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Figure 1: SketchGPT introduces a multimodal interaction that enables communication with large language models through 
sketches and speech. It effectively interprets users’ open-ended and abstract interaction intentions within context, supporting 
direct and unrestricted expression at the system level. 
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Abstract 
Human interaction with large language models (LLMs) is typically 
confined to text or image interfaces. Sketches offer a powerful 
medium for articulating creative ideas and user intentions, yet 
their potential remains underexplored. We propose SketchGPT, 
a novel interaction paradigm that integrates sketch and speech 
input directly over the system interface, facilitating open-ended, 
context-aware communication with LLMs. By leveraging the com-
plementary strengths of multimodal inputs, expressions are en-
riched with semantic scope while maintaining efficiency. Interpret-
ing user intentions across diverse contexts and modalities remains 
a key challenge. To address this, we developed a prototype based 
on a multi-agent framework that infers user intentions within con-
text and generates executable context-sensitive and toolkit-aware 
feedback. Using Chain-of-Thought techniques for temporal and 
semantic alignment, the system understands multimodal intentions 
and performs operations following human-in-the-loop confirma-
tion to ensure reliability. User studies demonstrate that SketchGPT 
significantly outperforms unimodal manipulation approaches, of-
fering more intuitive and effective means to interact with LLMs. 

CCS Concepts 
• Human-centered computing → Interaction techniques; In-
teractive systems and tools. 
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sketch input, multimodal interaction, large language models 
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1 Introduction 
Large language models (LLMs) are increasingly integrated into 
various tasks, from recording [11, 47] and reading [30] to health-
care [32, 71, 74], voice processing [54], data analysis [87, 88, 97], 
etc. As these models evolve into capable agents handling complex 
challenges [104], more general AI agents have been emerging re-
cently [3, 58, 90]. Text prompting serves as the major “language” 
for human-LLM interaction, which provides an indirect means of 
conveying intentions. Achieving alignment between human intent 
and machine understanding requires precise contextual articulation 
[10, 55]—a process demanding both deliberate effort [76] and exper-
tise [109]. Consequently, when expressing intentions and context 
proves difficult, users tend to favor more direct interactions [34]. 

Recent research has explored more seamless interactions with 
LLMs. To support natural intention expression, non-verbal cues 
such as eye gaze [11, 49], gestures [111], touch [26], and direct inter-
face manipulation [59] have been employed to leverage contextual 
cues for target reference, reducing ambiguity and streamlining 
communication. Moreover, direct interactions within the GUI are 
constrained by the available interface elements to express intent. 

These modalities are limited in conveying richer and more abstract 
semantics such as spatial, relational, symbolic, and graphical details, 
which are also difficult to articulate clearly through text. 

Sketching is regarded as an accessible and efficient way to ex-
press ideas [12, 96]. However, previous work has confined the use 
of sketches to specific applications or sketch vocabularies, such as 
handwritten notes, drawing, pen gestures, and handwriting recog-
nition, without integrating them into broader system interfaces. 
Understanding sketches and their context was previously limited, 
but the advent of multimodal large language models (MLLMs) has 
opened up new possibilities for sketch interactions. Google intro-
duced the “Circle to Search” feature [29], which allows users to 
search within designated areas. This interaction method, initially 
applied to image searches and other specific tasks [37, 56], has 
now been expanded to the system level. Yen et al. [106] conducted 
an exploratory study on code editing using sketches layered on 
the code interface. Expressing user intentions at the system level 
through sketching—across broader application scenarios involv-
ing more general and complex contexts—remains a promising yet 
underexplored research direction. 

Pushing sketches to system-level and open-ended scenarios of-
fers a flexible “language” to communicate with LLMs. However, 
the inherent ambiguity [4, 6] and input inefficiency of sketches 
pose challenges. Although sketches can freely convey a range of 
intentions and address gaps in LLM interaction, the same sketch 
can indicate different intents in different contexts, for example, 
an arrow may indicate pointing to an element, upward direction, 
or movement. To disambiguate their intent, users often resort to 
supplementary handwritten text, which further constrains input 
efficiency. Text constitutes an effective supplement to sketches 
[81, 117]; given that users’ hands are frequently occupied during 
sketching, speech—widely employed in intelligent assistant inter-
faces—serves as a crucial modality for disambiguating intent and 
conveying supplementary information. 

In this paper, we propose SketchGPT, a novel interaction par-
adigm with LLMs that enables users to communicate through 
sketches and speech directly on top of system interfaces. The core 
concept of SketchGPT is to support concurrent multimodal inten-
tion expression by leveraging the tight coupling between context, 
free-form sketch, and speech for more natural and efficient interac-
tion, as shown in Figure 1(a). A Wizard-of-Oz study was first con-
ducted under the assumption of fully capable LLMs, to investigate 
how individuals express their intentions in open-ended scenarios. 
The formative insights on patterns and preferences highlight the po-
tential of the concept and further inspire the subsequent prototype. 
The SketchGPT system was developed in a multi-agent framework 
with three stages: intention interpretation, feedback generation, 
and user confirmation. The multimodal intentions are dynamically 
interpreted based on the context and temporal-semantic correla-
tions through multiple Chain-of-Thought (CoT) agents (Figure 1(b)). 
Another agent generates responses from user intentions and, us-
ing an extensible toolkit, produces a concrete list of operations to 
bridge user input and system execution (Figure 1(c)). Following 
this, the user is engaged in the loop where confirmed intentions 
are automatically executed (Figure 1(d)). 

https://doi.org/10.1145/3746059.3747598
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SketchGPT complements existing interactions by enabling 
higher-level, more natural intention expression rather than replac-
ing them. The evaluation of our concept and system focuses on 
modality influence in this novel interaction setting rather than di-
rect baseline comparisons. We conducted a user study comparing 
SketchGPT with unimodal interactions (speech or sketch only), 
demonstrating the advantages of multimodal intention expression 
in terms of comprehension accuracy, expression efficiency, and user 
experience. In exploratory scenarios similar to daily tasks, users 
reported high satisfaction, highlighting the value and acceptance of 
the system. Our findings from observations and interviews further 
revealed valuable insights into SketchGPT. The studies received 
ethical approval from the ethics board of our institution. 

In summary, our contributions are as follows: (1) We propose 
SketchGPT, a multimodal interaction paradigm that integrates 
sketches and speech for open-ended, system level interaction with 
large language models, enhancing the efficiency and naturalness of 
intention expression by leveraging the strengths of both modalities. 
(2) We implement a prototype system within a multi-agent frame-
work that interprets ambiguous user intents in contexts and allows 
user confirmed execution through a human-in-the-loop mechanism. 
(3) Insights and findings from our user study underscore the advan-
tages of our multimodal interaction over unimodal interactions. 

2 Related Work 

2.1 Interacting with LLMs 
The increasing use of LLMs has brought the optimization of human-
LLM interaction to the forefront of academic discourse. Present 
research predominantly centers on improving this interaction 
through three principal approaches. 

One line of research focuses on optimizing the user’s initial 
prompt [8, 98, 100], designing prompt workflows [103] or multi-
agent processes [113] to enhance task performance. These methods 
do not require active user involvement during the prompt process, 
making them widely adopted in LLM-based systems. We apply such 
techniques in the SketchGPT framework for key steps like parsing 
user intent and executing manipulations. 

Another group of studies design graphical user interfaces (GUIs) 
tailored for specific task types to improve LLM interaction. By in-
troducing GUI operations [40, 59, 83, 99, 102] and visual designs 
[41, 83], these methods enhance prompt quality and the presenta-
tion of LLM outputs. Tasks covered include LLM chain design [102], 
prototype design [40], multi-step retrosynthetic route planning [83], 
text writing [21, 41], image generation [99], and element manipula-
tion [59]. While improving interaction efficiency and user experi-
ence for specific tasks, these approaches face scalability limitations 
for broader task types. Additionally, human-LLM interaction in 
these works still relies on text-based prompts, with GUI operations 
serving a supplementary role. As a result, representing semantics 
like spatial or shape-related concepts, remains challenging. 

The third direction examines incorporating modalities beyond 
text in human–LLM interaction, including eye-tracking [49], speech 
[54], gestures [111], sketch [106, 107] and sensor data [16]. The in-
troduction of these modalities enhances LLM’s understanding of 
environmental context [16, 49, 111], as well as improving the natu-
ralness [16, 49, 111] and efficiency [54] of interactions, or providing 

alternative interaction methods for traditional tasks [106, 107]. A 
few studies have explored multimodal fusion for human-LLM in-
teraction, combining eye-tracking with speech [11, 49] or speech 
with touch [26]. However, the potential of integrating sketches and 
speech for LLM interaction remains unexplored. 

