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Derived for deterministic demand, the Economic Order Quantity (EOQ) formula remains a popular method
for stochastic demand, typically in combination with an order level. Textbooks split the inventory cost into
the ‘cycle inventory’ cost (the cost of holding half the order quantity) and the cost of safety stock (order
level minus expected lead time demand), showing that the EOQ minimizes the total cost of ordering and
the cycle-inventory cost. However, under stochastic demand, the EOQ is smaller than the optimal order
quantity and often much smaller. A number of authors have suggested exact procedures for determining the
optimal order quantity (and order level), but the derivations (and resulting procedures) are complicated, in
contrast with the intuitively appealing nature of EOQ and its simplicity. This paper presents an alternative
approximation, leading to closed-form order quantity formulas under both a cost and service objective for
normally distributed lead-time demand. It splits inventory costs, but (i) uses that the average cycle stock
is less than half of the order quantity due to backorders, and (ii) considers inventory left-over at the end of
a cycle instead of safety stock. A numerical investigation shows that the approximation is very accurate,
with a cost error of <0.02% on average. For the traditional EOQ formula, the cost error is considerable,
going up to 6% in some cases, and so it is worthwhile in many real-life situations to use our newly proposed
formulas. Moreover, for teaching and training purposes, the adaptations help understand why the EOQ is
suboptimal.
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1. Introduction

The aim of our research is to offer alternatives to the Economic Order Quantity (EOQ) formula, one
of the major approaches for production and inventory management (Moily, 2015; Nakhaeinejad, 2024)
used in industry to balance stock investment and fixed replenishment cost efficiently (Silver et al., 2009).
This is upon recognition that EOQ calculations fall short of demand realities, i.e. that demand is (almost)
always stochastic. There are, of course, other strong assumptions underlying the EOQ that researchers
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650 R. H. TEUNTER ET AL.

have challenged and for which adaptations have been proposed. For instance, Hill (1999) analyses how
the optimal order quantity deviates from the EOQ towards the end of a product life cycle, and Chang
et al. (2011) include imperfect quality and inspection. However, we argue that certainty of demand is the
strongest assumption, since (in our experience) it never applies in real life settings. Previous research
(reviewed in the next section) has shown for multiple settings that, as a result, the EOQ is always smaller
than the optimal order quantity. The intuitive explanation for this is as follows. At the end of each cycle,
backorder costs may be incurred. Therefore, increasing the order quantity—and thereby decreasing the
number of cycles per time unit—has two cost benefits: this reduces the backordering costs as well as the
fixed replenishment costs per time unit. The EOQ ignores the first benefit and only balances the fixed
replenishment cost reduction with the holding cost increase. By underestimating the total benefit of an
order quantity increase, the EOQ methodology leads to an order quantity that is less than the optimum
order quantity.

Some procedures have been proposed in the literature to address this issue (e.g. Hadley & Whitin,
1963; Axsäter, 2015) all of which however are complicated and as such in direct contrast with the
intuitively appealing nature of EOQ and its simplicity. It is indeed this intuitive appeal that renders
the EOQ one of the most frequently used methods in (i) practice but also in (ii) classrooms and training
rooms. With regard to practice, the EOQ is used both in re-order level systems, but very much so also
in re-order level order-up-to (OUT) level systems, where the difference between the two parameters
is approximated by the EOQ (Porteus, 1985). For education, EOQ is the preferred means to teach
inventory related matters in generalist, say Operations or MBA, courses, and to organize lab experiments
on behavioral issues in inventory (Stangl & Thonemann, 2017; Perera et al., 2020).

The classic EOQ formula developed by Harris (1913) is given by EOQ = √
2Kμ/h where μ denotes

the demand rate, h the holding cost per item per time unit and K the fixed cost per replenishment
order (so, independent of how many units are ordered). It is easy to show that this is the optimal order
quantity if the demand rate is constant and continuous, the lead-time is constant and backorders are not
allowed. These assumptions never apply in practice, though. In particular, the demand rate is always
uncertain. Nevertheless, in both theory (inventory courses) and practice, the EOQ formula is often used
to determine the order quantity under stochastic demand (Rumyantsev & Netessine, 2007). It is then
typically combined with a safety stock and a corresponding order level, R, resulting in an (R, Q) policy
that places a new order for Q items, when the inventory position (on hand + on order − backorders) drops
to R (Berling & Marklund, 2006). It is also used in min max inventory systems, where the re-order and
OUT level are seldom both/jointly optimized, but rather replenishments rely upon an optimized re-order
level to which the EOQ is added to calculate the OUT level.

As will be discussed in detail in the next section, previous research has shown that the relative cost
error of using the EOQ under stochastic demand is often small, but also that it can be more than 10%.
So, especially in settings with low profit margins (e.g. retail), carefully considering whether or not to
adopt the EOQ is worthwhile.

1.1. Contribution and organization of the paper

With this in mind, in this paper, we revisit the EOQ in the presence of demand uncertainty, considering
the case that demands during stock-out periods are backordered. The objective is to find the values
for R and Q that (approximately) minimize the total (holding and fixed replenishment) cost per time
unit, where we concentrate on approximating the optimal order quantity. We consider both a cost model
and a service model. The cost model includes a backordering cost b per unit and time unit, whilst the
service model instead specifies a target fill rate, denoted by β. The latter model is more practical, given
the difficulty of estimating the backordering cost in real life. Most of the inventory control literature
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SIMPLE ECONOMIC ORDER QUANTITY HEURISTICS 651

considers cost models, though, to avoid having to optimize under a constraint (Hadley & Whitin, 1963;
Axsäter, 2015). The cost and service model are very closely related. Indeed, it is well known that for
most demand processes (including Normal lead-time demand, which is considered most), the optimal
fill rate is given by b

b+h (see, e.g. Axsäter, 2015). Interestingly, though, it will appear from our results
that setting the target fill rate to that fraction in the service model does not give the same optimal order
quantity as in the cost model.

As our literature review in the next section shows, a number of authors have presented methods for
calculating the optimal order quantity (and the corresponding optimal order level) exactly. However,
these are typically non-intuitive, complex and often iterative. We, instead, take a more intuitive approach
that splits the inventory holding costs into cycle holding costs and ‘left-over’ holding costs (at the end
of a cycle). This mimics the traditional reasoning of deriving the EOQ based on cycle holding costs
only and considering ‘safety stocks’ to set the order level. Considering left-over stocks instead of safety
stocks leads to better holding cost approximations, as we will explain in our analysis. For both the cost
and service model, we derive closed-form order quantity formulas. A numerical analysis shows these
to be very accurate. Furthermore, comparing these formulas to each other and to the traditional EOQ
formula provides many insights.

Our main contributions are as follows. First, we derive simple and accurate closed-form expressions
for near-optimal order quantities for both the cost and service model. Second, comparing them to the
traditional EOQ formula we provide many insights. In particular, the cost and service formulas show:
(i) how the suboptimality of the EOQ is related to both overestimating the cycle stock and ignoring the
reduction in safety stocks when placing larger orders, and (ii) that even if the target service level for the
service model is set to the optimal level for the cost model, the optimal order quantities differ. Third, the
intuitive approach for splitting the stock into cycle stock and left-over stock is easy to include in inventory
management courses, providing valuable insights into how demand uncertainty affects the optimal order
quantity. Fourth, although we consider Normal lead-time demand, most of our analysis holds for any
lead-time demand distribution, and the part that does depend on a specific distribution can be adapted to
other ones—although the difficulty of doing so depends on the type of distribution.

