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A B S T R A C T 

Video instance segmentation (VIS) is an evolving research topic in computer vision that aims to simultaneously 
detect, segment, and track semantic objects across multiple video frames. However, existing VIS methods are 
typically unaware of the reliability of the training samples from insufficient and imbalanced datasets, leading 
to suboptimal performance. To address this challenge, we propose a memory-based conditional neural process 
(MemCNP) module to exploit the strengths of both memory networks and the CNP model which handles hetero-
geneous latent space distributions for reliable modelling with insufficient data. Our MemCNP utilises predicted 
uncertainty to regularise VIS predictions as well as to identify reliable samples for effective training. Notably, 
our MemCNP is model-agnostic and can thus be seamlessly integrated into various VIS models to improve their 
performance. Extensive experiments on the YouTube-VIS and OVIS datasets demonstrate the effectiveness of 
MemCNP regardless of the underlying model architecture. 

1. Introduction 

Video instance segmentation (VIS), first introduced in YouTube-
VIS 2019 [1], aims to simultaneously detect, segment and track ob-
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jects in video sequences, and is useful in various applications such as 
instance-level video editing, autonomous driving and augmented real
ity. In contrast to conventional image-level object detection and image 
segmentation [2], VIS requires a holistic approach to consider tem
poral dynamics and spatial relationships between objects as well as 
fine-grained parsing of videos. 

Many existing VIS methods extend conventional image-level in
stance segmentation algorithms such as Mask R-CNN [2] to process 
videos frame-by-frame [1,3,4]. However, they are unable to fully ex
ploit the temporal contexts in video sequences [5]. While some other 

methods, such as [6–8], leverage temporal cues to improve the accu
racy and robustness of VIS, they are computationally expensive and 
infeasible for real-time applications. To strike a balance between effi
ciency and accuracy, semi-online methods [9,10] process down-sampled 
or short video clips. Recent trends in VIS focus on holistic video-level 
instance association [11], context-aware tracking [12], temporal fea
ture propagation [13], and object re-identification during rapid frame 
changes [14], further distinguishing VIS from image-based instance 
segmentation. 

An overlooked issue in current VIS approaches is the lack of knowl
edge about the reliability of the extracted regions of interest (RoIs) 
during the training stage, which renders the selection of training candi
dates non-trivial. Existing methods rely on RoI overlap [3,4] or temporal 
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differences between frames [5,15] for model updates which can be-
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come imprecise and inflexible and lead to performance degradation. 
Similarly, frames randomly sampled from a video sequence may not 
support reliable feature extraction. Since many frames contain mo
tion blurred objects, occlusions, and rapid dis- and re-appearances 
of objects, the use of these RoIs can compromise the overall model 
performance. Typical two-stage methods [1,2,5] use region proposal 
networks (RPNs) [2] to first eliminate unreliable candidates and sub
sequently perform training on the remaining candidates. Although this 
approach improves reliability, it introduces a non-end-to-end paradigm, 
sacrificing efficiency and ease of post-processing. In contrast, one-
stage methods [3,16] require prior knowledge of data distributions 
to manually establish hyper-parameters that can efficiently select re
liable candidates against an overwhelming number of false positives. 
Recent DETR-based methods [4,6,9] replace feature pyramid networks 
(FPNs) with transformers and leverage Hungarian matching for candi
date selection, but suffer from slow convergence and a high demand 
for training data, limiting their practical applicability. In addition, all 
these methods assume a well-structured underlying data distribution, 
which is not always the case when dealing with insufficient video 
sequences. 

Inspired by the recent conditional neural process (CNP) model [17], 
in this paper, we present a memory-based CNP (MemCNP) to tackle the 
above research challenges and further improve VIS model reliability. 
Our proposed MemCNP learns dataset-scale contexts from a memory 
bank which is used to ensure the outputs from the VIS model are sta
tistically meaningful, thus enhancing model reliability and simplifying 
training candidate selection. We demonstrate, by explicitly modelling 
bounding box regressions as functions of distributions, that the learned 
variance of each distribution can serve not only as an estimation of 
detection uncertainty but also as a criterion for confident candidate 
selection. 

Our contributions in this paper are: 

• We propose MemCNP to improve VIS model reliability. The MemCNP 
is the first approach to exploit the CNP model to ensure that the out
puts from the trained VIS models are more explainable and reliable 
from a statistical perspective. In addition to enhancing the repre
sentation used for bounding box regression in VIS, we also design a 
CNP loss along with uncertainty minimisation to explicitly measure 
uncertainties of predictions. 

• We introduce uncertainty-based candidate selection which over
comes the limitations of heuristically designed selection, enabling 
dynamic exploitation of high-quality samples for multi-task learning 
in VIS. 

• Our method is model-agnostic and can be easily applied to existing 
VIS methods. Extensive experiments on the YouTube-VIS [18] and 
OVIS datasets [5] demonstrate its effectiveness regardless of the VIS 
backbone architecture. 

Our code is available at https://github.com/SCoulY/MemCNP-VIS

The remainder of the paper is organised as follows. Related work on 
video instance segmentation, neural processes and memory networks 
is reviewed in Section 2. Our proposed approach is then explained in 
detail in Section 3. Experimental results are reported and discussed in 
Section 4, and Section 5 concludes the paper. 

2. Related work 

2.1. Video instance segmentation 

Video instance segmentation is initially proposed in [1] as an 
advancement of image instance segmentation (IIS) [2] and video ob
ject segmentation (VOS) [19]. Restricted by computational resources, 
early methods extend existing image instance segmentation models 
with a tracking method to process videos frame-by-frame in an on-
line manner [18]. To improve VIS efficiency, FCOS [16] replaces the 

instance-wise region proposal network with pixel-wise dense convo-
lutions, enabling training in a single phase. Extending FCOS [16], 
in [3,20] instance-independent coefficients are incorporated into the 
segmentation branch to achieve improved performance. To handle 
challenging scenarios with highly-occluded objects, [5] introduces a 
temporal calibration module between key-reference frames to identify 
these occlusions. To further utilise temporal correlations, 3D convolu-
tional models [10] and transformers [8] are exploited to process video 
sequences as a whole, and are capable of enhancing feature represen
tations extracted from the full spatio-temporal information in videos. 
Furthermore, TriANet [21] proposes a holistic attention-module to 
exploit spatial-, temporal-, and channel-wise contexts for video segmen
tation. In SeqFormer [6] and IDOL [4], the concept of learnable queries 
is introduced, wherein these queries are iteratively associated with ob
ject instances, resulting in a simplification of post-processing stages 
and enhanced video instance segmentation performance. Subsequent ap
proaches concentrate on integrating the training and inference phases, 
employing methods such as unified label assignment [11] or the im
plementation of a consistent memory bank [22], thereby facilitating 
more stable instance discrimination. Other recent advancements address 
challenges in inconsistent object tracking [12], foundation model-based 
enhancement [23] and re-identification [14] that occur due to rapid 
changes between video frames. 