Current research on LLMs has predominantly focused on specific 
task scenarios, where these models have proven effective in solving 
challenges that traditional methods struggle with. However, exist-
ing works generally restrict LLMs to individual applications, with-
out considering their integration into broader, multi-application 
workflows. Although efforts have been made to simplify LLM inter-
actions through point-and-click and referential actions combined 
with text input [59], using hand-drawn sketches together with 
speech to convey user intent to LLMs has yet to be investigated. 

2.2 Sketch Interactions 
Sketch interaction, valued for its ability to support cognitive pro-
cesses and foster creative expression, has been extensively re-
searched and applied across a variety of disciplines. For example, it 
has been used in tasks such as drawing [46, 115], retrieving images 
[68], 3D models [72], audio [22], code editing [70, 80, 106, 107], doc-
ument annotation [51, 52, 101], image generation [82], mobile ma-
nipulator teleoperation [39] and video content generation [57]. The 
applications in these fields demonstrate the capability of sketches 
in expressing various semantics. 

Despite significant advancements, existing sketch-based interac-
tion methods face several limitations. One challenge is the limited 
options for stylus input modes. Some studies enable manual switch-
ing between modes, such as toggling between solid and dashed 
lines to represent 3D model visibility [72], or allowing users to 
alternate between drawing and manipulation modes [93]. Although 
the work by [39] allows for free-form sketching, switching between 
the modes for controlling manipulator movement and grasping 
still requires an explicit toggle via a UI element. A more flexible 
approach is found in RichReview [108], which automatically adjusts 
pen modes based on stroke characteristics and position. However, 
this still relies on predefined rules rather than interpreting the user’s 
intent based on the semantics of the sketch. Furthermore, when 
the task involves understanding the intent from a sketch, most 
systems rely on predefined gestures, which limits the flexibility of 
interaction. For instance, several works focusing on sketch-based 
document editing and annotation [51, 52, 101] designed various pen 
gestures for common interaction behaviors in document scenarios. 
However, users needed to memorize these gestures before using 
the system, rather than being able to apply their own preferred 
sketching methods for immediate use. Additionally, sketches of-
ten contain multiple elements with distinct meanings, yet many 
approaches treat them as a single entity, resulting in a loss of im-
portant nuances. Some methods rely on recognition techniques to 
identify predefined units or treat individual strokes as basic prede-
fined elements [14, 31, 110]. Camba et al. [13] proposed interpreting 
groups of strokes as reusable elements that can be assembled into 
CAD objects. However, this is only a conceptual method for the 
future and has not been implemented yet. 
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Leveraging the capabilities of MLLMs, SketchGPT facilitates a 
more comprehensive understanding of sketch semantics by incorpo-
rating speech input. This enables the system to distinguish between 
different types of strokes, such as those used for writing, drawing or 
annotation, without relying on predefined gestures or input modes. 

2.3 Multimodal Interface Input 
Multimodal interaction allows users to engage with computers 
through various input methods, such as speech, eye gaze, gestures, 
touch, and sketches. Combining input modalities offers benefits 
like disambiguation, robustness, contextual adaptability [65, 66], 
convenience, naturalness, and efficiency [9, 67]. Early systems like 
"Put-That-There" [9] and QuickSet [18, 42] demonstrated the ad-
vantages of integrating speech with gestures or pen input. How-
ever, these systems used predefined or referential gestures, limiting 
their expressiveness and range of applications. Incorporating gaze 
tracking into mobile devices often requires additional hardware 
[15, 24, 61, 69], and built-in camera solutions still lack accuracy 
[48]. Touch interaction on these devices is limited by "fat finger" 
imprecision and difficulty in targeting specific elements [86]. 

Sketching can simplify language and reduce ambiguity in com-
munication [118], but relying solely on sketches may lead to misin-
terpretation [6]. Verbal expression can enrich the symbolic nature 
of sketches and provide clarity [25]. These modalities are comple-
mentary and often used together in various settings [5, 6, 25, 44]. 
Recent work by Rosenberg et al. [79] developed a sketching and 
speaking interface for storytelling and interactive world creation, 
but did not parse sketch semantics and relied on traditional natural 
language understanding methods for speech processing. Existing 
research is dedicated to developing multimodal interfaces for spe-
cific applications or scenarios, such as for conversation flow control 
[73], 3D model retrieval [28], handling user queries on tablets [45], 
makeup tutorial assistance [92], robot navigation [116], and im-
age generation [53]. These involve inputs from various modalities, 
including gestures [73], language [28, 45, 53, 73, 92, 116], touch 
[45, 73], and sketch [28, 45, 53, 116]. In multimodal processing, re-
searchers have also proposed methods to align brushstrokes with 
audio in painting tutorials [62] and developed a framework to un-
derstand user intent from multimodal contexts [33]. Users tend to 
provide redundant speech alongside sketches [5, 6], with a tem-
poral correlation between the two [2, 44]. Existing systems align 
speech and sketches based on temporal and spatial relationships 
[25, 43]. However, current studies on people’s behavioral patterns 
when using speech and sketches to express ideas primarily focus 
on human-to-human communication in whiteboard scenarios. The 
main emphasis of these studies is on the temporal relationship and 
content redundancy between speech and sketches. There is still a 
lack of systematic research on how people tend to use speech and 
sketches to express their intentions, what types of intentions they 
express, and what kinds of content are included in sketches and 
speech respectively when interacting with LLMs. 

3 Formative Study 
Existing research on speech and sketch expression predominantly 
focuses on human-to-human communication. There remains a 
knowledge gap regarding the context, content, and user patterns 

of speech and sketch interaction between humans and LLMs. This 
study focuses on the following research questions: 

• RQ1: In which contexts do users prefer to use sketch and speech 
for interacting with LLMs? 

• RQ2: What features and patterns emerge during multimodal 
interactions between users and LLMs? 

• RQ3: How do users prefer to initiate the interactions, and how 
should the system respond? 

3.1 Study Design & Procedure 
We employed a Wizard-of-Oz design [77] to investigate how users 
would naturally interact with a system-level LLM on a tablet, envi-
sioned as an advanced agent capable of understanding and execut-
ing diverse intentions for daily tasks beyond current capabilities. 
Through sketch and speech, participants interacted freely across 
22 common applications (Fig. 2 suppl.) as well as system functions, 
without predefined constraints. This setup encouraged them to ex-
press their intentions openly, capturing authentic, diverse behaviors 
aligned with real-world scenarios. 

The study was conducted in a private room with only the partic-
ipant and experimenter present, while two authors jointly acted as 
a single wizard outside. The wizard monitored the tablet1 and lis-
tened to the voice to interpret intents, then remotely controlled the 
device to execute commands and provide instant feedback through 
on-screen dialogs. To handle unexpected or complex requests, the 
wizard studied the apps and leveraged GPT-4o and web search to 
ensure responsive and realistic interaction. 

Before the study, participants were briefed on its background and 
goals, emphasizing exploration of diverse interaction intents rather 
than evaluation of LLM performance. After practicing and receiving 
procedural guidance, they were encouraged to fully engage with 5–8 
different apps, with the experimenter intervening only during app 
transitions. The study concluded with a semi-structured interview 
to gather insights on interaction scenarios and methods, lasting 
approximately 1 to 1.5 hours. 

3.2 Apparatus & Participants 
We used a Surface Book 2 (15-inch) with a Surface Pen, set in View 
Mode2 on a table, allowing participants to adjust its position and 
angle. A floating button toggled intention expression, activated by 
touch or stylus. Participants could simultaneously sketch on the 
interface overlay and speak, while interaction with underlying apps 
was disabled. The interface was implemented using the Windows 
Presentation Foundation (WPF) framework. 

We recruited 10 university students (aged 20-25 years, M=21.9; 6 
female and 4 male) from diverse majors, referred to as FP1–FP10 in 
the remainder of the paper. All participants regularly used touch 
devices and a stylus, and had prior LLM experience, with some 
involved in related research. They provided informed consent and 
received $10/hour compensation. Detailed participant backgrounds 
are provided in Sec. 2.2 suppl. 

1AnyDesk: remote control software, https://anydesk.com/en
2The Surface Book can function as a powerful tablet, with View Mode being an official 
configuration for tablet use; see https://tinyurl.com/yck9v4b. 

https://anydesk.com/en
https://tinyurl.com/yck9v4b
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3.3 Analysis 
We adopted a mixed-method approach to understand the contexts, 
patterns, and preferences for multimodal interaction, combining 
thematic analysis of recorded study videos with study and interview 
notes. The analysis contained two coding phases. (1) Exploratory 
phase: two authors independently conducted open coding on each 
modality until saturation, followed by discussions among three 
authors to refine codes via axial coding and thematic analysis. (2) 
Formal phase: three authors first jointly coded 20% data, resolved 
discrepancies through discussion, and then two authors coded an 
additional 10% to achieve inter-coder agreement. One author sub-
sequently coded the remaining data using the finalized codebook. 