The remainder of the paper is organized as follows. In the next section we review the literature,
distinguishing between the cost and service approach. In Section 3 we present the new order quantity
formulae. Sections 4 and 5 discuss the EOQ under a fill rate constraint and with backorder costs,
respectively. We conduct a numerical investigation in Section 6 and offer important insights for inventory
theory and practice. We conclude in Section 7, where we also discuss the next steps of research.

2. Literature review

If the lead-time is negligible and backorders are not allowed, then the traditional EOQ formula is still
optimal under stochastic demand if that follows a renewal process (Chao, 1992; Maddah & Noueihed,
2017). However, this is no longer true if the lead-time is positive. Backorders can then occur and, related,
an important distinction in the stochastic inventory control literature is between a cost approach, where
backorders are penalized, and a service approach, specifying a service level constraint. The service
approach is arguably more practical, as backordering costs are typically very hard to quantify (Jiang et al.,
2019). However, as optimization under a constraint is typically harder, the cost approach is dominant
in the inventory control literature. We next discuss each approach. Our attention is mainly on studies
considering the optimization of the (R,Q) policy. Moreover, we focus on the classic setting with a fixed
cost per replenishment order, a holding cost per item per time unit and either a backordering cost per
item per time unit or a fill rate constraint.
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652 R. H. TEUNTER ET AL.

2.1. Cost approach

Authors have proven for various settings with stochastic demand that the optimal order quantity is always
greater than that EOQ. Zheng (1992, Theorem 2) does so for the standard (R, Q) policy, and Christou
et al. (2020, Proposition 5.3.) extend this result to the (r, nQ, T) policy (also known as (R, s, Q) policy).
Rao (2003, Theorem 12) proves that for the base stock (R, S) policy with varying order quantities, the
average order quantity is always greater than EOQ. This result is extended by Lagodimos et al. (2018,
Proposition 5.5) for the base stock policy under discrete time, using the discrete time version of the EOQ.

For the standard (R, Q) policy that we also consider, various techniques have been suggested
for determining the optimal values for policy parameters R and Q (see e.g. Hadley & Whitin, 1963;
Federgruen & Zheng, 1992; Axsäter, 2015). However, although not computationally intensive, these
approaches are fairly complex and often iterative, and in our experience seldom implemented—even in
dedicated inventory software. Instead, a two-step approach is often used, where the order quantity is
determined first, after which the order level is optimized given that order quantity.

Most commonly, the order quantity (in the first step) is determined using the classic EOQ formula.
Several authors have analyzed the performance of this approach. Zheng (1992) derives an upper bound
of 1/8 = 0.125 on the relative cost error resulting from the use of the deterministic EOQ formula as a
heuristic solution for a stochastic demand. Axsäter (1996) derives a slightly stronger upper bound of(√

5 − 2
)

/2 ≈ 0.118. He also shows that this bound is tight by presenting examples where the cost

error is arbitrarily close to the lower bound.
Gallego (1998) shows that the optimal order quantity is always between one and two times the

standard EOQ and uses that to show that an alternative order quantity (in the first step) of
√

2 times
the EOQ leads a better lower bound of 1.061 on the relative cost error.

2.2. Service approach

Silver and Wilson (1972) derive values for R and Q based on approximating the on-hand inventory as
Q
2 + (

R − μL

)
, where μL denotes mean demand during the lead-time. However, as will also become

apparent from our analysis, the first term overestimates the average cycle stock while the second term
underestimates the on-hand stock at the end of a cycle (i.e. the safety stock). Moreover, Silver and Wilson
do not determine closed-form expressions for R and Q, but a system of two nonlinear equations that need
to be solved.

Yano (1985) presents both an exact algorithm and a heuristic for optimizing R and Q. She also
shows global convergence of the exact algorithm. The heuristic is simpler in that it avoids the numerical
enumeration of integrals. However, both the exact algorithm and the heuristic are iterative procedures.
Alstrøm (2001) also develops an approximate analysis under a fill rate constraint, but it is again rather
complex and does not lead to a closed-form expression.

Axsäter (2006) argues, as we do, that simplicity is important for practical applications, and present
an alternative two-step procedure for normally distributed lead-time demand that has a negligible cost
error. However, the order quantity approximation is not closed-form and determining it involves looking
up an intermediate result from a table for a grid of parameter values (and interpolating in between those
values).

Platt et al. (1997) derive several heuristics for determining R and Q. They do so by applying
Lagrangian relaxation on the exact cost function under the fill rate constraint, and then using limiting
behavior (with EOQ converging to zero or infinity) of the loss function. One of these has a closed form

expression for the order quantity, namely 1
β

√
2Kμ

h + σ 2
L , where σL denotes the standard deviation of
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SIMPLE ECONOMIC ORDER QUANTITY HEURISTICS 653

TABLE 1 Notations

Model parameters

K Fixed cost per replenishment order
h Holding cost per unit per time unit
μ Demand rate (per time unit)
σ Standard deviation of the demand (per time unit)
L Replenishment lead-time
μL Expected lead time demand
σL Standard deviation of lead time demand
f (u) Density function of lead-time demand
β Fill rate, i.e. fraction of demands satisfied immediately
b Backordering cost per unit per time unit (for the cost model)

Other notations

R Order level
Q Order quantity
E [B] Expected number of backorders that occur in a cycle
α Probability of no backorders when a replenishment order arrives, aka Cycle Service Level
EO Expected number of orders placed per time unit
EB Expected number of backorders (at any time)
ECS Expected cycle stock per time unit (at any time)
ELS Expected left-over stock per time unit (at any time)
CO Expected fixed replenishment cost per time unit
CB Expected backordering cost per time unit
CCS Expected cycle stock holding cost per time unit
CLS Expected left-over stock holding cost per time unit
CT Expected total cost per time unit

lead-time demand and β is the required fill rate. We will compare this formula to the new ones resulting
from our analysis in Section 4.

3. Approximations for cost components

The notations used in this and remaining sections are listed in Table 1. For completeness, we include
here notations that have also already been defined, Moreover, and for ease of presentation, the derivative
of some function f (.) with respect to the order quantity Q is denoted by f ′(.), i.e. f ′(.) ≡ d

dQ f (.).
This section presents the building blocks for deriving EOQ formulae in later sections. These are

(approximate) expressions for (derivatives of): the expected number of orders per time unit (Section 3.1),
the expected backorder level (Section 3.2), the expected cycle inventories (Section 3.3) and the expected
left-over inventories (Section 3.4). The latter are closely linked to safety stock inventories but are not
the same. Safety stock inventories are usually defined as the difference between the re-order level and
the expected lead-time demand. Left-over inventories are, as the name indicates, the (expected) left-over
stock just before a new batch arrives. Therefore, left-over stocks are directly linked to inventory costs,
which does not apply to safety stocks. Perhaps the easiest way to see this is that for a zero safety stock,
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654 R. H. TEUNTER ET AL.

the expected left-over stock is still positive; in fact, half of the cycles then ends with positive left-over
stock.