While recent methods like IDOL [4], GenVIS [11] and DVIS [14] 
significantly advance the field by refining VIS architectures or unify
ing training strategies, our work introduces a complementary approach 
with focus on the overlooked problem of prediction reliability. Our 
proposed MemCNP is a model-agnostic module that leverages prob
abilistic modelling to estimate prediction uncertainty. This allows it 
to enhance existing VIS frameworks, including convolution-based [2], 
DETR-based [24] and MaskFormer-based [25] ones—by reliable sam
pling and improved tracking. This focus on being a versatile, reliability-
enhancing plug-in is a key distinction from architecture-specific 
solutions. 

2.2. Probabilistic models 

Probabilistic modelling is a well-researched avenue to interpret 
model behaviour and improve model reliability such as Bayesian neural 
networks and variational inference [26–28]. Minimising predictive vari
ance of model outputs is an effective strategy to improve regression and 
segmentation performance [29], while, sharing a similar idea, non-local 
probabilistic loss functions can be used to build reliable object detec
tors [30,31]. However, they yield only an insignificant performance 
boost over conventional models when non-probabilistic metrics, such 
as mean average precision (mAP), are used for evaluation. 

Neural processes (NPs) offer an alternative approach to proba
bilistic modelling [32]. Instead of building probabilistic distributions 
directly from model outputs, example-based contexts are leveraged to 
generate outputs using functions over distributions, enabling the es
timation of uncertainty in prediction. Recent NP advancements focus 
on improving either computational efficiency through conditional neu
ral processes (CNPs) [17] or prediction accuracy through attention 
mechanisms [33]. However, an NP is exclusively designed for learn
ing from a dataset of small sample size and requires a forward pass 
of the entire context set, thus hindering its generalisation to larger 
datasets. 

Unlike Bayesian and variational methods, our MemCNP models 
function-level (bounding box-level) uncertainty by learning a distri
bution over functions conditioned on prototypical context, yielding 
semantically grounded, data-driven predictions. Additionally, the in
corporation of a learned memory bank provides dataset-scale contex-
tualisation, addressing the generalisation limitations of NPs. Beyond 
estimation, MemCNP actively uses uncertainty during training, using 
uncertainty-based sample selection and contrastive tracking, turning 
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it into a learning signal, a feature absent in standard Bayesian or 
variational approaches. 

2.3. Memory networks 

Recurrent neural networks (RNNs), such as long short-term memory 
(LSTM) [34] and gated recurrent unit (GRU) [35] models, have been 
primary means to implement memorisation in neural networks. With 
the help of hidden units, RNNs can memorise previous inputs to en-
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hance the representation at a new timestamp. To overcome the limited 
accessibility of RNNs, memory networks were proposed in [36] to utilise 
contexts from individual items. Recently, memory networks have also 
gained popularity in various computer vision tasks such as caption
ing [37], deraining [38], video object segmentation [39] and video 
instance segmentation [22]. These approaches apply iterative clustering 
to group inputs into representative prototypes to enhance feature rep
resentations even though they are arbitrarily distributed in the latent 
space. By interacting with the prototypes, memory networks demon
strate robustness in identifying unseen instances, leading to improved 
performance compared to approaches without explicit memories. 

Distinguishing it from other memory networks, our proposed 
MemCNP integrates both feature representation and the context of the 
ground truth (i.e., the bounding box in VIS) into each memory item. This 
explicit correlation between feature representation and regression target 
significantly improves the performance of VIS. 

3. Proposed approach 

Our proposed MemCNP model serves as the core module to en
hance VIS by incorporating probabilistic modelling and memory net
works. MemCNP not only improves bounding box regression by learning 
dataset-scale contexts but also generates uncertainty estimates, which 
play a crucial role in refining training sample selection and instance 
tracking. Specifically, we leverage these uncertainty estimates in uncer
tainty sample selection (USS) to dynamically identify high-confidence 
samples for robust multi-task learning. Additionally, we introduce con
trastive instance tracking, which benefits from the uncertainty-aware 
feature representations produced by MemCNP, allowing for improved 
instance association across frames. Fig. 1 provides an overview of our 
framework, which seamlessly integrates these components to enhance 
VIS reliability and performance. In the following, we describe each 
component in detail. 

3.1. VIS pipeline 

The inputs to online VIS framework include a pair of image frames, 
the key frame F𝑘𝑒𝑦 and the reference frame F𝑟𝑒𝑓 (both ∈ ℝ3×𝐻 ×𝑊 , where 
𝐻 and 𝑊 are the height and width of image frames). These frames are 
randomly selected from the same video clip, ensuring a sampling within 
a short time interval. After processing by a backbone, such as a convolu-
tional neural network (CNN) [2] or a vision transformer (ViT) [40,41], 
the features from individual stages are merged by a neck network into 
a feature pyramid. 

For fully convolutional methods, VIS is then performed on the dense 
feature representation 𝑍 ∈ ℝ𝐶 ×𝐻 ×𝑊 , where 𝐶 is the number of feature 
channels. The first step here is dense object detection, where indepen
dent left, top, right, and bottom distances (𝑙, 𝑡, 𝑟, 𝑏) are regressed from 
each pixel location, representing the four distances to the nearest object 
bounding box edges. Subsequently, confident candidates are chosen for 
segmentation, classification and tracking. In particular, segmentation is 
achieved by classifying the pixels within the detected bounding boxes 
into foreground and background. Object classification is then accom
plished by categorising the detected objects into 𝐾 pre-defined classes. 
Finally, the central vector representations of the detected objects in the 
key frame are extracted for comparison with target representations from 
the reference frame to achieve tracking. 

The loss function for VIS is typically formulated based on valid candi
dates and incorporates losses for bounding box regression, classification, 
segmentation, and tracking as 

L𝑣𝑖𝑠 = 𝜆𝑏𝑏𝑜𝑥 L𝑏𝑏𝑜𝑥 + 𝜆𝑐 𝑙𝑠 L𝑐 𝑙𝑠 + 𝜆𝑠𝑒𝑔 L𝑠𝑒𝑔 + 𝜆𝑡𝑟𝑎𝑐 𝑘 L𝑡𝑟𝑎𝑐 𝑘 , (1) 

where L𝑏𝑏𝑜𝑥 is an intersection-over-union (IoU)-oriented loss, L𝑐 𝑙𝑠 and 
L𝑠𝑒𝑔 are binary cross-entropy losses, L𝑡𝑟𝑎𝑐 𝑘 is typically an 𝑛-way cross-
entropy loss depending on the number of objects present in the reference 
frame, and the 𝜆 parameters are used to balance the loss terms. 

