IMA Journal of Management Mathematics (2025) 36, 649-667
https://doi.org/10.1093/imaman/dpaf035
Advance Access publication on 11 September 2025
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Derived for deterministic demand, the Economic Order Quantity (EOQ) formula remains a popular method
for stochastic demand, typically in combination with an order level. Textbooks split the inventory cost into
the ‘cycle inventory’ cost (the cost of holding half the order quantity) and the cost of safety stock (order
level minus expected lead time demand), showing that the EOQ minimizes the total cost of ordering and
the cycle-inventory cost. However, under stochastic demand, the EOQ is smaller than the optimal order
quantity and often much smaller. A number of authors have suggested exact procedures for determining the
optimal order quantity (and order level), but the derivations (and resulting procedures) are complicated, in
contrast with the intuitively appealing nature of EOQ and its simplicity. This paper presents an alternative
approximation, leading to closed-form order quantity formulas under both a cost and service objective for
normally distributed lead-time demand. It splits inventory costs, but (i) uses that the average cycle stock
is less than half of the order quantity due to backorders, and (ii) considers inventory left-over at the end of
a cycle instead of safety stock. A numerical investigation shows that the approximation is very accurate,
with a cost error of <0.02% on average. For the traditional EOQ formula, the cost error is considerable,
going up to 6% in some cases, and so it is worthwhile in many real-life situations to use our newly proposed
formulas. Moreover, for teaching and training purposes, the adaptations help understand why the EOQ is
suboptimal.

Keywords: inventory; EOQ; cost model; service model; software; teaching OM and OR.

1. Introduction

The aim of our research is to offer alternatives to the Economic Order Quantity (EOQ) formula, one
of the major approaches for production and inventory management (Moily, 2015; Nakhaeinejad, 2024)
used in industry to balance stock investment and fixed replenishment cost efficiently (Silver et al., 2009).
This is upon recognition that EOQ calculations fall short of demand realities, i.e. that demand is (almost)
always stochastic. There are, of course, other strong assumptions underlying the EOQ that researchers
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have challenged and for which adaptations have been proposed. For instance, Hill (1999) analyses how
the optimal order quantity deviates from the EOQ towards the end of a product life cycle, and Chang
etal. (2011) include imperfect quality and inspection. However, we argue that certainty of demand is the
strongest assumption, since (in our experience) it never applies in real life settings. Previous research
(reviewed in the next section) has shown for multiple settings that, as a result, the EOQ is always smaller
than the optimal order quantity. The intuitive explanation for this is as follows. At the end of each cycle,
backorder costs may be incurred. Therefore, increasing the order quantity—and thereby decreasing the
number of cycles per time unit—has two cost benefits: this reduces the backordering costs as well as the
fixed replenishment costs per time unit. The EOQ ignores the first benefit and only balances the fixed
replenishment cost reduction with the holding cost increase. By underestimating the total benefit of an
order quantity increase, the EOQ methodology leads to an order quantity that is less than the optimum
order quantity.

Some procedures have been proposed in the literature to address this issue (e.g. Hadley & Whitin,
1963; Axsiter, 2015) all of which however are complicated and as such in direct contrast with the
intuitively appealing nature of EOQ and its simplicity. It is indeed this intuitive appeal that renders
the EOQ one of the most frequently used methods in (i) practice but also in (ii) classrooms and training
rooms. With regard to practice, the EOQ is used both in re-order level systems, but very much so also
in re-order level order-up-to (OUT) level systems, where the difference between the two parameters
is approximated by the EOQ (Porteus, 1985). For education, EOQ is the preferred means to teach
inventory related matters in generalist, say Operations or MBA, courses, and to organize lab experiments
on behavioral issues in inventory (Stangl & Thonemann, 2017; Perera et al., 2020).

The classic EOQ formula developed by Harris (1913) is given by EOQ = /2K /h where u denotes
the demand rate, & the holding cost per item per time unit and K the fixed cost per replenishment
order (so, independent of how many units are ordered). It is easy to show that this is the optimal order
quantity if the demand rate is constant and continuous, the lead-time is constant and backorders are not
allowed. These assumptions never apply in practice, though. In particular, the demand rate is always
uncertain. Nevertheless, in both theory (inventory courses) and practice, the EOQ formula is often used
to determine the order quantity under stochastic demand (Rumyantsev & Netessine, 2007). It is then
typically combined with a safety stock and a corresponding order level, R, resulting in an (R, Q) policy
that places a new order for Q items, when the inventory position (on hand + on order — backorders) drops
to R (Berling & Marklund, 2006). It is also used in min max inventory systems, where the re-order and
OUT level are seldom both/jointly optimized, but rather replenishments rely upon an optimized re-order
level to which the EOQ is added to calculate the OUT level.

As will be discussed in detail in the next section, previous research has shown that the relative cost
error of using the EOQ under stochastic demand is often small, but also that it can be more than 10%.
So, especially in settings with low profit margins (e.g. retail), carefully considering whether or not to
adopt the EOQ is worthwhile.

1.1.  Contribution and organization of the paper

With this in mind, in this paper, we revisit the EOQ in the presence of demand uncertainty, considering
the case that demands during stock-out periods are backordered. The objective is to find the values
for R and Q that (approximately) minimize the total (holding and fixed replenishment) cost per time
unit, where we concentrate on approximating the optimal order quantity. We consider both a cost model
and a service model. The cost model includes a backordering cost b per unit and time unit, whilst the
service model instead specifies a target fill rate, denoted by . The latter model is more practical, given
the difficulty of estimating the backordering cost in real life. Most of the inventory control literature

GZ0Z JoqUISAON €1 UO Jasn AJSISAIUN WIPIED AQ GBE1LSGZ8/679/7/98/0I0Ie/uBWEWI/WOY"dNO OIS PED.//:SARY WO, PAPEOjUMOC



SIMPLE ECONOMIC ORDER QUANTITY HEURISTICS 651

considers cost models, though, to avoid having to optimize under a constraint (Hadley & Whitin, 1963;
Axsiter, 2015). The cost and service model are very closely related. Indeed, it is well known that for
most demand processes (including Normal lead-time demand, which is considered most), the optimal
fill rate is given by ﬁbh (see, e.g. Axsiter, 2015). Interestingly, though, it will appear from our results
that setting the target fill rate to that fraction in the service model does not give the same optimal order
quantity as in the cost model.

