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ABSTRACT
Sales promotions pose challenges to retail operations by causing sudden fluctuations in demand, not only during the promotional 
period but also across the entire sales promotional life cycle. Previous research has predominantly focused on promotional and 
nonpromotional periods, often overlooking the postpromotional phase, where demand decreases due to consumer stockpiling 
during promotions. To address this research gap, we investigate both traditional statistical forecasting methods and contempo-
rary approaches, such as global models, implemented using gradient boosting and deep learning techniques. We assess their 
performance throughout the entire demand life cycle. We employ the base-lift approach as our benchmark model, commonly 
used in the retail sector. Our study results confirm that machine learning methods effectively manage demand volatility induced 
by retail promotions while enhancing forecast accuracy across the demand life cycle. The base-lift model performs comparably 
to alternative machine learning methods, albeit with the additional effort required for data cleansing. Our proposed forecasting 
framework possesses the capability to automate the retail forecasting process in the presence of sales promotions, facilitating effi-
cient retail planning. Thus, this research introduces a novel demand forecasting framework that considers the complete demand 
life cycle for generating forecasts, and we rigorously evaluate it using real-world data.

1   |   Introduction

Retail operations encounter a variety of difficulties and complex-
ities due to many factors such as shifting customer expectations, 
promotional activities, partner activities, and shorter lead times 
(Hewage and Perera 2022b; Ma et al. 2016; Ma and Fildes 2021). 
Of which, retail sales promotions make retail sales forecasting a 
difficult task (Hewage et al. 2021). Generally, retail promotions 
often increase product sales during promotional periods (Fildes 

et al. 2019). This increase in sales for the promoted product may 
occur at the expense of sales of other products or sales of the same 
product during other time periods (Blattberg and Briesch 2012). 
Following the promotional period, sales may fall below normal 
levels and then recover, creating a postpromotional dip (Hewage 
et al. 2021). Thus, promotions cause demand changes not only 
during the promotional time but also throughout the demand 
life cycle (Macé and Neslin 2004). Figure 1 depicts the demand 
variations during a retail sales promotion.
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This necessitates the development of more comprehensive ap-
proaches to deal with these issues in retail forecasting (Hewage 
et  al.  2021) such as regression-based models (e.g., Cooper 
et al. 1999; Divakar et al. 2005; Leeflang et al. 2005) and ma-
chine learning (ML) models (Spiliotis et al. 2020). Though these 
methods can incorporate causal features like promotional in-
formation (Perera et al. 2019), retailers continue to use simple 
methods like exponential smoothing (ETS) to forecast sales, 
often with judgmental adjustments to account for promotional 
effects (Mou et  al.  2018). These judgmental approaches are 
manpower-intensive because a typical retail store carries thou-
sands of products across many store locations (Fildes et al. 2019). 
Therefore, ML methods are a viable alternative that enables re-
tailers to automate the forecasting process (Ali et al. 2009).

Importantly, with enhancements to the current technology, uti-
lizing ML methods does not pose a technical challenge for retail-
ers (Fildes et al. 2019). Nevertheless, past literature highlights 
only a few studies focused on stock keeping unit (SKU) level 
sales forecasting using ML methods and all the studies have 
focused only on the promotional and nonpromotional periods, 
regardless of the postpromotional period (e.g., Abolghasemi, 
Beh, et  al. 2020; Ali and Gürlek  2020; Ali et  al.  2009; Huber 
and Stuckenschmidt 2020; Ma et al. 2016; Ma and Fildes 2017). 
Therefore, we explore the applicability of ML methods in the 
presence of promotions, considering the whole demand life 
cycle: normal, promotional, and postpromotional.

In reality, people are sensitive to retail sales promotions and try 
to get an advantage out of them (Hewage et al. 2021). Often, tra-
ditional forecasting methods are unable to cope with such com-
plexities. Thus, our study is concerned with the comparison of 

the forecast performances of conventional univariate methods 
and ML methods. Therefore, we aim to explore the potential 
of ML methods in retail operations to support better decision-
making using available data. Specifically, we focus on inves-
tigating the use of ML methods that incorporate exogenous 
features, such as the type of promotional period, to improve the 
accuracy of retail promotional forecasting and to compare their 
performance with univariate methods in each period.

This investigation is relevant from both a theoretical and practi-
cal point of view, as retailers have access to an increasing array 
of data and need to understand how data can improve decision-
making in retail operations. The primary goal of this research is 
to determine whether ML approaches are viable for forecasting 
sales in the context of retail sales promotions.

Therefore, our study makes the following contributions:

•	 We explore whether ML methods have the capacity to auto-
matically identify the promotional effects.

•	 We investigate the impact of incorporating more exogenous 
features on the performance of ML methods, using real-
world sales data from https://​www.​dunnh​umby.​com/​sourc​
e-​files/​​.

•	 Our study provides an extensive comparison of the perfor-
mance between the proposed forecasting framework and 
statistical univariate forecasting methods.

Our paper is structured as follows. Section 2 discusses the rel-
evant literature as well as the theoretical foundation for the 
hypothesis development. The methodology is presented under 

FIGURE 1    |    Variations in demand in retail sales promotions: (a) normal sales represent the number of sales without any sales promotions; (b) a 
sales uplift can be found during promotional periods; (c) the postpromotional period has lower sales figures than the normal period; and (d) sales 
figures gradually recover to a normal level.
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Section 3. Section 4 includes a full analysis and the findings of 
the empirical study. Sections 5 and 6 of the paper focus on the 
discussion and conclusion respectively.

2   |   Literature Review

A retail supply chain is made up of retailers, suppliers, other in-
termediaries, and manufacturers who collaborate to meet cus-
tomer demand (Fildes et al. 2019; Perera et al. 2019). Retailing 
is a highly competitive industry due to the various complexities 
and uncertainties (Ma et  al.  2016). These challenges and un-
certainties arise as a result of shifting customer expectations, 
competitor actions, partner activities, promotional activities, 
shorter lead times, and emerging technologies (Hewage and 
Perera  2022b; Ma et  al.  2016; Ma and Fildes  2021). All these 
factors contribute to a volatile retail supply chain affected by 
demand volatility. Therefore, even a small improvement in op-
erational decisions allows retailers to maintain their operations 
at a competitive level (Hübner et al. 2018; Ma and Fildes 2017).