In total, we collected 215 intentions across 251 interaction iter-
ations, amounting to 332 minutes of interaction time. Although 
omissions may exist, subjectivity was carefully minimized through 
iterative discussion and multi-stage review. 

3.4 Dimensions of Intention Expression 
From the preceding analysis, we identified core dimensions that 
summarize fundamental modes of intention expression, as shown 
in Figure 2. For each code, we provide a definition, occurrence fre-
quency, and illustrative examples. Note that each intention expres-
sion may be composite and encompass multiple codes. More case 
examples are provided on the project webpage: https://zaynehuang. 
github.io/SketchGPT/. 

3.4.1 Intention Scope and Context. User intentions range from 
global settings adjustments (e.g., display configuration, window 
management) to fine-grained, in-application operations. These in-
tentions unfold across on-screen elements, background applications, 
and the broader conversational environment. In practice, speech 
naturally bridges between these contexts, while sketches tend to 
anchor directly to the current interface, providing immediate visual 
linkage to on-screen targets (see Figure 2(a)–(b)). 

3.4.2 Sketch and Speech Content. Sketches and speech exhibit dis-
tinct content characteristics. Sketches enable rapid visual external-
ization of ideas that are difficult to articulate verbally, including 
references to on-screen elements, spatial arrangements, logical 
structures, and creative annotations. Speech, in contrast, offers ef-
ficiency and linguistic precision for specifying detailed requests, 
clarifying steps, and acquiring information, and was often consid-
ered “faster than writing” (FP10). Together, these modalities reduced 
the need for manual operations, supported continuous cognitive 
flow, and complemented each other to facilitate rich and flexible 
intention expression (see Figure 2(c)–(d)). 

3.4.3 Modality Temporal and Semantic Relationship. The temporal 
and semantic interplay between sketches and speech is central to 
effective multimodal interaction. As shown in Figure 2(e), these 
modalities were most often used concurrently, enabling users to ex-
press intentions fluidly and maintain cognitive flow; in other cases, 
they appeared sequentially in a flexible order depending on context. 
Semantically, our analysis was informed by the CARE model [20], 
as shown in Figure 2(f). We found that sketches and speech fre-
quently worked together to produce a more complete and nuanced 
expression of intentions, each leveraging its distinct strengths. At 
times, one modality fully conveyed the intent while the other served 

as optional or supportive, reflecting flexible redundancy patterns. 
In our case, we did not observe pure assignment, as any incomplete 
modality input was always complemented by the other. This combi-
nation “reduced manual operations” (FP5, FP9), supported “creative 
expression” (FP1, FP3, FP10), and allowed intentions to be conveyed 
“more naturally and completely” (FP6). 

3.5 Dynamics of Multimodal Interaction 
Beyond intention expression, we focus on the dynamic process of 
multimodal interaction. 

3.5.1 Intent Granularity. Participants found multimodal input to 
be a “natural and intuitive” way to express intentions (FP3, FP8, 
FP10). Assuming highly capable LLMs, they conveyed intentions 
at all levels—from concrete commands to abstract tasks—across 
diverse applications. Both sketches and speech expressed desired 
outcomes and process instructions, trusting LLMs to decompose, 
plan, and execute accordingly. 

3.5.2 Ambiguity Resolution. Open-ended intentions “fully lever-
aged each modality and contextual cue to enhance clarity” (FP5). 
Single modalities often led to ambiguity, while integrating multi-
ple modalities semantically and temporally enabled participants 
to express intentions more clearly and completely. When a single 
modality did not fully convey their intentions, participants often 
clarified or supplemented with another modality or a combination. 

3.5.3 Feedback & Iteration. Participants found “dialogue-style feed-
back of LLMs unsuitable” (FP4), preferring embedded, contextual 
responses. They also wanted transparency and control, including 
“visibility into LLMs’ actions and progress” (FP1, FP2, FP10), but 
favored an iterative workflow to “selectively observe and revise out-
comes” (FP3, FP5, FP9, FP10). Iteration was common: participants 
preferred undoing and re-expressing intentions over editing prior 
sketches, considering modification “tedious” (FP2, FP3, FP5, FP10), 
assuming reversible actions for lightweight trial and error. 

3.5.4 Interaction Initiation. Participants desired a “more fluid and 
seamless” (FP1, FP3) way to initiate interactions. Since intentions 
were often global, they suggested global triggers such as floating 
buttons, pull-down menus, multi-touch gestures, or wake words 
for a more “intuitive and lively” experience (FP1, FP3, FP9, FP10). 
The stylus was also seen as a natural trigger, with some proposing 
“a physical button for direct activation” (FP1, FP2, FP10). 

3.6 Example Usage Scenario 
We summarize the following usage scenarios from the use cases 
in this study. Words with underline represent sketch input, while 
words in italic represent speech input. The icons represent speech 
and sketch usage across the coding dimensions in Figure 2. 

Tom is analyzing data in Excel and visualizing it through 
charts, expressing in-application intents. First, he selects three 
columns, writes “max” below each, and says , “I want to calculate 
the maximum value of each of these columns here...” Then, he writes 
“max/min” and adds , “and then put the range ratio of these values 
here.” (Figure 3(a)) He then circles the data, sketches the chart and 
says , “I want to use these data... to create a chart here, without 
gridlines.” He marks the title position, stating, “The title is ‘Data 

https://zaynehuang.github.io/SketchGPT/
https://zaynehuang.github.io/SketchGPT/
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(e) 

On-Screen 246/251 

Intentions purposed to manage and interact 
with visible elements on the interface. 

Background 28/251 

Intentions aimed at accessing and controlling 
non-visible processes, applications, and data. 

Conversational 81/251 

Intentions to inform current interactions 
from previous turns or outputs by LLMs. 

Label this task as an intro task 
and group all the following ones 
under others. 

Underline these words, 
bold this part, and 
italicize that text. 

Ask XXX on WeChat to 
explain this definition. 

Please help me plan a route 
from my current location 
to the marked destination. 

In this PPT, include the info about Doctor 
Eyeglass we just talked about and lay it 
out as an outline. 

The flower is almost 
perfect as I expected. 
Please …, attach a 
green rod to it, and 
make the rod radial 
with a vertical line. 
Continue building on 
the current setup. 
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(d) 

Se
m

an
ti

c 
R

el
. 

(f) 

Reference 137/251 

Sketching to explicitly indicate intended 
context, usually related to on-screen contexts. 

Text 74/251 

Sketching to represent written expressions, 
including words, numbers, formulas, etc. 

Graphic 47/251 

Sketching to depict visual intents, such as 
images, shapes, charts, diagrams, etc. 

Spatiality 40/251 

Sketching to indicate spatial information, 
including position, size, angle, direction, etc. 

Symbol 27/251 

Sketching to convey meaning through marks, 
signs, and annotations. 

Logic 18/251 

Sketching to map relational logic, e.g. 
hierarchies, connectors, directional flows. 

I would like to 
make margins of 
this document 
narrower. 

Help me plot the Boolean channel for 
the period of the K chart I've drawn. 

Place a sphere in the top left, a cube in 
the bottom right, and a cone in the top 
right of the canvas. 

Widen the chart so it aligns with my 
lines. 

Generate an internship certificate with 
the title in bold. Include the name, age... 

Pick the first 
picture from 
the gallery and 
place it on the 
left side here, 
then let the 
existing image 
overlap with 
the new one. 

Please help me annotate 
this document. 

Rotate the 
chart 45°. 

Create a new folder on the 
desktop, and then save two 
new versions of this code in it, 
named with a and b. 

I would like to calculate with 
the formula in the cell . 

Put this chart into a Word 
document, then add it to a PPT 
without the header. 

Please generate a circuit 
diagram based on the drawn 
combinational logic diagram. 

System In-AppCross-App6/251 22/251 223/251 

Intentions aimed at managing the interfaces, 
functions, and resources of the OS. 

Intentions seeking to operate within the 
boundaries of a single application. 

Intentions aiming to enable interactions and 
data exchange across multiple applications. 

I need to manage my 
desktop, … move all 
the content about this 
system to the upper 
left corner … 

Help me split the 
left screen into 
Word and the 
right to browser. 

