_tail_pattern::multi-colored 1.0 0.0691 6.883%
72 has_belly_color::yellow 1.0 0.0655 6.523%
18 has_underparts_color::yellow 1.0 0.0623 6.204%
110 has_wing_pattern::striped 1.0 0.0594 5.919%
47 has_throat_color::black 1.0 0.0525 5.227%
8 has_wing_color::white 0.9999 0.0517 5.153%
96 has_leg_color::grey 1.0 0.0514 5.124%
38 has_head_pattern::plain 1.0 0.0509 5.069%
67 has_nape_color::black 1.0 0.0485 4.833%
28 has_back_color::black 1.0 0.0447 4.455%
93 has_primary_color::black 1.0 0.0366 3.643%
61 has_under_tail_color::black 1.0 0.0365 3.634%
106 has_crown_color::black 1.0 0.0347 3.456%
13 has_upperparts_color::black 0.9999 0.0313 3.117%
50 has_eye_color::black 0.9997 0.0306 3.045%
31 has_tail_shape::notched_tail 0.9987 0.0298 2.972%
7 has_wing_color::black 1.0 0.0296 2.946%
89 has_belly_pattern::solid 0.9998 0.0283 2.821%
82 has_shape::perching-like 1.0 0.0269 2.683%
22 has_breast_pattern::solid 0.999 0.0267 2.663%
57 has_forehead_color::black 0.9999 0.0235 2.341%
78 has_size::small_(5_-_9_in) 0.9996 0.0208 2.074%
52 has_bill_length::shorter_than_head 0.9985 0.0129 1.292%
16 has_underparts_color::brown 0.0 0.0 0.311%
81 has_shape::duck-like 0.0 0.0 0.05%
87 has_tail_pattern::striped 0.0 0.0 0.009%
0 has_bill_shape::dagger 0.0 0.0 0.0%
1 has_bill_shape::hooked_seabird 0.0 0.0 0.0%
2 has_bill_shape::all-purpose 0.0004 0.0 0.0%
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3 has_bill_shape::cone 0.0 0.0 0.0%
4 has_wing_color::brown 0.0 0.0 0.0%
5 has_wing_color::grey 0.0 0.0 0.0%
6 has_wing_color::yellow 0.0 0.0 0.0%
9 has_wing_color::buff 0.0 0.0 0.0%
10 has_upperparts_color::brown 0.0 0.0 0.0%
11 has_upperparts_color::grey 0.0 0.0 0.0%
12 has_upperparts_color::yellow 0.0 0.0 0.0%
14 has_upperparts_color::white 0.0001 0.0 0.0%
15 has_upperparts_color::buff 0.0 0.0 0.0%
17 has_underparts_color::grey 0.0 0.0 0.0%
19 has_underparts_color::black 0.0 0.0 0.0%
20 has_underparts_color::white 0.0001 0.0 0.0%
21 has_underparts_color::buff 0.0 0.0 0.0%
23 has_breast_pattern::striped 0.0 0.0 0.0%
24 has_breast_pattern::multi-colored 0.0 0.0 0.0%
25 has_back_color::brown 0.0 0.0 0.0%
26 has_back_color::grey 0.0 0.0 0.0%
27 has_back_color::yellow 0.0 0.0 0.0%
29 has_back_color::white 0.0 0.0 0.0%
30 has_back_color::buff 0.0 0.0 0.0%
32 has_upper_tail_color::brown 0.0 0.0 0.0%
33 has_upper_tail_color::grey 0.0 0.0 0.0%
34 has_upper_tail_color::black 0.0 0.0 0.0%
35 has_upper_tail_color::white 0.0 0.0 0.0%
36 has_upper_tail_color::buff 0.0 0.0 0.0%
37 has_head_pattern::eyebrow 0.0 0.0 0.0%
39 has_breast_color::brown 0.0 0.0 0.0%
40 has_breast_color::grey 0.0 0.0 0.0%
41 has_breast_color::yellow 0.0002 0.0 0.0%
42 has_breast_color::black 0.0 0.0 0.0%
43 has_breast_color::white 0.0 0.0 0.0%
44 has_breast_color::buff 0.0 0.0 0.0%
45 has_throat_color::grey 0.0 0.0 0.0%
46 has_throat_color::yellow 0.0 0.0 0.0%
48 has_throat_color::white 0.0 0.0 0.0%