Importantly, retailers need to effectively manage their supply 
chain in order to successfully meet customer demand (Fildes 
et al. 2019). Despite this, retail planning tasks are highly complex 
since retailers need to manage a wide range of products within 
limited shelf space (Mou et al. 2018). Therefore, sales forecast-
ing1 is a critical task in retail planning (Guo et al. 2013; Hewage 
et al. 2021; Hewage and Perera 2022a). Retailers, in particular, 
must generate proper forecasts for individual products in order 
to manage all logistics services while avoiding stock imbalances 
and ensuring consumer satisfaction (Ali et al. 2009). Thus, sales 
forecasting is a fundamental input in retail operations (Brinke 
et al. 2023) as it is required for making various operational de-
cisions such as sourcing, procurement, production planning, 
logistics, marketing, and financial decisions (Hanssens  1998; 
Huber and Stuckenschmidt 2020).

Inaccurate forecasts often result in stock-outs or high stock 
levels that are prone to obsolescence (Huang et  al.  2019). If 
stock-outs occur on a frequent basis, they can lead to customer 
dissatisfaction and, eventually, customers switching to other 
retail outlets (Huang et al. 2019). Thus, retailers tend to main-
tain a buffer stock to ensure customer satisfaction. This ulti-
mately leads to higher inventory costs and reduced profits (Ma 
et al. 2016; Perera et al. 2019). However, producing reliable and 
accurate sales forecasts is a very challenging task in the retail 
context (Ali and Gürlek 2020; Trapero et al. 2015). Many factors, 
such as sales promotions, weather, holidays, and special events, 
can influence observed sales data at the product level, causing 
demand irregularities (Fildes et  al.  2019; Perera et  al.  2019). 
Sales promotions are one of the salient factors in creating irregu-
lar sales patterns among them (Baek 2019; Bandara et al. 2019).

Sales promotions cause demand volatility not just during the 
promotional period, but also throughout the demand life cycle 
(Abolghasemi, Beh, et  al. 2020). Normally, a sales uplift can 
be found during promotional periods. This increase in sales is 
usually the result of customers changing their buying patterns, 
either through purchase acceleration or higher consumption 
(Blattberg and Briesch 2012) because customers tend to stock-
pile products during sales promotions for future consumption 

(Perera et al. 2019). This often leads to lower sales figures than 
the baseline (normal) level2 for a short period of time in the im-
mediate aftermath of a promotion. The sales figures then recover 
to a normal level again with time (Abraham and Lodish 1987). 
This period where there is a dip in demand is identified as the 
postpromotional period (Hewage et  al.  2021). Hence, a retail 
sales promotion has three phases: the normal period, the pro-
motional period, and the postpromotional period (Hewage 
et al. 2021), creating different demand variations in each period 
(DelVecchio et al. 2006).

For various reasons, sales forecasting in the presence of promo-
tions can be challenging (Fildes et al. 2018). It is common for 
retailers to have thousands of products across hundreds of stores 
being promoted simultaneously (Cohen et  al.  2021). However, 
the relative infrequency of such promotions, as well as the vary-
ing sales uplift achieved, makes the forecasting process chal-
lenging (Fildes et al. 2018). On the other hand, when a product 
is promoted, it not only affects the demand for that product but 
also the demand for other items, resulting in cross-item effects 
(Cohen et al. 2021). As a result, there is no standardized method 
for coping with changes in demand caused by retail promotions 
(Fildes et al. 2019).

In practice, many retailers still use simple univariate methods 
supplemented by judgmental adjustments or base-lift (BL) cor-
rection to cope with promotional effects (Fildes et  al.  2019). 
Simple moving averages, ETS and its extensions, or autoregres-
sive integrated moving average (ARIMA) approaches to state 
space models, are the most common univariate methods used in 
the retail sector (Fildes et al. 2019; Hewage et al. 2021; Ma and 
Fildes 2021; Perera et al. 2019; Hyndman and Khandakar 2008). 
Although univariate methods are extensively used due to their 
simplicity and robustness, using univariate models with judg-
mental adjustments to forecast sales in promotions might result 
in systemic errors (Hewage et  al.  2021). Thus, these forecasts 
can be inaccurate, costly, and inconsistent due to bias (Fildes 
et al. 2009; Trapero et al. 2013).

In contrast, causal methods are capable of incorporating sales 
promotions into forecasts without any judgmental interference 
(Fildes et al. 2008). These models are often based on multiple 
regression, incorporating causal effects of promotions into 
the forecasts (Trapero et  al.  2015). Some of the known im-
plementations of these methods are SCAN*PRO (Leeflang 
et  al.  2005), PromoCast (Cooper et  al.  1999), CHAN4CAST 
(Divakar et  al.  2005), and Driver Moderator (Gür Ali  2013; 
Huang et  al.  2014; Ma et  al.  2016). These methods, however, 
are quite sophisticated and have stringent data requirements 
(Lee et al. 2007; Trapero et al. 2013). Thus, these models are not 
widely employed in the industry (Fildes et al. 2019).

Unstructured methods, on the other hand, can use past sales 
and causal variables with lags as input to provide forecasts 
during promotional periods (Ali and Gürlek  2020). Thus, ML 
methods are gaining traction as a viable option for forecasting 
retail sales (Fildes et al. 2019). Some of the popular implemen-
tations include support vector machines (SVMs), regression 
trees (RTs), artificial neural networks (ANN), and boosted trees 
(BTs) (Fildes et al. 2019; Loureiro et al. 2018; Perera et al. 2019). 
With ever-increasing volumes of data created by both retailers 
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and customers, ML is expected to have a significant impact on 
retail (Wang et  al.  2020). ML models, despite being computa-
tionally expensive, give flexibility and high predicted accuracy 
when there is a large amount of data (Ali and Gürlek  2020). 
Furthermore, the results of a recent M5 competition on Kaggle 
show the potential of ML in retail forecasting tasks (Spiliotis 
et al. 2020).

Past literature shows that ML methods often improve forecast 
accuracy compared to linear models in the presence of promo-
tions for retail products (Fildes et al. 2019). As an example, Ali 
et al. (2009) proposed a RT-based method incorporating a range 
of causal variables such as promotion and price, along with past 
sales at the SKU level. They found that the proposed model with 
causal features substantially improved the forecast accuracy in 
promotional periods. Also, Huber and Stuckenschmidt  (2020) 
report that ML methods including ANN and BT provide more 
accurate forecasts suitable for large-scale demand forecasting 
scenarios. Further, Abolghasemi, Beh, et  al. (2020) show that 
the SVR model generates robust forecasts in the presence of 
promotions.

Most ML methods in the past have been employed as univariate 
techniques, which were not successful and resulted in overfit-
ted models that often give poor forecast accuracy (Godahewa 
et  al.  2020). With access to massive amounts of retail store-
generated data, ML-based forecasting methods that are fitted 
globally across multiple time series outperform forecasting 
models trained on isolated series (Godahewa et  al.  2020). 
Nevertheless, there are only a few studies focused on SKU-level 
sales forecasting using ML methods fitted globally using mul-
tiple time series (Hewage et al. 2021). Table 1 provides a com-
prehensive comparison of the past literature with our proposed 
model. However, all the previous studies have only focused on 
the promotional and nonpromotional (i.e., normal) periods, 
without considering the postpromotional period. This leaves the 
actual benefits and challenges of integrating all types of promo-
tional periods with ML methods unexplored.

