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Balance Disclosure in Payment Channel Networks using
Noiseless Privacy
PADRAIG CORCORAN, School of Computer Science and Informatics, Cardiff University, UK

IRENA SPASIĆ, School of Computer Science and Informatics, Cardiff University, UK

Payment Channel Networks (PCNs) represent an emerging approach to improving the scalability of cryptocur-

rencies. A PCN provides the ability to consolidate a larger set of payments into a smaller set where individual

payments are immediately confirmed. It consists of a network of payment channels between pairs of peers,

where each channel has a total capacity that is split into two directional balances, determining the maximum

payment amount that can be forwarded in either direction. If two peers do not have a direct channel between

them, they can still make a corresponding payment using a path in the network where all channels in this path

have a sufficient balance to forward the payment in question. Whenever a channel is used to make a payment,

its balances are updated accordingly. To provide payment privacy, it is standard practice for channels not

to disclose their current balances. However, this complicates the task of path planning, as a trial-and-error

approach is often required in the search for a feasible path. In this article, we propose a novel method for

disclosing channel balance information in a manner that both provides payment privacy and supports the

task of path planning. This is achieved by applying methods from the field of Noiseless Privacy (NP) that

allow balance summary statistics to be disclosed while obscuring the details of individual payments. Using

a simulation of payments on the Lightning Network, which is built on top of the Bitcoin cryptocurrency,

we demonstrate the trade-off between the level of privacy provided and the resulting effectiveness of path

planning.

CCS Concepts: • Mathematics of computing → Graph algorithms; • Networks → Network design and
planning algorithms; • Computing methodologies→ Distributed algorithms.
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1 INTRODUCTION
A cryptocurrency is a digital currency with popular examples including Bitcoin and Ethereum.

Cryptocurrencies use blockchain technology to maintain a ledger of all past payment transactions.

Due to the challenges of securely achieving decentralisation, cryptocurrencies typically exhibit

scalability issues relating to low payment throughput (number of payments per second) and payment

latency (time until a payment can be considered settled). For example, Bitcoin currently only

processes approximately seven payments per second and has a payment latency of approximately

ten minutes. The challenge of simultaneously achieving all three properties of decentralisation,

security and scalability is commonly referred to as the blockchain trilemma.
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Several potential solutions to improve the scalability of cryptocurrencies have been proposed

[10]. In this work we focus on payment channel networks (PCNs), which are one of the most well-

developed and promising solutions. An example of a PCN is the Lightning Network (LN) that is

designed specifically for the Bitcoin cryptocurrency [19]. A PCN provides the ability to consolidate

a larger set of payments into a smaller set, where individual payments are immediately confirmed.

To demonstrate the operation of a PCN, consider the case where Alice and Bob wish to perform a

series of payments between each other over a period of time. Instead of recording each individual

payment in the blockchain ledger, Alice and Bob can create a shared payment channel that tracks

their respective local balances. When Alice and Bob have completed their transacting, they can then

settle the final local balances by recording them as a single payment in the blockchain ledger. By

recording only a single payment in the blockchain, payment throughput is significantly increased.

Furthermore, since each individual payment is only processed locally, the payment latency is also

significantly reduced. If a network of payment channels exists, peers not sharing a channel can

make payments between themselves using a sequence of channels that form a payment path in

the network. For example, consider the case where Alice wants to make a payment to Charlie,

but the parties in question do not share a channel. If Alice shares a channel with Bob, and Bob

shares a channel with Charlie, then Alice can forward the payment to Bob, and Bob can, in turn,

forward the payment to Charlie. To incentivise intermediate peers in payment paths to participate

in forwarding payments, they are paid a fee that is proportional to the payment amount.

In order for a payment to be forwarded using a payment path, each channel in the path must

have liquidity or balance in the payment direction that is greater than or equal to the payment

amount. Furthermore, when a channel forwards a payment, the corresponding channel balances

will update accordingly. In PCNs, channel balances are not disclosed or shared with other peers in

the network for the following two reasons. First, the balance of a given channel will change each

time that channel is used to make a payment. Therefore, communicating each change in a channel

balance would generate a significant communication overhead. Second, by monitoring the precise

timing and magnitude of balance changes across multiple channels, an adversary can correlate

these events to reconstruct payment paths and infer payment details, including the sender, the

recipient and the payment amount [12]. This neglects a principal goal of a PCN which is to provide

payment privacy [11].

However, the policy of not disclosing channel balances presents several challenges. Firstly, the

task of finding a feasible payment path for making a given payment becomes a trial-and-error

process where a series of payment paths are computed and attempted until a feasible one with

sufficient channel balances is found or the search is terminated [18]. Apart from adding additional

computational complexity and payment latency, this process also makes those peers involved in

any failed attempts aware of the existence of the payment in question [28]. Secondly, due to a lack

of historical channel balance information, optimising the network topology and the distribution of

liquidity to support payments is challenging. For example, Sivaraman et al. [24] demonstrated that,

due to a poor distribution of liquidity, in many cases a given PCN may not contain any feasible

payment paths for many payments. Furthermore, Kotzer and Rottenstreich [13] demonstrated the

potential existence of Braess’s paradox in a PCN whereby naively adding additional channels can

reduce the efficiency of the network.

In this paper, we propose a novel method for disclosing channel balance information in the LN

that provides payment privacy and supports path planning without the introduction of significant

communication overhead. This is achieved through the use of methods from the field of Noiseless

Privacy (NP) [3, 6]. In contrast to methods in the field of Differential Privacy (DP) [8] that achieve

privacy by adding noise to the information disclosed, these methods achieve privacy by only

disclosing summary statistics that have inherent uncertainty. In the context of the current problem,
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only the sum of several payment amounts is disclosed instead of individual payment amounts.

Since there exist a vast number of distinct sets of payment amounts that sum to the same value,

this introduces uncertainty regarding the individual payment amounts. Furthermore, since only

the sum of several payment amounts is disclosed, communication overhead is minimised.

The remainder of this paper is structured as follows. In Section 2 we review related works on

privacy and disclosing channel balance information. In Section 3 we describe the proposed method

for disclosing LN channel balance information. This section also considers the potential of using

DP methods to solve the problem in question and uses this as a motivation for considering NP

methods. In Section 4 we present both a theoretical and experimental analysis of the proposed

method where the latter analysis uses a simulation of synthetic payments on a real snapshot of the

LN. Finally, in Section 5 we draw conclusions from this work and discuss possible directions for

future research.

2 RELATEDWORKS
In this section, we review related works on privacy and disclosing channel balance information

in the LN. There are many potential methods that adversaries can use to infer information about

payments. We now briefly review some of these methods. An adversary can use knowledge of

changes in LN channel balances to infer payment information. In the absence of LN channels

actively disclosing any balance information, which is currently the standard practice, changes in LN

channel balances can be inferred by performing a probing attack [11, 27]. This attack exploits the

fact that a given channel can successfully forward a payment if and only if it has a sufficient balance.

Therefore, by attempting multiple fake payments of different amounts using a given channel, an

adversary can estimate the balance in question. As mentioned in the introduction, knowledge

of changes in channel balances can be used to infer all aspects of a payment. Rahimpour and

Khabbazian [20] proposed a method that uses multi-path payments to improve the efficiency of

probing attacks. Singh et al. [23] subsequently proposed a Bayesian method that further improves

the efficiency of probing attacks. Dotan et al. [5] proposed a method to protect against probing

attacks that involves channels randomly rejecting some payments even when they have a sufficient

balance.

An adversary can use knowledge of payments processed by any LN channels it controls to infer

payment information. For any payment that passes through such channels, the adversary will know

approximately the payment amount (give or take the relatively small cost of routing fees). They

will also know the channels in the payment path directly before and directly after the channels they

control. It has been demonstrated that the source and destination of the payment can be estimated

using this knowledge [12, 14]. Kappos et al. [12] proposed a simple heuristic that assumes the

channels directly before and directly after the channel controlled are the first and last channels

respectively in the payment path. Rohrer and Tschorsch [22] demonstrated how message timing

information can be used to provide an even better estimate of a payment’s source and destination.

Nisslmueller et al. [16] proposed a method of adding time delays to protect against such attacks.

van Dam and Kadir [29] proposed a method for hiding the true payment amount by adding noise

to this value. This is implemented through the use of an additional circular payment back to the

sender.

In the LN, when a sender wishes to perform a payment, it is generally necessary that they know

the identity of the payment recipient. Blinded paths have been proposed to extend the LN protocol

by allowing a payment recipient to avoid disclosing their identity to the sender [26]. Tang et al. [25]

considered a method for disclosing channel balances that involve disclosing the true balance of a

subset of channels after each payment. The authors demonstrated that this method did not preserve

privacy, whereby the source and destination of a payment could be identified with high probability.
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Pickhardt [17] proposed the development of a method where LN peers share perfectly accurate

balance information with their “friends”. The method proposed in this work can be considered a

generalisation of this approach that involves sharing less accurate balance information with all

peers in the network.

3 METHODOLOGY
In this section we propose a method for disclosing LN channel balance information. As indicated

previously, this approach uses methods from the field of NP and, to motivate this approach, we

also consider the use of methods from the field of DP. The remainder of this section is structured

as follows. In Section 3.1 we more formally explain and define the problem of disclosing balance

information. In Section 3.2 we demonstrate the challenges of using DP methods to solve this

problem. Finally, in Section 3.3 we describe the proposed method based on NP.

3.1 Problem Definition
We model the LN as a directed graph 𝐺 = (𝑉 , 𝐸). Each peer in the network is modelled as an

individual vertex 𝑣 ∈ 𝑉 . Each payment channel is modelled as a corresponding pair of directed

edges, (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸 and (𝑣 𝑗 , 𝑣𝑖 ) ∈ 𝐸, between the same two vertices but pointing in opposite

directions. A given channel will contain a total amount of liquidity that is distributed between

the corresponding pair of edges. For a given channel, we refer to the total liquidity as its capacity.

This capacity is distributed between the two corresponding edges, and the amount allocated to

each edge is referred to as its balance. Consider the pair of edges 𝑒 ∈ 𝐸 and 𝑒′ ∈ 𝐸 corresponding

to a given channel. We denote the corresponding balances as 𝑏𝑒 ∈ N0
and 𝑏𝑒

′ ∈ N0
respectively.

Furthermore, we denote the corresponding capacities as 𝑐𝑒 ∈ N+
and 𝑐𝑒

′ ∈ N+
respectively. The

following properties hold: 𝑐𝑒 = 𝑐𝑒
′
, 𝑏𝑒 ∈ [0, 𝑐𝑒 ], 𝑏𝑒′ ∈ [0, 𝑐𝑒′ ] and 𝑏𝑒 + 𝑏𝑒

′
= 𝑐𝑒 .

Consider the pair of edges 𝑒 ∈ 𝐸 and 𝑒′ ∈ 𝐸 corresponding to a given channel. If the amount

𝑎 ∈ N+
is transferred along the edge 𝑒 , the balance 𝑏𝑒 reduces by 𝑎 while the balance 𝑏𝑒

′
increases

by 𝑎. For example, consider the case where 𝑏𝑒 = 5 and 𝑏𝑒
′
= 7. If a payment amount 2 is forwarded

using the edge 𝑒 , the corresponding balances will become 𝑏𝑒 = 3 and 𝑏𝑒
′
= 9. To transfer an amount

𝑎 using an edge 𝑒 , the condition 𝑎 ≤ 𝑏𝑒 must be satisfied. That is, the edge in question must have a

sufficient balance.

If two vertices do not share a common edge, payments between these vertices can still be made

using a payment path. We define a payment path from 𝑣𝑖 ∈ 𝑉 to 𝑣 𝑗 ∈ 𝑉 as a sequence of edges that

form a path connecting the vertices in question. We refer to the number of edges in a payment

path as the length of the path. The edges in a payment path charge a fee for forwarding a payment

where the fee is subtracted from the payment amount forwarded. For the purpose of this work,

it is not necessary to define the exact edge fee structure; however, the interested reader can find

this information in [1]. We define the fee corresponding to a given payment path as the sum of all

fees charged by the edges for forwarding the payment amount in question. A payment path can be

used to forward a given payment if each edge in the path has a balance greater than or equal to the

payment amount plus the fees charged by subsequent edges in the path. Finally, we define the path

planning problem as the problem of determining a feasible minimum fee payment path to make a

given payment [4].