As our literature review in the next section shows, a number of authors have presented methods for
calculating the optimal order quantity (and the corresponding optimal order level) exactly. However,
these are typically non-intuitive, complex and often iterative. We, instead, take a more intuitive approach
that splits the inventory holding costs into cycle holding costs and ‘left-over’ holding costs (at the end
of a cycle). This mimics the traditional reasoning of deriving the EOQ based on cycle holding costs
only and considering ‘safety stocks’ to set the order level. Considering left-over stocks instead of safety
stocks leads to better holding cost approximations, as we will explain in our analysis. For both the cost
and service model, we derive closed-form order quantity formulas. A numerical analysis shows these
to be very accurate. Furthermore, comparing these formulas to each other and to the traditional EOQ
formula provides many insights.

Our main contributions are as follows. First, we derive simple and accurate closed-form expressions
for near-optimal order quantities for both the cost and service model. Second, comparing them to the
traditional EOQ formula we provide many insights. In particular, the cost and service formulas show:
(i) how the suboptimality of the EOQ is related to both overestimating the cycle stock and ignoring the
reduction in safety stocks when placing larger orders, and (ii) that even if the target service level for the
service model is set to the optimal level for the cost model, the optimal order quantities differ. Third, the
intuitive approach for splitting the stock into cycle stock and left-over stock is easy to include in inventory
management courses, providing valuable insights into how demand uncertainty affects the optimal order
quantity. Fourth, although we consider Normal lead-time demand, most of our analysis holds for any
lead-time demand distribution, and the part that does depend on a specific distribution can be adapted to
other ones—although the difficulty of doing so depends on the type of distribution.

The remainder of the paper is organized as follows. In the next section we review the literature,
distinguishing between the cost and service approach. In Section 3 we present the new order quantity
formulae. Sections 4 and 5 discuss the EOQ under a fill rate constraint and with backorder costs,
respectively. We conduct a numerical investigation in Section 6 and offer important insights for inventory
theory and practice. We conclude in Section 7, where we also discuss the next steps of research.

2. Literature review

If the lead-time is negligible and backorders are not allowed, then the traditional EOQ formula is still
optimal under stochastic demand if that follows a renewal process (Chao, 1992; Maddah & Noueihed,
2017). However, this is no longer true if the lead-time is positive. Backorders can then occur and, related,
an important distinction in the stochastic inventory control literature is between a cost approach, where
backorders are penalized, and a service approach, specifying a service level constraint. The service
approach is arguably more practical, as backordering costs are typically very hard to quantify (Jiang et al.,
2019). However, as optimization under a constraint is typically harder, the cost approach is dominant
in the inventory control literature. We next discuss each approach. Our attention is mainly on studies
considering the optimization of the (R,Q) policy. Moreover, we focus on the classic setting with a fixed
cost per replenishment order, a holding cost per item per time unit and either a backordering cost per
item per time unit or a fill rate constraint.
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2.1.  Cost approach

Authors have proven for various settings with stochastic demand that the optimal order quantity is always
greater than that EOQ. Zheng (1992, Theorem 2) does so for the standard (R, Q) policy, and Christou
et al. (2020, Proposition 5.3.) extend this result to the (r, nQ, T) policy (also known as (R, s, Q) policy).
Rao (2003, Theorem 12) proves that for the base stock (R, S) policy with varying order quantities, the
average order quantity is always greater than EOQ. This result is extended by Lagodimos et al. (2018,
Proposition 5.5) for the base stock policy under discrete time, using the discrete time version of the EOQ.

For the standard (R, Q) policy that we also consider, various techniques have been suggested
for determining the optimal values for policy parameters R and Q (see e.g. Hadley & Whitin, 1963;
Federgruen & Zheng, 1992; Axsiiter, 2015). However, although not computationally intensive, these
approaches are fairly complex and often iterative, and in our experience seldom implemented—even in
dedicated inventory software. Instead, a two-step approach is often used, where the order quantity is
determined first, after which the order level is optimized given that order quantity.

Most commonly, the order quantity (in the first step) is determined using the classic EOQ formula.
Several authors have analyzed the performance of this approach. Zheng (1992) derives an upper bound
of 1/8 = 0.125 on the relative cost error resulting from the use of the deterministic EOQ formula as a
heuristic solution for a stochastic demand. Axséter (1996) derives a slightly stronger upper bound of

(\/5 - 2) /2 ~ 0.118. He also shows that this bound is tight by presenting examples where the cost

error is arbitrarily close to the lower bound.

Gallego (1998) shows that the optimal order quantity is always between one and two times the
standard EOQ and uses that to show that an alternative order quantity (in the first step) of +/2 times
the EOQ leads a better lower bound of 1.061 on the relative cost error.

2.2.  Service approach

Silver and Wilson (1972) derive values for R and Q based on approximating the on-hand inventory as
% + (R — ““L)’ where (; denotes mean demand during the lead-time. However, as will also become
apparent from our analysis, the first term overestimates the average cycle stock while the second term
underestimates the on-hand stock at the end of a cycle (i.e. the safety stock). Moreover, Silver and Wilson
do not determine closed-form expressions for R and Q, but a system of two nonlinear equations that need
to be solved.

Yano (1985) presents both an exact algorithm and a heuristic for optimizing R and Q. She also
shows global convergence of the exact algorithm. The heuristic is simpler in that it avoids the numerical
enumeration of integrals. However, both the exact algorithm and the heuristic are iterative procedures.
Alstrgm (2001) also develops an approximate analysis under a fill rate constraint, but it is again rather
complex and does not lead to a closed-form expression.

Axsiter (2006) argues, as we do, that simplicity is important for practical applications, and present
an alternative two-step procedure for normally distributed lead-time demand that has a negligible cost
error. However, the order quantity approximation is not closed-form and determining it involves looking
up an intermediate result from a table for a grid of parameter values (and interpolating in between those
values).

Platt et al. (1997) derive several heuristics for determining R and Q. They do so by applying
Lagrangian relaxation on the exact cost function under the fill rate constraint, and then using limiting
behavior (with EOQ converging to zero or infinity) of the loss function. One of these has a closed form

expression for the order quantity, namely %,/ZKT" + (TE, where o; denotes the standard deviation of
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TaBLE 1  Notations

Model parameters

K Fixed cost per replenishment order

h Holding cost per unit per time unit

% Demand rate (per time unit)

o Standard deviation of the demand (per time unit)
L Replenishment lead-time

15 Expected lead time demand

oy, Standard deviation of lead time demand

fw Density function of lead-time demand

B Fill rate, i.e. fraction of demands satisfied immediately

b Backordering cost per unit per time unit (for the cost model)

Other notations

R Order level

0 Order quantity

E[B] Expected number of backorders that occur in a cycle
o Probability of no backorders when a replenishment order arrives, aka Cycle Service Level
E, Expected number of orders placed per time unit

Ep Expected number of backorders (at any time)

Ecg Expected cycle stock per time unit (at any time)

E;g Expected left-over stock per time unit (at any time)
Co Expected fixed replenishment cost per time unit

Cp Expected backordering cost per time unit

Ceg Expected cycle stock holding cost per time unit

Crg Expected left-over stock holding cost per time unit
Cr Expected total cost per time unit

lead-time demand and g is the required fill rate. We will compare this formula to the new ones resulting
from our analysis in Section 4.