Therefore, our proposed model offers a more comprehensive ap-
proach. It includes not only traditional methods used in existing 
frameworks but also recent methods like BTs and deep learning 
(DL) models. By incorporating all types of promotional periods, 
we can gain a deeper understanding of the effectiveness of pro-
motional strategies and how they affect sales in the long term. 
Thus, we aim to investigate whether ML methods are a viable 
alternative for forecasting retail sales in the presence of promo-
tions. To evaluate their relative performance, we compare the 
ML methods with widely applied univariate methods.

2.1   |   Hypothesis Development

Promotions are the main reason for incorporating judgmental 
adjustments into retail sales forecasting (Aruchunarasa and 
Perera 2022; Perera et al. 2019). However, practitioners tend to ig-
nore quantitative forecasts altogether when making adjustments 
to tackle promotional effects (Perera et al. 2019). Furthermore, 
Goodwin  (2000) and Hewage et  al.  (2021) report that practi-
tioners often fail to identify the promotional periods correctly 
or ignore the postpromotional period and treat it as a normal 

period. Thus, they frequently make inappropriate adjustments 
that impair forecast accuracy during promotional periods (De 
Baets and Harvey 2018). In contrast, Trapero et al. (2015) found 
that the dynamic regression model can automatically identify 
the postpromotional dip. Ali and Gürlek  (2020) also state that 
the FAIR model identifies the postpromotional dip. However, 
the postpromotional effect was not incorporated into these mod-
els. Hence, we hypothesize:

H1.  ML methods require minimal feature engineering in order 
to recognize the postpromotional period and accurately predict 
the magnitude of the postpromotional dip.

Interestingly, previous literature shows RT with explicit features 
improves accuracy significantly during promotional periods 
(Ali et al. 2009). Huber and Stuckenschmidt (2020) further sug-
gest expanding the feature space with exogenous features such 
as features of a product or information on the store to allow ML 
methods to implicitly cluster time series while reducing the loss 
function. Thus, incorporating more sophisticated variables ben-
efits ML methods as they have the capability to take advantage 
of them effectively (Ali et al. 2009). As a result, we hypothesize:

H2.  ML methods can improve forecast performance during all 
periods, including normal, promotional, and postpromotional 
periods, when promotional periods are provided as an exogenous 
variable.

Specifically, Huber and Stuckenschmidt  (2020) points out that 
it is unclear whether ML methods can outperform conventional 
methods in retail sales forecasting. Furthermore, previous liter-
ature emphasizes the need of research in retail sales forecasting 
due to limited availability of objective evidence on performance 
comparisons (Fildes et al. 2019; Makridakis et al. 2018). Hence:

H3.  In the retail industry, ML methods outperform statistical 
univariate methods across the demand life cycle.

3   |   Methodology

This section summarizes the proposed forecasting framework, 
which consists of three components: input data/preprocessing, 
forecast engine, and postprocessing/final forecasts. We employ 
multiple forecasting techniques, including both statistical and 
ML techniques, as the main core of our forecast engine in the 
proposed framework. Figure 2 depicts the overview of the pro-
posed forecasting framework.

3.1   |   Input Data

Retailers require SKU level sales forecasting as it is the primary 
operational unit for managing daily stock replenishment (Fildes 
et  al.  2019). Thus, we focus on SKU level sales forecasting in 
this study. We used a publicly available dataset3 from a leading 
US-based retailer. The dataset used in our study consists of four 
product categories (cereal, frozen pizza, oral hygiene products, 
and snacks) carrying 55 SKUs across 75 stores, resulting in 3364 
unique time series. The dataset spans over 156 weeks. Table 2 
shows the descriptive statistics of the collected dataset.
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Next, we examine the time series plot at different cross-sectional 
aggregation levels to observe the time series features such as 
trend, seasonality, and noise. Figure  3 shows that at higher 
aggregate levels, we can observe seasonality patterns with low 
trend. However, at the product level, the time series becomes 
more volatile in some cases due to low sales volume.

However, due to the high number of series, it is not visually 
feasible to observe time series features properly. Therefore, we 
extracted the time series features of all 3364 series using the 
“STL” (Seasonal and Trend Decomposition using Loess) decom-
position method (Cleveland et al. 1990). Figure 4 illustrates the 
strengths of trend and seasonality of each time series, with both 
measures on a scale of [0, 1]. The majority of time series in the 
cereal, frozen pizza, and oral hygiene categories show a low and 
moderate strength of trend and low seasonality. Conversely, in 
snacks, we can see a moderate and high seasonality as well. 
However, it was evident that even within the same product cat-
egory (e.g., Snacks), different patterns of trends and seasonality 
were observed, making the forecasting process challenging.

3.2   |   Input Features

In our study, we utilize a combination of time series and causal 
data, encompassing both static and dynamic features. We de-
fined a total of 14 features, which are depicted in Table  3. To 
identify the most significant lag predictors, we explored the 
correlation between the target variable and its lag predictors 
using lag scatterplots. This initial exploration suggests that the 
first three lag predictors are the most suitable for modeling. 
Moreover, previous literature has emphasized the significance of 
these variables in the retail domain (Ali and Gürlek 2020; Huber 
and Stuckenschmidt 2020; Ma and Fildes 2021). Furthermore, 
it is worth noting that these features are typically accessible to 
most retailers.

3.3   |   Data Preprocessing

We started by looking for missing values in the dataset, but there 
were none. Estimating baseline demand is fundamental to classi-
fying the promotional periods as normal, promotional, and post-
promotional. Baseline demand represents the sales level without 
taking promotional effects into consideration. For this, we em-
ployed the ETS model using the sales levels in normal periods. 
The ETS model has several advantages for our study, including 
simplicity and robustness (Hyndman and Khandakar 2008). We 
used the ets() function in the R forecast package (Hyndman and 
Khandakar 2008) to implement the ETS model. We elaborate on 
the model further under Section 3.4.

Following that, the promotional calendar was used to classify 
the normal and promotional periods. We employed Equation (1) 
to identify the postpromotional periods.

where Ait: actual sales for SKU i at the tth week, Bit: baseline 
demand for SKU i at the tth week, and Dit: difference between 
baseline demand and actual sales at the tth week for SKU i. If 

(1)Dit = Bit − Ait,
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Dit is negative immediately following a promotion, the tth period 
(t ≥ 0) is classified as a postpromotional period. However, the 
postpromotional effect is most noticeable only within the first 1 
or 2 weeks following a promotion (Macé and Neslin 2004).