For the reasons described above, only channel capacities and not edge balances are shared.

Therefore, path planning is typically a trial-and-error process. A sender first estimates the balances

along a potential path, often using heuristics or feedback from prior attempts. The payment is then

sent along the calculated lowest-fee path. If it fails, feedback on the first edge with insufficient

balance is used to update the estimates, and the process is repeated. These steps are repeated until
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the payment succeeds or the process is terminated. The above description of the path planning

process implies that, more accurate edge balance estimates result in greater payment success using

fewer payment attempts and the discovery of less expensive paths. In fact, if the true balances

are precisely known and a feasible path exists, then a payment can be successfully made using a

minimum fee path in a single attempt.

In this work we consider the research problem of disclosing edge balance information in a

manner that both provides payment privacy and supports path planning. We define the balance
sequence corresponding to a given edge as a sequence of balance and time pairs that model the

changes in the edge balance over time. For example, consider the balance sequence 𝑠𝑒 = (𝑏0, 𝑡0),
(𝑏1, 𝑡1), . . . , (𝑏𝑚, 𝑡𝑚) ∈ ([0, 𝑐𝑒 ] × R)N+

corresponding to the edge 𝑒 ∈ 𝐸. In this example, 𝑏0 equals

the initial value of 𝑏𝑒 when the edge 𝑒 was first created and 𝑡0 equals the time when this event

occurred. Furthermore, 𝑏1 equals the value of 𝑏
𝑒
after a single payment has been processed by the

channel in question and 𝑡1 equals the time when this event occurred. Finally, 𝑏𝑚 equals the value

of 𝑏𝑒 after the most recent payment has been processed by the channel in question and 𝑡𝑚 equals

the time when this event occurred. The length𝑚 + 1 of a balance sequence may vary for different

edges and will equal the number of payments𝑚 processed by the channel plus one. In this work

we assume an adversary that continuously observes the LN and wishes to infer the set of balance

sequences {𝑠𝑒 : 𝑒 ∈ 𝐸}. Given this information, the adversary can infer the existence, value, source

and destination of individual payments by clustering payment values and times that are implicit in

the set of balance sequences.

To demonstrate how this inference can be performed, consider the example LN displayed in

Figure 1(a). Although we model each channel with two edges pointing in opposite directions, to

simplify understanding, this example only considers a subset of the edges. Figure 1(b) displays the

set of balance sequences after all edges have been created but no payments have been made. For

example, we can see that the edge (𝑎, 𝑏) has a balance of 10 when it is initially created at time 0.

Figure 1(c) displays the set of balance sequences after a single payment of value 3 has been made

using the payment path (𝑎, 𝑏), (𝑏, 𝑐), (𝑐, 𝑑) at time 2. Note that, in this example, we have assumed

that the fees charged by all edges are zero and that all edges involved in a given payment update

their respective balances simultaneously. The value, path and time of the above payment can all be

directly inferred from the balance sequences by observing that all edges in the path simultaneously

reduced their corresponding balances by the payment amount. Finally, Figure 1(d) displays the

set of balance sequences after two additional payments have been made. The first is a payment

of value 1 made using the payment path (𝑒, 𝑏), (𝑏, 𝑐), (𝑐, 𝑔) at time 5 and the second is a payment

of value 2 made using the payment path (𝑓 , 𝑏), (𝑏, 𝑐), (𝑐, 𝑔) at time 9. Again, the details of these

payments can be directly inferred from the balance sequences.

In this work, we assume that LN channel operators will not coordinate when disclosing informa-

tion about their respective edge balances. Hence, a decentralised solution is necessary. Given this, we

formulate the problem of disclosing edge balance information in a manner that both provides pay-

ment privacy and supports path planning as follows. Define a function 𝑓 𝑒 : ( [0, 𝑐𝑒 ] ×R)N+ → [0, 𝑐𝑒 ]
for each 𝑒 ∈ 𝐸 that maps the balance sequence 𝑠𝑒 to a value that discloses information about the

current balance 𝑏𝑒 . Note that this formulation generalises to the case where only a subset of LN

channels participate in the process of disclosing edge balance information. This is achieved by

defining the functions 𝑓 𝑒 corresponding to those edges that do not participate to return a value

unrelated to their respective balances. The set of functions {𝑓 𝑒 |𝑒 ∈ 𝐸} should have the following

two properties. Firstly, a user who continuously observes the output of these functions should be

able to use this information to efficiently perform the task of path planning. Secondly, an adversary

who continuously observes the output of these functions should not be able to easily infer the
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(a)

Edge ((𝑣, 𝑣 ′)) Balance sequence (𝑠 (𝑣,𝑣
′ )
)

(𝑎, 𝑏) (10, 0)
(𝑏, 𝑐) (7, 0)
(𝑐, 𝑑) (3, 0)
(𝑒, 𝑏) (6, 0)
(𝑐, 𝑔) (8, 0)
(𝑓 , 𝑏) (9, 0)
(𝑔, ℎ) (4, 0)

(b)

Edge ((𝑣, 𝑣 ′)) Balance sequence (𝑠 (𝑣,𝑣
′ )
)

(𝑎, 𝑏) (10, 0), (7, 2)
(𝑏, 𝑐) (7, 0), (4, 2)
(𝑐, 𝑑) (3, 0), (0, 2)
(𝑒, 𝑏) (6, 0)
(𝑐, 𝑔) (8, 0)
(𝑓 , 𝑏) (9, 0)
(𝑔, ℎ) (4, 0)

(c)

Edge ((𝑣, 𝑣 ′)) Balance sequence (𝑠 (𝑣,𝑣
′ )
)

(𝑎, 𝑏) (10, 0), (7, 2)
(𝑏, 𝑐) (7, 0), (4, 2), (3, 5), (1, 9)
(𝑐, 𝑑) (3, 0), (0, 2)
(𝑒, 𝑏) (6, 0), (5, 5)
(𝑐, 𝑔) (8, 0), (7, 5), (5, 9)
(𝑓 , 𝑏) (9, 0), (7, 9)
(𝑔, ℎ) (4, 0)

(d)

Fig. 1. An example LN network𝐺 = (𝑉 , 𝐸) is displayed in (a) where vertices (𝑉 ) and edges (𝐸) are represented
by circles and arrows respectively. The tables in (b), (c) and (d) represent the corresponding balance sequences
(𝑠 (𝑣,𝑣

′ ) for (𝑣, 𝑣 ′) ∈ 𝐸) after zero, one and three payments respectively have been made.

specific details of individual payments. The details in question are the payment source, destination

and amount. In addition, we assume an adversary may know the value of every payment forwarded

by a subset of edges, which is equivalent to knowing their complete balance sequences. We denote

this subset of edges as 𝐸𝐴. This would occur, for instance, if the adversary controls one of the

vertices in such an edge.

Having defined the problem, we now evaluate the suitability of two privacy paradigms, Differen-

tial Privacy (DP) and Noiseless Privacy (NP), as potential solutions.

3.2 Differential Privacy
Differential Privacy (DP) is a paradigm for defining functions that disclose information about a

dataset while preserving the privacy of individual data elements [8]. DP methods generally achieve

this goal by adding sufficient noise to the function output such that a change in the function input

dataset by a single data element cannot be detected. This approach assumes that an adversary

has complete knowledge of the dataset apart from the single data element that changes. Consider

the following function 𝑓 𝑒 that maps the balance sequence 𝑠𝑒 = (𝑏0, 𝑡0), (𝑏1, 𝑡1), . . . , (𝑏𝑚, 𝑡𝑚) to 𝑏𝑚
which equals the current balance 𝑏𝑒 .

𝑓 𝑒 : ( [0, 𝑐𝑒 ] × R)N+ → [0, 𝑐𝑒 ]
(𝑏0, 𝑡0), (𝑏1, 𝑡1), . . . , (𝑏𝑚, 𝑡𝑚) ↦→ 𝑏𝑚

(1)

A party that continuously observes the output of the function 𝑓 𝑒 can easily infer 𝑠𝑒 . In this

section, we investigate whether a DP method that adds noise to the output of this function can

prevent this attack while still supporting path planning. The remainder of this section is structured
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as follows. In Section 3.2.1 we provide a more formal introduction to DP and present a DP method

known as the Laplace Mechanism. In Section 3.2.2 we consider the application of the Laplace

Mechanism to the function presented above.

3.2.1 Background.
Broadly speaking, a function is DP if a change in the function’s input dataset by a single data

element does not cause a significant change in the function’s output probability. Therefore, in the

worst case scenario, when an adversary has complete knowledge of the dataset apart from the data

element that changed, they cannot infer this particular element. Before formally defining DP, it is

first necessary to define the concept of adjacent datasets.

Definition 1. Let X be the space of datasets where a given dataset contains a set of data elements.
A dataset 𝑥 ∈ X is defined as being adjacent to a dataset 𝑥 ′ ∈ X if and only if 𝑥 and 𝑥 ′ differ by a
single data element. This relation is symmetric; that is, 𝑥 is adjacent to 𝑥 ′ if and only if 𝑥 ′ is adjacent
to 𝑥 . The set of all datasets adjacent to a given dataset 𝑥 ∈ X is denoted adj(𝑥).

Note that the above definition does not formally define the criterion used to determine whether

or not two datasets differ by a single data element. This criterion depends on the space of datasets

X in question and the application or context in which it is used. In the context of the function

defined in Equation 1, the space of datasets equals the space of balance sequences ( [0, 𝑐𝑒 ] × R)N+
,

and the data elements are individual payments. We define two balance sequences as being adjacent

if one can be obtained from the other by the addition or removal of a single payment record. Given

this, we formally define DP.

Definition 2. Let X be the space of datasets. A randomised function 𝑓 : X → R provides (𝜀, 𝛿)-DP
if for all sets 𝑆 in the range of 𝑓 , and for all datasets 𝑥 and 𝑥 ′ in the domain of 𝑓 that are adjacent, the
following condition holds [8].

Pr[𝑓 (𝑥) ∈ 𝑆] ≤ exp(𝜀)Pr[𝑓 (𝑥 ′) ∈ 𝑆] + 𝛿. (2)

In the above definition, from the perspective of an adversary, the function 𝑓 is random and the

probabilities are defined with respect to this function. The Laplace Mechanism is a method that

takes a deterministic function and adds sufficient noise to its output so that it achieves (𝜀, 𝛿)-DP
for given values of 𝜀 and 𝛿 . Before defining this method, it is necessary to define the concepts of

the sensitivity of a function and the Laplace probability distribution. Informally, the sensitivity of a

function is a measure of the maximum possible change in the function output given the smallest

possible change in the function input. It is defined as follows.

Definition 3. Let X be the space of datasets and 𝑓 : X → R be a given function. The sensitivity
of this function is denoted Δ𝑓 and is defined as follows.

Δ𝑓 = max

𝑥,𝑥 ′∈X
𝑥 ′∈adj(𝑥 )

|𝑓 (𝑥) − 𝑓 (𝑥 ′) |. (3)

The Laplace distribution is a continuous probability distribution that is parametrised by a location

𝜇 ∈ R and a scale 𝑏 ∈ R. It is a long-tailed distribution with a relatively large variance equal to 2𝑏2.

Given this, we formally define the Laplace Mechanism.

Definition 4. Let X be the space of data and 𝑓 : X → R be a given function. The Laplace
mechanism is defined as

M𝐿 (𝑥, 𝑓 (.), 𝜀) = 𝑓 (𝑥) + 𝑌 (4)

where 𝑌 is a random variable drawn from a Laplace distribution with parameters 𝜇 = 0 and 𝑏 = Δ𝑓 /𝜀.
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It has been proven that the Laplace mechanism achieves (𝜀, 0)-DP (see Theorem 3.6 in [8]).

Informally, the Laplace mechanism adds sufficient noise to the function output such that a change

in this output that is less than or equal to the corresponding sensitivity, and in turn a change in

the input dataset by a single data element, cannot be inferred with high probability. That is, one

cannot determine whether such a change in the output is a consequence of a change in the input

dataset or the added noise.