3. Approximations for cost components

The notations used in this and remaining sections are listed in Table 1. For completeness, we include
here notations that have also already been defined, Moreover, and for ease of presentation, the derivative
of some function f(.) with respect to the order quantity Q is denoted by f/(.), i.e. f/(.) = %f Q).

This section presents the building blocks for deriving EOQ formulae in later sections. These are
(approximate) expressions for (derivatives of): the expected number of orders per time unit (Section 3.1),
the expected backorder level (Section 3.2), the expected cycle inventories (Section 3.3) and the expected
left-over inventories (Section 3.4). The latter are closely linked to safety stock inventories but are not
the same. Safety stock inventories are usually defined as the difference between the re-order level and
the expected lead-time demand. Left-over inventories are, as the name indicates, the (expected) left-over
stock just before a new batch arrives. Therefore, left-over stocks are directly linked to inventory costs,
which does not apply to safety stocks. Perhaps the easiest way to see this is that for a zero safety stock,
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the expected left-over stock is still positive; in fact, half of the cycles then ends with positive left-over
stock.
3.1.  Expected orders per time unit

The average duration of an order cycle is %, and so the expected number of orders per time unit is easily
obtained as:

"
E,= )
°" 0
and so
7
Eo=— )

3.2.  Expected backorder level

From the definition of fill rate 8, we have that from every batch of Q ordered items, on average (1 — 8) Q
arrive late. So, when an order arrives, the expected number of backordered units is E [B] = (1 — B8) Q.
Hence, during a cycle, the number of backordered units is zero until the stock runs out (if that happens),
and then increases from zero to (on average) (1 — ) Q. Therefore, during the latter part of a cycle with
positive backorders, the average number of backordered units is % (1 — B) Q. Moreover, as the ready rate
equals the fill rate (for normal lead-time demand), the expected fraction of time with positive backorders
is (1 — B). Hence, the expected backorder level is approximately

1 2
Ep ~ 5(1—/3) 0,

and so
1
Ep~ (1= p). 3)
3.3.  Expected cycle inventory level
When an order arrives, the expected number of backordered units is E[B] = (1 — 8) Q and so the

expected cycle stock just after an order arrival is Q — (1 — B8) O = BQ. Hence, for an ‘average cycle’,
the cycle stock varies between 8Q and 0 and is %ﬂQ on average when positive. Moreover, a fill rate of
B implies that stock on hand is positive for fraction B of the time, so that the cycle stock can also only
be positive for fraction g of the time. Therefore, the expected cycle stock level is approximately

E Lpoxp="Lp0
S — X = — ,
and so

1
Eoy ~ 8. @)

GZ0Z JoqUISAON €1 UO Jasn AJSISAIUN WIPIED AQ GBE1LSGZ8/679/7/98/0I0Ie/uBWEWI/WOY"dNO OIS PED.//:SARY WO, PAPEOjUMOC



SIMPLE ECONOMIC ORDER QUANTITY HEURISTICS 655

3.4. Expected left-over inventory level

The expected left-over stock equals
R
E g = / f@) (R — u) du.
—00

As indicated by this expression, the expected left-over stock is dependent on the lead-time demand
distribution. In what follows, we first show how its derivative is related to service levels for any demand
distribution, and then use that to find a closed-form approximation for normal lead-time demand.

The effect of the order quantity on the expected left-over stock can be cut up into three steps: (i)
given the required/optimal fill rate, a larger order quantity implies a longer cycle and so more expected
backorders per cycle, (ii) more expected backorders per cycle implies a lower order level, and (iii) a
lower order level reduces the expected left-over stock. Correspondingly, we can write the derivative of
E gy as

’
Ey=

dELH_dELHX dR XdE[B]
dQ0  dR = dE[B] dQ

Rewriting the three terms (inverted for the second) on the RHS as

R R
and
dE[B] d [ Rduce - fadu = — (1
T = Joe s [ a0,
dE(B] _ d . -
o0 —agld-peli=0-5,
we get
;o _ o
Ejy=-( ﬁ)(l_a). o)

As discussed before, the difficulty in analyzing the left-over stock is that the lead-time distribution
plays a crucial role, which can also be seen from Equation (5) as the relation between the cycle service
level o and the fill rate 8 depends on that distribution. Fortunately, for the most commonly assumed
Normal lead time demand, we can use the following approximate result from statistics, formulated in
terms of demand.

(Shore, 1982): Consider some ‘safety factor’ x. For a standard Normal demand distribution, if the
probability of zero loss (i.e. that demand is at most x) equals «, then the expected loss (i.e. the expected
demand above x) is approximately 0.4115 (1;%")

We remark that Shore (1982) shows that this is especially accurate for o > %, i.e. for non-negative
safety stocks, which applies to almost all real-life situations.
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Since the expected loss of any Normal distribution is proportional to the standard deviation, Shore’s

approximation translates to
E|[B] (-
—— =~ 04115 .
oy o

Using E [B] = (1 — B) Q, this gives

@ 041150,

1-8)
(I—-a) Q
Inserting this into Equation (5), we get
, 0.41150;
Eiy~ 0o (6)

4. EOQ under a fill rate constraint

Under a fill rate constraint, backorder costs are not considered. So
Cr=Co+Ccy+Cry = KEo + hEcy + hEpy,

which gives

Cr = KEy + hEqy + hEpy.

Using Equations (2), (4), and (6), we then get:

Ku 1 04115
By g 20

02 0

e
CT’\/

@)

,which is zero for

2
~ 0.41150, 1 [2Kpu 041150, \*  0.41150; 1 2 (041150, \?
Qservice = B2 + (E h ) + ( B2 ) = 82 + EEOQ + —,32 .

