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Thesis Abstract 

In the field of neuro-oncology, precision oncology is advancing to improve patient 

survival outcomes. Radiomics, mainly through the use of standardised engineered 

(hand-crafted) features, has recently been utilised in neuro-oncology research and 

holds potential as biomarkers in the diagnosis and treatment planning of 

glioblastoma multiforme (GBM). However, the use of multiparametric Magnetic 

Resonance Imaging (mpMRI) data and the inclusion of datasets from multiple 

institutions pose substantial challenges for reproducibility. Therefore, establishing 

a standardised preprocessing pipeline and developing interpretable radiomic 

models could enhance the transition of radiomic studies in clinical settings. 

This thesis investigated the optimisation of preprocessing pipelines to enhance 

reproducibility. The research addressed artefacts in registration and resampling on 

a widely used preprocessing pipeline from the Brain Tumor Segmentation Challenge 

(BraTS) and proposed an optimised version of this pipeline. For our domain-specific 

dataset (STORM_GLIO) with clinically defined contours used in radiotherapy 

treatment planning, we designed a preprocessing pipeline that excludes registration 

to a comprehensive Magnetic Resonance Imaging (MRI)-based reference of normal 

adult human brain anatomy and integrates a state-of-the-art brain extraction tool to 

improve accuracy and consistency. The proposed pipeline was assessed by our 

clinicians. Results demonstrated that the widely adopted preprocessing pipeline can 

be reliably reproduced through these optimisations, thereby ensuring consistency 

with our domain-specific clinical requirements. 

In addition, a resource-efficient strategy, Region-Focused Selection Plus (RFS+), for 

enhanced automated tumour segmentation was implemented using state-of-the-art 

models to improve generalisability. By introducing weighted ensemble learning 

alongside different normalisation techniques (such as Z-score and Nyul), RFS+ 

enhanced segmentation performance and model generalisability when the model 

training process utilised three segmentation approaches (Multi-label, Binary class, 
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and Multiclass), incorporating tumour-specific characteristics such as overlapping 

and non-overlapping regions. Also, the strategy demonstrated competitive results, 

resource-efficiency, flexibility, as it can be applied to different models, including U-

Net and nnU-Net. 

 The radiomic analysis studies focused on evaluating the effectiveness of using a 

limited number of radiomic features (RFs) from MRI sequences, in accordance with 

current radiomic study guidelines. For the radiomic analysis, RFs were combined 

with a single clinical variable due to incomplete clinical information across datasets. 

These studies were developed for overall survival (OS) prediction in GBM under two 

different settings while maintaining model interpretability by limiting the feature 

set to a maximum of 10 features. First, on BraTS 2020 and RHUH-GBM datasets, 

which used the same contouring format from the BraTS Challenge and were pre-

processed through the widely used pipeline, we developed a novel hybrid feature 

selection method (LASSO-PSO). LASSO-PSO boosted radiomic model performance 

and achieved generalisable, state-of-the-art results, supported by external 

validation. Second, a radiomic model was developed using as few as two robust and 

reproducible RFs since many RFs extracted from the BraTS 2020 and STORM_GLIO 

datasets showed higher instability. This instability stemmed from differences in 

preprocessing pipelines and contouring formats across datasets. The radiomic 

model achieved moderate C-index performance when utilising a single contour and 

MRI sequence, suggesting potential applicability across different clinical challenges 

and limitations. 
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Contributions 

This thesis is my own words. The contributions with published materials were 

linked as follows: 

(a) As presented in Chapter 2, the study served as the preprocessing pipeline for the 

radiomic analysis and the automated segmentation study on the local dataset. 

• Our study showed that the Brain Tumor Segmentation Challenge (BraTS) 

preprocessing pipeline was not directly applicable to our local dataset 

(STORM_GLIO), which utilises clinically defined contours (Gross Tumour Volume, 

GTV) for radiotherapy treatment planning. Therefore, we optimised the pipeline to 

minimise potential contour distortions and MRI artefacts. These modifications 

included integrating a state-of-the-art skull stripping technique and removing 

registration to the MRI-based normal brain reference from the preprocessing 

pipeline. 

• The proposed pipeline’s output was validated by our clinicians, enabling 

interoperability between the tumour core (TC) and GTV contouring formats in 

segmentation and radiomic analysis. 

(b) As presented in Chapter 3, the research explored novel feature selection 

strategies for survival prediction using a widely used preprocessing pipeline 

together with its corresponding contouring format: 

• A novel hybrid feature selection method was developed to select up to 10 

radiomic features (RFs) by following radiomic guidelines to enhance 

generalisability and interpretability of radiomic models across multi-institutional 

datasets. 

• The model yielded performance comparable to that of leading Deep Learning 

(DL) models in stratification ability.  
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(c) As presented in Chapter 4, the study evaluated risk stratification across multi-

institutional datasets, testing different preprocessing pipelines and assessing 

contouring interoperability by comparing the BraTS Challenge contours and 

clinically defined contours for radiomic overall survival (OS) analysis:  

• The study conducted a robustness analysis with image perturbation 

techniques to identify stable RFs, addressing instability observed across open-

access and local GBM datasets processed with different preprocessing methods and 

contouring formats. 

• This study leveraged the largest reported cohort for OS analysis, including 

289 GBM patients from multiple institutions. To support interpretability and 

address real-world limitations, the study explored a minimal feature set, with only 

age as the clinical variable and two stable RFs, using minimal imaging input: a single 

contour and one MRI sequence. 