We further divided the dataset into training and test sets. The 
training data were utilized to estimate the parameters of each 
forecasting method, while the test data were used to evaluate 
the forecast accuracy. The training set encompassed the initial 
130 weeks, totaling 439,400 observations, whereas the test set 
comprised the subsequent 26 weeks, totaling 87,880 observa-
tions. Additionally, when developing the forecasting models, we 

set the frequency of each series to 52 weeks. This frequency was 
selected to synchronize with the weekly data, ensuring that the 
models adequately captured the inherent seasonality and other 
temporal patterns.

3.4   |   Benchmark Model

As a benchmark method, we implemented a BL model using 
the baseline demand estimation described in Section 3.2. This 
model, which is commonly used by retailers for forecasting 
(Ma and Fildes  2021) and is also implemented in commercial 

FIGURE 2    |    The proposed framework consists of three components, namely, input data/preprocessing, forecast engine, and postprocessing/final 
forecasts.

TABLE 2    |    Descriptive summary of the dataset.

# of SKUs

Weekly sales

Normal Promotional Postpromotional

Mean SD Mean SD Mean SD

Cereal 15 41.6 25.3 103.2 63.2 37.5 26.7

Frozen pizza 12 18.3 9.64 60.5 35.4 14.0 9.48

Oral hygiene products 13 12.9 6.07 30.5 14.0 8.10 4.22

Snacks 15 29.8 26.2 62.6 43.5 22.4 18.9
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applications (Ali et al. 2009), adjusts the forecast based on pro-
motional or postpromotional effects. If a promotion is planned 
for the coming week, the average promotional lift is added to 
the forecast. If the week is identified as a postpromotional pe-
riod, the average postpromotional dip is added to the forecast. 
Otherwise, the forecast value is left unchanged for the normal 
period, as shown in Equation (2).

where i: selected SKU, Bit: baseline demand for SKU i at tth week, 
and BLit: final forecast for SKU i at tth week.

3.5   |   Forecasting Methods

We consider three groups of methods in our study, namely, 
(1) univariate methods, (2) ML-based methods, and (3) DL-
based methods. As univariate methods, we use ARIMA and 
ETS models because these are widely applied in both the retail 
industry and academia (Fildes et al. 2019; Perera et al. 2019; 
Hyndman and Khandakar 2008). Furthermore, we implement 
the sNAÏVE model in our study for comparison purposes. We 
also use ETS with exogenous variable (ETSX), an extension 
of the ETS model (Abolghasemi, Beh, et  al. 2020). For ML-
based methods, we use LightGBM (LGB), xgBoost (XGB), and 
random forest (RF) methods. Finally, within the DL family of 
methods, we use DeepAR and WaveNet in our study. Next, we 
detail the methods and specific implementations we used in 
our study.

(2)

BLit

⎧
⎪
⎨
⎪
⎩

Bit ; (t=normal period),

Bit+(Average promotional uplift)i ; (t=promotional period),

Bit−(Average postpromotional dip)i ; (postpromotional period).

FIGURE 3    |    Time series of total sales (January 14, 2009–July 06, 2011) at cross-sectional aggregate levels. The x axis displays the week, and the y 
axis indicates the total sales in terms of units. The top panel shows total sales for the entire company, the second panel shows total sales for each cat-
egory, and the bottom panel shows total sales for each product. To ensure clarity and prevent overplotting, only five of the time series at the product 
level are displayed.
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3.5.1   |   sNAÏVE

This simple forecasting model involves generating fore-
casts using the last known observation from the previ-
ous same period. To implement this model, we utilized the 
SNAIVE() function in the fable package in R (Hyndman and 
Athanasopoulos 2021).

3.5.2   |   ARIMA

ARIMA model is a widely used approach in practice since 
it can take into consideration trend, seasonality, and error, 
as well as the nonstationarity of a time series (Hewamalage 

et al. 2021). In our study, we used the AutoARIMA algorithm 
(Hyndman and Khandakar 2008), which finds the best ARIMA 
model automatically (Hyndman and Khandakar 2008). First, 
it finds the appropriate order of difference (d) by using the 
Kwiatkowski–Phillips–Schmidt–Shin unit root test. Second, 
it determines the appropriate order of the autoregressive 
component (p) and the moving average component (q) values 
by fitting different models and selecting the model with the 
lowest Akaike information criterion (AICc) (Hyndman and 
Khandakar  2008). Moreover, the AutoARIMA algorithm is 
capable of fitting seasonal ARIMA models by identifying the 
number of seasonal differences and other model parameters 
by minimizing the AIC, similar to nonseasonal ARIMA mod-
els. Thus, it determines the best model for each time series by 
selecting the one with the lowest AIC after comparing both 
nonseasonal and seasonal ARIMA models simultaneously 
(Hyndman and Athanasopoulos  2021). To implement the 
ARIMA model, we used the auto.arima() function in the R 
forecast package (Hyndman and Khandakar 2008).

3.5.3   |   ETS and ETSX

ETS is a univariate method based on ETS in a state space 
framework that takes seasonality, trend, and error into ac-
count (Petropoulos and Svetunkov  2020; Hyndman and 
Khandakar  2008). This automatically determines the best 
model by minimization of a prespecified information cri-
terion from the underlying 15 ETS models (Hyndman and 
Khandakar 2008). Moreover, the ETS model can be extended 
using a regressor variable when additional information is 

FIGURE 4    |    The strengths of trend and seasonality in the time series of sales. The scatter plot comprises 3364 data points, with each point repre-
senting a specific time series.

TABLE 3    |    Selected input features.

Feature type Feature

Target variable Weekly sales

Time series features Lagged sales for 1, 2, and 3 weeks

Dynamic features Calendar features, promotional types 
(i.e., temporary price reduction, 
display, and feature), magnitude 

of discounts, and selling price

Static features Store ID, category, and 
subcategory ID, SKU

Additional feature Promotional period (i.e., normal, 
promotional, or postpromotional)
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available to construct the ETSX model. This allows us to in-
corporate causal features into the ETS model (Petropoulos 
and Svetunkov  2020; Hyndman and Khandakar  2008). We 
used the ets() function in the R forecast package (Hyndman 
and Khandakar 2008) and the es() function in the R smooth 
package (Petropoulos and Svetunkov 2020) to implement ETS 
and ETSX models, respectively.