3.1. Expected orders per time unit

The average duration of an order cycle is Q
μ

, and so the expected number of orders per time unit is easily
obtained as:

EO = μ

Q
,

and so

E′
O = − μ

Q2
. (2)

3.2. Expected backorder level

From the definition of fill rate β, we have that from every batch of Q ordered items, on average (1 − β) Q
arrive late. So, when an order arrives, the expected number of backordered units is E [B] = (1 − β) Q.
Hence, during a cycle, the number of backordered units is zero until the stock runs out (if that happens),
and then increases from zero to (on average) (1 − β) Q. Therefore, during the latter part of a cycle with
positive backorders, the average number of backordered units is 1

2 (1 − β) Q. Moreover, as the ready rate
equals the fill rate (for normal lead-time demand), the expected fraction of time with positive backorders
is (1 − β). Hence, the expected backorder level is approximately

EB ≈ 1

2
(1 − β)2Q,

and so

E′
B ≈ 1

2
(1 − β)2. (3)

3.3. Expected cycle inventory level

When an order arrives, the expected number of backordered units is E [B] = (1 − β) Q and so the
expected cycle stock just after an order arrival is Q − (1 − β) Q = βQ. Hence, for an ‘average cycle’,
the cycle stock varies between βQ and 0 and is 1

2βQ on average when positive. Moreover, a fill rate of
β implies that stock on hand is positive for fraction β of the time, so that the cycle stock can also only
be positive for fraction β of the time. Therefore, the expected cycle stock level is approximately

ECH ≈ 1

2
βQ × β = 1

2
β2Q,

and so

E′
CH ≈ 1

2
β2. (4)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
an/article/36/4/649/8251395 by C

ardiff U
niversity user on 13 N

ovem
ber 2025



SIMPLE ECONOMIC ORDER QUANTITY HEURISTICS 655

3.4. Expected left-over inventory level

The expected left-over stock equals

ELH =
∫ R

−∞
f (u) (R − u) du.

As indicated by this expression, the expected left-over stock is dependent on the lead-time demand
distribution. In what follows, we first show how its derivative is related to service levels for any demand
distribution, and then use that to find a closed-form approximation for normal lead-time demand.

The effect of the order quantity on the expected left-over stock can be cut up into three steps: (i)
given the required/optimal fill rate, a larger order quantity implies a longer cycle and so more expected
backorders per cycle, (ii) more expected backorders per cycle implies a lower order level, and (iii) a
lower order level reduces the expected left-over stock. Correspondingly, we can write the derivative of
ELH as

E′
LH ≡ dELH

dQ
= dELH

dR
× dR

dE [B]
× dE [B]

dQ
.

Rewriting the three terms (inverted for the second) on the RHS as

dLELH

dR
= d

dR

∫ R

−∞
f (u) (R − u) du =

∫ R

−∞
f (u)du = α,

and

dE [B]

dR
= d

dR

∫ ∞

R
f (u) (u − R) du = −

∫ ∞

R
f (u)du = − (1 − α) ,

dE [B]

dQ
= d

dQ
[(1 − β) Q ] = (1 − β) ,

we get

E′
LH = − (1 − β)

α

(1 − α)
. (5)

As discussed before, the difficulty in analyzing the left-over stock is that the lead-time distribution
plays a crucial role, which can also be seen from Equation (5) as the relation between the cycle service
level α and the fill rate β depends on that distribution. Fortunately, for the most commonly assumed
Normal lead time demand, we can use the following approximate result from statistics, formulated in
terms of demand.

(Shore, 1982): Consider some ‘safety factor’ x. For a standard Normal demand distribution, if the
probability of zero loss (i.e. that demand is at most x) equals α, then the expected loss (i.e. the expected
demand above x) is approximately 0.4115 (1−α)

α .

We remark that Shore (1982) shows that this is especially accurate for α ≥ 1
2 , i.e. for non-negative

safety stocks, which applies to almost all real-life situations.
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656 R. H. TEUNTER ET AL.

Since the expected loss of any Normal distribution is proportional to the standard deviation, Shore’s
approximation translates to

E [B]

σL
≈ 0.4115

(1 − α)

α
.

Using E [B] = (1 − β) Q, this gives

(1 − β)
α

(1 − α)
≈ 0.4115σL

Q
.

Inserting this into Equation (5), we get

E′
LH ≈ −0.4115σL

Q
. (6)

4. EOQ under a fill rate constraint

Under a fill rate constraint, backorder costs are not considered. So

CT = CO + CCH + CLH = KEO + hECH + hELH ,

which gives

C′
T = KE′

O + hE′
CH + hE′

LH .

Using Equations (2), (4), and (6), we then get:

C′
T ≈ −Kμ

Q2
+ 1

2
hβ2 − h

0.4115σL

Q
(7)

,which is zero for

∼
Qservice = 0.4115σL

β2
+

√√√√(
1

β

√
2Kμ

h

)2

+
(

0.4115σL

β2

)2

= 0.4115σL

β2
+

√(
1

β
EOQ

)2

+
(

0.4115σL

β2

)2

.

(8)

Note that there are two factors that cause
∼
Qservice to be larger than the traditional EOQ. Firstly,

different from the EOQ analysis, the term β2 in Equation (7) considers that (i) the expected maximum
cycle stock (after satisfying backorders upon arrival) is fraction β of the ordered amount, and (ii) cycle

stock can only be positive for fraction β of the time. As a result,
∼
Qservice equals at least 1

β
EOQ. Secondly,

if a larger order quantity implies that more backorders are allowed per cycle, the order level (and with it
the expected left-over stock) can be reduced. This benefit of applying a larger order quantity increases

with demand uncertainty, explaining why
∼
Qservice increases with the lead-time demand variance.

The numerical results of Section 6 will show that
∼
Qservice is very close to the optimal order quantity

and can be much higher than the EOQ.
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SIMPLE ECONOMIC ORDER QUANTITY HEURISTICS 657

5. EOQ with backorder costs

Including backorder costs, the total cost becomes

CT = CO + CCH + CLH + CB = KEO + hECH + bEB,

which gives

C′
T = KE′

O + hE′
CH + hE′

LH + bE′
B.

Using Equations (2)–(6), we then get:

C′
T ≈ −Kμ

Q2
+ 1

2
hβ2 − h

0.4115σL

Q
+ 1

2
b(1 − β)2. (9)

As mentioned in the introduction, it is well-known that the optimal fill rate for the cost model by
b

b+h . Setting β in Equation (9) to that level, we get

C′
T ≈ −Kμ

Q2
+ 1

2
h

(
b

b + h

)2

− h
0.4115σL

Q
+ 1

2
b

(
h

b + h

)2

,

which is zero for

∼
Qcost = 0.4115σL

b + h

b
+

√
2Kμ

b + h

bh
+

(
0.4115σL

b + h

b

)2

= 0.4115σL
b + h

b
+

√√√√(√
b + h

b
EOQ

)2

+
(

0.4115σL
b + h

b

)2

. (10)

Note that for σL = 0, this gives
∼
Qcost =

√
b+h

b EOQ, which is indeed the optimal order quantity
without demand uncertainty (see, e.g. Axsäter, 2015). Moreover, compared to that deterministic solution,
∼
Qcost increases via the term 0.4115σL

b+h
b . The logic is that increases in either σL or b+h

b imply a higher
optimal safety stock (via a wider demand distribution and a larger optimal fill rate, respectively), and a
larger order quantity allows for a reduction of the safety stock.