®)

Note that there are two factors that cause Q.. t0 be larger than the traditional EOQ. Firstly,
different from the EOQ analysis, the term ,32 in Equation (7) considers that (i) the expected maximum
cycle stock (after satisfying backorders upon arrival) is fraction 8 of the ordered amount, and (ii) cycle

stock can only be positive for fraction 8 of the time. As aresult, Q... ;.. €quals at least %EOQ. Secondly,
if a larger order quantity implies that more backorders are allowed per cycle, the order level (and with it
the expected left-over stock) can be reduced. This benefit of applying a larger order quantity increases

with demand uncertainty, explaining why Q increases with the lead-time demand variance.

service

The numerical results of Section 6 will show that O
and can be much higher than the EOQ.

service 18 very close to the optimal order quantity
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5. EOQ with backorder costs

Including backorder costs, the total cost becomes
Cr=Co+Ccy +Cry+ Cp=KEo + hEcy + bE,
which gives
Cy = KEy + hEy + hE;y + bE.
Using Equations (2)—(6), we then get:

K 0.4115
C’T~——'u —h,B — —GL

1
> o Tati- B)*. ©)

As mentioned in the introduction, it is well-known that the optimal fill rate for the cost model by
ﬁbh. Setting 8 in Equation (9) to that level, we get

Kp 1 b \> 041150, 1 ho\?
Ch~—— +~h —h —b ,
r Q2+2 (b+h) 0 ) b+h

which is zero for

~ b+h b+h b+ h\>
Qoo = 041150, Jbr \/21( %+(0.41150L Jbr )

2
b+h b+ h b+ h\>
=0.41150L%+ (,/ ;: EOQ) +(0.41150L ;)L ) (10)

Note that for o; = 0, this gives Q
without demand uncertainty (see, e.g. Axsiter, 2015). Moreover, compared to that deterministic solution,

0.5t increases via the term 0.41150;, bj;h The logic is that increases in either o; or == b +h imply a higher

optimal safety stock (via a wider demand distribution and a larger optimal fill rate, respectlvely) and a
larger order quantity allows for a reductlon of the safety stock.

bbihEOQ, which is indeed the optimal order quantity

cost —

~

An interesting result from comparing Qsemce in Equation (8) and QCoqt in Equation (10) is that when

we set the target fill rate B for the service model to the optimal fill rate * = i 5 for the cost model,

the service model has a larger approximately optimal order quantity. In fact, if all 82 terms in Equation
(8) are replaced by 8*, then Equation (10) is obtained. This difference exists, because the cost model
considers backorder duration (implying that backorder costs are only incurred during a typically small
part of an order cycle), but the service model does not. It raises the more general question of how to
model backorder costs for inventory management, which we will discuss in Section 7.
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TABLE 2 Instances considered in the numerical investigation

Parameter Value range

% 100

o 10, 30, 50
L 1,3,5
K
B

25,100, 400
90%, 95%, 98%
1

/(b+h) 90%, 95%, 98%

6. Numerical investigation

In this section, a numerical investigation quantifies the benefits of using the proposed EOQ
approximations, referred hereafter to as New Approx., compared to using the traditional EOQ
approximation and using the Platt et al. approximation. Note that for the cost model, the formula of
Platt et al. (1997) is adapted by setting the fill rate equal to b/ (b + h).

Using exact expressions from the literature for the cost and fill rate of the (R,Q) policy, given for
completeness in Appendix A, we determine (by complete search) the optimal unrestricted order quantity,
order level, and corresponding minimal cost; as well as the optimal order level and corresponding
cost for the different EOQ approximations. The percentage cost gap (i.e. increase vs. optimal) for an
approximation is denoted hereafter by ACost.

We vary the values of the parameters in order to analyze their impact on the performance of all the
considered approximations. We consider a demand that has a mean ¢ = 100 and a standard deviation
o = 10, 30, 50. The lead-time is varied as L = 1,3,5. The fixed replenishment cost per order K =
25, 100,400. Under the fill rate constraint, we consider realistic targets of § = 90%, 95%, 98%. With a
backorder cost, we assume that the unit holding cost is normalized to & = 1 and the backorder unit cost
is ﬁ = 90%, 95%, 98%. A summary of the values considered in the different instances is provided
in Table 2.

Hence, both under a fill rate constraint and with a backorder cost, we consider 3 x 3 x 3 x 3 = 81
instances. The detailed results (values) for all control parameter combinations are provided in Tables B 1-
B3 and C1-C3 of Appendices B and C for the service and cost model, respectively. In Table 3, for both
the service model (LHS) and the cost model (RHS), we show the average (per fill rate or backorder cost
setting) absolute error in the order quantity for the three considered approximations.

The results in Table 3 show that the order quantities resulting from the New approximation are much
closer to optimal than those resulting from the EOQ and from Platt et al.’s approximation. The EOQ
performs particularly poor, with quantity errors between 14.5% and 23.1% for all considered fill rate /
cost settings. Platt et al.’s approximation performs much better, but the quantity errors are still at least
3.8% and go up to 7.0%. The new approximation has quantity errors below 2% for all considered settings.

As shown in Table 4, the cost errors show the same pattern, but are much smaller than the quantity
errors, indicating that the cost function is quite flat around the optimum (as also discussed in textbooks
such as that by Axsiter, 2015.

Also in terms of cost, the new approximation outperforms both the EOQ method and the Platt et al.
approximation. It leads to an average cost gap (over the optimal value) that does not exceed 0.02%,
which shows that the new approximation leads to a near-optimal solution. The Platt et al. approximation
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TaBLE 3 Quantity error: absolute percentage deviation of an approximation compared to the optimal
order quantity, averaged for considered fill rate and backorder cost settings

B (%) % Quantity error (absolute) #‘h % Quantity error (absolute)
EOQ  New approx. Plattet al. (%) EOQ New approx.  Platt et al.
(%) (%) approx. (%) (%) (%) approx. (%)
90 23.1 1.7 6.5 90 19.0 1.2 3.8
95 19.3 1.3 7.0 95 16.6 1.2 4.7
98 16.3 1.2 6.8 98 14.5 1.6 5.3

TaBLE4  Cost error: percentage cost increase of using an approximation compared to the optimal order
quantity, averaged for considered fill rate and backorder cost settings

B (%) % Cost error #‘h % Cost error
EOQ New approx.  Platt et al. (%) EOQ New approx.  Platt et al.
%) (%) approx. (%) %) (%) approx. (%)
90 2.86 0.02 0.23 90 1.65 0.01 0.06
95 1.76 0.01 0.23 95 1.13 0.01 0.09
98 1.10 0.01 0.18 98 0.78 0.01 0.10

performs less well but still good, with an average cost gap varying from 0.06% to 0.23%. The EOQ
method has an average cost gap that goes up to 2.86% under the fill rate constraint and up to 1.65% with
a backorder cost.

Box plots of the cost gaps in Figs 1 and 2 show the cost gap variation over the considered instances
under a service constraint and with a backorder cost, respectively.