It should be noted that our proposed method is not limited to on-
line and CNN-based frameworks but is equally applicable to offline and 
transformer-based methods, as we will also demonstrate in Section 4. 

3.2. Memory-based conditional neural process 

A conditional neural process [32] is a neural network model that 
learns a distribution 𝑄𝜃 over functions 𝑓 (𝑥) to predict targets 𝑥′ 𝑠 condi
tioned on a fixed observation set 𝑂. In particular, the training set of a 
total of 𝑈 samples is divided into two subsets: the observed set denoted 

Fig. 1. The pipeline of our proposed method, highlighting the probabilistic MemCNP module that facilitates dynamic candidates selection for box, class and mask 
heads via estimated uncertainty maps. Individual memory item is composed of the feature vector and corresponding context from ground truths (bounding boxes). 
Shapes that possess the same colour denote the same instance across different frames and are considered positive pairs in the contrastive tracking, while the rest are 
treated negative. 
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as 𝑂, comprising 𝑁 pairs of observed samples and their corresponding 
labels (𝑥𝑛 , 𝑦𝑛 )

𝑁
𝑛=1, and the target set denoted as 𝑇 , which contains the 

remaining pairs (𝑥𝑖 , 𝑦𝑖 )𝑈𝑖=𝑁 +1. 
First, an encoder 𝐸𝜃 maps the sample pairs from the observed set 

to compact latent representations 𝑟𝑛 ∈ ℝ𝑑 , i.e., 𝑟𝑛 = 𝐸𝜃 (𝑥𝑛 , 𝑦𝑛 ). After 
aggregating all latent representations 𝑟 = 1 

𝑁
∑𝑁

𝑛=1 𝑟𝑛 , a decoder 𝐷𝜃 is 
applied to map a target input 𝑥𝑖 of the pair (𝑥𝑖 , 𝑦𝑖 ) drawn from 𝑇 , to the 
output conditioned on the aggregated context representation 𝑟, which 
can be expressed as 

𝑄𝜃 (𝑓 (𝑇 ) ∣ 𝑂, 𝑇 ) = 
∏ 

(𝑥,𝑦)∈𝑇 
𝑄𝜃 (𝑓 (𝑥) ∣ 𝑂, 𝑥) 

= 
∏ 

(𝑥,𝑦)∈𝑇 
𝑄𝜃 (𝐷 𝜃 

(

𝑥 ∣ 𝐸𝜃 (𝑂) 
)

) 

= 
𝑈
∏ 

𝑖=𝑁 +1 
𝑄𝜃 

(

𝐷𝜃 
(

𝑥 𝑖 ∣ 𝑟 
)) 

. 

(2) 

For regression, the network 𝜃 is trained to parameterise two statistics,
𝜇𝑖 and 𝜎𝑖 , to define a Gaussian distribution such that 𝑄 

(

𝑓 
(

𝑥𝑖 
) 
∣ 𝑂, 𝑥𝑖 

)

∼
N 

( 
𝜇𝑖 , 𝜎𝑖 

)

by minimising the negative conditional log-likelihood 
through 

L(𝜃) = −𝔼{𝑥 𝑖 ,𝑦𝑖 }𝑈 
𝑖=𝑁 +1 

[

𝔼𝑁 
[

log 𝑄 
(

𝑓 
(

𝑥 𝑖 
) 
∣ 𝑂 𝑁 , 𝑥 𝑖 

)]] 

= −𝔼{𝑥𝑖 ,𝑦𝑖 }𝑈 
𝑖=𝑁 +1 

[

𝔼𝑁 
[

log 𝑄 
(

𝑦 𝑖 ∣ 𝑂 𝑁 , 𝑥𝑖 
)]] 

. 
(3) 

CNP, whose processing pipeline is illustrated in Fig. 2, and its vari-

-

-

-

-

-

-

-

-

-

-

ants [17,32,33] have shown advantages over non-probabilistic methods 
in tasks such as classification, regression, and image completion, espe
cially when trained on small datasets. 

VIS is different from other applications with insufficient and imbal
anced datasets. On one hand, video sequences comprise a large amount 
of training data. On the other hand, the diversity and quality of the 
training samples render building a reliable DNN model a challenging 
task. To exploit CNPs in such a scenario, we propose a CNP model that 
is supported by a memory bank to efficiently exploit contexts extracted 
from a large observation set through memory units during each training 
iteration. Our memory module is designed to contain the most typical 
representations extracted from the encoder, which can be a CNN [2] or a 
Transformer model [40], functioning as references and conditioning in a 
probabilistic model. Thus, our MemCNP is used to retain features within 
the latent space while being independent of the underlying encoder 
architecture. 

The processing pipeline of our proposed MemCNP is illustrated in 
Fig. 3. We initialise a memory bank 𝑀 ∈ ℝ𝑘×(𝑑 +4), storing 𝑘 items with 
𝑑 + 4 dimensions, where the 4 extra dimensions encompass the left, 
top, right, and bottom distances (𝑙 , 𝑡, 𝑟, 𝑏) to the nearest ground truth 
bounding box (if available). 

While in CNP 𝑥 is directly concatenated with its corresponding re
gressed value 𝑦 before passing into the encoder, in the image domain, 
low-level pixel values 𝑥 do not correspond to meaningful semantic 
classes or bounding boxes and thus the targets 𝑦 ∈ ℝ4 . Therefore, to con
struct relevant input-target pairs, we first encode an image F ∈ ℝ ×3 𝐻 ×𝑊 

Fig. 2. Illustration of the CNP pipeline. The observed set is predefined, with 
both input features 𝑥𝑛 and corresponding outputs 𝑦𝑛 bounded to construct the 
dataset-scale context, serving as a condition for unseen samples 𝑥𝑖 . 