3.2.2 Disclosing Balance Information using DP.
In this section we consider whether applying the Laplace mechanism to the function 𝑓 𝑒 defined in

Equation 1 provides a solution to the problem of providing payment privacy and supporting path

planning. Towards this goal, in the following theorem we define the sensitivity of 𝑓 𝑒 denoted Δ𝑓 𝑒 :

Theorem 1. The sensitivity Δ𝑓 𝑒 of the function 𝑓 𝑒 defined in Equation 1 equals the capacity 𝑐𝑒 of
the edge 𝑒 .

Proof. The function 𝑓 𝑒 returns the current balance 𝑏𝑒 , which is always in the interval [0, 𝑐𝑒 ].
To determine the sensitivity, consider two adjacent balance sequences. Let 𝑠 be a balance sequence

where the final balance is 𝑏𝑚 = 𝑐𝑒 . Now consider an adjacent sequence 𝑠′ formed by adding one

more payment that transfers the entire balance. The new final balance will be 𝑏𝑚+1 = 𝑐𝑒 − 𝑐𝑒 = 0.

The difference in the function’s output is |𝑓 𝑒 (𝑠) − 𝑓 𝑒 (𝑠′) | = |𝑐𝑒 − 0| = 𝑐𝑒 . Since no single payment

can change the balance by more than the total capacity, this represents the maximum possible

change, and thus the sensitivity Δ𝑓 𝑒 equals 𝑐𝑒 . □

As stated in the previous section, the Laplace mechanism adds a level of noise to the output of a

function such that a change in this output that is less than or equal to the corresponding sensitivity

cannot be inferred with high probability. The final balance value 𝑏𝑚 in the balance sequence 𝑠𝑒 will

be a value in the interval [0, 𝑐𝑒 ]. This interval has a size of 𝑐𝑒 , which also equals the sensitivity of the
function 𝑓 𝑒 . Hence, the level of noise added to the function 𝑓 𝑒 will mean that no information about

the value of 𝑏𝑚 can be inferred apart from the fact that it lies in the interval [0, 𝑐𝑒 ]. In turn, this

function will provide no additional balance information that can be used to support path planning.

Another potential challenge of applying the Laplace mechanism to the above function is that an

observer may potentially draw multiple samples from the noisy output and use these to estimate

the true edge balance (e.g. by computing the mean of the outputs). However, this challenge may be

overcome using methods that limit the number of independent samples that can be drawn [5].

3.3 Noiseless Privacy
In the previous section we demonstrated the challenges of using DP methods to solve the problem of

disclosing edge balance information. Similar to DP, Noiseless Privacy (NP) is a paradigm for defining

functions that disclose information about a dataset while preserving the privacy of individual data

elements. However, DP and NP differ in terms of how privacy is achieved. In DP, privacy is obtained

by adding noise to the function that discloses information about the data. On the other hand, in NP,

privacy is obtained by designing functions that disclose summary statistics that inherently have

sufficient uncertainty and do not require noise to be added [3, 6, 9]. In this section we propose a

novel method for disclosing edge balance information that uses NP methods.

In the proposed method, individual edges implement a policy where they infrequently disclose

their current balance after multiple payments and not after each individual payment. For example,

consider the case where an edge 𝑒 ∈ 𝐸 implements a policy where they update the edge balance

value disclosed after every 𝑛 payments. This policy corresponds to the use of the following function
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𝑓 𝑒 to disclose edge balance information.

𝑓 𝑒 : ( [0, 𝑐𝑒 ] × R)N+ → [0, 𝑐𝑒 ]
(𝑏0, 𝑡0), (𝑏1, 𝑡1), . . . , (𝑏𝑚, 𝑡𝑚) ↦→ 𝑏𝑚−(𝑚 mod 𝑛) .

(5)

For example, if 𝑠𝑒 = (10, 2), (7, 4), (5, 5) and 𝑛 = 3, then 𝑓 𝑒 (𝑠𝑒 ) = 10. Similarly, if 𝑠𝑒 = (10, 2), (7, 4),
(5, 5), (8, 6) and 𝑛 = 3, then 𝑓 𝑒 (𝑠𝑒 ) = 8. Continuously observing the value of 𝑓 𝑒 would not disclose

the balance sequence 𝑠𝑒 = (𝑏0, 𝑡0), (𝑏1, 𝑡1), . . . , (𝑏𝑚, 𝑡𝑚). Instead, the subsequence 𝑠𝑒𝑛 = (𝑏0, 𝑡0),
(𝑏1𝑛, 𝑡1𝑛), (𝑏2𝑛, 𝑡2𝑛), . . . , (𝑏 ⌊𝑚/𝑛⌋𝑛, 𝑡⌊𝑚/𝑛⌋𝑛), where ⌊.⌋ denotes the floor operation, would be disclosed.
Hence, using the function 𝑓 𝑒 to disclose edge balance information is equivalent to disclosing 𝑠𝑒𝑛 .

We will later show that this is, in turn, equivalent to disclosing summary statistics about payment

values and a subset of payment times.

To demonstrate the above method consider the example LN displayed in Figure 2(a). Figure 2(b)

displays the set of balance subsequences after all edges have been created but no payments have

been made. Figure 2(c) displays the set of balance subsequences after a single payment of value 3

has been made using the path (𝑎, 𝑏), (𝑏, 𝑐), (𝑐, 𝑑) at time 2. Note that since all edges have a disclosure

frequency of 𝑛 = 2, this first payment does not trigger any updates to the disclosed subsequences.

Finally, Figure 2(d) displays the set of balance subsequences after two additional payments have

been made. The first is a payment of value 1 made using the path (𝑒, 𝑏), (𝑏, 𝑐), (𝑐, 𝑔) at time 5 and the

second is a payment of value 2 made using the path (𝑓 , 𝑏), (𝑏, 𝑐), (𝑐, 𝑔) at time 9. Note that this is the

same example LN and set of payments presented in Section 3.1 and Figure 1 when we demonstrated

how one can infer payment details by clustering payment values and times. By examining the

above balance subsequences, one can see that performing such clustering and, in turn, inference is

more difficult. Note that, in the above example, the value of 𝑛 was constant across time and edges.

This is not a requirement and, as we will see later, this value can vary across time and edges.

The remainder of this section is structured as follows. In Section 3.3.1 we provide a formal

introduction to NP. In Section 3.3.2, we prove that disclosing edge balance information using the

function 𝑓 𝑒 defined in Equation 5 provides payment privacy and supports path planning. In doing

so, we also present a method for computing a suitable value for the parameter 𝑛. In Section 3.3.3,

we use the above results to define a policy for disclosing edge balance information in a manner

that provides privacy. Finally, in Section 3.3.4 we present analysis demonstrating that disclosing

edge balance information can improve the ability to perform path planning.

3.3.1 Background.
In NP we assume that an adversary wishes to infer the data elements in an unknown dataset. Given

this, the goal is to exploit this uncertainty with respect to the dataset by only disclosing summary

statistics (e.g. the sum of the data elements) from which the adversary cannot infer individual

data elements. This approach is distinct from DP, which assumes that an adversary has complete

knowledge of the dataset apart from a single data element. In the following we present several

background definitions that form a foundation for subsequent analysis.

We now formally define NP by adopting the definitions proposed by Bhaskar et al. [3] and

Grining and Klonowski [9]. Towards this, it is necessary to define the concept of sensitivity of a

function and dataset. Informally, this is a measure of the maximum possible change in the output

of a function applied to a dataset given the smallest possible change in this dataset.

Definition 5. Let 𝑥 ∈ X be a given dataset where X is the space of datasets. Let 𝑓 : X → R be a
given function. The sensitivity of this function and dataset is denoted Δ𝑓 (𝑥) and is defined as follows.

Δ𝑓 (𝑥) = max

𝑥 ′∈adj(𝑥 )
|𝑓 (𝑥) − 𝑓 (𝑥 ′) |. (6)
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(a)

Edge ((𝑣, 𝑣 ′)) 𝑛 Balance subseq (𝑠
(𝑣,𝑣′ )
𝑛 )

(𝑎, 𝑏) 2 (10, 0)
(𝑏, 𝑐) 2 (7, 0)
(𝑐, 𝑑) 2 (3, 0)
(𝑒, 𝑏) 2 (6, 0)
(𝑐, 𝑔) 2 (8, 0)
(𝑓 , 𝑏) 2 (9, 0)
(𝑔, ℎ) 2 (4, 0)

(b)

Edge ((𝑣, 𝑣 ′)) 𝑛 Balance subseq (𝑠
(𝑣,𝑣′ )
𝑛 )

(𝑎, 𝑏) 2 (10, 0)
(𝑏, 𝑐) 2 (7, 0)
(𝑐, 𝑑) 2 (3, 0)
(𝑒, 𝑏) 2 (6, 0)
(𝑐, 𝑔) 2 (8, 0)
(𝑓 , 𝑏) 2 (9, 0)
(𝑔, ℎ) 2 (4, 0)

(c)

Edge ((𝑣, 𝑣 ′)) 𝑛 Balance subseq (𝑠
(𝑣,𝑣′ )
𝑛 )

(𝑎, 𝑏) 2 (10, 0)
(𝑏, 𝑐) 2 (7, 0), (3, 5)
(𝑐, 𝑑) 2 (3, 0)
(𝑒, 𝑏) 2 (6, 0)
(𝑐, 𝑔) 2 (8, 0), (5, 9)
(𝑓 , 𝑏) 2 (9, 0)
(𝑔, ℎ) 2 (4, 0)

(d)

Fig. 2. An example LN network𝐺 = (𝑉 , 𝐸) is displayed in (a) where vertices (𝑉 ) and edges (𝐸) are represented
by circles and arrows respectively. The tables in (b), (c) and (d) represent the corresponding balance subse-
quences (𝑠 (𝑣,𝑣

′ )
𝑛 for (𝑣, 𝑣 ′) ∈ 𝐸) after zero, one and three payments respectively have been made.

Note that this definition of sensitivity is specific to both a given function and a given data. This is

distinct from definition of sensitivity used in DP which is specific to only a given function. Finally,

we formally define the concept of NP.

Definition 6. Let 𝑥 ∈ X be a random dataset where X is the space of datasets. Let 𝑓 : X → R be
a given deterministic function. This function and dataset provide (𝜀, 𝛿)-NP if for all sets 𝑆 in the range
of 𝑓 and for all random datasets 𝑥 ′ adjacent to 𝑥 , the following condition holds.

Pr[𝑓 (𝑥) ∈ 𝑆] ≤ exp(𝜀)Pr[𝑓 (𝑥 ′) ∈ 𝑆] + 𝛿. (7)

In the above definition, from the perspective of an adversary, the datasets 𝑥 and 𝑥 ′ are random
and the probabilities are defined with respect to these datasets. Informally, the above definition

models the change in the adversary’s belief about a particular output in the range of 𝑓 given a

change in the input dataset by a single data element [3]. This has similarities to the definition of

DP in Definition 2. If we contrast their respective definitions, we see that they differ with respect to

where the adversary uncertainty originates and in turn their ability to infer data elements. In DP,

adversarial uncertainty originates from the randomness of the function, while in NP, it originates

from the randomness of the data itself.

3.3.2 Disclosing Balance Information using NP.
As previously demonstrated, disclosing edge balance information using the function 𝑓 𝑒 defined in

Equation 5 is equivalent to disclosing the balance subsequence 𝑠𝑒𝑛 . We will now show that this is, in

turn, equivalent to disclosing the initial edge balance before any payments have been made, ⌊𝑚/𝑛⌋
sums of payment values and ⌊𝑚/𝑛⌋ payment times.
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Consider the balance subsequence 𝑠𝑒𝑛 = (𝑏0, 𝑡0), (𝑏1𝑛, 𝑡1𝑛), (𝑏2𝑛, 𝑡2𝑛), . . . , (𝑏 ⌊𝑚/𝑛⌋𝑛, 𝑡⌊𝑚/𝑛⌋𝑛). The
first element (𝑏0, 𝑡0) in this sequence equals the initial edge balance and time before any payments

have been made. Hence, disclosing this element does not disclose any payment information. Each

of the remaining elements (𝑏𝑖𝑛, 𝑡𝑖𝑛) for 𝑖 = 1, . . . , ⌊𝑚/𝑛⌋ can be modelled as a pair of function

outputs 𝑓
𝑒,𝑏
𝑖,𝑛

and 𝑓
𝑒,𝑡
𝑖,𝑛

. The function 𝑓
𝑒,𝑏
𝑖,𝑛

maps the original balance sequence 𝑠𝑒 to 𝑏𝑖𝑛 and is defined

as follows.