An interesting result from comparing
∼
Qservice in Equation (8) and

∼
Qcost in Equation (10) is that when

we set the target fill rate β for the service model to the optimal fill rate β∗ = b
b+h for the cost model,

the service model has a larger approximately optimal order quantity. In fact, if all β2 terms in Equation
(8) are replaced by β∗, then Equation (10) is obtained. This difference exists, because the cost model
considers backorder duration (implying that backorder costs are only incurred during a typically small
part of an order cycle), but the service model does not. It raises the more general question of how to
model backorder costs for inventory management, which we will discuss in Section 7.
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658 R. H. TEUNTER ET AL.

TABLE 2 Instances considered in the numerical investigation

Parameter Value range

μ 100
σ 10, 30, 50
L 1, 3, 5
K 25, 100, 400
β 90%, 95%, 98%
h 1
b/ (b + h) 90%, 95%, 98%

6. Numerical investigation

In this section, a numerical investigation quantifies the benefits of using the proposed EOQ
approximations, referred hereafter to as New Approx., compared to using the traditional EOQ
approximation and using the Platt et al. approximation. Note that for the cost model, the formula of
Platt et al. (1997) is adapted by setting the fill rate equal to b/ (b + h).

Using exact expressions from the literature for the cost and fill rate of the (R,Q) policy, given for
completeness in Appendix A, we determine (by complete search) the optimal unrestricted order quantity,
order level, and corresponding minimal cost; as well as the optimal order level and corresponding
cost for the different EOQ approximations. The percentage cost gap (i.e. increase vs. optimal) for an
approximation is denoted hereafter by �Cost.

We vary the values of the parameters in order to analyze their impact on the performance of all the
considered approximations. We consider a demand that has a mean μ = 100 and a standard deviation
σ = 10, 30, 50. The lead-time is varied as L = 1, 3, 5. The fixed replenishment cost per order K =
25, 100, 400. Under the fill rate constraint, we consider realistic targets of β = 90%, 95%, 98%. With a
backorder cost, we assume that the unit holding cost is normalized to h = 1 and the backorder unit cost
is b

(b+h)
= 90%, 95%, 98%. A summary of the values considered in the different instances is provided

in Table 2.
Hence, both under a fill rate constraint and with a backorder cost, we consider 3 × 3 × 3 × 3 = 81

instances. The detailed results (values) for all control parameter combinations are provided in Tables B1–
B3 and C1–C3 of Appendices B and C for the service and cost model, respectively. In Table 3, for both
the service model (LHS) and the cost model (RHS), we show the average (per fill rate or backorder cost
setting) absolute error in the order quantity for the three considered approximations.

The results in Table 3 show that the order quantities resulting from the New approximation are much
closer to optimal than those resulting from the EOQ and from Platt et al.’s approximation. The EOQ
performs particularly poor, with quantity errors between 14.5% and 23.1% for all considered fill rate /
cost settings. Platt et al.’s approximation performs much better, but the quantity errors are still at least
3.8% and go up to 7.0%. The new approximation has quantity errors below 2% for all considered settings.

As shown in Table 4, the cost errors show the same pattern, but are much smaller than the quantity
errors, indicating that the cost function is quite flat around the optimum (as also discussed in textbooks
such as that by Axsäter, 2015.

Also in terms of cost, the new approximation outperforms both the EOQ method and the Platt et al.
approximation. It leads to an average cost gap (over the optimal value) that does not exceed 0.02%,
which shows that the new approximation leads to a near-optimal solution. The Platt et al. approximation
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TABLE 3 Quantity error: absolute percentage deviation of an approximation compared to the optimal
order quantity, averaged for considered fill rate and backorder cost settings

β (%) % Quantity error (absolute) b
b+h

(%)

% Quantity error (absolute)

EOQ
(%)

New approx.
(%)

Platt et al.
approx. (%)

EOQ
(%)

New approx.
(%)

Platt et al.
approx. (%)

90 23.1 1.7 6.5 90 19.0 1.2 3.8
95 19.3 1.3 7.0 95 16.6 1.2 4.7
98 16.3 1.2 6.8 98 14.5 1.6 5.3

TABLE 4 Cost error: percentage cost increase of using an approximation compared to the optimal order
quantity, averaged for considered fill rate and backorder cost settings

β (%) % Cost error b
b+h

(%)

% Cost error

EOQ
(%)

New approx.
(%)

Platt et al.
approx. (%)

EOQ
(%)

New approx.
(%)

Platt et al.
approx. (%)

90 2.86 0.02 0.23 90 1.65 0.01 0.06
95 1.76 0.01 0.23 95 1.13 0.01 0.09
98 1.10 0.01 0.18 98 0.78 0.01 0.10

performs less well but still good, with an average cost gap varying from 0.06% to 0.23%. The EOQ
method has an average cost gap that goes up to 2.86% under the fill rate constraint and up to 1.65% with
a backorder cost.

Box plots of the cost gaps in Figs 1 and 2 show the cost gap variation over the considered instances
under a service constraint and with a backorder cost, respectively.

Under a fill rate constraint, the maximum cost gap of the new approximation is 0.2%, which is
obtained for the lowest service β = 90% under a standard deviation σ = 50, a lead-time L = 5 and
a fixed replenishment cost K = 25. The maximum cost gap of the Platt et al. approximation is 0.5%,
whereas that of EOQ goes up to 6.1%. With a backorder cost, the maximum cost gap reaches 0.2% under
our new approximation, 0.3% under the adapted Platt et al. approx. and 3.8% under EOQ. The largest
cost gaps are observed for instances with a low target service level or a low backorder cost value, a high
standard deviation of the demand (i.e. σ = 50) and a relatively long lead-time (i.e. L = 3, 5).

7. Discussion and conclusion

The success of the EOQ formula can largely be attributed, in our opinion, to both its intuitive derivation
and its simplicity for implementation. The latter may seem less relevant now than it was in especially the
pre-computer era, but most inventory control software packages that we know of still use simple (EOQ-
based) instead of exact, iterative procedures that have been presented in the literature (Scarf et al., 2024).
As to the intuitive derivation, the EOQ can easily be shown to minimize the cyclic ordering and inventory
holding costs under deterministic demand, and this can still be applied under stochastic demand if safety
stock costs are ignored.
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660 R. H. TEUNTER ET AL.

FIG. 1 Box plots of the percentage cost gap under a service constraint.

FIG. 2 Box plots of the percentage cost gap with a backorder cost.