298



A Feature Attribution

49 has_throat_color::buff 0.0 0.0 0.0%
51 has_bill_length::about_the_same_as_head 0.0003 0.0 0.0%
53 has_forehead_color::blue 0.0 0.0 0.0%
54 has_forehead_color::brown 0.0 0.0 0.0%
55 has_forehead_color::grey 0.0 0.0 0.0%
56 has_forehead_color::yellow 0.0 0.0 0.0%
58 has_forehead_color::white 0.0 0.0 0.0%
59 has_under_tail_color::brown 0.0 0.0 0.0%
60 has_under_tail_color::grey 0.0 0.0 0.0%
62 has_under_tail_color::white 0.0 0.0 0.0%
63 has_under_tail_color::buff 0.0 0.0 0.0%
64 has_nape_color::brown 0.0 0.0 0.0%
65 has_nape_color::grey 0.0 0.0 0.0%
66 has_nape_color::yellow 0.0 0.0 0.0%
68 has_nape_color::white 0.0 0.0 0.0%
69 has_nape_color::buff 0.0 0.0 0.0%
70 has_belly_color::brown 0.0 0.0 0.0%
71 has_belly_color::grey 0.0 0.0 0.0%
73 has_belly_color::black 0.0 0.0 0.0%
74 has_belly_color::white 0.0001 0.0 0.0%
75 has_belly_color::buff 0.0 0.0 0.0%
76 has_wing_shape::rounded-wings 0.0006 0.0 0.0%
77 has_wing_shape::pointed-wings 0.0 0.0 0.0%
79 has_size::medium_(9_-_16_in) 0.0 0.0 0.0%
80 has_size::very_small_(3_-_5_in) 0.0 0.0 0.0%
83 has_back_pattern::solid 0.0002 0.0 0.0%
84 has_back_pattern::striped 0.0 0.0 0.0%
85 has_back_pattern::multi-colored 0.0 0.0 0.0%
86 has_tail_pattern::solid 0.0005 0.0 0.0%
90 has_primary_color::brown 0.0 0.0 0.0%
91 has_primary_color::grey 0.0 0.0 0.0%
92 has_primary_color::yellow 0.0001 0.0 0.0%
94 has_primary_color::white 0.0 0.0 0.0%
95 has_primary_color::buff 0.0 0.0 0.0%
97 has_leg_color::black 0.0 0.0 0.0%
98 has_leg_color::buff 0.0 0.0 0.0%
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100 has_bill_color::black 0.001 0.0 0.0%
101 has_bill_color::buff 0.0 0.0 0.0%
102 has_crown_color::blue 0.0 0.0 0.0%
103 has_crown_color::brown 0.0 0.0 0.0%
104 has_crown_color::grey 0.0 0.0 0.0%
105 has_crown_color::yellow 0.0 0.0 0.0%
107 has_crown_color::white 0.0 0.0 0.0%
108 has_wing_pattern::solid 0.0 0.0 0.0%
109 has_wing_pattern::spotted 0.0 0.0 0.0%
111 has_wing_pattern::multi-colored 0.0001 0.0 0.0%

Table A4: Concept predictions, feature attribution value and contribution shown
in Figure 3.19 (d).

B Human Studies

B.1 Results

Here we include additional details regarding our human studies. In Table B1
we expand on participant task accuracy from the lay-person study by including
accuracy per task labels. Overall participants across the different groups cor-
rectly identify when they should select the “Hit” label. There is a small drop in
task accuracy for participants with the inaccurate model. However, this drop is
completely removed for participants who performed interventions.

Participants were less accurate at labelling samples with the “Stand” option, pos-
sibly reflecting differences in the AI and participants’ game tactics. Participants
who performed interventions improved their task accuracy if they also were us-
ing the inaccurate model. The reverse is true for participants with the accurate
model.

The “Surrender” label is rarely the best label to select Shackleford (2023). In
addition, participants may be motivated to avoid using it as they do not have
any money or other motivation to maximise their score as it has no value outside
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of the study. This can be used to explain this label achieving a 0% accuracy
for most participant groups. We do not have a large set of samples to draw any
further conclusions from this label.
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(a) Correctly predicted concepts

(b) Incorrectly predicted concepts

Figure B1: The rolling average of interventions performed by parti-
cipants show a decline over time when the models correctly predict
concepts, and a consistent number when the model incorrectly pre-
dicts concepts.