Fig. 3. Illustration of MemCNP pipeline. The batched samples aren’t directly 
associated with their respective outputs, such as bounding box coordinates. 
Instead, they undergo processing to derive a globally distinctive intermedi
ate representation 𝑧𝑖 . Subsequently, this representation is combined with the 
most relevant bounding box coordinates 𝑦𝑖 from memory, enhancing the com
prehensive representation of 𝑧𝑖 within the current batch. On the left of the 
dashed vertical line the operations are exclusive to the training phase, while 
the operations on the right are those shared between training and inference. 

into dense latent representations 𝑍 ∈ ℝ𝐻 ×𝑊 ×𝑑 and then compute (dot 
product) similarities between latent representations and memory items 
as 𝑆 = 𝑍 𝑀 𝑇 . The most relevant memory item 𝑚̂ 𝑗 for a single latent 
vector 𝑧𝑖 is identified by 

̂ 𝑗 = arg max
𝑗 

𝑆𝑖𝑗 . (4) 

After encoding, the latent vector becomes globally diversified, allow
ing it to distinguish objects of different semantic classes and geometric 
appearances. We therefore concatenate each latent 𝑧𝑖 ∈ ℝ𝑑 with the re
gression target, i.e. with the distances 𝑦𝑖 ∈ ℝ4 from its location in the 
feature map to the four edges of the nearest ground truth bounding box, 
to construct the paired query item 𝑧̃𝑖 ∈ ℝ𝑑 +4 . The most relevant memory 
item is then updated as 

𝑚 ̂𝑗 ← 𝜏 𝑚𝑗 + (1 − 𝜏 ) ̃𝑧 𝑖 , (5) 

where 𝜏 ∈ [0, 1] is the moving average updating rate. 
We adopt a moving average update rather than hard replacement 

or attention-based updates to ensure temporal stability and robust
ness. This smooths memory evolution over time, mitigating abrupt 
changes and reducing sensitivity to noisy inputs, while also offering 
computational efficiency, making it well-suited for dense VIS tasks. 

In CNP, the rich context 𝑟 from the entire observed set is aggregated 
by averaging individual latent representations. However, 𝑟 is shared for 
all target inputs 𝑥𝑖 , making downstream features less representative. To 
enhance the distinctiveness of the context, we instead use a weighted 
average on memory items through soft-attentive scores, calculated as 

𝑎𝑖𝑗 = 
exp 

(

𝑠𝑖𝑗 
) 

∑𝑘 
𝑗 =1 exp 

(

𝑠 𝑖𝑗 
)
, (6) 

where 𝑖 and 𝑗 index the target samples and memory items, respectively. 
The input independent context is then obtained as 

𝑟 𝑖 = 
𝑘
∑ 

𝑗 =1 
𝑎𝑖𝑗 𝑚 𝑗 . (7) 

Similar to the regression objective in CNP, in our MemCNP we for-
mulate a conditional Gaussian distribution 𝑄 

(

𝑓 
(

𝑧𝑖 
) 
∣ 𝑟𝑖 

) 
∼ N 

( 
𝜇𝑖 , 𝜎𝑖 

) 

by minimising the pixel-wise negative log-likelihood as 

L𝑛𝑙𝑙 = −𝔼𝑍 
[

𝟙 
( 
min 

(

𝑦 𝑖 
) 
> 0 

) 
log 𝑄 

(

𝑓 
(

𝑧𝑖 
) 
∣ 𝑟 𝑖 

)] 

= −𝔼𝑍 
[

𝟙 
( 
min 

(

𝑦 𝑖 
) 
> 0 

) 
log 𝑄 

( 
𝑦𝑖 ∣ 𝑟 𝑖 

)] 
, 

(8) 

where 𝟙 is an indicator function used to filter out any input loca
tions within a valid ground truth bounding box, and 𝑦𝑖 represents the 
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ground truth 𝑦𝑖 in normalised coordinate format. The benefits of explic-
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itly modelling the regression target as a Gaussian variable are two-fold. 
First, the probabilistic loss function works as an auxiliary to the standard 
geometric 𝐿1 loss or IoU loss, making the prediction more interpretable 
from a probability perspective. Second, apart from outputting the mean 
value 𝜇𝑖 for each target, the network also derives the predictive uncer
tainty in the form of the variance 𝜎𝑖 . This allows for self-evaluation of 
the network’s predictions, and thus an assessment of its reliability. 

To make our model more robust against local perturbations in 
individual predictions, we replace the unitary Gaussian distribution
𝑄 
(

𝑓 
(

𝑧𝑖 
) 
∣ 𝑟𝑖 

)

in Eq. (8) with a Gaussian mixture model 𝑄(𝑏𝑗 ). Assuming 
that for ground truth 𝑏𝑗 there are 𝐼 associated candidate pixels, we 
obtain this as 

𝑄(𝑏 𝑗 ) ∼ 
𝐼
∑ 

𝑖=1 
𝜙 𝑖 N (𝜇𝑖 , 𝜎𝑖 ), (9) 

where 𝜙𝑖 is the mixing weight defined as the centredness of location 
regarding box 𝑏𝑗 . The overall loss for all ground truths is then calculated 
as 

L𝑛𝑙𝑙 = − 1
𝐽 

𝐽
∑ 

𝑗 =1 
log(𝑄(𝑏 = 𝑏 𝑗 )), (10) 

where 𝐽 is the number of ground truths. 
Since the variances of the bounding box predictions are less meaning

ful without any constraints, we enforce a regularisation by incorporating 
classification probabilities and the intersection over union (IoU) be
tween the regressed box and the ground truth box. For a ground truth 
box 𝑏𝑗 and a corresponding paired candidate box ̃ 𝑏𝑖 𝑗 , we estimate an 
approximate uncertainty as 

𝑢𝑖 𝑗 = 
( 
1 − 𝑃 𝑖 

𝑗 

) 
+ 
( 
1 − IoU 

( 
𝑏̃𝑖 𝑗 , 𝑏 𝑗 

)) 
, (11) 

where 𝑃 𝑖 
𝑗 represents the softmax target class probability of the ground 

truth box. With this uncertainty taking both classification and regression 
errors into consideration, we can construct a regularisation term on the 
free-form predictive uncertainty as 

R𝜎 = 1 
𝐽 𝐼 

𝐽
∑

𝑗 =1 

𝐼
∑ 

𝑖=1 
‖𝜎 𝑖 𝑗 − 𝑢 𝑖 𝑗 ‖𝑝 , (12) 

where ‖ ⋅ ‖𝑝 denotes the 𝑝-norm. This term can both prevent the 
unrestricted expansion of free-form uncertainty, providing reasonable 
bandwidth for maximising the log-probability in L𝑛𝑙𝑙 , and enhance the 
distinctiveness among candidate boxes by constraining 𝜎𝑖 𝑗 with indi
vidual uncertainties rather than solely relying on the population-level 
constraint L𝑛𝑙𝑙 . 

These steps collectively ensure that the predicted uncertainties are 
both meaningful and bounded. Our approach begins by framing bound
ing box regression probabilistically through a negative log-likelihood 
loss (Eq. 8), encouraging the model to learn both a mean and variance for 
its predictions. To enhance robustness, we then model the multiple can
didates associated with a single ground truth box as a Gaussian Mixture 
Model (GMM) (Eq. 9), which captures local variability and reduces re
liance on any single candidate. The final loss (Eq. 10) aggregates these 
more reliable GMM-based predictions. Finally, to ground the learned 
variances in task-specific performance, we introduce an auxiliary super
vision signal (Eqs. 11 and 12) that uses classification confidence and 
IoU as a proxy for uncertainty. This constraint regularises the predicted 
variance, preventing it from growing arbitrarily while aligning it with 
tangible reliability cues. 