We retained the logic of splitting the inventory costs into cycle costs and demand uncertainty related
costs but adapted the traditional analysis in two ways. First, we ‘corrected’ the inventory cycle costs,
considering that the average cycle inventory level is less than half of the order quantity, since part of an
arriving batch is sometimes used to satisfy backorder and there are also periods with no inventory at all.
Second, we considered left-over inventories instead of safety stocks and included them in approximating
the optimal order quantity.

The first adaptation clearly leads to an increase in the order quantity compared to the EOQ. The same
holds for the second adaptation, since a larger order quantity implies fewer order arrivals with associated
safety stock (and backorder) costs. Aside from the exact analysis, this explains why the EOQ formula
results in order quantities that are always too low under stochastic demand, which we feel is important
to explain in inventory control courses and textbooks.
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The most difficult part of approximating the optimal order quantity concerns the left-over inventory
costs, since these depend on the specific lead-time demand distribution. We considered Normal lead-time
demand, as is most often done in the literature, and used well-known statistical results on approximating
the Normal loss function. This led to new, closed-form formulas that approximate the optimal order
quantity for both a cost model (with a backorder cost per item per time unit) and a service model (with a
fill rate constraint). A numerical investigation showed these to be very accurate, with an average cost error
of 0.01% compared to 2% for the EOQ formula. Although the EOQ formula is reasonably robust, the 2%
cost reduction may still be worthwhile in many practical situations and come at no added (computational)
difficult as the newly proposed formulas are closed-form and simple.

An interesting observation is that setting the required fill rate for the service model equal to the
optimal fill rate level for the cost model does not result in the same (approximately) optimal order
quantities as for the cost model. The explanation is that the fill rate depends only on the fraction of
backorders and not their duration, but the cost model does charge backorder costs per time unit. So, in
a way, using the fill rate to measure service is not in line with charging backorder costs per time unit.
Instead, the fill rate service measure is more in line with a fixed cost per backorder. Interestingly, though,
for that cost structure there is no easy relation between cost parameters and the optimal fill rate. Future
research could also consider deriving (nearly) optimal order quantity formulas when there is a fixed cost
per backorder, or more generally, a fixed and time-dependent backorder cost. Furthermore, analyzing
the relations between inventory cost models and service definitions is interesting for inventory control
in general.

Future research can also address the sub-optimality of the EOQ formula for non-continuous demand.
Our analysis, as most of the inventory control literature, considered continuous review and continuous
(Normal lead-time) demand, implying that an order is always placed when the inventory position drops
to the order level. Under periodic review and/or lumpy demand, the inventory position may drop below
the order level and the so-called undershoot plays a role. Such situations are harder to analyze in general
but deserve attention. Logical starting points would be to either consider periodic review where demand
during the review-period plus lead-time is still Normal or consider continuous review for lumpy demand
modelled by a compound Poisson process (Babai et al., 2025).

Data availability

No new data have been generated for the purposes of this article. For any information regarding the
numerical investigation, interested readers are invited to contact the corresponding author.
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Appendix A. Exact analysis

Let us denote the standard Normal density and distribution function by �(x) and ϕ(x), respectively, and
define the ‘loss function’:

G(x) =
∫ ∞

x
(v − x) ϕ(v)dv = ϕ(x) − x (1 − �(x)) (A.1)
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as well as

H(x) =
∫ ∞

x
G(v)dv = 1

2

[(
x2 + 1

) (
1 − �(x) − xϕ(x)

]
. (A.2)

As shown in e.g. Section 5.9.2 of Axsäter (2015), the cost per time unit for the cost approach (so
including backorder costs) is

CT = Kμ

Q
+ h

(
R + Q

2
− μL

)
+ (h + b)

σL
2

Q

[
H

(
R − μL

σL

)
− H

(
R + Q − μL

σL

)]
, (A.3)

from which the cost per time unit for the service approach is easily obtained by setting b to zero, and the
fill rate is

β = 1 − σL

Q

[
G

(
R − μL

σL

)
− G

(
R + Q − μL

σL

)]
. (A.4)

Appendix B. Detailed numerical results, service system

TABLE B1 Comparative results under the fill rate β = 90%

Optimal solution EOQ New approx. Platt et al. approx.

μ σ L K Q R Cost Q R �Cost
(%)

Q R �Cost
(%)

Q R �Cost
(%)

100 10 1 25 82.2 93.3 65.6 70.7 94.9 1.1 83.8 93.1 0.0 79.3 93.7 0.1
100 30 1 25 95.6 105.2 80.9 70.7 111.5 3.6 95.3 105.2 0.0 85.3 107.6 0.5
100 50 1 25 108.4 121.8 101.8 70.7 134.0 5.3 108.0 121.9 0.0 96.2 125.5 0.4
100 10 1 100 158.6 84.4 127.8 141.4 86.2 0.7 162.3 84.0 0.0 157.5 84.5 0.0
100 30 1 100 170.9 90.9 136.9 141.4 95.9 1.7 173.1 90.5 0.0 160.6 92.5 0.2
100 50 1 100 184.4 103.1 152.6 141.4 112.9 3.0 184.6 103.1 0.0 166.7 106.9 0.4
100 10 1 400 314.5 68.6 254.7 282.8 71.7 0.6 319.4 68.1 0.0 314.5 68.6 0.0
100 30 1 400 322.5 70.3 258.2 282.8 75.1 0.9 329.9 69.4 0.0 316.0 71.1 0.0
100 50 1 400 335.1 77.0 267.6 282.8 85.1 1.4 340.7 76.2 0.0 319.1 79.4 0.1
100 10 3 25 87.0 296.7 70.1 70.7 299.7 2.0 87.9 296.5 0.0 80.9 297.8 0.2
100 30 3 25 109.5 323.6 104.0 70.7 336.3 5.4 109.3 323.7 0.0 97.5 327.3 0.4
100 50 3 25 127.3 357.1 144.8 70.7 378.7 6.1 134.0 354.8 0.1 124.2 358.2 0.0
100 10 3 100 162.7 285.7 130.0 141.4 288.5 1.0 166.2 285.3 0.0 158.3 286.3 0.0
100 30 3 100 185.7 304.5 154.3 141.4 314.8 3.1 185.7 304.5 0.0 167.4 308.5 0.5
100 50 3 100 208.6 331.9 188.9 141.4 352.3 4.9 207.2 332.3 0.0 184.3 338.8 0.5
100 10 3 400 316.1 268.6 255.2 282.8 272.1 0.6 323.2 267.9 0.0 314.9 268.8 0.0
100 30 3 400 336.4 277.9 268.8 282.8 286.3 1.5 341.8 277.1 0.0 319.5 280.5 0.1
100 50 3 400 359.6 297.2 293.7 282.8 313.3 2.6 361.3 296.9 0.0 328.7 303.4 0.4
100 10 5 25 90.4 499.8 74.0 70.7 504.0 2.7 90.7 499.7 0.0 82.4 501.4 0.4
100 30 5 25 117.9 537.7 121.4 70.7 554.6 5.9 119.7 537.1 0.0 108.3 540.9 0.2
100 50 5 25 137.9 583.3 176.0 70.7 610.3 5.9 153.7 577.5 0.2 147.0 579.9 0.1
100 10 5 100 165.9 487.4 132.3 141.4 491.0 1.3 168.9 487.0 0.0 159.1 488.4 0.1
100 30 5 100 195.9 515.8 168.7 141.4 530.4 4.0 194.9 516.0 0.0 173.9 521.4 0.5
100 50 5 100 223.6 554.4 216.9 141.4 582.0 5.6 223.9 554.3 0.0 200.3 561.7 0.3
100 10 5 400 318.3 469.0 256.1 282.8 472.9 0.7 325.8 468.2 0.0 315.3 469.3 0.0
100 30 5 400 346.5 485.5 278.7 282.8 497.0 1.9 350.2 484.8 0.0 323.0 489.6 0.2
100 50 5 400 376.8 514.6 315.9 282.8 537.5 3.4 376.2 514.7 0.0 337.9 523.6 0.5
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TABLE B2 Comparative results under the fill rate β = 95%

Optimal solution EOQ New approx. Platt et al. approx.