Under a fill rate constraint, the maximum cost gap of the new approximation is 0.2%, which is
obtained for the lowest service 8 = 90% under a standard deviation o = 50, a lead-time L = 5 and
a fixed replenishment cost K = 25. The maximum cost gap of the Platt et al. approximation is 0.5%,
whereas that of EOQ goes up to 6.1%. With a backorder cost, the maximum cost gap reaches 0.2% under
our new approximation, 0.3% under the adapted Platt et al. approx. and 3.8% under EOQ. The largest
cost gaps are observed for instances with a low target service level or a low backorder cost value, a high
standard deviation of the demand (i.e. o = 50) and a relatively long lead-time (i.e. L = 3,5).

7. Discussion and conclusion

The success of the EOQ formula can largely be attributed, in our opinion, to both its intuitive derivation
and its simplicity for implementation. The latter may seem less relevant now than it was in especially the
pre-computer era, but most inventory control software packages that we know of still use simple (EOQ-
based) instead of exact, iterative procedures that have been presented in the literature (Scarf et al., 2024).
As to the intuitive derivation, the EOQ can easily be shown to minimize the cyclic ordering and inventory
holding costs under deterministic demand, and this can still be applied under stochastic demand if safety
stock costs are ignored.
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We retained the logic of splitting the inventory costs into cycle costs and demand uncertainty related
costs but adapted the traditional analysis in two ways. First, we ‘corrected’ the inventory cycle costs,
considering that the average cycle inventory level is less than half of the order quantity, since part of an
arriving batch is sometimes used to satisfy backorder and there are also periods with no inventory at all.
Second, we considered left-over inventories instead of safety stocks and included them in approximating
the optimal order quantity.

The first adaptation clearly leads to an increase in the order quantity compared to the EOQ. The same
holds for the second adaptation, since a larger order quantity implies fewer order arrivals with associated
safety stock (and backorder) costs. Aside from the exact analysis, this explains why the EOQ formula
results in order quantities that are always too low under stochastic demand, which we feel is important
to explain in inventory control courses and textbooks.
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The most difficult part of approximating the optimal order quantity concerns the left-over inventory
costs, since these depend on the specific lead-time demand distribution. We considered Normal lead-time
demand, as is most often done in the literature, and used well-known statistical results on approximating
the Normal loss function. This led to new, closed-form formulas that approximate the optimal order
quantity for both a cost model (with a backorder cost per item per time unit) and a service model (with a
fill rate constraint). A numerical investigation showed these to be very accurate, with an average cost error
of 0.01% compared to 2% for the EOQ formula. Although the EOQ formula is reasonably robust, the 2%
cost reduction may still be worthwhile in many practical situations and come at no added (computational)
difficult as the newly proposed formulas are closed-form and simple.

An interesting observation is that setting the required fill rate for the service model equal to the
optimal fill rate level for the cost model does not result in the same (approximately) optimal order
quantities as for the cost model. The explanation is that the fill rate depends only on the fraction of
backorders and not their duration, but the cost model does charge backorder costs per time unit. So, in
a way, using the fill rate to measure service is not in line with charging backorder costs per time unit.
Instead, the fill rate service measure is more in line with a fixed cost per backorder. Interestingly, though,
for that cost structure there is no easy relation between cost parameters and the optimal fill rate. Future
research could also consider deriving (nearly) optimal order quantity formulas when there is a fixed cost
per backorder, or more generally, a fixed and time-dependent backorder cost. Furthermore, analyzing
the relations between inventory cost models and service definitions is interesting for inventory control
in general.

Future research can also address the sub-optimality of the EOQ formula for non-continuous demand.
Our analysis, as most of the inventory control literature, considered continuous review and continuous
(Normal lead-time) demand, implying that an order is always placed when the inventory position drops
to the order level. Under periodic review and/or lumpy demand, the inventory position may drop below
the order level and the so-called undershoot plays a role. Such situations are harder to analyze in general
but deserve attention. Logical starting points would be to either consider periodic review where demand
during the review-period plus lead-time is still Normal or consider continuous review for lumpy demand
modelled by a compound Poisson process (Babai et al., 2025).

Data availability

No new data have been generated for the purposes of this article. For any information regarding the
numerical investigation, interested readers are invited to contact the corresponding author.
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Appendix A. Exact analysis

Let us denote the standard Normal density and distribution function by ® (x) and ¢(x), respectively, and
define the ‘loss function’:

Gx) = / v —x) eWMdv = ¢(x) —x(1 — ®(x)) (A1)
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as well as

H(x) = /OOG(v)dv - % [(xz + 1) (1 — D) — x(p(x)] . (A2)

As shown in e.g. Section 5.9.2 of Axsiter (2015), the cost per time unit for the cost approach (so
including backorder costs) is

_Ku 0_ U [ (R (B2
cT_E+h(R+5 ML)+(h+b)Q[H( - ) H( o )] (A-3)

from which the cost per time unit for the service approach is easily obtained by setting b to zero, and the

fill rate is
P _Q[G(M)_G(M)], (Ad)
0 oy op

Appendix B. Detailed numerical results, service system

TaBLE B1  Comparative results under the fill rate B = 90%

Optimal solution EOQ New approx. Platt et al. approx.
n o L K 0 R Cost Q R ACost Q R ACost Q R ACost
(%) (%) (%)
100 10 1 25 82.2 93.3 65.6 70.7 94.9 1.1 83.8 93.1 0.0 79.3 93.7 0.1
100 30 1 25 95.6 105.2 80.9 70.7 111.5 3.6 95.3 1052 0.0 85.3 107.6 0.5
100 50 1 25 108.4 121.8 101.8 70.7 1340 53 108.0 121.9 0.0 96.2 1255 04
100 10 1 100 158.6 84.4 127.8 1414 86.2 0.7 162.3 84.0 0.0 157.5 845 0.0
100 30 1 100 1709 90.9 136.9 1414 959 1.7 173.1  90.5 0.0 160.6  92.5 0.2
100 50 1 100 1844 103.1 152.6 1414 1129 3.0 184.6 103.1 0.0 166.7 1069 0.4
100 10 1 400 3145 68.6 2547 2828 71.7 0.6 319.4 68.1 0.0 314.5 68.6 0.0
100 30 1 400 3225 703 2582 2828 75.1 0.9 3299 694 0.0 316.0 71.1 0.0
100 50 1 400 3351 77.0 267.6 2828 85.1 14 340.7 76.2 0.0 319.1 794 0.1
100 10 3 25 87.0 296.7 70.1 70.7 299.7 2.0 87.9 296.5 0.0 80.9 297.8 0.2
100 30 3 25 109.5 323.6 1040 70.7 3363 5.4 109.3 323.7 0.0 97.5 3273 04
100 50 3 25 127.3  357.1 1448 70.7 3787 6.1 134.0 3548 0.1 1242 3582 0.0
100 10 3 100 1627 2857 130.0 1414 2835 1.0 166.2 2853 0.0 158.3 286.3 0.0
100 30 3 100 1857 3045 1543 1414 3148 3.1 185.7 3045 0.0 1674 308.5 0.5
100 50 3 100 208.6 3319 1839 1414 3523 49 207.2 3323 0.0 184.3 338.8 0.5
100 10 3 400 316.1 268.6 2552 2828 272.1 0.6 323.2 2679 0.0 3149 268.8 0.0
100 30 3 400 3364 2779 2688 2828 2863 1.5 341.8 277.1 0.0 319.5 280.5 0.1
100 50 3 400 359.6 2972 293.7 2828 3133 26 361.3 2969 0.0 328.7 3034 04
100 10 5 25 90.4 499.8 74.0 70.7 504.0 2.7 90.7 499.7 0.0 82.4 5014 04
100 30 5 25 117.9 5377 1214 70.7 5546 5.9 119.7 537.1 0.0 108.3 5409 0.2
100 50 5 25 137.9 5833 176.0 70.7 6103 5.9 153.7 5775 0.2 147.0 5799 0.1
100 10 5 100 1659 4874 1323 1414 4910 13 1689 487.0 0.0 159.1 4884 0.1
100 30 5 100 1959 5158 168.7 1414 5304 4.0 1949 516.0 0.0 173.9 5214 0.5
100 50 5 100 2236 5544 2169 1414 5820 5.6 2239 5543 0.0 200.3 561.7 0.3
100 10 5 400 3183 469.0 256.1 2828 4729 0.7 325.8 4682 0.0 3153 469.3 0.0
100 30 5 400 3465 4855 2787 2828 4970 19 350.2 484.8 0.0 323.0 489.6 0.2
5