𝑓
𝑒,𝑏
𝑖,𝑛

: ( [0, 𝑐𝑒 ] × R)N+ → [0, 𝑐𝑒 ]
(𝑏0, 𝑡0), (𝑏1, 𝑡1), . . . , (𝑏𝑚, 𝑡𝑚) ↦→𝑏𝑖𝑛

=𝑏 (𝑖−1)𝑛 +
𝑛−1∑︁
𝑗=0

(
𝑏 (𝑖−1)𝑛+𝑗+1 − 𝑏 (𝑖−1)𝑛+𝑗

) (8)

The term 𝑏 (𝑖−1)𝑛 in the above equation equals the output of the function 𝑓
𝑒,𝑏
𝑖−1,𝑛 (𝑠𝑒 ). Each term

𝑏 (𝑖−1)𝑛+𝑗+1 − 𝑏 (𝑖−1)𝑛+𝑗 in the above summation equals an individual payment value. This value is

positive if the payment is made using the edge in question. This value is negative if the payment is

made using the other edge corresponding to the channel in question. Hence, disclosing the terms

𝑏𝑖𝑛 for 𝑖 = 1, . . . , ⌊𝑚/𝑛⌋ is equivalent to disclosing ⌊𝑚/𝑛⌋ sums of 𝑛 payment values. Note that the

terms in each of these sums form independent (non-intersecting) sets.

The function 𝑓
𝑒,𝑡
𝑖,𝑛

maps the original balance sequence 𝑠𝑒 to 𝑡𝑖𝑛 and is defined as follows.

𝑓
𝑒,𝑡
𝑖,𝑛

: ( [0, 𝑐𝑒 ] × R)N+ →R

(𝑏0, 𝑡0), (𝑏1, 𝑡1), . . . , (𝑏𝑚, 𝑡𝑚) ↦→ 𝑡𝑖𝑛 .
(9)

Hence, disclosing the terms 𝑡𝑖𝑛 for 𝑖 = 1, . . . , ⌊𝑚/𝑛⌋ is equivalent to disclosing the payment times

for ⌊𝑚/𝑛⌋ payments.

In summary, disclosing edge balance information using the function 𝑓 𝑒 defined in Equation 5 is

equivalent to disclosing the functions 𝑓
𝑒,𝑏
𝑖,𝑛

and 𝑓
𝑒,𝑡
𝑖,𝑛

for 𝑖 = 1, . . . , ⌊𝑚/𝑛⌋ defined in Equations 8 and

9 respectively. Therefore, any statement that can be proven for the latter functions also holds for

the function 𝑓 𝑒 . In the following, we first prove that the set of functions 𝑓
𝑒,𝑏
𝑖,𝑛

achieve NP and define

a method for selecting the parameter 𝑛. Since NP is achieved, this implies that reliably clustering

payment paths using payment values is computationally difficult. We subsequently prove that the

set of functions 𝑓
𝑒,𝑡
𝑖,𝑛

do not achieve NP. However, we demonstrate that the information disclosed

by these functions is very limited making the task of clustering payment paths extremely difficult.

Finally, we analyse potential information leakage between these disclosed functions.

Disclosure of Balance Functions.
First consider the functions 𝑓

𝑒,𝑏
𝑖,𝑛

for 𝑖 = 1, . . . , ⌊𝑚/𝑛⌋. Recall that each of these functions discloses

a sum of 𝑛 payment values. Given a dataset, Grining and Klonowski [9] presented methods for

computing the (𝜀, 𝛿)-NP parameter values for disclosing a sum of the data elements in question. If

these computed parameter values are sufficiently small, one can infer that it is safe to disclose the

sum in question. Otherwise, one should consider not disclosing the sum in question. The authors

present several methods for computing these parameter values that make different assumptions

regarding the dataset and level of adversary knowledge. We present one of these methods in

Theorem 2, which is a rephrasing of Theorem 4 in the original article by Grining and Klonowski

[9]. This theorem makes the following three assumptions:

(1) The data elements are independent. In the current context where data elements correspond

to payment values and payments are made by a diverse set of users to pay for a diverse set of

items, this is a reasonable assumption to make.
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(2) The adversary knows the distribution of the data elements. In the current context where data

elements correspond to payment values, this could occur if the adversary has some historical

payment data, potentially from a different payment system, for estimating the distribution in

question.

(3) The adversary knows the values of a subset of the data elements.

Theorem 2. Let 𝑋 = (𝑋1, 𝑋2, . . . , 𝑋𝑛) ∈ X be a given dataset where each data element 𝑋𝑖 is an
independent random variable. Assume that an adversary knows the values of a subset of 𝑋 . Let Γ
denote the indexes of this subset and let 𝛾 denote the relative size of this subset; that is |Γ | = 𝛾𝑛. Let
𝜇𝑖 = E(𝑋𝑖 ), 𝜎2

Γ =

∑
𝑖∈ [𝑛]\Γ Var(𝑋𝑖 )

(1−𝛾 )𝑛 and E( |𝑋𝑖 |3) < ∞ where [𝑛] = {1, . . . , 𝑛} for 𝑖 ∈ {1, . . . , 𝑛}. Consider
a function 𝑓 (𝑋 ) = ∑𝑛

𝑖=1𝑋𝑖 . Let Δ denote the sensitivity of dataset 𝑋 and function 𝑓 . Given this, 𝑓 (𝑋 )
provides (𝜀, 𝛿)-NP with parameter values

𝜀 =

√︄
Δ2

ln((1 − 𝛾)𝑛)
(1 − 𝛾)𝑛𝜎2

Γ

(10)

and

𝛿 =
1.12

∑
𝑖∈[𝑛]\Γ E( |𝑋𝑖 − 𝜇𝑖 |3)(∑
𝑖∈[𝑛]\Γ Var(𝑋𝑖 )

) 3

2

(1 + 𝑒𝜀) + 4

5

√︁
(1 − 𝛾)𝑛

(11)

Proof. Please see Theorem 4 in the original article by Grining and Klonowski [9] for a proof of

the above result. The proof method relies on the Berry-Esseen theorem to approximate the sum of

the data elements with indexes in the set [𝑛] \ Γ with a Gaussian distribution. This approximation

and its quantifiable error are then combined with properties of the Gaussian distribution to derive

the final privacy parameters. □

The parameter values in Theorem 2 are defined with respect to the sensitivity of the dataset

and function in question. In the context of a function 𝑓
𝑒,𝑏
𝑖,𝑛

, the sum in question equals a sum of the

values of payments made using both edges corresponding to the channel in question. Therefore, the

sensitivity will equal the maximum possible payment that can be made using these edges, which

equals the capacity of the channel in question.

The theorem’s third assumption, that an adversary knows the values of a subset of the data

elements, can arise in several practical scenarios. For instance, an adversary will directly know the

value of any payment they initiate that is forwarded by the edge in question. Knowledge can also

be gained from network topology. For example, if the edge in question is adjacent to another edge

that discloses its balance after every payment, an adversary can infer the values of all payments

forwarded by that adjacent edge. This information could then be used to determine if those same

payments are subsequently forwarded by the edge in question. Finally, this assumption is consistent

with our broader adversary model from Section 3.1, where we assume an adversary has knowledge

of all payments forwarded by a subset of edges 𝐸𝐴, which could be used to deduce the values of

payments on other edges within the same payment paths.

Disclosure of Time Functions.
Next consider the functions 𝑓

𝑒,𝑡
𝑖,𝑛

for 𝑖 = 1, . . . , ⌊𝑚/𝑛⌋. Recall that, each of these functions discloses

the time value for a single payment. In Theorem 3, we prove that each of these functions does not

achieve NP.

Theorem 3. Each of the functions 𝑓 𝑒,𝑡
𝑖,𝑛

defined in Equation 9 for 𝑖 = 1, . . . , ⌊𝑚/𝑛⌋, does not achieve
(𝜀, 0)-NP for any value of 𝜀.
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(a)

Edge ((𝑣, 𝑣 ′)) 𝑛 Balance subseq (𝑠
(𝑣,𝑣′ )
𝑛 )

(𝑎, 𝑏) ∞ (10, 0)
(𝑏, 𝑐) 2 (7, 0), (3, 6)
(𝑐, 𝑑) ∞ (3, 0)
(𝑒, 𝑏) ∞ (6, 0)
(𝑐, 𝑔) 2 (8, 0), (5, 6)
(𝑓 , 𝑏) 4 (9, 0)
(𝑔, ℎ) ∞ (4, 0)

(b)

Fig. 3. An example LN network𝐺 = (𝑉 , 𝐸) is displayed in (a) where vertices (𝑉 ) and edges (𝐸) are represented
by circles and arrows respectively. The table in (b) represents the corresponding balance subsequences (𝑠 (𝑣,𝑣

′ )
𝑛

for (𝑣, 𝑣 ′) ∈ 𝐸) after four payments have been made.

Proof. For each of these functions, let 𝑥 = (𝑏0, 𝑡0), . . . , (𝑏𝑖𝑛, 𝑡𝑖𝑛), . . . , (𝑏𝑚, 𝑡𝑚) and 𝑥 ′ = (𝑏0, 𝑡0),
. . . , (𝑏′𝑖𝑛, 𝑡 ′𝑖𝑛), . . . , (𝑏𝑚, 𝑡𝑚) be two adjacent random balance sequences where the payments (𝑏𝑖𝑛, 𝑡𝑖𝑛)
and (𝑏′𝑖𝑛, 𝑡 ′𝑖𝑛) are different and 𝑡𝑖𝑛 ≠ 𝑡 ′𝑖𝑛 . The values of 𝑡𝑖𝑛 and 𝑡 ′𝑖𝑛 are disclosed by the function 𝑓

𝑒,𝑡
𝑖,𝑛

and therefore are known by the adversary. Let us denote these values as 𝑎 and 𝑏 respectively. Hence,

𝑃𝑟 [𝑓 𝑒,𝑡
𝑖,𝑛

(𝑥) ∈ {𝑎}] = 1 and 𝑃𝑟 [𝑓 𝑒,𝑡
𝑖,𝑛

(𝑥 ′) ∈ {𝑏}] = 1. In turn, 𝑃𝑟 [𝑓 𝑒,𝑡
𝑖,𝑛

(𝑥 ′) ∈ {𝑎}] = 0. Substituting

𝑃𝑟 [𝑓 𝑒,𝑡
𝑖,𝑛

(𝑥) ∈ {𝑎}] and 𝑃𝑟 [𝑓 𝑒,𝑡
𝑖,𝑛

(𝑥 ′) ∈ {𝑎}] into Equation 7 we see that (𝜀, 0)-NP cannot be achieved

for any value of 𝜀. □

The above negative result is a consequence of the fact that 𝑓
𝑒,𝑡
𝑖,𝑛

discloses the exact value of 𝑡𝑖𝑛 for

𝑖 = 1, . . . , ⌊𝑚/𝑛⌋. Therefore, from the adversary’s perspective, there is no uncertainty with respect

to these values. However, if we assume that individual payments are independent, each function

𝑓
𝑒,𝑡
𝑖,𝑛

does not disclose any information about (𝑏 𝑗 , 𝑡 𝑗 ) for 𝑗 ≠ 𝑖𝑛. We argue that, if most edges use a

value of 𝑛 that is sufficiently large, the loss in privacy is relatively small.

Recall from Section 3.1, that to infer the details of a given payment, an adversary must perform

a clustering of payment values and times. If a given edge uses the above method to update its

edge balance every 𝑛 payments, then only the corresponding time of one in every 𝑛 payments

processed by the edge will be disclosed. Assuming that edges do not synchronise to disclose their

balances immediately after a given payment plus the presence of concurrent payments, we argue

that, determining a correct clustering is non-trivial.