Fig. 4. Different sample selection methods in comparison to our proposed USS 
strategy. Solid yellow dots indicate positive candidates that satisfy the selection 
criterion, dashed candidate boxes and striped dots represent candidates that do 
not satisfy it, blue dots represent our trusted negative candidates in USS. 

Finally, we obtain the loss function of our MemCNP module as 

L𝑐 𝑛𝑝 = L𝑛𝑙𝑙 + R𝜎 , (13) 

and the L𝑏𝑏𝑜𝑥 in Eq. (1) becomes 

L𝑏𝑏𝑜𝑥 = L𝐺𝐼 𝑜𝑈 + 𝛼 L𝑐 𝑛𝑝 , (14) 

where 𝛼 is used to balance the probabilistic and non-probabilistic 
regressions. 

3.3. Uncertainty sample selection 

As discussed in Section 2.1, the detected RoIs are subsequently used 
for segmentation, tracking and classification [1,2]. To identify reliable 
samples for the multi-task learning of VIS, we introduce a novel sam
ple selection strategy named uncertainty sample selection (USS). This 
is built on top of the predictive uncertainties and their corresponding 
centredness values to prioritise samples that are likely to yield accurate 
results. Given a ground truth box 𝑏𝑗 , a valid candidate set 𝐼 contains 
all pixels located within the box. For every pixel in 𝐼 , we calculate 
the confidence score 𝜏 by combining the predictive uncertainty and the 
centredness score as 

𝜏 𝑖 𝑗 = −𝜆𝜏 𝜎 𝑖 𝑗 + (1 − 𝜆𝜏 )𝑐 𝑖 𝑗 , (15) 

where 𝑐𝑖 𝑗 is the centredness of location 𝑖 regarding ground truth box 
𝑏𝑗 , and 𝜆𝜏 allows for balancing the two terms when the predictive 
uncertainty is unstable at the beginning of training. 

In order to perform multi-scale regression, for every feature stage, 
we select the 𝑘 samples with largest 𝜏 as positive samples, while sam
ples with 𝜏 < 0 are selected as negative samples, as illustrated in Fig. 4. 
It should be noted that this is different from existing methods [3,16,42], 
where a pixel inside the box is marked either as positive or negative 
(see rows 1–3 in Fig. 4). In contrast, our method is capable of identify
ing both confident positive and negative candidates. In addition, USS 
operates dynamically and uniformly on feature stages with different 
scales, removing the manual design of anchor boxes [43,44], heuris
tic constraints [16], and off-centre object placements [42] (such as the 
bottom-most sample in feature stage 3 for ObjectBox in Fig. 4) associated 
with other candidate selection methods. 
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Fig. 5. Illustration of model-agnostic feature of the MemCNP module. 

3.4. Contrastive instance tracking 

Online VIS methods use key/reference frame pairs for object track-

-

-

-

-

-

-

-

-

-

-

-

-

ing in video sequences, matching the feature vector of the target instance 
in the key frame to one of the feature vectors related to objects in the 
reference frame or an unmatched dummy instance if the target is ab
sent [5,16,18]. However, this strategy only compares the target feature 
vector to those objects that appear in the reference frame, ignoring the 
fact that the target instance can be confused with other instances in 
either the key frame or the reference frame. 

Inspired by the recent success of contrastive learning in classifi
cation, detection, and segmentation tasks [45,46], we propose a con
trastive instance tracking approach that leverages information from 
diverse instances both within and across frames, distinguishing it from 
IDOL [4]. Furthermore, unlike IDOL, which selects positive and neg
ative samples based on bipartite matching costs, our method relies 
on uncertainty-guided sample selection, enabling more informed and 
adaptive contrastive learning. 

Let 𝑧𝑖 and ̃ 𝑧𝑖 be the tracking feature vectors extracted from the centre 
of a candidate box in the key frame and the corresponding ground truth 
box in the reference frame, respectively, and 𝑧𝑗 ≠𝑖 be a tracking vector 
from the remaining candidate boxes related to different ground truths 
selected by USS in a training batch. Our tracking process brings positive 
pairs (𝑧𝑖 and 𝑧̃𝑖 ) closer while simultaneously pushing negative pairs (𝑧𝑖 
and 𝑧𝑗 ) farther apart as 

L𝑡𝑟𝑎𝑐 𝑘 = −log 

( 
∑ 

𝑍 + exp(𝑧 𝑖 ⋅ 𝑧𝑖 ∕𝛾 )
∑ 

𝑍 + exp(𝑧 𝑖 ⋅ 𝑧𝑖 ∕𝛾 ) + 
∑ 

𝑍 − exp(𝑧 𝑖 ⋅ 𝑧 𝑗 ∕𝛾 ) 

) 

, (16) 

where 𝑍 + and 𝑍 − are the positive and negative sample pairs in a batch, 
⋅ represents the dot product, and 𝛾 is a temperature parameter (set to 
0.1 following [45–47]). 

4. Experimental results 

4.1. Experimental setup 

We conduct our experiments on the YouTube-VIS 2021 [18] and 
OVIS datasets [5]. YouTube-VIS comprises 3859 video clips, 8171 
unique video instances and 232 k instance annotations spanning across 
40 categories, while OVIS is a more challenging dataset with severe 
occlusions and contains 901 videos, 5223 unique instances and 296 k 
instance masks over 25 categories. Notably, sequences in OVIS con
tain more object instances and longer video clips, thus demanding more 
computational resources. 

We mainly build upon the well-established fully convolutional 
instance segmentation method from Ref. [3] as the foundation of 
our algorithm, which allows us to compare different backbones and 
neck network architectures effectively. To further demonstrate the 
model-agnostic nature of our approach and evaluate its applicability 
across diverse VIS paradigms, we also integrate MemCNP into typical 
DETR-based offline and online frameworks, including SeqFormer [6], 
IDOL [4], and the MaskFormer DVIS-DAQ [14]. Fig. 5 illustrates the 
integration of MemCNP into the various frameworks, while block-wise 
model parameters and inference speed are listed in Table 1. As we can 
also see, for the classical convolution-based SipMask, our approach re
sults in a ∼7 % slowdown, whereas the impact is lower for the more 
advanced DETR-based methods IDOL and SeqFormer (∼2 %) and the 
MaskFormer method DVIS-DAQ (∼5 %). 