100 50 400 3768 514.6 3159 2828 5375 34 3762 5147 0.0 3379 5236 0.5
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TaBLE B2 Comparative results under the fill rate § = 95%
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Optimal solution EOQ New approx. Platt et al. approx.
n o L K (] R Cost Q0 R ACost Q R ACost Q R ACost
(%) (%) (%)
100 10 1 25 79.0 100.1 71.5 70.7 100.9 0.6 79.1 100.1 0.0 75.2 100.5 0.1
100 30 1 25 90.7 120.0 937 70.7 1243 22 89.4 120.3 0.0 80.9 1220 0.5
100 50 1 25 1019 1445 121.1 70.7 153.5 35 100.6 1448 0.0 91.2 1474 0.3
100 10 1 100 1522 94.1 136.3 1414 949 03 1535 940 0.0 149.2 943 0.0
100 30 1 100 1638 1085 1523 1414 1115 1.0 163.2 108.6 0.0 1522 1100 0.2
100 50 1 100 1755 1288 1748 1414 1353 1.8 1734 129.1 0.0 1579 1320 04
100 10 1 400 299.1 854 2692 2828 862 0.2 3023 852 0.0 2979 854 0.0
100 30 1 400 3102 935 278.5 2828 959 04 311.7 934 0.0 2994 944 0.1
100 50 1 400 3219 1082 2949 2828 1129 0.8 3214 1083 0.0 302.3 1105 0.2
100 10 3 25 83.3 3064 78.6 70.7 3083 1.2 82.7 306.5 0.0 76.6 3074 03
100 30 3 25 1029 347.0 1240 70.7 3565 3.5 101.8 347.3 0.0 924 3499 03
100 50 3 25 118.9 393.8 1762 70.7 411.0 42 123.7 3922 0.0 117.7 3942 0.0
100 10 3 100 1565 2982 141.0 1414 2997 0.5 157.0 2982 0.0 150.0 2989 0.1
100 30 3 100 176.7 3309 1772 1414 3378 19 1744 3313 0.0 158.6 3343 04
100 50 3 100 196.5 372.0 2232 1414 3868 3.1 193.5 3727 0.0 1746 3775 04
100 10 3 400 3029 2872 2714 2828 2885 0.2 305.7 287.0 0.0 298.3 2875 0.0
100 30 3 400 3230 3099 296.8 2828 3149 0.8 3224 3100 0.0 302.7 3124 0.2
100 50 3 400 3432 3432 3336 2828 3537 15 339.8 3438 0.0 3114 3485 04
100 10 5 25 86.2 5115 842 70.7 5143 1.6 85.3 511.7 0.0 78.1 513.0 04
100 30 5 25 110.3 567.0 1464 70.7 580.0 4.0 111.1  566.8 0.0 102.6 569.3 0.1
100 50 5 25 1285 629.5 2157 70.7 651.6 4.2 1412 6252 0.1 1393 6258 0.1
100 10 5 100 1594 502.0 1451 1414 5040 0.7 1594 502.0 0.0 150.7 5029 0.1
100 30 5 100 1855 5482 196.6 1414 5584 25 182.6 5489 0.0 164.8 552.8 0.5
100 50 5 100 209.8 6043 2594 1414 6251 3.7 208.3 6047 0.0 189.8 609.9 0.2
100 10 5 400 305.8 4893 2738 282.8 4910 0.3 308.1 489.1 0.0 298.7 489.8 0.0
100 30 5 400 331.8 5236 312.0 2828 5308 1.1 3299 5239 0.0 306.0 5273 0.3
100 50 5 400 3580 5706 3642 282.8 586.1 2.1 3530 5716 0.0 320.1 578.1 0.5
TaBLE B3 Comparative results under the fill rate § = 98%
Optimal solution EOQ New approx. Platt et al. approx.
n o L K (4] R Cost Q0 R ACost O R ACost Q R ACost
(%) (%) (%)
100 10 1 25 77.0 106.6  77.6 70.7 107.1 0.3 76.6 106.6 0.0 72.9 106.9 0.1
100 30 1 25 86.9 135.5 108.0 70.7 1385 1.3 86.1 135.7 0.0 78.4 137.0 03
100 50 1 25 96.5 168.7 143.3 70.7 1754 22 96.7 168.7 0.0 88.4 170.7 0.2
100 10 1 100 148.8 102.2 1439 1414 1026 0.1 148.7 1022 0.0 1447 1024 0.0
100 30 1 100 1589 126.1 168.8 1414 128.0 0.6 1577 1262 0.0 1475 1273 0.2
100 50 1 100 168.8 1554 199.5 1414 1598 1.1 167.3 155.6 0.0 153.1 1579 03
100 10 1 400 2922 96.7 279.8 2828 97.0 0.1 2929 96.7 0.0 288.8 96.8 0.0
100 30 1 400 3028 1146 2984 2828 1159 0.2 301.8 1147 0.0 290.2 1154 0.1
100 50 1 400 312.8 1389 3236 2828 141.7 04 3108 139.0 0.0 293.1 140.7 0.2
100 10 3 25 80.6 3163 87.8 70.7 3175 07 80.0 3164 0.0 74.3 317.1 0.3