3.5.4   |   Gradient-Boosted RTs (GBRTs)

GBRTs have gained popularity as a potential approach in time 
series forecasting (Ma and Fildes  2021) and as a viable alter-
native to ANNs (Huber and Stuckenschmidt  2020). LGB and 
XGB are the most widely used implementations among these 
(Huber and Stuckenschmidt 2020). They train a series of deci-
sion trees, one at a time. It is based on the accumulated errors 
of the last tree, similar to boosting approaches. Therefore, the 
final forecast is the aggregate of all trees trained (Hewage and 
Perera  2022b; Huber and Stuckenschmidt  2020). We used the 
LightGBM Python Package (Microsoft Corporation  2022) and 
XGBoost Python Package (xgboost Developers  2021) to imple-
ment LGB and XGB models, respectively.

3.5.5   |   RF

RF is a collection of RTs, each of which is based on the val-
ues of a random vector with the same distribution that is sam-
pled independently (Breiman 2001). The accuracy of the RF is 
determined by the correlation and strength of the individual 
trees, as well as the size of the forest. RF averages the forecasts 
of multiple RTs to produce the final forecast (Breiman 2001). 
Therefore, it is more resistant to noise and is less prone to 
overfit the training data (Breiman  2001). Further, past liter-
ature states RF is a promising approach in the retail context 
(Spiliotis et  al.  2020). We used the RandomForestRegressor 
Python Package (scikit-learn Developers 2022) to implement 
the RF model.

3.5.6   |   DeepAR and WaveNet

DeepAR model is based on an autoregressive recurrent neural 
network framework and trains a large number of related time 
series simultaneously (Salinas et  al.  2020). On the other hand, 
WaveNet is made up of detailed causal convolutional layers. 
Thus, it can produce real-valued data sequences in response to 
some conditional inputs (Sprangers et  al.  2022). Though these 
models were introduced recently, they have been identified as po-
tential approaches for sales forecasting (Vallés-Pérez et al. 2022). 
Moreover, the WaveNet model finished second in the Kaggle com-
petition that featured the Corporaci Favorita data (Vallés-Pérez 
et al. 2022). We used the GluonTS toolkit in Python (Amazon Web 
Service 2022) to implement both DeepAR and WaveNet models.

4   |   Experimental Study

This section highlights the forecasting methods and the error 
measures utilized in our study.

4.1   |   Overview of the Candidate Models

In our study, we developed 14 candidate models using different 
combinations of input features, as shown in Table 4. For the ML 
and DL methods, we created two forecasting groups for each 
method by varying the availability of the promotional period as 
an input feature. Models denoted by 1 included the promotional 
period as an input feature, while models denoted by 2 did not. 
This experimental setup was used to investigate whether pro-
viding additional feature variables improved the performance of 
the ML and DL models. We used the default parameters to train 
all of the forecasting models and did not perform any hyperpa-
rameter tuning for the ML and DL methods in order to keep the 
models simple.

4.2   |   Error and Performance Measures

We focused on four major areas in our analysis. First, we eval-
uated the magnitude and sign of the postpromotional effect 
identified by each candidate model. We measured the magni-
tude and the sign of the postpromotional effect identified using 
Equation (3).

where Fit: forecasted sales for SKU i at tth week, Bit: baseline de-
mand for SKU i at tth week, and PMit: magnitude of the postpro-
motional effect at tth week for SKU i.

Second, we evaluate the forecast accuracy of the models using 
symmetric MAPE (sMAPE) (Bandara et al. 2020) and mean ab-
solute scaled error (MASE) (Hyndman and Koehler 2006) using 
Equations (4) and (5), respectively.

where At: actual sales at tth week, Ft: forecasted sales at tth week, 
and n: number of series. Both of these error metrics are widely 
used in the field of time series forecasting (Huang et al. 2019). 
However, sMAPE has some shortcomings, such as a lack of in-
terpretability, a lack of robustness, and being unstable with val-
ues close to zero (Bandara et al. 2019). To mitigate some of these 
issues, we use MASE as our second error metric, as it is scale 
independent (Hyndman and Koehler 2006).

Thirdly, we compare the value addition from the additional 
variable to the ML and DL methods using the forecast value 
added (FVA) model: Equation  (6). Chybalski  (2017) explains 
that FVA compares the forecast improvement of a model with 
another. Error metrics such as the mean absolute percentage 

(3)PMit =
(
Fit − Bit

)
∕Bit,

(4)
sMAPE =

∑n

t=1

�Ft −At�
(�Ft�+ �At�) ∕ 2
n

× 100,

(5)MASE =

1

(n− 1)

∑n

t=2
��At − At−1

��
1

(n)

∑n

t=1
��Ft − At

��
× 100,
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error (MAPE), MASE, or any other measure can be used 
during the analysis (Chybalski  2017). In our study, we used 
MASE to produce the FVA calculation. FVA > 0 indicates that 
there is an improvement in the forecast performance in com-
parison to the benchmark. On the contrary, FVA < 0 shows 
that there is no forecast improvement against the selected 
method.

where FVAi,t: FVA for model i compared to model k, MASEk: 
MASE for model k, and MASEi: MASE for model i.

Finally, we used the Friedman test to examine the statistical sig-
nificance of the differences in these methods (Friedman 1940). 
To further explore these differences with respect to each 
method, we used the Wilcoxon signed-rank test (Wilcoxon and 
Wilcox  1964). We used the friedman_test() function in the R 
rstatix package to employ the Friedman test and pairwise.wil-
cox.test() in R.

Finally, we compare the efficiency of each model by analyzing 
the run time (computational time) required for each one. This 
will give us a more comprehensive understanding of the realistic 
nature of the proposed framework.

5   |   Analysis and Results

5.1   |   Comparison of Magnitude and Sign 
of Postpromotional Effect

Figure 5 shows the distribution of the postpromotional dip iden-
tified by each forecasting model.

Table 5 shows the descriptive summary of the postpromotional 
effects identified by the forecasting models. A first explora-
tion indicates that ML methods are able to identify the post-
promotional period compared to univariate and DL methods. 
Friedman test results indicate that there are significant differ-
ences (χ2(235) = 390.4, p < 0.000) in identified postpromotional 
dips by forecasting methods.

The Wilcoxon signed-rank test results show that all univariate 
models, including ETSX, are significantly different from the test 
dataset's real mean postpromotional dip (p < 0.000). Though ML 
models are able to identify the postpromotional period, we see 
that they only identify the correct magnitude of the postpromo-
tional dip when the additional feature is incorporated; LGB1 ver-
sus LGB2 (p < 0.000), XGB1 versus XGB2 (p < 0.000), and RF1 
versus RF2 (p < 0.000) fail to provide support for H1. Noticeably, 
DL methods are unable to identify the postpromotional period 
even with the additional variable and are significantly different 
from the actual postpromotional dip (p < 0.000). Furthermore, 

(6)FVAi,k = ∣MASEk ∣ − ∣MASEi ∣

TABLE 4    |    Overview of the candidate models.