Following [2,3,16], training is performed for 12 epochs by default, 
with the input image size varying from 360×640 to 480×960 and the loss 
hyper-parameters 𝜆𝑏𝑏𝑜𝑥 , 𝜆𝑐 𝑙𝑠 , 𝜆𝑠𝑒𝑔 𝑎𝑛𝑑 𝜆𝑡𝑟𝑎𝑐 𝑘 set to 1. We adopt 𝜏 = 0.999 
and 𝛾 = 0.1 based on the best practices outlined in [38] and [46], re
spectively. To avoid overflow of the log-probability losses, 𝛼 is set to 

1 
# supporting samples , while configuring the balancer 𝜆𝜏 to 0.5 for equal at-
tention between uncertainty and centredness when performing sample 
selection. For our USS strategy, we select the top 𝑘 = 5 as positive sam
ples for probabilistic modelling and contrastive tracking). This value 
empirically provides the best balance between sample quality and di
versity; a smaller 𝑘 = 3 (−1.1 AP) risks insufficient supervision, while 
a larger 𝑘 = 7 (−0.7 AP) may introduce noisy false positives that 
destabilize training. 

Due to computational demands, SipMask, IDOL, and DVIS-DAQ are 
trained with batch sizes of 8, 4, and 2 per GPU, respectively. Training is 
conducted on 8 NVIDIA V100 GPUs, while inference and speed measure
ments are performed on a single RTX 4090 GPU. Results are obtained 
from the same dataset on which the model is trained, except for those 
marked (with † in the tables) which follow the commonly used COCO 
co-training strategy as in [6,9,11,14,22]. We report the standard metrics 
AP50∶95 (abbreviated as AP hereafter), AP50 and AP75 (the subscripts de
note the corresponding mask IoU thresholds), and include the AR1 and 
AR10 results, giving the average recall in videos with at most 1 and 10 
object instances. These metrics differ from standard AP and AR in object 
detection by using various mask IoU thresholds instead of box IoUs, and 
provide complementary performance assessments since they simultane
ously evaluate segmentation with regard to both spatial and temporal 

Table 1 
Model parameters (in millions) and inference speed (in frames per second, FPS) measured on a single NVIDIA 
RTX 4090 GPU. 

SipMask SeqFormer IDOL DVIS-DAQ 

ResNet-50 ViT-b ResNet-50 ResNet-50 Swin-L ResNet-50 ViT-L 

Backbone 23.5 85.8 23.2 23.2 195.2 23.5 327.5 
Neck 3.9 3.0 16.4 11.4 9.7 20.7 20.8 
DenseHead 6.6 6.6 9.5 9.4 9.4 18.9 19.0 

total 34.0 95.4 49.1 44.0 214.4 63.1 367.3 

FPS w/ MemCNP 26.8 20.8 47.3 29.1 18.0 35.7 17.6 
FPS w/o MemCNP 28.8 22.4 47.6 29.8 18.3 37.4 17.7 
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Table 2 
VIS results on YouTube-VIS 2021 validation set. Best results are bolded. † Indicates 
model is trained with COCO co-training strategy. 

Method Backbone Neck AP AP 50 AP 75 AR 1 AR 10 

SipMask Res-50 FPN 27.5 47.8 27.9 26.4 31.9 
MaskTrack Res-50 FPN 28.6 47.6 29.5 26.6 33.4 
STEM-Seg Res-50 FPN 30.6 50.7 33.5 31.6 37.1 
CrossVIS Res-50 FPN 34.2 54.4 37.9 30.4 38.2 
SeqFormer Res-50 DETR 37.7 58.3 41.6 34.8 46.2 
EfficientVIS Res-50 FTSA 37.9 59.7 43.0 40.3 46.6 
IDOL Res-50 DETR 43.9 68.0 49.6 38.0 50.9 
GenVIS† Res-50 UVLA 47.1 67.5 51.5 41.6 54.7 
DVIS-DAQ† Res-50 MaskFormer 48.8 70.0 53.1 39.7 55.8 
Ours† Res-50 MaskFormer 49.7 70.9 54.7 41.2 57.7 

TeViT ViT-b MHSA 37.9 61.2 42.1 35.1 44.6 
SipMask ViT-b FPN 38.1 57.8 41.4 33.6 42.6 
IDOL Swin-L DETR 56.1 80.8 63.5 45.0 60.1 
GenVIS† Swin-L UVLA 59.6 80.9 65.8 48.7 65.0 
DVIS-DAQ† ViT-L MaskFormer 60.4 81.2 68.1 46.9 66.1 
Ours† ViT-L MaskFormer 61.6 83.0 69.6 48.4 67.3 

Table 3 
VIS results on OVIS validation set. Best results are bolded. † indicates model is 
trained with COCO co-training strategy. 

Method Backbone AP AP 50 AP 75 AR 1 AR 10 

SipMask Res-50 10.2 24.7 7.8 7.9 15.8 
MaskTrack Res-50 10.8 25.3 8.5 7.9 14.9 
STEM-Seg Res-50 13.8 32.1 11.9 9.1 20.0 
CrossVIS Res-50 14.9 32.7 12.1 10.3 19.8 
CMaskTrack Res-50 15.4 33.9 13.1 9.3 20.0 
IDOL Res-50 29.5 50.1 29.4 14.9 37.1 
GenVIS† Res-50 35.8 60.8 36.2 16.3 39.6 
DVIS-DAQ† Res-50 37.4 63.2 37.8 16.7 44.5 
Ours† Res-50 37.7 64.3 37.7 16.9 44.3 

dimensions. This involves summing the intersections across every frame 
and dividing by the union across all frames as 

IoU(𝑖, 𝑗 ) = 
Σ𝑇 
𝑡=1 

|

|

|

M𝑖 
𝑡 ∩ M̃𝑗 

𝑡 
|

|

| 
Σ𝑇 
𝑡=1 

|

|

|

M𝑖 
𝑡 ∪ M̃𝑗 

𝑡 
|

|

| 
, (17) 

where M𝑖 
𝑡 is the predicted mask of instance 𝑖 at time 𝑡, and ̃ M𝑗 

𝑡 denotes 
the corresponding ground truth mask at time 𝑡. Unless otherwise noted, 
all reported results are averages over 3 random runs. 

4.2. Results and comparison with SOTA 

We compare the performance of our proposed method with several 
state-of-the-art (SOTA) VIS methods and report the obtained results ob-

50 

50 

-

-

-

-

-

-

-

-

tained on the YouTube-VIS 2021 validation set in Table 2. As we can 
see from there, when employing a standard ResNet-50 backbone, our 
method (based on the DVIS-DAQ framework [14]) achieves an AP of 
49.7 and an AR10 of 57.7, considerably exceeding the performance of 
the other methods. Switching from ResNet to a ViT backbone leads to 
a large performance gain, while our method still gives the best results, 
outperforming the underlying DVIS-DAQ model by 1.2 in terms of AP 
and AR10. 