Please take 
screenshot 
of selected 
area and 
place it in 
the PPT… 

Write a Python 
function to pad 
a number in a 
5-digit format …, 
for example 1 
becomes 00001, 
99 becomes 
00099… 

Format this table into 2 * 2, placing these 
titles in the left column and their content 
in the right column. 

Put the descriptions here in the 
Word and title it 'College Physics 
Review'. 

Concurrent 193/251 

Sketching and speaking occur simultaneously, 
overlapping in time. 

Alternate (Sketch first) 32/251 

Sketch is drawn either before any speech or 
before its corresponding part. 

Alternate (Speech first) 26/251 

Speech is delivered either before any sketch 
or before its corresponding part. 

① ② 

Can you help me write 

some code to draw a 

flower illustration like 

this? 

① ② 

Can you search for ① mobile phones, computers, and 

furniture here and list them ② top to bottom? 

②① 

Compare Beijing's 

GDP over the past 3 

years, export to Excel, 

and then chart it. 

Indication 185/251 Command 179/251 Elaboration 83/251 Acquisition 53/251 

Speaking to refer to elements in 
the sketch or context. 

Generate a mind 
map of … in a 
form like this. 

Can you help me figure 
out why the K-line formed 
a big bullish candlestick? 

Speaking to specify actions and 
describe task details. 

Speaking to clarify and provide 
additional details for sketches. 

Speaking to inquire and obtain 
relevant information. 

Please make this text yellow 
and change its background 
color to red 

Run the numbers on this 
selected data—total, max, 
min—and display them here 

Remove the background 
gridlines in the chart. 

Insert a graph here to show 
the relationship between 
displacement, velocity and 
acceleration. I would like 

to know the 
geographical 
location of 
this photo? 

Add a top-down slide 
transition between 
the previous slide 
and the current one. 

A1 A2 A3 

B1 B2 B3 

C1 C2 C3 

C4 C5 C6 

E1 E2 E3 

D1 D2 D3 D4 

Create a new table with Mingyue 
Lens’s 2023 financial report. 

Complementarity 172/251 

Both modalities are needed for complete 
input, complementing each other. 

Redundancy 56/251 

Both modalities function independently, 
restating similar info to reinforce meaning. 

Equivalence 32/251 

Both modalities can achieve the same 
outcome, but only one is utilized at a time. 

F1 F2 F3 

Arrange the 
local images 
centered in 
six sections 
on the slide. 

Crop the dog into a circle. 

Enlarge the text “chart title”. 

Set the presentation to auto-play with 
a 1-second interval per slide. 

Figure 2: Dimensions of intention expression: (a) intention scope, (b) intention context, (c) sketch content (d) speech content, (e) 
modality temporal relationship, (f) modality semantic relationship. Examples are provided where red strokes indicate sketches, 
and the message box contains speech transcription with bold and underlined text highlighting the related expression. 
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Figure 3: We present an illustrative usage scenario, with the text inside the dialogue box representing user’s speech input: (A) 
User circles data, inputs formulas, while specifying result placement via speech. (B) User sketches a chart and refines contents 
with speech. (C) Texts and symbols are used to convey split-screen operation and position. (D) Circles and arrows indicate 
cross-app transfer. (E) User sketches the layout and graphics with speech providing details. (F) Symbolic sketches are used to 
indicate layout adjustments and content edits. 

Analysis Chart’.” (Figure 3(b)) In order to view Excel and PowerPoint 
at the same time, Tom demonstrates a system-level intent. Tom 
draws a line, labeling “Excel” on the left and “PowerPoint” on the 

right, and says , “Please split the screen for me.” (Figure 3(c)) 
Tom wanted to move data and charts from Excel to 

PowerPoint, thus expressing a cross-application in-
tent. He first says,“Please copy the chart and data ta-
ble in Excel to this slide here.”. After saying that , he 
circles the chart and results in Excel, marks corresponding positions 
in PowerPoint, and uses arrows (Figure 3(d)) After copy-
ing the charts and data from Excel, Tom continues work-
ing on his PowerPoint presentation, thus expressing in-
application intents. At the top-center of the blank 
page, he sketches a title box labeled “Data Source” and says 

, “I would like to set the title as ‘Data Source’.” Then, he 
sketches the basic layout of the slide and explains , “Below, 
there are three columns, each containing an image and a description.” 
From left to right, he sketches the image details and explains , 
“The first image is a person reading in a library... Draw a beautiful 
house in the middle... And here is related to stocks.” (Figure 3(e)) 
Later, he revises details. He circles the title and draws a plus sign, 
saying , “Enlarge the title.” Noticing misaligned images, he first 
draws two horizontal lines on the slide and says , “Align images 
with the drawn line.” Tom also wants changes in the text sections, 
sketching lines, circles, crosses and writing word. He says , 
“Bold the words, replace this word with ‘woman,’ and delete these 
words.” (Figure 3(f)) In panels E and F, the user again expressed 
in-application intents. 

When analyzing data in Excel and preparing his PowerPoint 
slides, Tom primarily operates on on-screen elements and ex-
presses complementary sketch and speech intents. In the split-
screen scenario, bringing up Powerpoint represents a background 

intent. 

4 SketchGPT 
Informed by insights from the formative study, we designed and 
developed a prototype system named SketchGPT, as the first at-
tempt to interpret and execute open, application-agnostic intentions 
expressed via sketch and speech. This new task requires no addi-
tional training data and transcends application-specific contexts, 
enabling more flexible interactions. SketchGPT uses multiple CoT 
agents to interpret intentions, generate tool manipulation lists, and 
produce chat responses. Users then enter a confirmation phase to 
preview and selectively execute tasks. The framework is illustrated 
in Figure 4 with the prompts details provided in Sec. 1 suppl. 

4.1 Interpreting Multimodal User Intentions 
To understand user intent from closely linked modalities, We de-
veloped a multi-agent workflow with CoT agents to decompose 
unimodal intentions, align them temporally and semantically with 
context, and form a complete understanding of the user’s intent. 
CoT prompting is a reasoning framework designed to break down 
complex problems into intermediate steps, enabling agents to itera-
tively analyze and combine multimodal data [100]. This approach 
ensures that multimodal dependencies are systematically consid-
ered, leading to more accurate intent interpretation [114]. The 
process of intention interpretation is shown in Figure 4(b). 
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User Intentions 

Interaction Context 
(Screenshot, interface context…) 

Sketch Strokes 
(Timestamps, points, interface context…) 

Speech Utterances 
(Utterance/Word level Timestamps…) 

(a) Multimodal Input (b) Intention Interpretation (c) Feedback Generation 

(d) User Confirmation 

Add three unfilled rectangles at the screen positions (1200, 377, 1065, 

900), (802, 377, 1065, 900), and (1200, 377, 1468, 900). 

Set the slide title to SketchGPT. Add a line segment at screen 

coordinates (315, 331, 1562, 331). 

Generate an image related to mobile phone usage and add it to 

coordinates (424, 473, 642, 621). Move and resize the text box at (430, 

650) to (422, 693, 636, 758), and insert text detailing mobile phone 

usage. 

Generate an image related to a meeting involving several people and 

replace the image located at (933, 563). Move and resize the text box at 

(850, 1089) to (829, 693, 1044, 761). 

Generate an image related to writing on a desktop and insert it at 

coordinates (1238, 460, 1431, 654). Move and resize the text box at 

(1287, 1503) to (1237, 691, 1450, 760), and insert text detailing mobile 

phone usage. 

Feedback 
• Chat response 
• Tool manipulation list 

1. OK, so I would like to set the title. 

2. Named. 

3. Strategy and I would like to put three 

blocks here. 

4. These blocks highlight three different 

scenarios of scheduling and. 

5. For the first one. 

6. I want to put a picture here and detailed 

explanations on using. 

7. A phone and the second. 

8. Change the picture to a meeting room 

with several persons. 

9. Having a meeting. 

10. And Sir, I would like to have a picture 

here. 

11. Like someone is writing? 

12. On table. 

13. And get some explanations below. 

General 
Intention 
Agent 

Sketch 
Segmentation 

Agent 

Utterance 
Reorganization 

Agent 

Reorganized Utterances 
1. I would like to set the title, named SketchGPT. 

2. I would like to put three blocks here. 

3. These blocks highlight three different scenarios of 

SketchGPT. 

4. For the first one, I want to put a picture here and 

detailed explanations on using a phone 

5. The second, change the picture to a meeting room 

with several persons having a meeting. 

6. And the third, I would like to have a picture here. 

Like someone is writing on table. And get some 

explanations below. 

Intention 
Alignment 

Agent 

Tool-aware 

Feedback 

Generation Agent 

Tools & Desc. 