BL sNAÏVE ETS ETSX ARIMA

LGB XGB RF DeepAR WaveNet

1 2 1 2 1 2 1 2 1 2

Week ✔ — — — — ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Raw sales — ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Cleansed sales ✔ — — — — — — — — — — — — — —

Lagged sales — — — — — ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Store ID — — — — — ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

SKU — — — — — ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Product category — — — — — ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Product 
subcategory

— — — — — ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Discount rate — — — — — ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

TPR (binary) — — — — — ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Display (binary) — — — — — ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Feature (binary) — — — — — ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Promotion 
period

✔ — — ✔ — ✔ — ✔ — ✔ — ✔ — ✔ —

Average 
promotional 
uplift

✔ — — — — — — — — — — — — — —

Average 
postpromotional 
dip

✔ — — — — — — — — — — — — — —
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LGB1 (p = 0.628), XGB1 (p = 0.361), and RF1 (p = 0.054) show no 
significant differences from the actual postpromotional dip, pro-
viding partial support for H2.

5.2   |   Comparison of Forecast Performance

We separately compare model performance in each promo-
tional period using sMAPE and MASE. Table 6 summarizes the 

descriptive statistics of sMAPE and MASE across forecasting 
methods.

5.2.1   |   Forecast Performance During the Normal Period

Figure  6 shows the distribution of sMAPE and MASE values 
in the normal period. A comparison of sMAPE and MASE of 
the normal period was conducted using the Friedman test. The 
results show that there are significant differences (sMAPE: 
χ2(436) = 450.43, p = 0.036: MASE: χ2(436) = 495.57, p = 0.042) 
between forecasting methods in the normal period.

The Wilcoxon signed-rank test results show significant differ-
ences between univariate methods and other forecasting methods 
(p < 0.000), except in two cases: DeepAR2 and WaveNet2. The re-
sults further show no significant differences between ML methods 
(sMAPE: p > 0.05; MASE: p > 0.05) in the normal period irrespec-
tive of providing the additional variable. However, DL methods 
show a significant improvement in terms of sMAPE (DeepAR: 
p < 0.000; WaveNet: p < 0.000) when the promotional period is pro-
vided as an additional variable. H2, therefore, is only partially sup-
ported in the normal period.

5.2.2   |   Forecast Performance During 
the Promotional Period

Figure 7 shows the distribution of sMAPE and MASE values in 
the promotional period. Results of the Friedman test indicate 
that there are significant differences (sMAPE: χ2(436) = 527.14, 
p = 0.001; MASE: χ2(436) = 466.05, p = 0.037) between forecast-
ing models in the promotional period.

Wilcoxon signed-rank test reveals significant differences 
(p < 0.000) between univariate methods and ML methods 
during the promotional period, providing evidence for H3. 
However, all the ML models show no significant differences 
among themselves, even with the additional variable (sMAPE: 
LGB: p = 0.933; XGB: p = 0.533; RF: p = 0.973|MASE: LGB: 
p = 0.830; XGB: p = 0.695; RF: p = 0.898). Only LGB1 (sMAPE: 

FIGURE 5    |    Distribution of the magnitude of postpromotional dip.

TABLE 5    |    Descriptive summary of the sign and magnitude of the 
postpromotional dip, the top performing models are highlighted in 
boldface.

Forecasting model

Postpromotional dip

Mean Median SD

Postpromotional dip in test 
dataset

−23.86% −24.66% 9.81

BL −25.50% −25.66% 7.31

sNAÏVE 54.77% 47.43% 26.82

ARIMA 52.54% 44.37% 34.49

ETS 36.99% 30.99% 24.67

ETSX 63.25% 59.97% 36.68

LGB1 −22.65% −22.20% 11.92

LGB2 −0.67% −3.36% 13.88

XGB1 −20.81% −20.39% 13.82

XGB2 19.73% 18.60% 15.84

RF1 −18.88% −18.25% 13.02

RF2 8.31% 7.81% 18.49

DeepAR1 47.38% 33.12% 51.90

DeepAR2 50.30% 33.63% 53.22

WaveNet1 54.86% 34.48% 55.83

WaveNet2 59.70% 36.38% 58.55
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p = 0.000; MASE: p = 0.000) and LGB2 (sMAPE: p = 0.000; 
MASE: p = 0.001) models outperform the BL method in the 
promotional period. This lends some credence to H3. All 
other models (i.e., XGB and RF) perform similarly (p > 0.05) 

to the BL method. Surprisingly, all the DL methods show no 
significant differences (p > 0.05) with univariate methods. 
This provides no evidence for H2 in the promotional period. 
Furthermore, as expected, the ETSX model outperformed 

TABLE 6    |    Forecast accuracy for each forecasting method, the top performing model(s) in each column are highlighted in boldface.

Forecasting 
method

sMAPE MASE

Normal Promotional Postpromotional Normal Promotional Postpromotional

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

BL 0.27 0.06 0.33 0.18 0.27 0.12 0.71 0.08 0.98 0.85 0.26 0.13

sNAÏVE 0.33 0.09 0.42 0.11 0.67 0.16 1.05 0.34 1.02 0.14 0.79 0.17

ARIMA 0.41 0.16 0.49 0.15 0.70 0.28 1.33 0.62 1.17 0.37 0.97 0.51

ETS 0.37 0.10 0.58 0.20 0.61 0.25 1.15 0.36 1.41 1.00 0.84 0.47

ETSX 0.38 0.15 0.45 0.14 0.74 0.26 1.15 0.57 1.03 0.22 1.06 0.38

LGB1 0.28 0.04 0.25 0.10 0.29 0.10 0.75 0.08 0.69 0.42 0.28 0.14

LGB2 0.29 0.04 0.27 0.11 0.38 0.15 0.78 0.10 0.70 0.43 0.41 0.21

XGB1 0.30 0.05 0.31 0.12 0.35 0.12 0.82 0.09 0.89 0.56 0.34 0.16

XGB2 0.31 0.05 0.30 0.13 0.51 0.18 0.85 0.14 0.88 0.58 0.59 0.23

RF1 0.29 0.05 0.28 0.12 0.31 0.12 0.80 0.09 0.81 0.52 0.31 0.15

RF2 0.30 0.05 0.29 0.12 0.44 0.17 0.82 0.11 0.82 0.55 0.52 0.26

DeepAR1 0.24 0.05 0.58 0.22 0.56 0.20 1.30 0.47 1.24 0.55 0.74 0.42

DeepAR2 0.43 0.11 0.64 0.27 0.33 0.12 1.62 0.55 1.31 0.51 0.88 0.50

WaveNet1 0.24 0.05 0.55 0.25 0.33 0.12 1.61 0.59 1.17 0.56 0.92 0.51

WaveNet2 0.41 0.10 0.67 0.22 0.59 0.26 1.75 0.83 1.28 0.47 1.04 0.54

FIGURE 6    |    First panel shows sMAPE values in normal period; sec-
ond panel shows MASE values in normal period.