To demonstrate this argument consider the example LN displayed in Figure 3(a). Figure 3(b)

displays the set of edge balance subsequences after the following four payments have been made:

a payment of value 3 using the path (𝑎, 𝑏), (𝑏, 𝑐), (𝑐, 𝑑) at time 2, a payment of value 2 using the

path (𝑐, 𝑔), (𝑔, ℎ) at time 4, a payment of value 1 using the path (𝑎, 𝑏), (𝑏, 𝑐), (𝑐, 𝑑) at time 6, and a

payment of value 1 using the path (𝑐, 𝑔), (𝑔, ℎ) at time 6. Note that the values of 𝑛 used by the edges

are not all equal. In fact, four edges used a value of 𝑛 equal to∞. These edges only disclose their

initial balance and can be considered as not participating. Examining the edge balance subsequences

we can see that the final two payments that happened at time 6 caused the two edges (𝑏, 𝑐) and
(𝑐, 𝑔) to disclose their current balances. Therefore, an adversary can infer that both edges processed

a payment at time 6. However, clustering these edges based on this fact suggests that a payment

was made from 𝑏 to 𝑔, which is incorrect.

In the following we formalise the above argument. Recall that 𝐸𝐴 denotes the subset of edges for

which an adversary knows the corresponding balance sequences. For any 𝑒 ∈ 𝐸𝐴, the adversary
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observes an updated balance immediately after any payment traverses it. For the remaining edges

𝐸𝑁 = 𝐸 \ 𝐸𝐴, from the adversary’s perspective balance updates are disclosed sporadically, governed

by some non-deterministic process (e.g., every 𝑛-th payment where payments are random).

At a discrete time 𝑡 , a set of 𝑘 concurrent payments P𝑡 = {𝑃1, 𝑃2, . . . , 𝑃𝑘 } occur where each

payment 𝑃𝑖 has a corresponding payment path 𝜋𝑖 . The adversary does not observe P𝑡 directly.

Instead, their knowledge is strictly the set of edges that both forwarded a payment and disclosed

an update at time 𝑡 . Formally, if we let Π𝑡 = ∪𝑘
𝑖=1𝜋𝑖 be the set of all edges involved in payments at

time 𝑡 , and 𝐷 (𝑒, 𝑡) be a predicate that is true if edge 𝑒 discloses at time 𝑡 , then

𝑂𝑡 = {𝑒 ∈ Π𝑡 |𝐷 (𝑒, 𝑡)} (12)

This set of observed edges can be partitioned into two disjoint sets

(1) Anchor Disclosures: 𝑂𝐴
𝑡 =𝑂𝑡 ∩ 𝐸𝐴.

(2) Floating Disclosures: 𝑂𝑁
𝑡 =𝑂𝑡 ∩ 𝐸𝑁

.

The adversary’s objective is to partition the observed set 𝑂𝑡 into clusters {𝐶1, . . . ,𝐶𝑘 } such that

each cluster 𝐶 𝑗 consists of the complete set of observed disclosures for a single, unique payment

path 𝜋 𝑗 (i.e., to find𝐶 𝑗 = 𝜋 𝑗 ∩𝑂𝑡 for each payment). The true path 𝜋 𝑗 may contain additional edges

not present in 𝐶 𝑗 .

The set𝑂𝐴
𝑡 provides the adversary with a high-confidence structural foundation. By partitioning

this set based on topological proximity, known routing patterns and payment values, the adversary

can infer the existence of 𝑘 ′ payment path fragments; we define a payment path fragment as a

high-confidence cluster of co-occurring anchor disclosures that the adversary hypothesizes as

belonging to a single, unique payment path. To model the adversary’s best-case scenario, we assume

they correctly deduce the true number of payments, 𝑘 ′ = 𝑘 , and identify 𝑘 corresponding anchor

sets {𝐴1, . . . 𝐴𝑘 }, where each set 𝐴 𝑗 =𝑂𝐴
𝑡 ∩ 𝜋 𝑗 corresponds to the anchor disclosures from a single

true payment path 𝜋 𝑗 .

Given the𝑘 anchor sets, the adversary’s primary task is to assign the set ofℎ = |𝑂𝑁
𝑡 | floating disclo-

sures to these fragments. Formally, the adversarymust find the correct partition {𝑂𝑁
𝑡 (1), . . . ,𝑂𝑁

𝑡 (𝑘)}
of 𝑂𝑁

𝑡 , where each subset 𝑂𝑁
𝑡 ( 𝑗) =𝑂𝑁

𝑡 ∩ 𝜋 𝑗 contains the floating disclosures belonging to the true

payment path 𝜋 𝑗 . This is a combinatorial problem of partitioning the set 𝑂𝑁
𝑡 and assigning each

element to one of the 𝑘 distinct anchor sets. The number of ways to partition a set of ℎ distinct

elements into exactly 𝑘 non-empty, labelled sets is given by 𝑘! × 𝑆2 (ℎ, 𝑘) where 𝑆2 (ℎ, 𝑘) is the
Stirling number of the second kind. The total number of possible assignments, which we denote

N(ℎ, 𝑘), is therefore

N(ℎ, 𝑘) = 𝑘! × 𝑆2 (ℎ, 𝑘) =
𝑘∑︁
𝑗=0

(−1)𝑘− 𝑗

(
𝑘

𝑗

)
𝑗ℎ . (13)

The value of N(ℎ, 𝑘) grows exponentially with ℎ (the number of floating disclosures), creating a

large search space of plausible clusterings.

It should be noted that a sophisticated adversary would not treat allN(ℎ, 𝑘) possible assignments

as equally probable. They would employ heuristics to construct a probability distribution over

the space of possible partitions. Possible heuristics include topological proximity and historical

payment data. The adversary’s task is thus reduced from a brute-force search to identifying the

maximum-likelihood partition.

Crucially, the reliability of the aforementioned heuristics is fundamentally compromised by

information loss regarding non-disclosing edges that do not disclose their current balance at the

time 𝑡 . Let𝑈 𝑁
𝑡 be the set of edges in 𝐸𝑁

that forwarded a payment at time 𝑡 but did not disclose an

Distrib. Ledger Technol., Vol. 37, No. 4, Article 111. Publication date: August 2018.



Balance Disclosure in Payment Channel Networks using Noiseless Privacy 111:15

update.

𝑈 𝑁
𝑡 =

(
𝑘⋃
𝑖=1

(𝜋𝑖 ∩ 𝐸𝑁 ) \𝑂𝑁
𝑡

)
(14)

The existence of this non-empty set𝑈 𝑁
𝑡 makes the problem intractable by undermining the adver-

sary’s heuristics:

(1) Path Incompleteness: Even if the adversary makes a correct assignment and forms the cluster

𝐶 𝑗 = 𝐴 𝑗 ∪ 𝑂𝑁
𝑡 ( 𝑗), this cluster represents an incomplete path skeleton. The true path is

𝜋 𝑗 = 𝐶 𝑗 ∪𝑈 𝑁
𝑡 ( 𝑗) where 𝑈 𝑁

𝑡 ( 𝑗) is the (potentially non-empty) set of non-disclosing edges

from that path, about which the adversary knows nothing.

(2) Topological Ambiguity: The heuristic of topological proximity fails because the adversary

cannot measure true path distance. An observed edge that appears distant may be connected

by a short chain of on-disclosing edges from𝑈 𝑁
𝑡 ( 𝑗), rendering the heuristic unreliable.

The above analysis implies that the task of clustering payment edges is computationally hard due

to a dual-layered problem. First, the adversary faces the challenge of optimizing over an exponential

search space of possible assignments. Second, the very heuristics required to navigate this space

are rendered unreliable by the incomplete and ambiguous nature of the observational data - a direct

consequence of the balance disclosure mechanism. The adversary is thus left to solve an intractable

assignment problem with incomplete information, making the reliable reconstruction of payment

paths infeasible.

Analysis of Information Leakage Between Disclosed Functions.
In the proposed method, the functions 𝑓

𝑒,𝑏
𝑖,𝑛

and 𝑓
𝑒,𝑡
𝑖,𝑛

are disclosed jointly as pairs, providing both

balance sums and corresponding disclosure times. While the privacy guarantees for each set of

functions have been analysed separately, it is essential to examine their composition. In privacy

frameworks such as Differential Privacy (DP), releasing multiple statistics can degrade overall

guarantees through additive privacy budgets or information leakage [8]. Similarly, in Noiseless

Privacy (NP), although privacy stems from inherent data uncertainty rather than added noise, joint

disclosures could potentially interact if one reveals information that reduces uncertainty in the

other. Therefore, before defining the disclosure policy, we must verify whether disclosing one set

weakens the privacy of the other, considering both directions.

First, consider whether disclosing the balance sums 𝑓
𝑒,𝑏
𝑖,𝑛

weakens the privacy of the times 𝑓
𝑒,𝑡
𝑖,𝑛

.

The privacy of 𝑓
𝑒,𝑡
𝑖,𝑛

relies on the sparsity of disclosed times and the computational intractability

of clustering edges into payment paths, as detailed above. This hardness arises from incomplete

observations (𝑈 𝑁
𝑡 ) and the exponential assignment space N(ℎ, 𝑘), which depend on temporal and

topological factors. The balance sums provide no additional constraints on timing or path structure,

as payment amounts and times are independent. Thus, knowledge of sums does not refine clustering

heuristics (e.g., topological proximity) or reduce the search space, preserving the privacy of 𝑓
𝑒,𝑡
𝑖,𝑛

.

Conversely, consider whether disclosing the times 𝑓
𝑒,𝑡
𝑖,𝑛

weakens the privacy of the balance sums

𝑓
𝑒,𝑏
𝑖,𝑛

. The privacy of 𝑓
𝑒,𝑏
𝑖,𝑛

is based on the uncertainty in decomposing each sum into 𝑛 individual

payment values, with guarantees from Theorem 2 assuming an adversary knows 𝑛, the payment

distribution, and a fraction 𝛾 of values. An adversary could use the time interval Δ𝑡 = 𝑓
𝑒,𝑡
𝑖,𝑛

− 𝑓
𝑒,𝑡
𝑖−1,𝑛

to estimate the number of payments 𝑛, for instance, by modelling arrivals as a Poisson process

with rate 𝜆, yielding 𝑛̂ ≈ 𝜆Δ𝑡 . However, this does not weaken the NP guarantee: the theorem is

conservative and already assumes knowledge of 𝑛. An accurate estimate matches this worst-case

scenario, while an inaccurate one increases decomposition uncertainty, strengthening privacy. Since

amounts and times are independent, no further leakage occurs. In summary, the joint disclosure
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does not weaken the individual guarantees due to orthogonal uncertainty sources and independent

data dimensions. This supports the robustness of the NP framework.

3.3.3 Policy for Disclosure of Edge Balances.
Theorem 2 provides a tool that can be used by edges to define a policy for disclosing edge balance

information in a manner that provides privacy. Consider an edge and the case where this edge

has made 𝑛 payments since it last disclosed its current balance. Using this theorem, the edge can

determine if 𝑛 is sufficiently large to achieve payment privacy. If 𝑛 is sufficiently large, the edge

can update the value it discloses to equal the current balance. If 𝑛 is not sufficiently large, the edge

can instead continue to make payments until this condition is met.

The above policy is described more formally in Algorithm 1 using pseudocode. The algorithm

takes as input the privacy thresholds 𝜀𝑡 and 𝛿𝑡 . An edge operator can use Theorem 2 to assist

in selecting appropriate values for these thresholds, as the theorem provides the analytical tools

to evaluate the privacy guarantees for a given number of aggregated payments. These threshold

parameters are used to ensure that 𝑛 is sufficiently large to achieve a desired level of privacy.

The algorithm first initialises the list 𝑥 of payment values to equal the empty list (line 1) and the

balance value 𝑑 currently disclosed to equal the true balance 𝑏𝑒 (line 2). For each new payment

new payment processed by the channel containing edge 𝑒 , the following actions are performed.