… 

Segmented  Strokes 

Image 

Search/Generation 

Agent 

Image Search Engine 

Image Generation Model 

Key words 

Prompts & 

Scribble cue 

Context Box (with image) 

Context Box 

Feedback with tasks 

Feedback with response 

Stroke group Utterance index 

1 

2,3 

4 

5 

6 

Intention 

General Intention 
Create a slide titled 'SketchGPT' with 

three columns, each containing a 

generated image and a text description. 

Figure 4: SketchGPT framework. (a) Multimodal Input: The user’s speech and sketch inputs, along with interaction contexts, 
are transformed into Interaction Contexts, Sketch Strokes, and Speech Utterances, serving as inputs to SketchGPT. (b) Intention 
Interpretation: The General Intention Agent extracts the core intention from these inputs, guiding the Sketch Segmentation 
Agent and Utterance Reorganization Agent. Subsequently, the Intention Alignment Agent integrates the outputs of the Sketch 
Segmentation Agent and the Utterance Reorganization Agent to create the User Intention List. (c) Feedback Generation: Based on 
user intentions and available tools, the Tool-aware Feedback Generation Agent converts the intentions into a tool manipulation 
list, along with a chat response. (d) User Confirmation: Finally, the feedback is visualized through the interface, allowing the 
user to preview and confirm each manipulation. 

4.1.1 General Intention Understanding. In interactions, the user’s 
speech and sketches can be semantically redundant or complemen-
tary. Analyzing either modality in isolation may lead to misinter-
pretation or bias. Therefore, we first combine data from both speech 
and sketch modalities to infer a general intent, which guides the 
subsequent intent analysis, helping to avoid unimodal bias. Upon 
completion of the interaction by the user, the Interaction Context, 
Sketch Strokes, and Speech Utterances are fed into the General 
Intention Agent, as illustrated in Figure 4(a). Specifically, the Inter-
action Context comprises screenshots and interface information; 
the Sketch Strokes are downsampled timestamped point sets; and 
the Speech Utterances are transcriptions with word-level times-
tamps. The General Intention Agent summarizes the user’s core 
intention in concise natural language. This general intent serves as 
a high-level guide, which is then passed on to subsequent stages of 

multimodal intent analysis, ensuring that the detailed processing 
remains aligned with the user’s overarching goals. 

4.1.2 Sketch Segmentation. A single user sketch may consist of 
multiple semantic segments. For instance, one stroke may indicate 
a reference, while another may convey textual content. To accu-
rately infer the detailed execution steps, we group strokes based on 
their semantics. We use the DBSCAN [23] clustering algorithm as 
the initial step because it is well-suited for identifying clusters of 
arbitrary shapes and does not require the number of clusters to be 
specified in advance. DBSCAN groups strokes by identifying dense 
regions in a feature space, making it effective for spatial and tem-
poral stroke data. To handle variability in sketches, we determine 
the DBSCAN algorithm’s parameters by analyzing k-distance plots. 
However, it is limited by its reliance solely on spatial and temporal 
distance, which may lead to misclassification as it cannot capture 
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the semantic meaning of strokes. To address these limitations, we 
utilize the Sketch Segmentation Agent to refine the clustering. The 
result from DBSCAN serves as a preliminary reference, and the 
Sketch Segmentation Agent further optimizes the segmentation 
to better align with the intended semantics. This agent incorpo-
rates not only the general intent but also global visual semantics, 
ensuring a more accurate segmentation. 

4.1.3 Utterances Reorganization. People often experience pauses, 
repetitions, and inaccuracies in their verbalizations. Speech recog-
nition systems capture words spoken by the user, but they rely 
on inter-word spacing to define utterances, which may not align 
with the actual semantic structure. Consequently, the transcribed 
text often contains noise (Figure 4 1 ○) and segmentation errors 
(Figure 4 4 ○ 5 ○ 7 ○) that hinder accurate intent understanding. To 
address this, we introduce the Utterance Reorganization Agent to 
clean and reorganize the transcribed text. This agent not only pro-
cesses the original utterances based on temporal separation and the 
general intent but also refines the utterances by eliminating noise 
and correcting segmentation errors, producing optimized transcrip-
tions aligned with natural speech patterns. Moreover, the Utterance 
Reorganization Agent leverages visual information from the sketch 
to further improve accuracy. It compensates for the inherent limita-
tions of speech recognition systems. These systems often struggle 
with out-of-vocabulary words, which are common in scenarios like 
meetings or creative design discussions [44]. For example, as shown 
in Figure 4 2 ○ 3 ○, a term like “SketchGPT,” frequently used in such 
contexts, may be misrecognized as “Strategy”. By utilizing visual 
cues from the sketch, the agent can correct such errors. 

4.1.4 Intention Alignment. At this stage, we have refined both the 
utterances and sketch segmentation results. To achieve accurate 
semantic alignment between stroke groups and their corresponding 
utterances, we utilize the Intention Alignment Agent. This agent 
integrates the outputs from the Sketch Segmentation Agent and 
the Utterance Reorganization Agent to ensure that the alignment 
is semantically coherent. Prior research [2, 44] suggests a general 
temporal correspondence between written and spoken content. 
However, discrepancies can arise, such as when users repeat pre-
viously written elements. To address these issues, the Intention 
Alignment Agent corrects initial temporal mappings based on se-
mantic coherence. It generates a user intent list, where each entry 
is a triplet consisting of a stroke group, a transcribed text segment, 
and a user intention. Throughout the user intention interpreta-
tion process, we repeatedly employed a strategy where the agent 
optimizes the initial rule-based results by leveraging contextual se-
mantic information. This approach aims to deeply parse multimodal 
intentions while trying to minimize ambiguity. 

4.2 Generating Feedback from User Intentions 
When the user’s multimodal intent is parsed into a list of intent 
units, the next task for SketchGPT is to organize these intent units 
into a Tool Manipulation List, which includes tool names and param-
eters for direct execution by the Tool Agent, and a Chat Response, 
which provides a natural language description of manipulations for 
user understanding. The detailed process is illustrated in Figure 4(c). 

4.2.1 Tool-aware Manipulation Steps Generation. To prevent mis-
use, the Tool-aware Feedback Generation Agent only invokes a 
tool when the prompt explicitly requests tool usage. To enhance 
the stability of tool invocation, the agent converts the user’s intent 
into a format of tool name and corresponding parameters, which 
are then passed to the Tool Agent for execution. Specifically, tool 
functions and their associated annotations are incorporated into 
the prompt. 

4.2.2 Chat Response Generation. Text containing tool functions 
and parameters is often not suitable for non-specialists to under-
stand. To help users quickly grasp the execution details, a natu-
ral language explanation of the operations should be generated. 
Additionally, this explanation supports the system’s question-and-
answer functionality by addressing user acquisitions. The Tool-
aware Feedback Generation Agent is responsible for producing a 
natural language summary that succinctly captures the user’s in-
tent and the task execution plan, and for responding to user queries 
made during the interaction. 

4.2.3 Image Search and Generation. Standard LLMs do not support 
image generation or retrieval. To meet users’ frequent image needs 
during operations, we integrate both image search and image gen-
eration API tools. The Image Search/Generation Agent is tasked 
with inferring relevant keywords that describe the desired image 
by combining the user’s verbal expressions and the shape of the 
sketch. For image search, these keywords are used as search terms, 
and a randomly selected image from the relevant search hits is re-
turned (supported by the API provider). For image generation, the 
keywords and sketch strokes are used as the prompt for generating 
the image. 

4.3 User Confirmation 
According to the recommendations of [85], artificial intelligence 
technologies should allow users to exert appropriate control while 
providing high levels of automation, in order to enhance the sys-
tem’s reliability, safety, and trustworthiness. To support this, after 
SketchGPT completes the feedback generation phase, the system 
transitions to a user confirmation phase. In this phase, task details 
are clearly presented through a Task List and Context Boxes (as 
shown in Figure 4(d)), allowing users to confirm tasks. This ap-
proach integrates human input seamlessly into the task execution 
loop, ensuring a more precise, safe, and user-guided process. 

4.3.1 Task Overview. The Task List displays individual tasks gen-
erated by SketchGPT, each linked to a contextual action. Users 
can review tasks individually and select multiple tasks for batch 
processing. For each task, users have the option to execute, discard, 
or adjust parameters. This interface supports both individual and 
bulk task management, streamlining the workflow. 