μ σ L K Q R Cost Q R �Cost
(%)

Q R �Cost
(%)

Q R �Cost
(%)

100 10 1 25 79.0 100.1 71.5 70.7 100.9 0.6 79.1 100.1 0.0 75.2 100.5 0.1
100 30 1 25 90.7 120.0 93.7 70.7 124.3 2.2 89.4 120.3 0.0 80.9 122.0 0.5
100 50 1 25 101.9 144.5 121.1 70.7 153.5 3.5 100.6 144.8 0.0 91.2 147.4 0.3
100 10 1 100 152.2 94.1 136.3 141.4 94.9 0.3 153.5 94.0 0.0 149.2 94.3 0.0
100 30 1 100 163.8 108.5 152.3 141.4 111.5 1.0 163.2 108.6 0.0 152.2 110.0 0.2
100 50 1 100 175.5 128.8 174.8 141.4 135.3 1.8 173.4 129.1 0.0 157.9 132.0 0.4
100 10 1 400 299.1 85.4 269.2 282.8 86.2 0.2 302.3 85.2 0.0 297.9 85.4 0.0
100 30 1 400 310.2 93.5 278.5 282.8 95.9 0.4 311.7 93.4 0.0 299.4 94.4 0.1
100 50 1 400 321.9 108.2 294.9 282.8 112.9 0.8 321.4 108.3 0.0 302.3 110.5 0.2
100 10 3 25 83.3 306.4 78.6 70.7 308.3 1.2 82.7 306.5 0.0 76.6 307.4 0.3
100 30 3 25 102.9 347.0 124.0 70.7 356.5 3.5 101.8 347.3 0.0 92.4 349.9 0.3
100 50 3 25 118.9 393.8 176.2 70.7 411.0 4.2 123.7 392.2 0.0 117.7 394.2 0.0
100 10 3 100 156.5 298.2 141.0 141.4 299.7 0.5 157.0 298.2 0.0 150.0 298.9 0.1
100 30 3 100 176.7 330.9 177.2 141.4 337.8 1.9 174.4 331.3 0.0 158.6 334.3 0.4
100 50 3 100 196.5 372.0 223.2 141.4 386.8 3.1 193.5 372.7 0.0 174.6 377.5 0.4
100 10 3 400 302.9 287.2 271.4 282.8 288.5 0.2 305.7 287.0 0.0 298.3 287.5 0.0
100 30 3 400 323.0 309.9 296.8 282.8 314.9 0.8 322.4 310.0 0.0 302.7 312.4 0.2
100 50 3 400 343.2 343.2 333.6 282.8 353.7 1.5 339.8 343.8 0.0 311.4 348.5 0.4
100 10 5 25 86.2 511.5 84.2 70.7 514.3 1.6 85.3 511.7 0.0 78.1 513.0 0.4
100 30 5 25 110.3 567.0 146.4 70.7 580.0 4.0 111.1 566.8 0.0 102.6 569.3 0.1
100 50 5 25 128.5 629.5 215.7 70.7 651.6 4.2 141.2 625.2 0.1 139.3 625.8 0.1
100 10 5 100 159.4 502.0 145.1 141.4 504.0 0.7 159.4 502.0 0.0 150.7 502.9 0.1
100 30 5 100 185.5 548.2 196.6 141.4 558.4 2.5 182.6 548.9 0.0 164.8 552.8 0.5
100 50 5 100 209.8 604.3 259.4 141.4 625.1 3.7 208.3 604.7 0.0 189.8 609.9 0.2
100 10 5 400 305.8 489.3 273.8 282.8 491.0 0.3 308.1 489.1 0.0 298.7 489.8 0.0
100 30 5 400 331.8 523.6 312.0 282.8 530.8 1.1 329.9 523.9 0.0 306.0 527.3 0.3
100 50 5 400 358.0 570.6 364.2 282.8 586.1 2.1 353.0 571.6 0.0 320.1 578.1 0.5

TABLE B3 Comparative results under the fill rate β = 98%

Optimal solution EOQ New approx. Platt et al. approx.

μ σ L K Q R Cost Q R �Cost
(%)

Q R �Cost
(%)

Q R �Cost
(%)

100 10 1 25 77.0 106.6 77.6 70.7 107.1 0.3 76.6 106.6 0.0 72.9 106.9 0.1
100 30 1 25 86.9 135.5 108.0 70.7 138.5 1.3 86.1 135.7 0.0 78.4 137.0 0.3
100 50 1 25 96.5 168.7 143.3 70.7 175.4 2.2 96.7 168.7 0.0 88.4 170.7 0.2
100 10 1 100 148.8 102.2 143.9 141.4 102.6 0.1 148.7 102.2 0.0 144.7 102.4 0.0
100 30 1 100 158.9 126.1 168.8 141.4 128.0 0.6 157.7 126.2 0.0 147.5 127.3 0.2
100 50 1 100 168.8 155.4 199.5 141.4 159.8 1.1 167.3 155.6 0.0 153.1 157.9 0.3
100 10 1 400 292.2 96.7 279.8 282.8 97.0 0.1 292.9 96.7 0.0 288.8 96.8 0.0
100 30 1 400 302.8 114.6 298.4 282.8 115.9 0.2 301.8 114.7 0.0 290.2 115.4 0.1
100 50 1 400 312.8 138.9 323.6 282.8 141.7 0.4 310.8 139.0 0.0 293.1 140.7 0.2
100 10 3 25 80.6 316.3 87.8 70.7 317.5 0.7 80.0 316.4 0.0 74.3 317.1 0.3

(continued)
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TABLE B3 Continued.

Optimal solution EOQ New approx. Platt et al. approx.