The OVIS dataset [5] is a more challenging dataset, with longer video 
sequences and occluded scenarios. In Table 3, we report the results on 
OVIS for the various methods (all, due to computational limitations, with 
ResNet-50 backbones). As we can see, we obtain the highest AP, AP
and AR 1 results. 

As mentioned, one of the features of our MemCNP module is that 
it is model-agnostic and can thus be integrated into different VIS 
models. We consequently conduct experiments with different VIS frame
works enhanced by MemCNP and compare the obtained performance 

on YouTube-VIS to that of the underlying framework in Table 4. As can 
be seen from there, for the convolution-based framework SipMask, our 
method leads to AP improvements of 1.8 and 2.0 for ResNet-50 and 
ViT-b backbones, respectively. Similarly, MemCNP improves SeqFormer 
by 1.3 AP, and boosts IDOL by 3.2 (ResNet-50) and 2.8 (Swin-L), 
demonstrating its effectiveness with DETR-based models as well. Last 
but not least, MemCNP consistently enhances the performance of the 
MaskFormer DVIS-DAQ across all evaluation metrics. 

Table 5 demonstrates the consistent improvements our proposed 
MemCNP achieves for the different VIS frameworks on the OVIS dataset. 
For SipMask, MemCNP yields significant improvements, boosting AP by 
2.5 and AP75 by 3.2. The improvements are more modest when ap
plied to a stronger baseline like IDOL (+0.8 AP) or DVIS-DAQ (+0.3 
AP) compared to the gains seen on YouTube-VIS (+2.8 and +1.2 AP). 
We attribute this to two factors. First, the primary challenge of OVIS 
is severe and prolonged occlusion, a problem that state-of-the-art mod
els like DVIS-DAQ are already highly optimized to address. Second, our 
method’s strength lies in leveraging uncertainty to identify reliable train
ing samples. In a dataset dominated by heavily occluded—and thus 
inherently uncertain—instances, the pool of high-confidence samples 
that our method can exploit is naturally limited. 

4.3. Ablation studies 

We conduct a number of ablation studies on the YouTube-VIS dataset 
to demonstrate the importance of each component of our approach and 
to optimise its settings. 

4.3.1. Impact of individual components 
We dissect the contribution of each key component of our method 

in Table 6. Our study follows a cumulative structure, starting with 
the SipMask baseline. First, we introduce our core probabilistic loss 
𝐿𝑛𝑙𝑙 , which is fundamental to the MemCNP module and enables our 
Uncertainty Sample Selection (USS) strategy; yields an improvement of 
over 1.0 AP. Next, we incorporate the uncertainty regularisation term, 
𝑅𝜎 , which further stabilizes training and boosts the AP by another 0.6 
points. Finally, adding our Contrastive Instance Tracking (CIT) mod
ule yields an additional 0.4 AP gain, demonstrating the benefit of more 
discriminative instance features. 

4.3.2. Memory influence 
We evaluate the performance of our method for different numbers 

of memory items. Intuitively, reducing the number of items results in 
a lack of prototypes, thereby downgrading the performance, while an 
excessively large number of items would lead to inefficient memory 
utilisation. The results presented in Table 7 confirm this, and show the 
median number of 128 memory items to give the best average precision 
of 40.1. To further assess the efficacy of our memory module, we ap
ply a conventional CNP model [17] that aggregates context from fixed 
reference entries. As shown in Table 7, we find that the model with 
a learned memory module yields better performance for all memory 
settings, supporting the necessity of the memory module. 

4.3.3. Training rules 
Looking at the performance using different training rules in 

MemCNP, reported in Table 8, the energy score introduced in [30] leads 
to an AP of 38.2. This is superseded by the vanilla NLL approach, which 
gives an AP of 39.7. The proposed Gaussian mixture model version of 
NLL leads to a further improvement, yielding the highest AP of 40.1 
and AR10 of 45.1. We conjecture that this discrepancy is due to the en
ergy score enlarging the divergence between data points sampled from 
the generated distribution, which does not align with the objective of 
minimising detection variance, so that the two NLL-based losses signifi
cantly outperform it, while the GMM NLL performs slightly better than 
the vanilla NLL due to the local ensemble approach. 
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Table 4 
VIS results on YouTube-VIS 2021 validation set, comparing the performance 
of different VIS frameworks with and without our proposed MemCNP. 

Table 5 
VIS results on OVIS validation set, comparing the performance of different VIS 
frameworks with and without our proposed MemCNP. 

Table 6 
Ablation results, on YouTube-VIS 2021, for different components of our ap-
proach. 

L𝑛𝑙𝑙 𝑅𝜎 CIT AP AP 50 AP 75 AR 1 AR 10 

– – – 38.1 57.8 41.4 33.6 42.6 
✓ – – 39.1 57.4 42.4 34.9 44.5 
✓ ✓ – 39.7 62.1 43.3 34.4 44.4 
✓ ✓ ✓ 40.1 59.7 44.5 35.9 45.1 

Table 7 
YouTube-VIS 2021 results for different numbers of memory items in MemCNP. 

Memory items Type AP AP 50 AP 75 AR 1 AR 10 

64 CNP 36.7 57.2 40.8 33.3 41.8 
128 CNP 38.7 58.6 41.5 34.6 42.7 
256 CNP 34.6 55.1 37.2 31.6 38.6 

64 MemCNP 38.9 57.7 43.1 34.9 44.3 
128 MemCNP 40.1 59.7 44.5 35.8 45.1 
256 MemCNP 38.7 58.7 41.5 34.7 42.8 

Table 8 
YouTube-VIS 2021 results for different training rules in MemCNP. 

Training rule AP AP 50 AP 75 AR 1 AR 10 

- 38.1 57.8 41.4 33.6 42.6 
energy score [30] 38.2 56.8 42.0 34.0 42.7 
vanilla NLL 39.7 61.4 42.6 35.2 44.7 
GMM NLL 40.1 59.7 44.5 35.9 45.1 

4.3.4. Sample selection strategy 
We evaluate different sample selection strategies, and report the re-

-

-

-

-sults in Table 9. The strategies in YOLO [43] and FCOS [16] tend to 
favour larger objects over smaller ones due to the higher likelihood of 

Table 9 
YouTube-VIS 2021 results for different sample selection strategies. 