4.3.2 Context Box. Each task in the Task List is linked to a Context 
Box, accessible via double-click or a single-click on the button with 
a right-arrow, which offers a detailed view of the task parameters. 
In this interface, users can review task parameters, choose to exe-
cute the task, or discard it. In addition, for tasks involving image 
generation, users have the capability to preview the generated im-
ages. If the resulting image does not meet the expected criteria, 
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users can input new image generation prompts and regenerate the 
images accordingly. 

4.4 Executing Operations in Typical Scenarios 
To enhance the interaction loop, SketchGPT is equipped with com-
mon tools that allow the agent to perform keyboard and mouse 
operations. However, current LLMs may encounter challenges in 
executing complex interface tasks accurately and consistently [63]. 
To address these challenges, we have developed specialized toolkits 
for typical scenarios involving text, canvas, and data tables. 

4.4.1 Common Interface Operations. SketchGPT operates by pro-
viding the LLM with access to a custom-developed toolkit of inter-
face operations. Similar to external tools or APIs of LLMs [1], our 
system exposes a set of specialized interface manipulation tools that 
the model can select and invoke. When receiving an instruction, 
the LLM analyzes the task requirements and determines which 
tools to call from this toolkit to accomplish the task. These tools 
are implemented using PyAutoGUI [89], which enables the sys-
tem to programmatically control keyboard and mouse operations. 
While platform-specific automation APIs (e.g., macOS Automation3) 
could provide deeper system integration, we chose PyAutoGUI for 
its cross-platform compatibility and ability to work with any ap-
plication without requiring specific API support. To enhance the 
interaction loop, SketchGPT is equipped with common tools that 
allow the agent to perform keyboard and mouse operations. How-
ever, current LLMs may encounter challenges in executing complex 
interface tasks accurately and consistently [63]. To address these 
challenges, we have developed specialized toolkits for typical sce-
narios involving text, canvas, and data tables. 

4.4.2 Document Editing and Annotation. SketchGPT combines 
speech and sketch modalities, enabling users to express their editing 
and annotation intentions to LLMs. To effectively implement these 
intentions within documents, we have developed a dedicated docu-
ment toolbox. Document editing typically involves the addition and 
removal of text, images, tables, and other content. Document anno-
tation often requires format adjustments, including highlighting, 
bolding, italicizing, strikethroughs, and color changes. To enable 
SketchGPT to effectively understand and modify document for-
matting, the Tool Agent supports operations within the scope of 
both Markdown syntax and Microsoft Word, facilitating editing 
and tagging in both formats. 

4.4.3 Canvas Design and Operations. Sketching plays a crucial 
role in facilitating creative activities [96]. By using SketchGPT for 
canvas design, users can alleviate the burden of complex interface 
operations and concentrate on their creative expression. The sys-
tem provides functionalities for adding, deleting, and updating text 
boxes, images, shapes, and more for canvas design tasks, encom-
passing a wide range of features that are relevant to the actual 
design process. 

4.4.4 Data Table Management and Analysis. The table data toolbox 
encompasses common table operations, including writing, deleting, 
merging cells, inserting charts, and inputting formulas. 

3Automator User Guide: https://support.apple.com/guide/automator/welcome/mac 

4.5 Implementation Details 
The user interface of SketchGPT was developed using the WPF 
framework, incorporating the WPF UI component library [50] for 
modern design elements. In inactive mode, the program is repre-
sented by a green button icon on the desktop, which users can 
reposition to avoid obstructing on-screen information. Upon click-
ing the button icon or pressing the stylus side button, SketchGPT 
is activated, and the button icon changes to pink . The user can 
then engage in multimodal interactions with SketchGPT until the 
button icon is clicked or the stylus side button is pressed again. 

The system uses Azure Speech-to-Text service [60] for speech 
input recognition, with backend communication managed through 
a Redis database for efficient data exchange. The backend constructs 
reasoning chains with LangGraph [38], leveraging the multimodal 
capabilities of OpenAI’s GPT-4o model [64] for inference. Lang-
Graph’s built-in human-in-the-loop mechanism ensures seamless 
integration of automated reasoning with user confirmation. 

For image-related functionalities, the system employs an image 
search module that uses keywords derived from the user’s speech 
and hand-drawn sketches to retrieve relevant thematic images via 
the Unsplash API [94]. If no suitable images are found, the system 
transitions to an image generation module. This module leverages 
a Stable Diffusion v1.5 model [78], conditioned on scribble images 
through ControlNet [112], and is integrated with FastAPI [75] to 
enable image generation based on sketches and prompts. 

5 Evaluation Study 
Despite prior comparisons of sketch, speech, and multimodal inputs 
[5, 6, 25, 44], impacts of modalities in open and application-agnostic 
intention input for LLMs remains unexplored. Our user study con-
tains two sessions to address the following research questions: 

• RQ1: How do different interaction modalities affect user perfor-
mance and experience? 

• RQ2: Can SketchGPT effectively support real-world tasks and 
gain user acceptance? 

5.1 Study Design 
5.1.1 Session 1: Comparison between Input Modalities. This session 
focuses on how interfaces with different input modalities affect 
efficiency, user experience, and LLM interpretation of user intent. 
To assess input experience and reasoning accuracy, participants 
perform and evaluate a single complete input-output process. 

Conditions. This session includes three interface conditions: 
SketchGPT and two unimodal baselines, SketchOnly and Spee-
chOnly. The interfaces were kept identical, with the only difference 
being the exclusion of the missing modality in each case. 

Tasks. Given that manipulating text and images covers most use 
cases in formative studies, we selected image-rich documents as our 
experimental setting. We designed tasks to evaluate four common 
user intentions: adding, removing, modifying, and moving con-
tent. Each intention was tested through three tasks: expressing 
the intention on text at a single location, text across two locations, 
and image content. For example, “remove text across two locations,” 
or “modify a specified object in the image,” etc. For detailed de-
scriptions of all tasks, please refer to Sec 3.3 suppl. Participants 

https://support.apple.com/guide/automator/welcome/mac
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were provided with Markdown documents containing both text 
and images to maintain content alignment. 

Design. The study followed a within-subject design to ensure 
that each participant was exposed to all conditions and tasks in a 
balanced manner. interface and intention appeared an equal 
number of times in each position. Participants were assigned to 
various interface-version-intention combinations according to 
the Graeco-Latin Square, ensuring that each participant encoun-
tered all interface and versions in a counterbalanced order. We 
alternate the order of intention and tasks for each participant to 
balance the order and sequence effects. 

We gathered the interaction data and subjective ratings for 3 
interface × 4 intention × 3 task × 12 participant = 432 trials. 

5.1.2 Session 2: Exploration within Typical Scenarios. Document, 
spreadsheet, and presentation creation/editing were the most com-
mon scenarios in our formative study. We used these scenarios 
to simulate everyday SketchGPT usage and evaluate its user ex-
perience. Participants used SketchGPT with Typora4 , Excel, and 
PowerPoint, iterating until satisfied. Tasks were balanced using a 
pre-generated order, and subjective ratings were collected via a 
7-point Likert scale. 

5.2 Procedure and Apparatus 
Participants were briefed on the study, provided consent, and 
learned each interface via video tutorials. They completed trials 
as per task instructions, rated intention closeness after LLM pro-
cessing, and provided task load and subjective evaluations upon 
completing all trials for each interface. In Session 2, participants 
were introduced to the tasks and full usage of SketchGPT through 
tutorials, completed multiple iterations per task, and finally pro-
vided overall ratings and participated in semi-structured interviews. 

The study was conducted in a dedicated room, instrumented 
with video and audio recording equipment. In Session 1, interfaces 
were adapted from SketchGPT, ensuring differences arose only from 
input variations. Participants viewed task content and provided 
ratings on a separate device. Inferred intentions were shown as 
SketchGPT chat responses. In Session 2, participants freely used all 
SketchGPT features to complete tasks. 

5.3 Participants 
Both studies involved 12 participants (aged 21-27, M = 23.5; 6 fe-
male, 6 male) recruited from our institution and other universities, 
denoted as EP1-EP12. None of the participants had taken part in 
the previous study. All participants were experienced with touch-
screen devices, including smartphones and tablets, and many had 
also used large displays, touch-screen laptops, and interactive pen 
displays, with varying frequencies of stylus use. Additionally, they 
had prior experience with LLMs for conversational Q&A, program-
ming, text processing, image generation, and personal assistance, 
with some involved in LLM-related R&D. All participants provided 
informed consent and were compensated $10/hour for their time. 
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Figure 5: Interaction performance measures from Evaluation 
Study, Session 1. The 𝑥-axis includes three input interfaces: 
SketchGPT and its baselines, SketchOnly and SpeechOnly. (* 
indicates 𝑝 < .05, ** indicates 𝑝 < .01, *** indicates 𝑝 < .001) 

5.4 Quantitative Results 
For the statistical analysis, we used Wilcoxon signed-rank tests to 
analyze the data. Statistical significance was established at 𝑝 < .05 
for all analyzes. 