FIGURE 7    |    First panel shows sMAPE values in promotional period; 
second panel shows MASE values in promotional period.
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the ETS model in the promotional period (sMAPE: p = 0.000; 
MASE: p < 0.000).

5.2.3   |   Forecast Performance During 
the Postpromotional Period

Figure 8 shows the distribution of sMAPE and MASE values in 
the postpromotional period.

Friedman test results (sMAPE: χ2(436) = 510.43, p = 0.007; MASE: 
χ2(436) = 460.46, p = 0.043) demonstrate that there are signifi-
cant differences in forecasting models in the postpromotional 
period. The Wilcoxon signed-rank test reveals that ML methods 
significantly differ from univariate methods (p < 0.000), provid-
ing partial support for H3. Notably, the pairwise comparison 
shows that incorporating the additional variable significantly 
improves the performance of ML methods (sMAPE: p < 0.000; 
MASE: p < 0.000). This provides support for H2. However, even 
with support for the additional variable, ML methods fail to out-
perform the BL method. Only the LGB1 model performs simi-
larly to the BL method (sMAPE: LGB1: p = 0.055; XGB1: p < 0.000; 
RF1: p = 0.000|MASE: LGB1: p = 0.490; XGB1: p = 0.001; RF1: 

p = 0.048). This provides no support for H3. On the other hand, 
DL methods show a significant improvement only in terms of 
sMAPE (DeepAR: p < 0.000; WaveNet: p < 0.000), providing ev-
idence for H2. Surprisingly, the ETS model outperforms the 
ETSX model in the postpromotional period (sMAPE: p = 0.008; 
MASE: p = 0.000).

5.3   |   Comparison of Forecast Improvement

Tables  7–9 provide a summary of FVA values for forecasting 
methods in the normal period. Notably, ML methods outperform 
all the univariate methods across demand life cycle (Tables 6–8; 
FVA > 0). However, they did not improve the forecast compared 
to the BL method and performed similarly in the normal pe-
riod (p < 0.000). In the promotional period, ML methods outper-
form the BL method (p < 0.000). On the contrary, only the LGB1 
model shows no significant differences from the BL method in 
the postpromotional period (sMAPE: LGB1: p = 0.055; MASE: 
LGB1: p = 0.490). Thus, this only provides partial support to H3 as 
ML methods only outperform conventional univariate methods. 
Surprisingly, DL methods rarely outperform univariate methods 
and were unable to outperform the BL methods across demand life 

FIGURE 8    |    First panel shows sMAPE values in postpromotional period; second panel shows MASE values in postpromotional period.
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cycle. Furthermore, univariate methods are unable to improve the 
forecast performance across demand life cycle compared to the BL 
method (p < 0.000).

5.4   |   Comparison of Forecasting Models 
Run Times

To understand forecasting efficiency, we first briefly evaluate 
the run time of each model. Table 10 clearly indicates that all 
the ML methods have significantly less run times compared to 
ARIMA, ETS, and ETSX. Importantly, BL is also not efficient 
compared to ML models. These findings are supported by simi-
lar results discussed by Makridakis et al. (2020).

6   |   Discussion

6.1   |   Findings

Retailers depend on reliable and accurate sales forecasts to man-
age their supply chain. However, the presence of sales promo-
tions makes sales forecasting more challenging and complex. 
Yet, many retailers still use simple univariate methods supple-
mented by judgmental adjustments or BL correction to cope 
with promotional effects. It is typical for retailers to run various 
promotions for thousands of products across hundreds of stores 
at the same time. Therefore, retailers need an automated sales 
forecasting process to gain a competitive advantage.

Our study explores the applicability of ML methods in retail 
sales forecasts in the presence of promotions. We specifically 

focused on incorporating promotional periods into the models 
as this is a topic that has received little attention in the literature. 
Thus, the primary goal of our research is to evaluate the forecast 
performance of ML algorithms against existing methodologies 
in the retail setting across the demand life cycle.

First, our findings reinforce previous research findings (Ali 
and Gürlek  2020; Huber and Stuckenschmidt  2020; Trapero 
et al. 2015) on the ability of multivariate models to automatically 
detect the postpromotional period. However, ML models require 
the additional variable as an input feature to determine the cor-
rect sign and magnitude of the postpromotional dip. Notably, DL 
methods did not identify the correct postpromotional dip even 
with the additional variable as an input.

Second, in normal periods, ML and DL models (with an additional 
variable) were able to outperform conventional univariate meth-
ods in normal periods. However, this finding is notably different 
from the previous literature. Ali et  al.  (2009) report that simple 
univariate methods perform similarly to advanced methods in the 
period without promotions. On the other hand, the BL method out-
performed all the univariate methods in the normal period. This 
reinforces previous findings that when univariate algorithms are 
used with uncleansed sales data,4 they frequently overestimate 
during normal periods (De Baets and Harvey  2018). Thus, our 
results suggest that ML methods can provide better results com-
pared to univariate methods based on uncleansed sales data.

In terms of ETS and ETSX, we find that ETSX outperforms ETS 
throughout the promotional period due to the inclusion of the 
additional variable. However, this is not the case in the post-
promotional period. This is interesting given that the inclusion 
of the additional variable should enhance ETSX. On the other 
hand, results show that ML methods improve the forecasting 
performance remarkably in both promotional and postpromo-
tional periods compared to conventional univariate methods. 
Furthermore, adding the additional variable enhances the fore-
cast performance of ML models only during the postpromotional 
period. Although the DL methods did not perform as expected, 
the inclusion of the additional variable improved forecast per-
formance across the demand life cycle. This aligns with the 
previous findings that when advanced methods are used, more 
detailed inputs can improve the performance (Ali et al. 2009).

Third, our study compares all the forecasting methods with 
the BL method, a well-established retail implementation. 
Importantly, ML methods perform similarly to the BL method in 
all periods even though ML methods benefit from the additional 
variable. On the other hand, while the BL method generates sig-
nificantly better forecasts compared to conventional univariate 
methods in all periods, it requires additional effort and time for 
data cleansing. This process can be time-consuming and prone 
to bias, as noted by Hewage et al. (2021) and Perera et al. (2019). 
Moreover, our brief encounter with the run time of each model 
provides evidence that although the BL method provides effec-
tive forecasts, it is not as efficient as ML methods. Additionally, 
it is important to note that the BL method is unable to identify 
multiple seasonalities and use information from multiple se-
ries since the base model is a univariate model. In contrast, ML 
methods can exploit information from multiple series and pro-
vide both efficient and effective forecasts.