The algorithm adds the payment value to the list 𝑥 (line 4); this value is positive for a payment of

amount 𝑎 forwarded by edge 𝑒 and negative (−𝑎) for a payment forwarded by the other edge in

the same channel. It then computes the number of elements in 𝑥 (line 5). It computes the values of

𝜀 and 𝛿 with respect to 𝑥 using Equations 10 and 11 respectively (line 6). If the conditions 𝜀 ≤ 𝜀𝑡

and 𝛿 ≤ 𝛿𝑡 are satisfied (line 7), the algorithm resets 𝑥 to equal the empty list and updates the

disclosed balance 𝑑 to equal the true balance 𝑏𝑒 . Finally, this algorithm does not introduce a large

communication overhead since each channel only communicates an edge balance update after a

series of payments.

Algorithm 1: Policy used by edge 𝑒 ∈ 𝐸 for disclosing balance subsequence.

Input: Privacy thresholds 𝜀𝑡 and 𝛿𝑡 .

1 Initialise 𝑥 = [ ].
2 Initialise 𝑑 = 𝑏𝑒 .

3 while True do
4 𝑥 .append(next_payment_value()).

5 𝑛 = |𝑥 |.
6 Compute 𝜀 and 𝛿 using Equations 10 and 11 respectively.

7 if 𝜀 ≤ 𝜀𝑡 and 𝛿 ≤ 𝛿𝑡 then
8 𝑑 = 𝑏𝑒 .

9 𝑥 = [ ].

Several practical challenges must be considered when integrating the proposed policy into the

existing LN implementation. One approach that would not require changes to the base protocol is

to implement the policy as an opt-in overlay network. In this model, participating vertices would

broadcast their infrequent balance disclosures over a dedicated gossip network. This creates a

marketplace for balance information with distinct incentives for participation.

The primary incentive for a vertex to publish its edge balance information is to increase its

routing fee revenue; by providing more accurate data, its edges are more likely to be selected to be

elements of payment paths. The primary incentive for a vertex to subscribe to this information is
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to improve its own payment outcomes by increasing success rates and reducing fees, as access to

more accurate data allows for more effective path planning.

However, this approach introduces its own challenges. Firstly, at scale, the message overhead

could become significant, likely requiring vertices to subscribe to only a curated subset of high-

traffic edges. Secondly, the act of subscribing to an edge’s updates is itself a metadata signal that

could leak a vertex’s path planning intentions to an adversary. Addressing these concerns represents

an additional research challenge beyond the scope of the current work.

3.3.4 Path Planning using NP Balance Information.
As described in Section 3.1, a payment path can be used to forward a given payment if each edge

in the path has a balance greater than or equal to the payment amount plus any fees charged

by subsequent edges. Given that edge balances are not disclosed, path planning will typically be

performed using a trial-and-error process where a series of payment paths are computed and

attempted until a feasible one is found or the search is terminated. Previously, we described a policy

that uses NP for disclosing edge balance information in a manner that provides privacy. Here, we

consider how this information may be used to improve the effectiveness of path planning.

For each 𝑒 ∈ 𝐸, let 𝑏𝑒 ∈ [0, 𝑐𝑒 ] denote the corresponding current (unknown) balance value,

and let 𝑠𝑒𝑛 denote the corresponding edge balance subsequence disclosed by the policy defined in

Algorithm 1. Let 𝑏𝑒𝑝 ∈ [0, 𝑐𝑒 ] denote the predicted value of 𝑏𝑒 based on 𝑠𝑒𝑛 . This prediction could be

performed using a forecasting model such as ARIMA (AutoRegressive Integrated Moving Average).

Due to forecasting errors, 𝑏𝑒𝑝 may not equal 𝑏𝑒 .

Path planning involves searching the space of payment paths to find a low-fee, feasible payment

path for making a given payment. This task is performed with respect to the predicted balance

values described above. Therefore, inaccurately predicted balance values increase the difficulty of

path planning. To demonstrate this, we consider a policy where an edge 𝑒 ∈ 𝐸 is considered to be

feasible with respect to forwarding a payment of amount 𝑎 if and only if the condition 𝑎 ≤ 𝑏𝑒𝑝 is

satisfied.

Let us first consider the problem of determining if a payment of amount 𝑎 can be forwarded

using a payment path containing a single edge 𝑒 ∈ 𝐸. If 𝑏𝑒 < 𝑎 ≤ 𝑏𝑒𝑝 , a false positive will occur

whereby it is incorrectly determined that 𝑒 can successfully forward the payment in question. On

the other hand, if 𝑏𝑒𝑝 < 𝑎 ≤ 𝑏𝑒 , a false negative will occur whereby it may be incorrectly determined

that 𝑒 cannot successfully forward the payment in question. Note that, if the predicted balance 𝑏𝑒𝑝
equals the current balance 𝑏𝑒 , neither of the conditions 𝑏𝑒 < 𝑎 ≤ 𝑏𝑒𝑝 or 𝑏𝑒𝑝 < 𝑎 ≤ 𝑏𝑒 will be satisfied

for any values of 𝑎. Hence, a false positive or false negative respectively cannot occur.

Let 𝑏𝑒𝑝 = 𝑏𝑒 +𝑚 where𝑚 ∈ [0, 𝑐𝑒 ] is an error term. A false positive occurs if the payment amount

𝑎 is in the interval (𝑏𝑒 , 𝑏𝑒𝑝 ]. The length of this interval is 𝑏𝑒𝑝 − 𝑏𝑒 =𝑚. Assuming payment amounts

are uniformly distributed on the interval [0, 𝑐𝑒 ], the probability of a false positive is the length of

this interval divided by the total length of the support.

𝑃𝑟 [False Positive|𝑏𝑒𝑝 ] =
𝑚

𝑐𝑒
(15)

On the other hand, let 𝑏𝑒𝑝 = 𝑏𝑒 −𝑚 where𝑚 ∈ [0, 𝑐𝑒 ]. Assuming payment amounts are uniformly

distributed on the interval [0, 𝑐𝑒 ], the probability of a false negative is defined as follows.

𝑃𝑟 [False Negative|𝑏𝑒𝑝 ] =
𝑚

𝑐𝑒
(16)

The above analysis demonstrates that the probabilities of both a false positive and a false negative

are monotonically increasing functions of𝑚 that converge to 0 at𝑚 equal to 0.

Next consider the problem of determining if a payment of amount 𝑎 can be forwarded using a

payment path 𝑒1, 𝑒2, . . . , 𝑒𝑛 containing 𝑛 edges. To simplify our analysis, we assume that each edge
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in this path has the same capacity 𝑐𝑒 and charge zero fees for forwarding payments. We adopt the

most realistic model where the prediction error is unique for each edge, such that 𝑏
𝑒𝑖
𝑝 = 𝑏𝑒𝑖 +𝑚𝑖

,

where each error term𝑚𝑖 ∈ [−𝑐𝑒 , 𝑐𝑒 ] can be positive, negative, or zero. A false positive will occur

if the following condition is satisfied.

(∀𝑖, 𝑎 ≤ 𝑏
𝑒𝑖
𝑝 ) ∧ (∃ 𝑗, 𝑎 > 𝑏𝑒 𝑗 ) (17)

The first term in this condition models that the payment is predicted feasible while the second

term models that the payment is actually not feasible. The first term implies that 𝑎 ≤ min𝑖=1...𝑛 (𝑏𝑒𝑖𝑝 )
while the second term implies that 𝑎 > min𝑖=1...𝑛 (𝑏𝑒𝑖 ). Combining these, a false positive occurs if

the payment amount 𝑎 falls within the following range.

min

𝑖=1...𝑛
(𝑏𝑒𝑖 ) < 𝑎 ≤ min

𝑖=1...𝑛
(𝑏𝑒𝑖𝑝 ) (18)

The length of the interval (min𝑖=1...𝑛 (𝑏𝑒𝑖 ),min𝑖=1...𝑛 (𝑏𝑒𝑖𝑝 )] equals min𝑖=1...𝑛 (𝑏𝑒𝑖𝑝 ) −min𝑖=1...𝑛 (𝑏𝑒𝑖 ) if
min𝑖=1...𝑛 (𝑏𝑒𝑖𝑝 ) > min𝑖=1...𝑛 (𝑏𝑒𝑖 ) and 0 otherwise. In the latter case, a false positive is impossible.

Assuming that payment amounts follow a uniform distribution on the interval [0, 𝑐𝑒 ], the probability
of a path-level false positive is defined as follows.

𝑃𝑟 [False Positive|{𝑏𝑒𝑖𝑝 }] =
max(0,min𝑖=1...𝑛 (𝑏𝑒𝑖𝑝 ) −min𝑖=1...𝑛 (𝑏𝑒𝑖 ))

𝑐𝑒

=
max(0,min𝑖=1...𝑛 (𝑏𝑒𝑖 +𝑚𝑖 ) −min𝑖=1...𝑛 (𝑏𝑒𝑖 ))

𝑐𝑒

(19)

A path-level false negative occurs if the path is predicted to fail but would have succeeded. This

happens if 𝑎 is in the range min𝑖 (𝑏𝑒𝑖𝑝 ) < 𝑎 ≤ min𝑖 (𝑏𝑒𝑖 ). Assuming that payment amounts follow a

uniform distribution on the interval [0, 𝑐𝑒 ], the probability of a path-level false negative is defined

as follows.

𝑃𝑟 [False Negative|{𝑏𝑒𝑖𝑝 }] =
max(0,min𝑖=1...𝑛 (𝑏𝑒𝑖 ) −min𝑖=1...𝑛 (𝑏𝑒𝑖𝑝 ))

𝑐𝑒

=
max(0,min𝑖=1...𝑛 (𝑏𝑒𝑖 ) −min𝑖=1...𝑛 (𝑏𝑒𝑖 +𝑚𝑖 ))

𝑐𝑒

(20)

With a mix of positive and negative errors, the type of error a path is vulnerable to is not fixed.

It’s an emergent property determined by the specific pattern of errors across all edges, which

dictates whether the predicted minimum balance is higher or lower than the actual minimum. To

demonstrate this consider a payment path 𝑒1, 𝑒2 containing two edges where (𝑏𝑒1 , 𝑏𝑒2 ) = (100, 110).
If (𝑚1,𝑚2) = (+20,−5), the predicted balances will be (𝑏𝑒1𝑝 , 𝑏𝑒2𝑝 ) = (100 + 20, 110 − 5) = (120, 105).
Since min𝑖=1...2 (𝑏𝑒𝑖𝑝 ) > min𝑖=1...2 (𝑏𝑒𝑖 ), the path is now vulnerable to false positives for any payment

𝑎 in the range (100, 105]. As a second example, consider a payment path 𝑒1, 𝑒2 containing two edges

where (𝑏𝑒1 , 𝑏𝑒2 ) = (100, 110). If (𝑚1,𝑚2) = (−5,−20), the predicted balances will be (𝑏𝑒1𝑝 , 𝑏𝑒2𝑝 ) =

(100 − 5, 110 − 20) = (95, 90). Since min𝑖=1...2 (𝑏𝑒𝑖𝑝 ) < min𝑖=1...2 (𝑏𝑒𝑖 ), the path is now vulnerable to

false negatives for any payment 𝑎 in the range (90, 100].
This generalised analysis reveals that while single-edge error probabilities are simple functions,

path-level probabilities are complex and depend on the entire state of the path. However, the core

conclusion remains: improving prediction accuracy by minimising the magnitude of all individual

errors (|𝑚𝑖 | → 0) ensures that min(𝑏𝑒𝑖𝑝 ) ≈ min(𝑏𝑒𝑖 ). This symmetrically reduces the conditions that

allow for both types of path-level errors, highlighting the usefulness of accurate balance forecasts

for effective path planning.
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4 EXPERIMENTAL RESULTS & ANALYSIS
In this section, we evaluate the proposed method for disclosing edge balance information through

both theoretical and experimental analysis. The private nature of the LN means no public dataset

of historical payments exists, making simulation the only viable approach for empirical evaluation.

Therefore, our experimental analysis uses a simulation of synthetic payments on a real snapshot of

the LN. The section is structured as follows. First, in Section 4.1, we describe the data used for both

the theoretical and experimental analyses. Next, in Section 4.2, we present the theoretical analysis

of the privacy parameters. Following this, in Section 4.3, we detail the methodology for our path

planning simulation. Finally, in Section 4.4, we present and discuss the simulation’s findings.