5.4.1 Intention Closeness. The system’s accuracy in interpreting 
user intentions was rated on a 7-point Likert scale, from “distant” 
to “close”. As shown in Figure 5(a), SpeechOnly scored highest, 
surpassing SketchOnly (𝑝 < .001) and SketchGPT (𝑝 < .001), 
while SketchGPT outperformed SketchOnly (𝑝 < .001). SpeechOnly 
(𝑀 = 6.08) slightly exceeded SketchGPT (𝑀 = 5.31) but significantly 
outperformed SketchOnly (𝑀 = 2.73). By intention, SketchGPT 
and SpeechOnly showed no significant difference in “modify” and 
“move” tasks but differed in “add” and “remove” tasks, where Spee-
chOnly performed better. LLMs process text better than visuals, 
limiting SketchOnly’s effectiveness. SketchGPT helped by integrat-
ing sketches but remained less precise than speech. Users in Spee-
chOnly provided clear descriptions, while sketching introduced 
variability, reducing inference accuracy. 

5.4.2 Input Time. Input time was measured from the first stroke or 
spoken word to the last, assessing temporal efficiency. As shown in 
Figure 5(b), SketchGPT had the lowest input time, outperforming 
SketchOnly (𝑝 < .001) and SpeechOnly (𝑝 < .001), while Spee-
chOnly was faster than SketchOnly (𝑝 < .001). With SketchOnly, 
users often wrote additional text for clarity, increasing input time. 
SketchGPT allowed simultaneous sketching and speaking, improv-
ing efficiency—users could sketch for references and speak for 
complex details. By intention type, SketchGPT and SpeechOnly 
showed no significant difference for add and modify. For remove, 
SketchGPT and SketchOnly were similar, both faster than Spee-
chOnly (𝑝 = .005). For move, SketchOnly and SpeechOnly showed 
no difference. In all other cases, SketchGPT was significantly faster, 
highlighting the efficiency of multimodal input. 

5.4.3 Speech Verbosity. Speech verbosity, measured by word count, 
was significantly lower in SketchGPT than SpeechOnly (𝑝 < .001), 
as shown in Figure 5(c). This reduction was consistent across all 
intention, indicating that sketches effectively replace verbose 
descriptions. Lower Mental Demand in SketchGPT further supports 
this efficiency. 
4Typora: a commonly used Markdown document editor, https://typora.io/ 

https://typora.io/
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5.4.4 Sketch Complexity. Sketch complexity, measured by stroke 
count, was significantly lower in SketchGPT than SketchOnly (𝑝 < 
.001), as shown in Figure 5(d). This trend held across all intention, 
indicating that speech integration simplifies sketches by reducing 
the need for symbols and text. 

5.4.5 Task Load. NASA-TLX results (Figure 6) show that 
SketchGPT had lower Mental (𝑝 = .038) and Temporal Demand 
(𝑝 < .05) than SpeechOnly and SketchOnly. SpeechOnly and 
SketchGPT outperformed SketchOnly in Performance (𝑝 < .01). 
No significant differences were found in other aspects. While 
SketchGPT reduced effort and enhanced efficiency, occasional mis-
interpretations led to moderate Frustration. The natural integration 
of sketching and speech facilitated intent expression, improving 
immersion and reducing Temporal Demand. 

5.4.6 Modality Input Experience. A questionnaire in 7-point Lik-
ert scale was employed to assess users’ experiences with different 
modalities of input, as shown in Figure 7. Results revealed that 
SketchGPT outperformed SketchOnly on all questions, with sta-
tistically significant differences (𝑝 < .05), except for Freedom of 
Expression (Q4, 𝑝 = .057). Compared to SpeechOnly, SketchGPT 
received higher ratings in Ease of Use (Q1, 𝑝 = .024) and Comfort 
and Naturalness (Q7, 𝑝 = .047), highlighting its more user-friendly 
and natural multimodal interface. However, SpeechOnly slightly 
edged out SketchGPT in Correct Understanding of Intentions (Q4), 
likely due to its more detailed linguistic descriptions. 

5.4.7 System Exploration Experience. We utilized a 7-point Likert 
scale questionnaire to evaluate participants’ subjective experiences 
with SketchGPT while completing everyday tasks, with the results 
shown in Figure 8. Across all questions, average scores exceeded 5, 
indicating high satisfaction. Participants reported strong willing-
ness to use SketchGPT (Q1, Q10) and found it easy to use (Q2, Q7). 
They expressed confidence in conveying their intentions (Q4, Q9) 

and appreciated the multimodal interaction (Q3). While understand-
ing and execution (Q5, Q6, Q11) received slightly lower ratings, 
the human-in-the-loop optimization (Q8) was positively received. 
When compared to traditional methods, SketchGPT was consid-
ered more novel (Q14), convenient (Q12), and natural (Q15), though 
there was still room for improvement in outcome satisfaction (Q13). 

5.5 Qualitative Results 
We distill several key findings from the two study sessions and 
interviews. 

Combination of sketch and speech enhances expression 
and understanding. Participants universally opted for multimodal 
interaction in Session 2, particularly for “tasks that required shape 
or position description, or were more complex” (EP10). While uni-
modal inputs were considered “acceptable” for simpler tasks (EP1, 
EP10), they were often insufficient for conveying a wide range of 
intentions. Specifically, speech alone was described as “laborious 
for graphical contents or elements that were hard to refer to” (EP5). 
Conversely, the primary challenge of the SketchOnly interface was 
the inherent ambiguity of drawings, as “sketches could be easily 
misunderstood due to a lack of universal translation” without ver-
bal clarification (EP1). Both observations corroborate the findings 
from Session 1 (Figure 9). Notably, the qualitative preference for 
multimodal interaction did not always translate into statistically 
significant performance gains. For instance, no significant differ-
ence in intention closeness was observed between the SketchGPT 
and SpeechOnly interfaces for “modifying” and “move” intentions 
concerning “image content” and “single location” tasks. Similarly, 
for the “remove” intention, input time did not differ significantly 
between the SketchGPT and SketchOnly interfaces. Despite these 
specific cases, there was a strong consensus among participants 
that “combining sketches with speech is highly necessary” (EP5, EP7). 

Confirmation mechanism acts as a helpful tool to prevent 
errors. Typical failure cases in Session 2 primarily stemmed from 
the LLM’s limitations in spatial reasoning, which was most evident 
in PowerPoint tasks. These limitations led to errors such as incor-
rect element positioning, sizing, and occlusion (Figure 10 (a)). For 
such errors, participants were often unwilling to correct the coor-
dinates in the confirmation step, preferring instead to execute the 
command and perform manual adjustments afterward. In contrast, 
for Markdown tasks, the linear nature of the documents meant that 
precise LLM positioning was less critical, and most generated out-
puts met user expectations. However, Excel tasks again highlighted 
the challenges of LLM positioning. A typical error involved the 
system misinterpreting cell locations, for instance, operating on the 
wrong column when asked to perform a calculation (Figure 10 (b)). 
While this was correctable during confirmation, some participants 
chose to abandon the command and restart. Furthermore, partici-
pants who rated the system poorly (Q8, Figure 8) cited the overly 
technical descriptions in the confirmation step and the absence of 
an undo function post-execution as significant drawbacks. Despite 
these issues, participants generally valued the confirmation mecha-
nism, particularly for preventing errors that would be difficult to 
rectify later. Features like image preview and regeneration were 
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Figure 8: Questionnaire results on the 7-point Likert Scale 
from Evaluation Study, Session 2. Ratings are collected on a 
scale from “strongly disagree” to “strongly agree”. The hori-
zontal bar graph represents the distributions of these ratings. 

praised for their effectiveness. As EP8 noted, “I tend to use the con-
firmation mechanism to preview generated images because correcting 
an incorrect image is difficult. For other items, I’m more willing to 
accept them all at once—since for other kinds of errors, like positional 
deviations or text adjustments, I might fix them manually or simply 
go through another iteration with SketchGPT.” 