TABLE 10    |    Model run time in minutes.

Candidate model Software Run time in minutes

BL R 516.5 + data 
cleansing time

sNAÏVE R 7.2

ARIMA R 31.1

ETS R 642.2

ETSX R 24.8

LGB1 Python 1.2

LGB2 Python 1.1

XGB1 Python 0.55

XGB2 Python 0.51

RF1 Python 2.3

RF2 Python 2.1

DeepAR1 Python 16.1

DeepAR2 Python 13.2

WaveNet1 Python 46.7

WaveNet2 Python 42.1

Note: Total number of unique time series: 3380. CPU: 2.3-GHz AMD Ryzen 5 
4500U (six-core, 8-MB cache) and 8-GB RAM.
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Furthermore, Hewage et al. (2021) state that forecasters tend to 
apply an initial anchor when making adjustments to incorporate 
promotional effects to the base forecasts, even with the support 
of information guidance. Importantly, retailers are often re-
quired to generate sales forecasts for multiple products across 
multiple stores simultaneously, making it a manpower-intensive 
process (Fildes et al. 2019). This stresses the importance of an 
automated approach for retail sales forecasting. Therefore, we 
believe that ML approaches are a viable solution for retail sales 
forecasting because they can handle any SKU-store combina-
tion at the same time.

6.2   |   Managerial Implications

Forecasting retail sales is essential for most managerial de-
cisions made across the supply chain. In today's competitive 
market, many factors influence demand, making it volatile and 
unpredictable. However, most retailers still use simple meth-
ods supplemented by judgmental adjustments. Thus, managers 
need to invest a considerable amount of effort into retail sales 
forecasting in the presence of demand volatility. Our research 
suggests that using ML approaches can help automate the retail 
sales forecasting process. As a result, managers are no longer 
required to forecast future demand despite being informed of 
the underlying model and its implications. This will save both 
money and time for managers. They can use the time saved for 
other operational tasks. Furthermore, ML models coupled with 
a forecasting support system (FSS) can improve the quality of 
the decision-making process. Importantly, improvements in 
forecast performances will lead to increased operational profit-
ability for retail stores.

6.3   |   Limitations and Future Works

Clearly, our study is limited to the domain of our analysis, 
which comprises data from a US-based retailer for four product 
categories. Thus, it may not be generalizable to other product 
categories without appropriate customization. Our study only 
includes three types of promotions (i.e., temporary price reduc-
tions, display, and feature) instead of incorporating a variety 
of promotions. The dataset in our study primarily consists of 
weekly granularity rather than daily granularity. This limitation 
posed challenges in precisely aligning promotions with calen-
dar events. Thus, we did not explore the impact of incorporating 
special days and holidays into our study. However, promotions 
are often associated with holiday events. Thus, it is important 
to understand how these major seasonal events affect the pro-
motional life cycle of products. Therefore, how to incorporate 
other causal factors such as multiple promotional types, special 
days and events, and holidays might be an interesting future re-
search avenue. Additionally, we did not see any intermittent de-
mand patterns in our dataset. Thus, the proposed methodology 
may not work similarly in the presence of intermittent demand. 
We also did not consider the hierarchical structure of the sales 
forecasting problem. Thus, leveraging the hierarchical struc-
ture (e.g., store vs. category vs. product) and exploring hierar-
chical reconciliation of sales forecasts is a potential avenue for 
future work.

Retailers tend to apply human judgment in retail sales forecast-
ing in the real world. Therefore, further research efforts are 
required to identify how to incorporate human judgment with 
advanced methods in the retail context. With enhancements to 
the current technology, this does not create a technical challenge 
for retailers. Subsequently, this outlines unexplored research 
avenues: (1) the ability of users to comprehend the implications 
of the various variables incorporated into ML methods and (2) 
their ability and capacity to make judgmental adjustments to 
forecasts in order to add value.

We did not employ any hyperparameter tuning or combination 
of methods. Our study also shows that no single model per-
forms well for all periods. Thus, investigating how to identify 
appropriate forecast models in each period and how to com-
bine them to create an integrated approach would be worthy 
of further investigation. Moreover, our study shows that so-
phisticated methods like DL methods can improve their fore-
casting performances by incorporating more detailed inputs. 
Thus, determining how and what feature inputs improve the 
performance of DL methods in the retail industry could be an 
interesting research question.

7   |   Conclusion

Retail promotions create demand irregularities for products, 
making it difficult to generate accurate forecasts. Nonetheless, 
retailers generally forecast sales during promotional periods 
using either the BL method or human judgment. Retailers need 
to handle thousands of SKUs across multiple stores at any given 
time, underscoring the need for automated forecasting since the 
sheer volume of SKUs makes it redundant to use BL or judg-
mental approaches. Therefore, more advanced approaches are 
becoming relevant in retail sales forecasting due to these com-
plexities. Furthermore, the need to improve decision-making 
in retail operations and the increasing availability of data has 
paved the way for such advanced methods.

In the context of promotions, our research reveals that ML 
methods are a robust alternative for retail sales forecasting. 
Our empirical study shows that ML methods have the capac-
ity to incorporate causal factors with the sales history. Also, 
the inclusion of additional variables provides an additional 
improvement in the performance of ML methods. Unlike ML 
methods, the BL method necessitates more time and effort to 
cleanse the sales data. As a result, ML methods would enable 
retailers to reduce the time and effort required for sales fore-
casting and concentrate more time on other pain points in the 
supply chain.

Furthermore, with the availability of more data, advanced meth-
ods such as GBRT, RF, and DL methods continuously improve 
performance. This also provides the flexibility to process larger 
datasets with no restrictions on inputs. Thus, ML methods have 
the capacity to exploit similarities in time series across products 
and stores, increasing their effectiveness in the retail context 
dramatically. In sum, ML methods can deal with demand vol-
atility caused by retail sales promotions while enhancing fore-
casting performance across the demand life cycle.
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Endnotes

	1	Sales forecasting is the process of estimating the number of future 
sales for a specific product or products (Hewage and Perera 2022b).

	2	Normal sales represent the number of sales without any sales promo-
tions (Abraham and Lodish 1987).

	3	Dunnhumby source files: https://​www.​dunnh​umby.​com/​sourc​e-​files/​​ .

	4	Raw sales data, which has not been treated to remove promotional ef-
fects to normalize the sales data.
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