Strategy AP AP 50 AP 75 AR 1 AR 10 

YOLO 38.4 59.5 41.9 34.6 43.5 
FCOS 38.9 59.8 42.0 33.9 44.2 
ObjectBox 39.5 60.3 43.6 35.0 44.5 
USS 40.1 59.7 44.5 35.9 45.1 

obtaining more training candidates based on their criteria (see Fig. 4). 
This results in relatively lower APs of 38.4 and 38.9, respectively, since 
the YouTube-VIS dataset comprises objects of various spatial sizes. As 
we can see, our proposed USS strategy outperforms not only YOLO’s 
and FCOS’s approaches but also that used in ObjectBox [42], by 0.6 in 
AP and 0.9 in AR1, respectively. The reasons for this are two-fold. First, 
we incorporate a stricter criterion for selecting not only positive can
didates but also trustworthy negatives. Second, prioritising centredness 
scores can result in the selection of false positives, where objects that 
are not located at the centre are mistakenly chosen, as happens in fea
ture stage 3 of the ObjectBox example in Fig. 4. In contrast, our USS can 
dynamically handle this by considering uncertainties. 

4.4. Qualitative results 

4.4.1. Uncertainty visualisation 
In Fig. 6, we present two examples to illustrate the predictive capa

bility of the uncertainty maps and to demonstrate why our method relies 
on them to select reliable training samples. One of the frames contains 
two objects that have minimal overlap, while the other example exhibits 
significant overlap. 

As we can see from Fig. 6, for the case of slight overlapping, lower 
uncertainties (or higher certainties) tend to accumulate closer to the 
central locations of each object across all stages. In contrast, when ob
jects overlap significantly, lower certainties are more likely to appear 
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Fig. 6. Two sample frames from YouTube-VIS 2021 with their associated uncertainty maps. The maps from the different features stages are scaled to the same size 
for clarity; warmer colours indicate higher uncertainty, cooler colours higher certainty.. 

Fig. 7. Sample visualisations of the top five most relevant memories for a given query position from YouTube-VIS 2021. From left to right: query, top-1, top-2, top-3, 
top-4, and top-5. 

Fig. 8. Sample visualisations of detection results on YouTube-VIS 2021 validation set. The size of the ellipses corresponds to the uncertainty magnitudes. Zoom in 
for best view. 

in regions where the objects genuinely exist rather than in overlapping 
areas. Consequently, by leveraging the information provided by the un-

-

-

-

certainty maps, our method is capable of dynamically identifying the 
most trustworthy sample locations for subsequent training objectives, 
even in complex scenarios. 

4.4.2. Memory visualisation 
We investigate what resides in the memory bank by passing the im

age into the encoder, obtaining the latent representation 𝑍 . Then a 
latent vector is randomly sampled to retrieve the top 5 most relevant 
memory items through Eq. (5). Subsequently, we translate the tail 
dimensions of the retrieved memories into four distances, plotted as 

bounding boxes. These boxes illustrate the probable distribution of the 
object relative to the query location, as depicted in Fig. 7. We can ob
serve that even without involving the final regression head, the retrieved 
memory demonstrates to some extent the ability to localise the object 
corresponding to the query representation. 

4.4.3. Probabilistic detection results 
We visualise some of our detection results in Fig. 8, together with 

the corresponding uncertainties for each object (in form of the size 
of the ellipses). In the top two examples, where the objects are well-
represented with minimal occlusion and blurring, our method success
fully assigns small uncertainties to accurately recognised objects, except 
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for partially occluded ones. In rows 3 and 4, objects with high oc-

-

-

-

clusion are effectively detected, with larger ellipses representing their 
corresponding uncertainties, while in the bottom two examples, which 
contain more object instances, our method assigns higher uncertainties 
to those with irregular appearances (row 5) and those that are farther 
away (row 6). 

4.4.4. Video instance segmentation results 
We demonstrate some final video instance segmentation results in 

Fig. 9, where different colours represent different instances. Examining 
the top four examples, where instances have minimal overlaps, we can 
observe that the target objects are accurately detected, segmented, and 
tracked across video frames. In more challenging scenarios, where mul
tiple object instances frequently change appearance and position, our 
method still achieves satisfactory results. Notably, in rows 5 and 6, 

objects are clearly segmented without confusion. Moreover, as can be 
seen from the bottom two examples, our method continues to function 
effectively even in presence of high uncertainties in the detected objects. 

4.4.5. Failure cases and limitations 
In Fig. 10, we illustrate two failure cases to analyse the limitations 

of our method. In the example on the left, the baseline method fails 
to detect the bottom right giraffe while our MemCNP approach con
sistently detects and segments it. However, neither method precisely 
identifies the giraffe due to its similar appearance to other instances 
in this highly overlapping scenario. The example on the right presents 
a similar issue where two monkeys overlap when interchanging their 
positions. Highly similar or overlapping objects can lead to less discrim
inative embeddings, making instance differentiation challenging. Also, 

Fig. 9. Examples of video instance segmentation results on YouTube-VIS 2021 validation set. Zoom in for best view. 

Fig. 10. Exemplar failure cases from YouTube-VIS 2021. From top to bottom, the images are generated from ground truth, baseline, and MemCNP, respectively. 
Zoom in for best view. 
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when similar objects swap positions or reappear after occlusion, track-

-

-

), 

ing inconsistencies arise. While MemCNP improves reliability, it does 
not explicitly model long-term object associations, leading to potential 
error accumulation. Stronger contrastive learning or transformer-based 
attention across longer time horizons [21] could potentially help in these 
cases. 

5. Conclusions 

In this paper, we have proposed a novel approach to video instance 
segmentation that integrates memory networks into conditional neural 
processes for better VIS performance. By leveraging the benefits of prob
abilistic modelling, we obtain uncertainties associated with network 
predictions to improve the reliability of VIS models. Furthermore, this 
enables us to dynamically select more reliable samples for multi-task 
training in the VIS task, while we also incorporate a contrastive learn
ing strategy to enhance instance tracking by learning more distinctive 
features of individual instances. Extensive experiments on the YouTube-
VIS and OVIS datasets convincingly demonstrate the effectiveness of our 
proposed method, showing not only significant improvements on the 
underlying baseline models, but also gaining valuable insights into the 
reliability of model predictions. Notably, our MemCNP is designed to be 
model-agnostic and can thus be applied in various VIS frameworks. 

In future work, apart from enhancing failure prediction, we plan to 
further investigate the impact of varying video resolutions and frame 
rates to assess the robustness of our method and to evaluate the generali-
sation and reliability of our approach on other datasets such as the Video 
Panoptic Segmentation (VPS) dataset [48] as well as data from other 
domains. Moreover, we plan to extend MemCNP with spatio-temporal 
transformers [21] or adopt temporal-level memories for longer video 
clips to leverage more temporal information while maintaining model 
efficiency. 
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