Input modalities and response times present usability chal-
lenges. Regarding input modalities, speech was considered accept-
able in private settings but “inconvenient in workplace scenarios” 
(EP7). Conversely, the necessity of a stylus was not perceived as a 
limitation, as participants found that “touch input on touchscreens 
was also sufficient for sketching purposes” (EP4). System latency 
emerged as another key usability concern, particularly for simple 

Figure 9: Examples of Text and Image-related tasks com-
pleted in Evaluation Study, Session 1, using the SketchGPT, 
SketchOnly, and SpeechOnly interfaces, along with corre-
sponding stroke counts and speech-to-text word counts. 

tasks. As EP2 noted, users weigh the time saved against the system’s 
processing delay: “For simple operations, I consider whether I should 
complete the task manually. But for complex and multi-step tasks, the 
wait is worthwhile”. This suggests that while latency is tolerated for 
complex commands, it can diminish the user experience for simple 
operations that could be performed faster manually. 
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I want to make a slide titled “SketchGPT.” On the left side there’s a framed box with 
an image about handwriting, and underneath it says: “Handwriting is a common 

way for people to express their intentions.” On the right side there’s another framed 
box with an AI-related image, and below that it reads: “Artificial intelligence 

technology can interpret user intentions.” That’s it. 

Uh, could you calculate the total of this column and put it here—umm, sum. Then 

find the minimum value in this column—here. And the maximum value—right here. 

After that, make a line chart like this. 

(a) 

(b) 

Figure 10: Failure cases in Session 2 of the evaluation study. (a) 
Improper position and size of the image and box. (b) Mistaken 
table column. 

6 Discussion 

6.1 A Sketch Worth a Thousand Words 
Sketches have long been used to enhance intent expression, such as 
conveying visualization goals [91] or supporting story creation [17]. 
Building on related work, SketchGPT enables freehand sketches 
combined with voice to offer a more open, natural, and efficient way 
to interact with LLMs. It supports conveying complex, high-level 
semantics that are difficult to express through text or predefined 
pen gestures. 

In our studies, users under the SpeechOnly interface had to con-
struct constrained contexts (e.g., specifying phrases, counting lines, 
or referencing occurrences) to disambiguate targets, increasing 
mental load and verbosity. In tasks like “add image,” participants 
first described overall layouts before detailing objects, a process 
that was inherently demanding. With SketchGPT, participants nat-
urally sketched targets while using referential language, reducing 
mental, temporal, and physical demands despite the multimodal 
input. For image description tasks, they primarily used quick, ab-
stract sketches with verbal cues, focusing on meaning rather than 
precise detail, enabling more fluid and efficient intent expression. 

6.2 Several Words Simplify a Detailed Sketch 
In the SketchOnly interface, participants easily identified targets 
but struggled to specify operations. While textual annotations were 
effective, they were slower and increased complexity; symbolic 
representations reduced effort but introduced ambiguity due to 

inconsistent human interpretations. Without prior grounding [95], 
LLMs often misinterpret user-specific symbols, reducing accuracy 
and increasing cognitive load. In image tasks, abstract sketches 
made object categories difficult to convey, and adding text labels 
further increased temporal demand. 

Speech input addresses these challenges by efficiently clarifying 
sketch ambiguities, reducing written input and cognitive burden. 
In SketchGPT, participants rarely wrote full sentences, relying in-
stead on brief speech cues. This complementary use of speech and 
sketch improved both efficiency and accuracy, enabling natural and 
seamless intent expression. 

6.3 Sketch + Speech Unleash Greater Potentials 
Participants praised SketchGPT’s potential across diverse tasks and 
devices. They found it “especially helpful for creating presentations 
and documents, quickly turning ideas into drafts” (EP1). Despite 
some challenges, such as element misplacement or incomplete data 
selection, they expressed interest in applying SketchGPT to coding, 
navigation, mind mapping, and 3D design. The integration of speech 
and sketch input was considered “intuitive and easy to learn, even 
for elderly users and children” (EP3). 

The potential of SketchGPT’s multimodal interaction extends 
across devices. On desktops and laptops without pen support, a 
mouse suffices for basic sketching that doesn’t require precision. 
On tablets and smartphones, users can sketch via touch and speak 
through built-in microphones. Speech input was generally preferred 
over soft keyboards for its efficiency and lower effort, especially 
when expressing complex intentions. 

Overall, the combination of sketch and speech promises to en-
hance user experience and efficiency when interacting with LLMs, 
supporting a wide range of user needs and applications. 

6.4 Limitation 
SketchGPT relies heavily on large language models. 
SketchGPT relies on MLLMs, so its reasoning depends on LLMs 
performance, which may lead to variable or inaccurate outcomes 
despite careful prompt design. These variations can affect user 
experience and evaluation consistency; however, participants gen-
erally expressed approval of the results. SketchGPT may involve 
higher latency and cost, but unlike potential lightweight methods 
requiring task-specific data, it works without such data and serves 
as a practical starting point for real-world scenarios and iterative 
optimization. 

The study lacks more realistic and long-term observations. 
Our evaluations of SketchGPT were conducted in controlled set-
tings and, while covering diverse scenarios (e.g., text, images, tables, 
canvases, and code), cannot capture all real-world cases. Although 
the formative study helped generalize interaction patterns, long-
term real-world use remains to be explored. We envision SketchGPT 
as an open-ended system for interpreting and executing user inten-
tions, but real-world contexts are highly complex and user habits 
vary widely, posing significant challenges for robust deployment. 
Observations of experts from diverse backgrounds are also valuable, 
as they may reveal different usage patterns and scenarios. 
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Modal Conflict Awareness and Feedback. In our study, we 
observed redundancy between the two modalities, with their in-
formation generally corroborating each other to enhance system 
stability. However, conflicts can arise due to user errors or LLM 
misinterpretation. The current system ignores such conflicts and 
defaults to one modality. Ideally, it should detect conflicts, provide 
feedback, and allow users to clarify their true intentions. 

6.5 Future Work 
Investigating other benefits like learnability and expressive-
ness. Traditional pen gesture systems rely on predefined vocabu-
laries that require user learning. In contrast, SketchGPT supports 
free-form intentions, enhancing learnability. Future work could 
explore how user experience levels affect performance and whether 
new tasks or functions emerge as users gain expertise. 

Exploring new possibilities for interactive iterations us-
ing sketches. The current confirmation phase relies on technical 
task descriptions that don’t align well with users’ workflow needs. 
Some participants (EP4, EP8, EP10) preferred directly editing and 
iterating on sketches rather than one-way inference, and requested 
reversible actions plus previews of execution outcomes. Future work 
could focus on developing more intuitive, flexible, and user-friendly 
methods for task confirmation and iteration. 

Building a more direct interaction and response mode. Par-
ticipants suggested that real-time understanding and immediate 
responses would “enhance scenarios like document editing by increas-
ing certainty” (FP1). They desired “clearer, more tangible feedback 
akin to direct manipulation” to improve interaction experience (EP8). 
Combining direct manipulation on the interface with sketch input 
as an overlay could offer a promising hybrid interaction. 

Establishing a benchmark for sketch intention inference 
evaluation. Our current evaluation relies on participant scoring de-
signed to be as objective as possible, but fully objective assessment 
needs standardized benchmarks and clear metrics. Future work 
could establish these benchmarks to enable continuous technique 
iteration and explore multi-agent setups using LLMs as evaluators 
[7, 84], serving as a reflection mechanism. 

Developing advanced approaches for understanding mul-
timodal sketch interactions. SketchGPT relies heavily on LLMs’ 
intention parsing, highlighting the need for more accurate and 
efficient methods. Prior work has addressed sketch semantic un-
derstanding (e.g., semantic classification [35, 105], handwriting 
recognition [19], scene segmentation [27]). Given that visual aids 
can enhance LLM reasoning [36], integrating these expert models 
could further improve domain-specific inference performance. Spa-
tial understanding remains a common challenge for LLMs, making 
it crucial to improve spatial intent interpretation in future solutions. 

7 Conclusion 
This paper presents SketchGPT, a multimodal interaction paradigm 
that integrates sketches and speech to interact with LLMs directly 
on the system interface. Sketches offer richer semantic expression, 
particularly for spatial and graphical intentions that are difficult 
to convey through text alone. SketchGPT supports open-ended 

application scenarios within system contexts and effectively re-
solves multimodal ambiguities. By combining the complementary 
strengths of sketch and speech, the framework enhances interaction 
efficiency and fosters a more natural and fluid user experience. 

For further investigation on the framework, we conducted a 
formative study using a Wizard-of-Oz design, bypassing current 
LLM limitations to observe potential user interaction patterns and 
preferences. Insights from this study informed the development of 
the SketchGPT prototype, which integrates a multimodal intention 
inference chain powered by MLLMs and employs a human-in-the-
loop approach, enabling users to confirm task execution. Our eval-
uation study shows that comparing to single-modality interactions 
(sketch or speech), SketchGPT demonstrates superior interaction 
efficiency, reduced task load, and improved user experience. 
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