4.1 Data
We saved a snapshot of the LN on 13 October 2023 using the Lightning Network Daemon (lnd) peer

implementation
1
. From this snapshot, we first removed all channels that did not have a fee policy,

i.e. all channels that cannot be used in a payment path. The snapshot contains a large proportion

of isolated peers that are not contained in any public channels. Such peers may be contained

in unannounced private channels. However, we do not have knowledge of these channels and,

therefore, we removed all isolated peers. Consequently, the LN snapshot was reduced to 12,952

peers and 55,912 channels. The corresponding graph representation 𝐺 = (𝑉 , 𝐸) contained 12,952

vertices and 111,824 edges (each channel corresponds to two edges). On the date the above snapshot

was obtained, 1 Satoshi (the atomic unit of Bitcoin currency used by the LN) had an approximate

value of 0.0002 Great British Pounds (GBP). The mean and median LN snapshot channel capacities

were 6,584,164 Satoshis and 2,000,000 Satoshis. The 10th and 90th percentiles of LN snapshot

channel capacities were 150,000 Satoshis and 11,000,000 Satoshis respectively.

A significant part of our analysis concerns simulating a sequence of payment attempts on the

above LN snapshot and counting the number of successful attempts. As discussed previously, the

LN peers do not disclose payment information. Therefore, there exists no publicly available dataset

of historical LN payments that could be used to inform simulations. To overcome this challenge we

used the following approach to generate a synthetic sequence of payments that we hope is a close

approximation to a potentially real set of payments attempts. However, there currently exists no

way to verify this.

A payment is defined by two parameters: (1) a payment source and destination pair, and (2) a

payment value. To generate a sequence of synthetic payments, we made the following assumptions

regarding the values of these parameters. An LN peer that forwards payments will know the time

and value of these payments but not the source or destination, due to the use of onion routing.

The company River aggregated data from several companies that operate LN peers and forward

a large number of payments. They published summary statistics about the payment values from

January to August in 2023 [21]. In August 2023 the average payment value was 44,700 Satoshis.

However, a visual inspection of the bar charts in the article suggests this value was significantly

higher in several of the previous months in 2023. Furthermore, for all months considered, the

majority of payment values were less than 1,000,000 Satoshis. Given this information, we assume

that payment values are sampled uniformly at random from the interval [1, 1000000]. We argue

that it is a reasonable assumption that attempted payments are a function of the LN graph topology.

A LN channel will not be created between a random pair of peers and will not have a random

capacity. Instead, we argue that an LN channel is generally created to support a large number of

intended future payments. Given this, we assume that payments are made between random pairs

of source and destination vertices where there exists a corresponding feasible path in the LN graph

1
https://docs.lightning.engineering/
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given that edges have a balance equal to one-tenth of the channel capacity. Finally, we assume that

payments are not independent but instead similar payments are frequently repeated.

Given the above assumptions, we used the following two-step approach to generate a sequence

of payments 𝑃 = (𝑝1, 𝑝2, . . . , 𝑝𝑚) containing𝑚 elements. In the first step, we generated a set of

payments 𝑄 = {𝑞1, 𝑞2, . . . , 𝑞𝑚′ } containing𝑚′
payments where𝑚′ ≤ 𝑚. In the second step, we

sampled with replacement a sequence of𝑚 payments from this set. The initial set of payments 𝑄

was generated using rejection sampling as follows. First, we specified the balance of each edge

in the LN snapshot to equal one-tenth of the corresponding channel capacity. Next, we sampled

the source and destination vertices by sampling uniformly at random a pair of distinct vertices

and sampled the payment amount by sampling uniformly at random an integer in the interval

[1, 1000000]. Finally, we determined whether the payment in question was feasible. If the payment

was feasible, we added it to the set 𝑄 ; otherwise, we did not add it to the set. We repeated this

process of sampling feasible payments until the set contained𝑚′
elements. In our analysis, the

parameters𝑚 and𝑚′
were set to 25, 000 and 1, 000 respectively. Therefore, the expected number of

times each element in the set of payments 𝑄 appeared in the sequence of payments 𝑃 was 25. The

mean and standard deviation of the payment values in the sequence of payments was 175, 188 and

202, 519 respectively.

4.2 Analysis of Privacy Parameters
In Algorithm 1, an edge discloses its balance only when the privacy parameters 𝜀 and 𝛿 , defined in

Theorem 2, fall below specified security thresholds. The number of payments 𝑛 required to meet

this condition is driven by the interplay between the channel’s properties and the payment statistics.

This required number of payments also depends critically on the adversary’s prior knowledge. This

prior knowledge is measured by 𝛾 , which represents the fraction of payment instances in the set of

𝑛 that the adversary is assumed to know. To simplify the following analysis, we assume that the

individual payment values are independent and identically distributed (i.i.d.). This implies they

share a common variance 𝜎2
and a common third absolute central moment 𝜌3 = E( |𝑋 − 𝜇 |3).

In the following sections, we first analyse the baseline case (𝛾 = 0), extend this result to the

general case (𝛾 > 0), and finally, ground these theoretical findings with a quantitative numerical

analysis.

4.2.1 Baseline Case (𝛾 = 0).
We begin with the case where an adversary has no prior knowledge of any payments (𝛾 = 0). In

this scenario, the summations in the theorem are over all 𝑛 payments.

First, we analyse the behaviour 𝜀. We derive its specific relationship with 𝑛 from the general

formula by setting 𝛾 = 0 and applying the i.i.d. assumption.

𝜀 =

√︄
Δ2

ln(𝑛)∑𝑛
𝑖=1 Var(𝑋𝑖 )

=

√︂
Δ2

ln(𝑛)
𝑛𝜎2

=
Δ

𝜎

√︂
ln(𝑛)
𝑛

(21)

This result shows 𝜀 is directly proportional to the ratio of the channel capacity to the payment

standard deviation (
Δ
𝜎
). This ratio is typically very large for a fundamental reason: the channel

capacity, which defines the sensitivity Δ, will in many cases be significantly larger than the value

of any individual payment. Since Δ is much larger than the payment values themselves, it is even

more significantly larger than their standard deviation 𝜎 . Consequently, a correspondingly large 𝑛

is required to counteract this high ratio and make 𝜀 acceptably small.
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Next, we analyse the behaviour of 𝛿 . We start with the general formula from the theorem and

set 𝛾 = 0.

𝛿 =
1.12

∑𝑛
𝑖=1 E( |𝑋𝑖 − 𝜇𝑖 |3)(∑𝑛
𝑖=1 Var(𝑋𝑖 )

) 3

2

(1 + 𝑒𝜀) + 4

5

√
𝑛

(22)

To determine the relationship with 𝑛, we simplify the first term. Applying the i.i.d. assumption, the

sums in the numerator and denominator become

𝑛∑︁
𝑖=1

E( |𝑋𝑖 − 𝜇 |3) = 𝑛𝜌3. (23)

(
𝑛∑︁
𝑖=1

Var(𝑋𝑖 )
) 3

2

=
(
𝑛𝜎2

) 3

2 = 𝑛
3

2𝜎3. (24)

Substituting these back into the fraction and simplifying the powers of 𝑛 demonstrates the propor-

tionality.

1.12 · 𝑛𝜌3

𝑛3/2𝜎3

(1 + 𝑒𝜀) = 1.12𝜌3

𝜎3
· 1

√
𝑛
(1 + 𝑒𝜀) (25)

Since the first term simplifies to a form proportional to 1/
√
𝑛, and the second term is also propor-

tional to 1/
√
𝑛, the entire expression for 𝛿 reliably converges to zero as 𝑛 increases.

4.2.2 General Case (𝛾 > 0).
To generalise this analysis, we reframe the problem: the case where an adversary knows a fraction

𝛾 of 𝑛 payments can be treated as an equivalent baseline (𝛾 = 0) analysis on a smaller, effective

dataset of 𝑛′ = (1 − 𝛾)𝑛 unknown payments. We can therefore derive the general formulas by

taking the baseline results and substituting n with this effective size 𝑛′.
First, we analyse 𝜀. Applying the substitution 𝑛 → 𝑛′ to the baseline result for 𝜀

𝜀 =
Δ

𝜎

√︂
ln(𝑛′)
𝑛′

=
Δ

𝜎

√︄
ln((1 − 𝛾)𝑛)
(1 − 𝛾)𝑛 (26)

Next, we analyse the behaviour of 𝛿 . Applying the substitution 𝑛 → 𝑛′ to the derived components

of 𝛿

𝛿 =

(
1.12𝜌3

𝜎3
· 1

√
𝑛′

(1 + 𝑒𝜀)
)
+ 4

5

√
𝑛′

=
1√︁

(1 − 𝛾)𝑛

(
1.12𝜌3

𝜎3
(1 + 𝑒𝜀) + 4

5

)
(27)

This generalization shows that as adversary knowledge 𝛾 increases, the effective number of pay-

ments (1−𝛾)𝑛 decreases, causing both 𝜀 and 𝛿 to become larger and weaken the privacy guarantee.

4.2.3 Numerical Analysis.
The theoretical analysis reveals how the privacy parameters 𝜀 and 𝛿 depend on the number of

aggregated payments 𝑛, the channel sensitivity Δ, the payment statistics (𝜎 , 𝜌3), and adversary

knowledge 𝛾 . To ground these abstract relationships, we now provide a quantitative analysis for

the baseline case (𝛾 = 0) using realistic network parameters.

A key challenge is selecting appropriate thresholds for the privacy parameters. As highlighted

by Dwork et al. [7], there is no clear consensus on the best values for 𝜀 and 𝛿 in DP, a fact that

also applies to NP. However, a recent article by the National Institute of Standards and Technology

(NIST) makes some suggestions for the value of the 𝜀 parameter based on their experience. They

state that a value in the interval [0, 5] is conservative, a value in the interval [5, 20] also provides

robust privacy protection in a variety of settings, and a value greater than 20 may still provide

meaningful privacy protection [15].
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Capacity / 𝑛 2 4 8 16 32 64 128

Mean 6.7, 0.8 6.7, 0.4 5.8, 0.1 4.7, 0.0 3.8, 0.0 2.9, 0.0 2.2, 0.0

Median 2.0, 0.0 2.0, 0.0 1.8, 0.0 1.4, 0.0 1.1, 0.0 0.9, 0.0 0.7, 0.0

10th percentile 1.0, 0.0 1.0, 0.0 0.9, 0.0 0.7, 0.0 0.6, 0.0 0.4, 0.0 0.3, 0.0

90th percentile 11.2, 30.5 11.2, 25.1 9.7, 3.5 7.9, 0.5 6.3, 0.1 4.9, 0.0 3.7, 0.0

Table 1. Estimates of the expected values of 𝜀 and 𝛿 for edges with different edge capacities and different
values of 𝑛 are displayed. The mean, median, 10th percentile and 90th percentile edge capacities are 6, 584, 164,
2, 000, 000, 150, 000 and 11, 000, 000 respectively.

For this analysis, we used the four representative channel capacities (Mean, Median, 10th, and

90th percentile) from Section 4.1 as our values for sensitivity, Δ. To model bi-directional payments,

consistent with the theoretical framework, we sampled payment values from a uniform distribution

on a symmetric interval [−𝛽, 𝛽]. A positive value represents a payment forwarded by the edge

(decreasing its balance), while a negative value represents a payment in the opposite direction

through the channel (increasing its balance). Based on empirical data suggesting most real-world

payments are below 1,000,000 Satoshis, we set 𝛽 to be the minimum of 1,000,000 and the channel

capacity in question. For each scenario, we estimated the expected values of 𝜀 and 𝛿 by averaging

the results of 2,000 simulations.

The results, displayed in Table 1, align with the theoretical derivation in the baseline case. As

predicted by the formula in Equation 21, for any given 𝑛, the value of 𝜀 is consistently highest for

the 90th percentile capacity, which has the largest sensitivity Δ. This quantitatively confirms that

channels with larger capacities require a greater number of payments to achieve the same privacy

level. Adopting a conservative threshold of 𝜀 < 5 and 𝛿 < 5 based on the NIST guidance, the table

shows that for channels with the mean capacity or less, this is achieved for 𝑛 at or below 16. For

the larger 90th percentile channels, a more substantial aggregation of 𝑛 at or below 64 payments is

required to meet the same threshold.