In Chapter 5, we analysed the number of interventions performed by each par-
ticipant group in our lay-person study. Here we include these results again in
Figure B1 in addition to including the average number of interventions performed
per game in Figure B2. Continuing the trend observed with a rolling average, the
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(a) Correctly predicted concepts

(b) Incorrectly predicted concepts

Figure B2: Interventions performed by participants show a decline over
time with a few spikes in interventions counts.

per game average also shows the number of interventions performed declines over
time when the model correctly predicts concepts, and remains consistent when
the model incorrectly predicts concepts.

304



B Human Studies

B.2 System Causability Scale

The System Causability Scale was used to analyse the suitability of model explan-
ations (Holzinger et al., 2020). The full set of questions are included in Table B2.
We made a minor modification to the questions in the lay-person study by chan-
ging “my work” to “the game” in Question 2, and including the example “strategy
guides” instead of “medical guidelines” in Question 9.

Number Tag Question

1 Factors in data I found that the data included all relevant
known causal factors with sufficient preci-
sion and granularity.

2 Understood I understood the explanations within the
context of my work.

3 Change detail level I could change the level of detail on demand.
4 Need support I did not need support to understand the

explanations.
5 Understanding causality I found the explanations helped me to un-

derstand causality.
6 Use with knowledge I was able to use the explanations with my

knowledge base.
7 No inconsistencies I did not find inconsistencies between ex-

planations.
8 Learn to understand I think that most people would learn to un-

derstand the explanations very quickly.
9 Needs references I did not need more references in the explan-

ations: e.g., medical guidelines, regulations.
10 Efficient I received the explanations in a timely and

efficient manner.

Table B2: System Causability Scale questions.

B.3 Study details

Both the expert and lay-person studies shared similar interfaces and model in-
teraction design, ensuring consistency across both experiments. This section
provides screenshots of the interface for both studies and outlines key details
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from the ethics documentation. The studies received favourable ethical opinions
from the School of Computer Science and Informatics at Cardiff University. The
reference numbers for the studies are COMSC/Ethics/2023/144 (expert study)
and COMSC/Ethics/2023/146 (lay-person study).

B.3.1 Expert Study

Participant Recruitment: Participants for the expert study were recruited
based on their professional or educational background in dermatology. This in-
cluded individuals who were doctors, and consultants and trainees with experience
in dermatology.

Inclusion and Exclusion Criteria:

• Inclusion Criteria: Participants must be over the age of 18, fluent in
English, and have a background in medicine.

• Exclusion Criteria: Individuals with visual impairments were excluded,
as participants needed the ability to see input images and differentiate
between the colours red and blue.

Personal Data Collected: During the study we collected the following inform-
ation from participants:

• Self declared experience level in skin disease identification

• Self declared experience in Computer Science

• Age

• Gender

Below are screenshots of the expert study interface that were shown to parti-
cipants:
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29[Expert study interface consent page]Expert study interface consent page.

Figure B4: Expert study interface demographic page.
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Figure B6: Expert study interface main page.
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Figure B7: Expert study interface survey page.
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B.3.2 Lay-person Study

Participant Recruitment: Participants for the lay-person study were recruited
via emails sent to mailing lists, advertisements within Cardiff University, and
social media posts.

Inclusion and Exclusion Criteria:

• Inclusion Criteria: Participants must be over the age of 18 and fluent in
English.

• Exclusion Criteria: Individuals with visual impairments were excluded,
as participants needed the ability to see input images and differentiate
between the colours red and blue.

Personal Data Collected: During the study we collected the following inform-
ation from participants:

• Self declared experience level playing the card game Blackjack

• Self declared experience in Computer Science

• Age

• Gender

Below are screenshots of the expert study interface that were shown to parti-
cipants:
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Figure B9: Lay-person study interface consent page.

Figure B10: Lay-person study interface demographic page.
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Figure B14: First half of lay-person study interface survey page.
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Figure B15: First half of lay-person study interface survey page.
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