μ σ L K Q R Cost Q R �Cost
(%)

Q R �Cost
(%)

Q R �Cost
(%)

100 30 3 25 97.4 372.1 146.9 70.7 379.1 2.3 97.8 372.0 0.0 89.5 374.0 0.2
100 50 3 25 111.7 433.7 212.6 70.7 447.3 2.8 118.2 431.8 0.0 114.1 433.0 0.0
100 10 3 100 152.6 309.9 151.9 141.4 310.7 0.3 151.9 310.0 0.0 145.4 310.4 0.1
100 30 3 100 169.7 358.4 202.7 141.4 363.1 1.1 168.3 358.7 0.0 153.7 361.0 0.3
100 50 3 100 186.8 414.7 262.4 141.4 425.4 2.0 186.1 414.9 0.0 169.2 418.6 0.3
100 10 3 400 296.2 302.1 285.4 282.8 302.7 0.1 296.1 302.1 0.0 289.2 302.4 0.0
100 30 3 400 313.8 341.4 326.3 282.8 344.5 0.5 311.7 341.6 0.0 293.4 343.4 0.2
100 50 3 400 330.9 390.5 377.6 282.8 397.4 0.9 328.1 390.9 0.0 301.8 394.6 0.3
100 10 5 25 83.8 523.6 95.5 70.7 525.5 0.9 82.4 523.8 0.0 75.7 524.8 0.3
100 30 5 25 104.1 598.6 175.2 70.7 608.6 2.6 106.4 598.0 0.0 99.5 599.9 0.0
100 50 5 25 120.5 680.1 261.9 70.7 698.0 2.9 134.5 675.6 0.1 135.0 675.5 0.1
100 10 5 100 154.4 516.1 158.3 141.4 517.2 0.4 154.2 516.1 0.0 146.1 516.8 0.2
100 30 5 100 177.2 582.4 228.0 141.4 589.6 1.5 175.9 582.7 0.0 159.7 585.8 0.3
100 50 5 100 198.4 657.9 308.4 141.4 673.5 2.4 200.0 657.5 0.0 184.0 661.6 0.1
100 10 5 400 298.4 506.7 290.2 282.8 507.5 0.1 298.4 506.7 0.0 289.5 507.2 0.0
100 30 5 400 321.3 562.1 347.9 282.8 566.7 0.6 318.8 562.4 0.0 296.6 565.0 0.3
100 50 5 400 343.4 629.2 418.3 282.8 639.7 1.2 340.5 629.7 0.0 310.3 634.7 0.3

Appendix C. Detailed numerical results, cost system

TABLE C1 Comparative results for cost ratio b/b + h = 90%

Optimal solution EOQ New approx. Platt et al. approx.
adapted

μ σ L K Q R Cost Q R �Cost
(%)

Q R �Cost
(%)

Q R �Cost
(%)

100 10 1 25 78.9 93.7 72.7 70.7 94.9 0.6 79.2 93.7 0.0 79.3 93.7 0.0
100 30 1 25 90.2 106.4 96.7 70.7 111.5 2.1 89.5 106.6 0.0 85.3 107.6 0.1
100 50 1 25 101.0 124.0 126.0 70.7 134.0 3.2 100.8 124.1 0.0 96.2 125.5 0.1
100 10 1 100 152.3 85.1 137.4 141.4 86.2 0.3 153.7 84.9 0.0 157.5 84.5 0.1
100 30 1 100 163.5 92.0 155.6 141.4 95.9 0.9 163.4 92.1 0.0 160.6 92.5 0.0
100 50 1 100 174.8 105.2 180.0 141.4 112.9 1.7 173.7 105.4 0.0 166.7 106.9 0.1
100 10 1 400 300.0 70.0 270.0 282.8 71.7 0.2 302.7 69.7 0.0 314.5 68.6 0.1
100 30 1 400 310.2 71.7 281.9 282.8 75.1 0.4 312.2 71.5 0.0 316.0 71.1 0.0
100 50 1 400 321.4 79.1 300.4 282.8 85.1 0.7 321.9 79.0 0.0 319.1 79.4 0.0
100 10 3 25 83.1 297.4 80.4 70.7 299.7 1.1 82.9 297.4 0.0 80.9 297.8 0.0
100 30 3 25 102.0 325.9 129.1 70.7 336.3 3.3 102.0 325.8 0.0 97.5 327.2 0.1
100 50 3 25 117.4 360.7 184.4 70.7 378.7 3.8 124.0 358.3 0.0 124.2 358.2 0.1
100 10 3 100 156.4 286.5 142.9 141.4 288.5 0.5 157.2 286.4 0.0 158.3 286.3 0.0
100 30 3 100 176.0 306.6 182.6 141.4 314.8 1.8 174.7 306.9 0.0 167.4 308.5 0.1
100 50 3 100 195.1 335.7 231.8 141.4 352.3 2.9 193.8 336.0 0.0 184.3 338.8 0.1
100 10 3 400 303.3 269.9 273.3 282.8 272.1 0.2 306.2 269.7 0.0 314.9 268.8 0.1
100 30 3 400 322.5 280.0 302.5 282.8 286.3 0.8 322.8 279.9 0.0 319.5 280.5 0.0
100 50 3 400 342.1 300.6 342.8 282.8 313.3 1.4 340.4 301.0 0.0 328.7 303.4 0.1
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TABLE C1 Continued.

Optimal solution EOQ New approx. Platt et al. approx.
adapted

μ σ L K Q R Cost Q R �Cost
(%)

Q R �Cost
(%)

Q R �Cost
(%)

100 10 5 25 85.9 500.7 86.6 70.7 504.0 1.5 85.5 500.7 0.0 82.4 501.4 0.1
100 30 5 25 109.2 540.6 152.8 70.7 554.5 3.7 111.3 539.9 0.0 108.3 540.9 0.0
100 50 5 25 126.7 587.5 226.1 70.7 610.3 3.8 141.5 581.9 0.2 147.0 579.9 0.3
100 10 5 100 159.2 488.3 147.6 141.4 491.0 0.6 159.6 488.3 0.0 159.1 488.4 0.0
100 30 5 100 184.5 518.7 203.4 141.4 530.4 2.3 182.9 519.0 0.0 173.9 521.4 0.1
100 50 5 100 207.9 559.3 270.3 141.4 582.0 3.4 208.7 559.0 0.0 200.3 561.7 0.0
100 10 5 400 306.0 470.4 276.3 282.8 472.9 0.3 308.5 470.1 0.0 315.3 469.3 0.0
100 30 5 400 331.0 488.1 319.2 282.8 497.0 1.1 330.4 488.2 0.0 323.0 489.6 0.0
100 50 5 400 356.4 519.3 375.7 282.8 537.4 1.9 353.6 519.9 0.0 337.9 523.6 0.1

TABLE C2 Comparative results for cost ratio b/b + h = 95%

Optimal solution EOQ New approx. Platt et al. approx.
adapted

μ σ L K Q R Cost
(%)

Q R �Cost
(%)

Q R �Cost Q R �Cost
(%)