In conclusion, this empirical analysis provides quantitative validation for the theoretical frame-

work, demonstrating that channels with higher capacities (larger Δ) require a significantly larger

number of payments n to be aggregated. However, this does not necessarily mean they will disclose

their balances less frequently over time. High-capacity channels often serve as major routing hubs

and are likely to have a much higher payment throughput. The temporal frequency of disclosure

depends on the ratio of the required aggregation count (𝑛) to the payment rate. It is plausible that a

high-volume channel could achieve its larger aggregation target in the same amount of time, or

even faster, than a low-volume channel. Therefore, the practical implication for Algorithm 1 is

that while high-capacity channels must aggregate more payments per disclosure, their disclosure

frequency in terms of time is a dynamic property of their payment volume.

4.3 Path Planning Simulation: Methodology
In this section we describe the methodology used to simulate the sequence of payments 𝑃 =

(𝑝1, 𝑝2, . . . , 𝑝𝑚) described in Section 4.1. When simulating this sequence of payments, we assumed

that initially the capacity of each channel was randomly distributed between the balances of the

corresponding pair of edges. The payments in 𝑃 were attempted sequentially in the order they

appear in the sequence using the following approach.

First, a predictive model is used to determine 𝑏𝑒𝑝 , which denotes the predicted value of the

corresponding true balance 𝑏𝑒 , for each edge 𝑒 ∈ 𝐸. Our simulation uses a simple predictive model

that assigns 𝑏𝑒𝑝 to equal the most recently disclosed balance for edge 𝑒 . Next, a conservative balance
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estimate 𝑏𝑒𝑝
′ = 𝑏𝑒𝑝 × 𝛼 , where 𝛼 ∈ [0, 1], is calculated for each edge. This conservative approach

is motivated by the fact that payments are atomic; if any single edge has insufficient funds, the

entire payment fails. Next, a search for a lowest-fee payment path is performed using a variant of

Dijkstra’s algorithm [4]. This variant incorporates the balance constraint directly into its search

process: it explores paths using the channel fee policies as edge weights but will only consider

traversing an edge if its conservatively estimated balance 𝑏𝑒𝑝
′
is sufficient for the payment amount

plus any necessary fees.

If the above search finds a payment path, it is then validated against the true balances: the

payment is a success if every edge in the path has a sufficient true balance. In this case, the true

balances of the edges along the path are updated. For each of these edges, the new payment value

is appended to its internal list of aggregated payments, 𝑥 , as shown in Algorithm 1. The algorithm

then re-evaluates the privacy conditions based on the new list. If an edge’s update condition is met,

its publicly disclosed balance is updated to the new true balance. If the path fails the true balance

check, or if no path was found, the payment is a failure, and the state of the network remains

unchanged.

We use two quantitative metrics to evaluate the performance of the disclosure policy. The total

number of successful payments directly measures the network’s utility; a higher count indicates

that the disclosed balance information, though intentionally updated infrequently, remains accurate

enough for effective path planning. The mean balance estimation error, measured as the absolute

difference between the true and predicted values, directly quantifies the accuracy of this information.

A lower error indicates a more accurate prediction, while a higher error measures the performance

cost of increased privacy, where less frequent updates may cause the predicted balance to deviate

from the true balance.

4.4 Path Planning Simulation: Results and Discussion
In this section, we present the results of the path planning simulation, which provides quantitative

support for the theoretical argument from Section 3.3.4 - that accurate edge balance predictions

support effective path planning. The analysis is structured as follows: first, we establish the perfor-

mance of the upper and lower bound baselines. Next, we investigate the core trade-off between

privacy and utility by adjusting the privacy parameters of the proposed disclosure method. Finally,

we examine the impact of partial network adoption on path planning performance.

4.4.1 Baseline Performance.
To contextualise the performance of the proposed method, we compare it against two baselines.

The first baseline models a scenario with real-time balance information where balance predictions

have zero error. This baseline represents a performance upper bound. The second baseline models a

scenario with no disclosed balance information, where balances are predicted using a 50% capacity

heuristic, which assumes each balance is equal to half the channel capacity. This baseline represents

a performance lower bound. The performance of the proposed disclosure method is expected to

fall between these two extremes. Table 2 displays the number of successful payments and the mean

balance estimation error after all payment attempts as a function of 𝛼 for each baseline. Recall

that the total number of payment attempts is 25,000. For a given edge, we measure the error of the

corresponding balance estimate as the absolute difference between the true and predicted values.

Examining this table reveals several key dynamics. The perfect estimation baseline significantly

outperforms the 50% capacity baseline in successful payments across all values of 𝛼 . The per-

formance of the perfect baseline is optimal at 𝛼 = 1.0 with 19,072 successes (76%) and degrades

as 𝛼 decreases. This is expected; with perfect information, any added conservatism (𝛼 < 1.0) is

counterproductive, as it causes the path planning algorithm to discard feasible payment paths.
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Baseline / 𝛼 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

50% Capacity 3,845 3,921 3,916 3,911 3,890 3,873 3,882 4,052 4,173 4,491

estimation 1,648k 1,648k 1,648k 1,648k 1,648k 1,648k 1,648k 1,649k 1,650k 1,651k

Perfect 19,072 18,980 18,845 18,698 18,493 18,214 17,774 17,040 15,647 11,906

estimation 0 0 0 0 0 0 0 0 0 0

Table 2. For the 50% capacity heuristic and perfect estimation baselines the number of successful payments
followed by the mean balance estimation error after all payment attempts as a function of 𝛼 is displayed. The
symbol k equals 103.

Conversely, the 50% capacity baseline’s performance, while non-monotonic, is generally better

at more conservative 𝛼 values, achieving its maximum of 4,491 successes at 𝛼 = 0.1. This occurs

because the 50% capacity estimate is poor, and a high degree of conservatism forces the algorithm

to select only those paths that appear massively over-provisioned, which have a higher chance of

being feasible. As expected, the mean balance estimation error is consistently large for the 50%

capacity baseline (around 1,650,000 Satoshis), while it is zero for the perfect estimation baseline.

4.4.2 The Privacy vs. Utility Trade-off.
To investigate the relationship between privacy and path planning support, we simulated a scenario

where each edge implements Algorithm 1 using a range of privacy thresholds 𝜀𝑡 and 𝛿𝑡 where

𝜀𝑡 = 𝛿𝑡 . Figure 4 visualises the results of this simulation.

The heatmaps illustrate a clear trade-off. In Figure 4(a), for high thresholds (e.g., 𝜀𝑡 = 𝛿𝑡 = 8.0),

the number of successful payments is high, approaching the performance of the perfect estimation

baseline. Conversely, as the privacy thresholds become stricter (e.g., 𝜀𝑡 = 𝛿𝑡 ≤ 0.5), the success

rate declines sharply. This corresponds directly with the mean balance estimation error, shown

in Figure 4(b). Stricter privacy requires a larger number of payments 𝑛 to be aggregated between

disclosures, causing the disclosed balance information to become less accurate and leading to a

significant increase in estimation error. While the strictest settings can underperform the 50%

capacity baseline’s best result of 4,491 successes, a moderately strict setting (e.g., 𝜀𝑡 = 𝛿𝑡 = 1.0) can

still yield over 10,000 successes, far exceeding this approach.

4.4.3 Impact of Partial Network Adoption.
In the final experiment, we consider the case where only a fraction 𝜏 ∈ [0, 1] of channels participate
in the proposed balance disclosure method. For these participating channels, we assume a moder-

ately strict privacy setting where 𝜀𝑡 = 𝛿𝑡 = 1.0. The balances for all non-participating channels are

estimated using the 50% capacity heuristic. Figure 5 visualizes the number of successful payments

and the mean balance estimation error as a function of the participation rate 𝜏 and the path planning

conservatism parameter 𝛼 .

The results demonstrate a graceful degradation in performance as participation decreases. As

shown in Figure 5(a), the number of successful payments declines as 𝜏 decreases, but even with only

50% participation (𝜏 = 0.5), the system achieves over 6,300 successes, significantly outperforming

the 4,491 successes of the pure 50% capacity heuristic. As expected, as 𝜏 approaches zero, the

performance converges to that of the heuristic baseline. Figure 5(b) shows that the mean estimation

error generally increases as fewer channels participate, which is the expected outcome of relying

more heavily on the high-error 50% capacity heuristic. However, it also reveals that for 𝜏 > 0,

the error paradoxically decreases at the most conservative 𝛼 value of 0.1. This is likely because

extreme conservatism forces the path planning algorithm to select only paths it is highly confident
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(a)

(b)

Fig. 4. Heatmaps illustrating the trade-off between privacy and path planning performance. (a) The number
of successful payments out of 25,000 attempts. Higher values (greener cells) indicate better path planning
performance. (b) The mean balance estimation error in Satoshis. Lower values (greener cells) indicate more
accurate balance information. Both heatmaps plot the common privacy threshold (𝜀𝑡 = 𝛿𝑡 ) against the path
planning conservatism parameter (𝛼).

in, skewing the sample of successful payments towards those with more accurate (and often more

recent) balance information.
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(a)

(b)

Fig. 5. Heatmaps illustrating the impact of partial network adoption of the privacy-preserving disclosure
policy. (a) The number of successful payments out of 25,000 attempts. Performance degrades gracefully as the
fraction of participating channels (𝜏) decreases. (b) The mean balance estimation error in Satoshis. The error
increases as fewer channels participate, increasing reliance on the high-error heuristic. Both heatmaps plot
the participation rate (𝜏) against the path planning conservatism parameter (𝛼).
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5 CONCLUSIONS
This work addresses the fundamental conflict between payment privacy and path planning efficiency

in Payment Channel Networks (PCNs). We have proposed and evaluated a novel, decentralised

method for disclosing channel balance information that leverages the principles of Noiseless Privacy

(NP). By disclosing balance states only after a dynamically determined number of payments have

occurred, our method provides quantifiable privacy guarantees without adding noise to the data,

thereby preserving its utility for path planning. This approach avoids the prohibitive communication

overhead of real-time updates and circumvents the inapplicability of traditional Differential Privacy

(DP) in this context. Given the novel nature of this work, we conclude by outlining several possible

directions for future research.

The most direct extension is to improve the prediction accuracy of the path planning model. In

our simulation, we used a simple model that assumes the current true balance is equal to the most

recently disclosed balance. Future work could explore more sophisticated predictive models that

might, for instance, use the complete time series of balance disclosures to produce a more accurate

estimate of the true balance, potentially improving path planning success without weakening the

core privacy guarantee.

Beyond improving the predictive model, the privacy policy itself could be made more adaptive.

The current method uses fixed thresholds, 𝜀𝑡 and 𝛿𝑡 , for all disclosures. A further avenue for

research is the development of dynamic policies where a vertex could adjust its privacy level

based on network conditions or economic incentives. For instance, an edge with high liquidity

seeking to attract more payments could temporarily relax its privacy settings. Investigating the

game-theoretic implications of such adaptive policies, where vertices compete on both privacy and

utility, represents a compelling direction for future work.

While these refinements would improve the utility of the method, its privacy guarantees could

also be extended. The proposed method provides privacy with respect to individual payments.

However, in some situations, it may be necessary to provide privacy with respect to larger sets or

flows of payments. This is an issue of privacy granularity that is concerned with providing different

scales or levels of privacy [7]. Using NP methods to provide such multi-level privacy represents

another opportunity for future research.

In addition to extending the privacy model, it is also crucial to analyse its interaction with other

LN privacy technologies, such as blinded paths. It is unclear if providing even infrequent balance

information creates new attack vectors or synergies when combined with recipient anonymity. For

example, an adversary with partial balance knowledge might be able to more easily de-anonymise a

blinded path by correlating balance changes with the limited set of possible routes. Understanding

and mitigating these potential second-order effects is crucial for developing a holistic privacy

framework for the network.

Finally, looking beyond the immediate application of path planning, the long-term statistical data

generated by this method opens a new research direction in higher-level network optimisation. The

infrequent but privacy-preserving balance updates from across the network could be aggregated

over time to identify liquidity trends, under-utilised channels, and network bottlenecks. Future

research could explore how this aggregated data could inform automated, decentralised decisions

about where to allocate new capital or perform rebalancing operations, thereby improving the

overall efficiency and reliability of the network.
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