(continued)
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Optimal solution EOQ New approx. Platt et al. approx.
n o L K 0 R Cost Q R ACost Q R ACost Q R ACost
(%) (%) (%)
100 30 3 25 97.4 372.1 1469 70.7 379.1 2.3 97.8 372.0 0.0 89.5 374.0 0.2
100 50 3 25 111.7 4337 212.6 70.7 4473 2.8 118.2 431.8 0.0 114.1 4330 0.0
100 10 3 100 1526 3099 1519 1414 3107 03 151.9 310.0 0.0 1454 3104 0.1
100 30 3 100 169.7 3584 202.7 1414 363.1 1.1 168.3 358.7 0.0 153.7 361.0 0.3
100 50 3 100 186.8 4147 2624 1414 4254 20 186.1 4149 0.0 169.2 418.6 0.3
100 10 3 400 2962 302.1 2854 2828 302.7 0.1 296.1 302.1 0.0 289.2 3024 0.0
100 30 3 400 313.8 3414 3263 2828 3445 05 311.7 3416 0.0 2934 3434 0.2
100 50 3 400 3309 3905 377.6 2828 3974 09 328.1 3909 0.0 301.8 3946 0.3
100 10 5 25 83.8 523.6 955 70.7 5255 09 82.4 523.8 0.0 75.7 5248 0.3
100 30 5 25 104.1 598.6 1752 70.7 608.6 2.6 106.4 598.0 0.0 99.5 599.9 0.0
100 50 5 25 120.5 680.1 2619 70.7 698.0 2.9 1345 675.6 0.1 135.0 6755 0.1
100 10 5 100 1544 516.1 1583 1414 5172 04 1542 516.1 0.0 146.1 516.8 0.2
100 30 5 100 1772 5824 228.0 1414 589.6 1.5 1759 582.7 0.0 159.7 5858 0.3
100 50 5 100 1984 6579 3084 1414 6735 24 200.0 657.5 0.0 184.0 661.6 0.1
100 10 5 400 2984 506.7 290.2 2828 507.5 0.1 298.4 506.7 0.0 289.5 507.2 0.0
100 30 5 400 321.3 562.1 3479 2828 566.7 0.6 318.8 5624 0.0 296.6 565.0 0.3
100 50 5 400 3434 6292 4183 2828 639.7 1.2 340.5 629.7 0.0 3103 6347 0.3

Appendix C. Detailed numerical results, cost system

TaBLE C1  Comparative results for cost ratio b/b + h = 90%

Optimal solution EOQ New approx. Platt et al. approx.
adapted
n o L K o R Cost Q R ACost O R ACost O R ACost
(%) (%) (%)
100 10 1 25 789 937 727 707 949 0.6 792 937 0.0 793 937 0.0
100 30 1 25 90.2 1064  96.7 70.7 1115 2.1 89.5 106.6 0.0 85.3 107.6 0.1
100 50 1 25 101.0 124.0 126.0 70.7 1340 32 100.8 124.1 0.0 96.2 1255 0.1
100 10 1 100 1523 85.1 1374 1414 862 03 153.7 849 0.0 1575 845 0.1
100 30 1 100 163.5 92.0 155.6 1414 959 0.9 163.4  92.1 0.0 160.6 925 0.0
100 50 1 100 1748 1052 180.0 1414 1129 1.7 173.7 1054 0.0 166.7 1069 0.1
100 10 1 400 3000 700 270.0 2828 717 02 302.7 69.7 0.0 3145 68.6 0.1
100 30 1 400 3102 717 2819 2828 75.1 0.4 3122 715 00 3160 71.1 0.0
100 50 1 400 3214 79.1 3004 282.8 85.1 0.7 3219 79.0 0.0 319.1 794 0.0
100 10 3 25 83.1 2974 804 707  299.7 1.1 829 2974 00 809 2978 0.0
100 30 3 25 102.0 3259 129.1 70.7 3363 3.3 102.0 3258 0.0 975 3272 0.1
100 50 3 25 1174 360.7 1844 70.7 3787 3.8 124.0 3583 0.0 1242 3582 0.1
100 10 3 100 1564 286.5 1429 1414 2885 0.5 1572 2864 0.0 1583 2863 0.0
100 30 3 100 176.0 306.6 1826 1414 3148 1.8 174.7 3069 0.0 1674 3085 0.1
100 50 3 100 195.1 3357 231.8 1414 3523 29 193.8 336.0 0.0 1843 3388 0.1
100 10 3 400 3033 2699 2733 2828 2721 02 3062 269.7 0.0 3149 2688 0.1
100 30 3 400 3225 280.0 3025 2828 2863 0.8 3228 2799 0.0 319.5 2805 0.0
100 50 3 400 342.1 300.6 342.8 2828 3133 14 3404 301.0 0.0 328.7 3034 0.1