100 10 1 25 77.2 100.3 77.5 70.7 100.9 0.3 77.0 100.3 0.0 75.2 100.5 0.0
100 30 1 25 87.2 120.7 107.9 70.7 124.3 1.4 86.7 120.8 0.0 80.9 122.0 0.2
100 50 1 25 96.9 145.8 143.3 70.7 153.5 2.3 97.4 145.7 0.0 91.2 147.4 0.1
100 10 1 100 149.3 94.3 143.6 141.4 94.9 0.1 149.5 94.3 0.0 149.2 94.3 0.0
100 30 1 100 159.4 109.1 168.5 141.4 111.5 0.6 158.7 109.2 0.0 152.2 110.0 0.1
100 50 1 100 169.4 129.9 199.3 141.4 135.3 1.1 168.4 130.1 0.0 157.9 132.0 0.2
100 10 1 400 293.3 85.7 279.0 282.8 86.2 0.1 294.6 85.6 0.0 297.9 85.4 0.0
100 30 1 400 303.7 94.0 297.7 282.8 95.9 0.2 303.5 94.1 0.0 299.4 94.4 0.0
100 50 1 400 313.8 109.2 323.0 282.8 112.9 0.5 312.7 109.3 0.0 302.3 110.5 0.1
100 10 3 25 80.9 306.8 87.6 70.7 308.3 0.7 80.4 306.8 0.0 76.6 307.4 0.1
100 30 3 25 97.7 348.4 146.9 70.7 356.5 2.3 98.5 348.2 0.0 92.4 349.9 0.1
100 50 3 25 112.0 396.1 212.7 70.7 411.0 2.9 119.2 393.7 0.1 117.7 394.2 0.0
100 10 3 100 153.0 298.6 151.6 141.4 299.7 0.3 152.8 298.6 0.0 150.0 298.9 0.0
100 30 3 100 170.4 332.1 202.5 141.4 337.8 1.2 169.3 332.3 0.0 158.6 334.3 0.2
100 50 3 100 187.4 374.3 262.3 141.4 386.8 2.0 187.4 374.2 0.0 174.6 377.5 0.1
100 10 3 400 297.1 287.5 284.7 282.8 288.5 0.1 297.8 287.5 0.0 298.3 287.5 0.0
100 30 3 400 314.8 310.9 325.7 282.8 314.8 0.5 313.6 311.0 0.0 302.7 312.4 0.1
100 50 3 400 332.1 345.0 377.1 282.8 353.7 0.9 330.1 345.3 0.0 311.4 348.5 0.2
100 10 5 25 83.4 512.0 95.4 70.7 514.3 1.0 82.9 512.1 0.0 78.1 512.9 0.2
100 30 5 25 104.3 568.8 175.2 70.7 580.0 2.7 107.2 567.9 0.0 102.6 569.3 0.0
100 50 5 25 120.6 632.4 262.1 70.7 651.6 2.9 135.7 627.1 0.2 139.3 625.8 0.2
100 10 5 100 155.6 502.4 158.0 141.4 504.0 0.4 155.1 502.4 0.0 150.7 502.9 0.0
100 30 5 100 177.9 549.9 227.9 141.4 558.4 1.6 177.0 550.0 0.0 164.8 552.8 0.2
100 50 5 100 199.0 607.3 308.4 141.4 625.1 2.4 201.4 606.6 0.0 189.8 609.9 0.0
100 10 5 400 299.8 489.7 289.5 282.8 491.0 0.2 300.0 489.7 0.0 298.7 489.8 0.0
100 30 5 400 322.4 524.9 347.3 282.8 530.8 0.7 320.7 525.2 0.0 306.0 527.3 0.1
100 50 5 400 344.6 573.3 417.9 282.8 586.1 1.3 342.6 573.6 0.0 320.1 578.1 0.2
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TABLE C3 Comparative results for cost ratio b/b + h = 98%

Optimal solution EOQ New approx. Platt et al. approx.
adapted

μ σ L K Q R Cost Q R �Cost
(%)

Q R �Cost
(%)

Q R �Cost
(%)

100 10 1 25 75.9 106.6 82.6 70.7 107.1 0.2 75.8 106.7 0.0 72.9 106.9 0.1
100 30 1 25 84.6 135.9 120.5 70.7 138.5 0.9 85.1 135.8 0.0 78.4 137.0 0.2
100 50 1 25 93.2 169.6 163.1 70.7 175.4 1.6 95.4 169.0 0.0 88.4 170.7 0.1
100 10 1 100 147.3 102.3 149.6 141.4 102.6 0.1 147.1 102.3 0.0 144.7 102.4 0.0
100 30 1 100 156.2 126.4 182.6 141.4 128.0 0.4 156.0 126.4 0.0 147.5 127.3 0.1
100 50 1 100 164.9 156.0 220.9 141.4 159.8 0.7 165.4 155.9 0.0 153.1 157.9 0.2
100 10 1 400 289.9 96.8 286.7 282.8 97.0 0.0 289.9 96.8 0.0 288.8 96.8 0.0
100 30 1 400 299.2 114.8 314.1 282.8 115.9 0.1 298.6 114.9 0.0 290.2 115.4 0.0
100 50 1 400 308.0 139.3 347.3 282.8 141.7 0.3 307.5 139.3 0.0 293.1 140.7 0.1
100 10 3 25 79.1 316.5 95.6 70.7 317.5 0.5 79.1 316.5 0.0 74.3 317.1 0.1
100 30 3 25 94.0 373.0 167.4 70.7 379.1 1.6 96.5 372.3 0.0 89.5 374.1 0.0
100 50 3 25 106.9 435.2 245.5 70.7 447.3 2.1 116.5 432.3 0.1 114.1 433.0 0.1
100 10 3 100 150.6 310.1 160.7 141.4 310.7 0.2 150.3 310.1 0.0 145.4 310.4 0.1
100 30 3 100 165.7 359.1 224.8 141.4 363.1 0.8 166.3 359.0 0.0 153.7 361.0 0.2
100 50 3 100 180.7 416.0 297.1 141.4 425.4 1.4 183.8 415.3 0.0 169.2 418.6 0.1
100 10 3 400 293.4 302.2 295.6 282.8 302.7 0.1 293.1 302.2 0.0 289.2 302.4 0.0
100 30 3 400 308.9 341.9 350.8 282.8 344.4 0.3 308.4 341.9 0.0 293.4 343.4 0.1
100 50 3 400 323.9 391.4 415.4 282.8 397.4 0.6 324.4 391.4 0.0 301.8 394.6 0.2
100 10 5 25 81.3 523.9 105.2 70.7 525.5 0.6 81.4 523.9 0.0 75.7 524.7 0.2
100 30 5 25 99.9 599.7 201.1 70.7 608.6 1.9 104.9 598.4 0.0 99.5 599.9 0.0
100 50 5 25 115.0 682.0 303.8 70.7 698.1 2.2 132.4 676.3 0.2 135.0 675.5 0.3
100 10 5 100 152.9 516.2 169.1 141.4 517.2 0.2 152.6 516.2 0.0 146.1 516.8 0.1
100 30 5 100 172.3 583.4 255.7 141.4 589.6 1.1 173.8 583.1 0.0 159.7 585.8 0.2
100 50 5 100 191.2 659.7 352.2 141.4 673.5 1.7 197.3 658.2 0.0 184.0 661.6 0.0
100 10 5 400 295.8 506.8 302.6 282.8 507.5 0.1 295.3 506.8 0.0 289.5 507.2 0.0
100 30 5 400 315.5 562.7 378.2 282.8 566.6 0.4 315.3 562.8 0.0 296.6 565.0 0.1
100 50 5 400 334.9 630.5 465.5 282.8 639.7 0.9 336.5 630.3 0.0 310.3 634.7 0.2
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