(continued)
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TaBLE C1  Continued.
Optimal solution EOQ New approx. Platt et al. approx.
adapted
n o L K 4] R Cost Q0 R ACost O R ACost O R ACost
(%) (%) (%)
100 10 5 25 8.9 5007 866 70.7 5040 1.5 85.5 500.7 0.0 824 5014 0.1
100 30 5 25 109.2 5406 1528 70.7 5545 3.7 111.3 5399 0.0 108.3 5409 0.0
100 50 5 25 126.7 5875 2261 70.7 6103 38 1415 5819 0.2 147.0 5799 03
100 10 5 100 1592 4883 147.6 1414 4910 0.6 159.6 4883 0.0 159.1 4884 0.0
100 30 5 100 1845 5187 2034 1414 5304 23 1829 519.0 0.0 173.9 5214 0.1
100 50 5 100 2079 5593 2703 1414 5820 34 208.7 559.0 0.0 2003 5617 0.0
100 10 5 400 306.0 4704 2763 2828 4729 03 308.5 470.1 0.0 3153 469.3 0.0
100 30 5 400 331.0 488.1 3192 2828 497.0 1.1 3304 4882 0.0 323.0 489.6 0.0
100 50 5 400 3564 5193 3757 2828 5374 1.9 353.6 5199 0.0 3379 523.6 0.1
TaBLE C2  Comparative results for cost ratio b/b + h = 95%
Optimal solution EOQ New approx. Platt et al. approx.
adapted
12 o L K 0 R Cost Q R ACost Q R ACost Q R ACost
(%) (%) (%)
00 10 1 25 772 1003 775 707 1009 0.3 77.0 1003 0.0 752 1005 0.0
100 30 1 25 872 1207 1079 707 1243 14 86.7 120.8 0.0 809 1220 02
100 50 1 25 969 1458 1433 70.7 1535 23 974 1457 0.0 912 1474 0.1
100 10 1 100 1493 943 143.6 1414 949 0.1 1495 943 0.0 149.2 943 0.0
100 30 1 100 159.4 109.1 1685 1414 1115 0.6 1587 109.2 0.0 1522 110.0 0.1
100 50 1 100 1694 1299 1993 1414 1353 1.1 1684 130.1 0.0 157.9 1320 02
100 10 1 400 2933 857 279.0 2828 862 0.1 2946 856 0.0 2979 854 0.0
100 30 1 400 303.7 94.0 297.7 2828 959 0.2 303.5 94.1 0.0 2994 944 00
100 50 1 400 313.8 109.2 3230 2828 1129 0.5 3127 1093 0.0 3023 1105 0.1
100 10 3 25 809 3068 876 707 3083 0.7 80.4  306.8 0.0 76.6 3074 0.1
100 30 3 25 977 3484 1469 70.7 3565 23 98.5 3482 0.0 924 3499 0.1
100 50 3 25 1120 396.1 2127 70.7 4110 29 1192 3937 0.1 1177 3942 0.0
100 10 3 100 153.0 298.6 151.6 1414 299.7 0.3 152.8 298.6 0.0 150.0 2989 0.0
100 30 3 100 1704 3321 2025 1414 3378 12 169.3 3323 0.0 158.6 3343 0.2
100 50 3 100 1874 3743 2623 1414 3868 2.0 187.4 3742 0.0 1746 3775 0.1
100 10 3 400 297.1 2875 2847 2828 2885 0.1 297.8 2875 0.0 2983 2875 0.0
100 30 3 400 314.8 3109 3257 2828 3148 0.5 313.6 311.0 0.0 302.7 3124 0.1
100 50 3 400 332.1 3450 377.1 2828 353.7 09 330.1 3453 0.0 311.4 3485 0.2
100 10 5 25 834 5120 954 707 5143 1.0 829 5121 0.0 78.1 5129 0.2
100 30 5 25 1043 568.8 1752 70.7 580.0 2.7 107.2 5679 0.0 102.6  569.3 0.0
100 50 5 25 120.6 6324 2621 70.7 651.6 29 1357 627.1 0.2 1393 6258 0.2
100 10 5 100 1556 5024 158.0 1414 5040 04 155.1 5024 0.0 150.7 5029 0.0
100 30 5 100 1779 5499 2279 1414 5584 1.6 177.0 550.0 0.0 164.8 5528 0.2
100 50 5 100 199.0 607.3 3084 1414 625.1 24 2014 606.6 0.0 189.8  609.9 0.0
100 10 5 400 299.8 489.7 289.5 2828 491.0 0.2 300.0 489.7 0.0 298.7 489.8 0.0
100 30 5 400 3224 5249 3473 2828 5308 0.7 3207 5252 0.0 306.0 5273 0.1
100 50 5 400 3446 5733 4179 2828 586.1 1.3 3426 573.6 0.0 320.1 578.1 0.2
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Optimal solution EOQ New approx. Platt et al. approx.
adapted
" o L K o R Cost OQ R ACost O R ACost O R ACost
(%) (%) (%)
100 10 1 25 759 106.6 826  70.7 107.1 0.2 75.8 106.7 0.0 72.9 106.9 0.1
100 30 1 25 84.6 1359 1205 70.7 1385 09 85.1 135.8 0.0 78.4 137.0 0.2
100 50 1 25 93.2 169.6 163.1 70.7 1754 1.6 95.4 169.0 0.0 88.4 170.7 0.1
100 10 1 100 1473 1023 149.6 1414 1026 0.1 147.1  102.3 0.0 1447 1024 0.0
100 30 1 100 1562 1264 182.6 1414 1280 04 156.0 1264 0.0 1475 1273 0.1
100 50 1 100 1649 1560 2209 1414 1598 0.7 1654 1559 0.0 153.1 1579 02
100 10 1 400 2899 968 2867 2828 97.0 0.0 2899 968 0.0 288.8 96.8 0.0
100 30 1 400 2992 1148 314.1 2828 1159 0.1 298.6 1149 0.0 290.2 1154 0.0
100 50 1 400 308.0 1393 3473 2828 141.7 03 307.5 1393 0.0 293.1 140.7 0.1
100 10 3 25 79.1 3165 956 707 3175 0.5 79.1 316.5 0.0 743  317.1 0.1
100 30 3 25 94.0 373.0 1674 707 379.1 1.6 96.5 3723 0.0 895 3741 0.0
100 50 3 25 106.9 4352 2455 70.7 4473 21 116.5 4323 0.1 114.1 4330 0.1
100 10 3 100 150.6 310.1 160.7 1414 3107 02 150.3 310.1 0.0 1454 3104 0.1
100 30 3 100 1657 359.1 2248 1414 3631 0.8 166.3  359.0 0.0 153.7 361.0 02
100 50 3 100 180.7 416.0 297.1 1414 4254 14 183.8 4153 0.0 169.2 418.6 0.1
100 10 3 400 2934 3022 2956 2828 3027 0.1 293.1 3022 0.0 289.2 3024 0.0
100 30 3 400 3089 3419 3508 2828 3444 03 3084 3419 0.0 2934 3434 0.1
100 50 3 400 3239 3914 4154 2828 3974 0.6 3244 3914 00 301.8 3946 0.2
100 10 5 25 813 5239 1052 707 5255 0.6 814 5239 0.0 7577 5247 02
100 30 5 25 99.9  599.7 201.1 707 6086 19 1049 5984 0.0 99.5 5999 0.0
100 50 5 25 115.0 682.0 3038 70.7 698.1 22 1324 6763 0.2 1350 6755 0.3
100 10 5 100 1529 5162 169.1 1414 5172 02 152.6 5162 0.0 146.1 516.8 0.1
100 30 5 100 1723 5834 2557 1414 589.6 1.1 173.8 583.1 0.0 159.7 5858 0.2
100 50 5 100 1912 659.7 3522 1414 6735 1.7 197.3 6582 0.0 184.0 661.6 0.0
100 10 5 400 2958 506.8 3026 2828 507.5 0.1 2953 506.8 0.0 289.5 5072 0.0
100 30 5 400 3155 5627 3782 2828 566.6 04 3153 5628 0.0 296.6 565.0 0.1
100 50 5 400 3349 6305 4655 2828 639.7 0.9 336.5 6303 0.0 3103 6347 0.2
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