(d) As presented in Chapter 5, the study searched for computationally efficient 

strategies for enhanced brain tumour segmentation under the domain-specific 

requirements of our local dataset: 

• The study proposed a strategy to improve the generalisability of DL models 

trained on TC segmentation (the BraTS contouring format) for clinically defined 

contours, specifically GTV. 

• By integrating different intensity normalisation techniques (Z-score and 

Nyul) during preprocessing and combining the outputs of the trained models 

(across three segmentation approaches that incorporate tumour characteristics) 

through weighted ensemble learning, RFS+ enhanced generalisability and 

performance under limited VRAM and training time. 
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1. Introduction 

1.1 Outline 

1.1.1 Aim of the work  

The primary objective of this thesis is to develop a radiomics-enhanced machine 

learning (ML) classifier designed to assist clinicians in facilitating more personalised 

treatment decisions and potentially leading to enhancing survival outcomes for 

patients with glioblastoma multiforme (GBM). The aims to optimise radiomic 

analysis for the survival analysis of GBM are as follows: 

i) Establishing a radiomic workflow in clinical settings that utilises 

standardised radiomic features (RFs) through the implementation of various 

preprocessing techniques, such as intensity normalisation, voxel resampling, and 

discretisation, while minimising resource requirements through the utilisation of a 

single clinical contour (Gross Tumour Volume, GTV) and one Magnetic Resonance 

Imaging (MRI) sequence. This approach addresses practical limitations regarding 

available imaging data and contouring resources in routine clinical practice. 

ii) Enhancing automated segmentation that enables accurate, standardised, 

reproducible delineation of regions of interest (ROI) within medical images, 

improving efficiency and reliability in clinical settings. This automated approach 

establishes the essential groundwork for reliable downstream processing, 

facilitating reproducible radiomic feature extraction and comprehensive analytical 

evaluation.  

iii) Developing a highly interpretable ML model that incorporates a minimal 

number of robust RFs and a limited number of MRI sequences for GBM survival 

analysis in clinical settings.  

By achieving these objectives, the study seeks to create streamlined and transparent 

tools that facilitate reliable survival predictions and enhance the quality and 

personalisation of radiotherapy treatment planning, ultimately supporting clinical 

decision-making in the management of GBM patients. This research is specifically 
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designed to target patients diagnosed with GBM, a highly aggressive and malignant 

form of primary brain cancer classified as grade IV, according to the World Health 

Organization (WHO). Although the primary focus of this study is on GBM, the 

methodologies developed and employed in this thesis research have the potential to 

be extrapolated to other gliomas and may provide valuable insights to inform future 

studies in the realm of neuro-oncology, thereby contributing to the advancement of 

our understanding and treatment of malignant brain tumours.
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1.1.2 Thesis Structure 

Figure 1.1 presents a schematic map illustrating the flow and relationships between chapters.

 

Figure 1.1 The thesis overview.
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Chapter 1 provides the necessary background for the work presented. It introduces 

key concepts of GBM, medical imaging in GBM, treatments, and radiomics workflow. 

A brief general literature overview is provided, with more in-depth and critical 

discussions of specific literature appearing in subsequent chapters. 

Chapter 2 provides a comprehensive overview of the preprocessing pipeline used in 

the Brain Tumor Segmentation Challenge (BraTS) for MRI sequences specific to 

GBM, including comparative analyses. It further details subsequent modifications 

made to the pipeline to facilitate radiomics analysis and support automated 

segmentation research in clinical settings, which are presented in Chapters 3, 4, and 

5. 

Chapter 3 develops a radiomic-based overall survival (OS) analysis, employing a 

novel hybrid Swarm Intelligence (SI)-based feature selection method to maximise 

the predictive performance under radiomic research guidelines. Designed for 

clinical applications and aligned with radiomic study guidelines, this approach 

integrates interpretable, traditional ML models to improve prognostic assessment. 

The chapter evaluates various feature selection methods, including the established 

Least Absolute Shrinkage and Selection Operator (LASSO)-based ranking method 

and two novel hybrid feature selection approaches. The aim is to maximise the risk-

stratification model performance of OS analysis for GBM, incorporating up to ten 

RFs derived from three tumour regions (enhancing tumour (ET), tumour core (TC), 

and whole tumour (WT)) and two MRI sequences (T1-weighted (T1) and Fluid-

Attenuated Inversion Recovery (FLAIR)). 

Chapter 4 focuses on developing a reproducible and highly interpretable ML model 

for GBM survival analysis under clinical limitations. The model is designed to 

operate within clinical settings by utilising a minimal set of two robust RFs and MRI 

sequences, ensuring practical applicability while maintaining predictive 

performance. 

Chapter 5 focuses on the development of Deep Learning (DL)-based auto-

segmentation methods for brain tumours, with an emphasis on enhancing 
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automated segmentation techniques for clinical-based contouring (GTV). The 

chapter details the resource-efficient approach that enhances brain tumour 

segmentation in clinical settings by combining multiple models and normalisation 

techniques.  

Chapter 6 provides a critical evaluation of the optimisation strategies explored for 

radiomic analysis, with a particular focus on their efficacy and potential for clinical 

implementation. The findings from this research not only consolidate the research 

presented in the thesis but also lay the groundwork for future studies in automated 

medical image analysis and personalised medicine in neuro-oncology. 
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1.2 Preview 

This introductory chapter presents a comprehensive overview of GBM, highlighting 

the challenges associated with its treatment and the pivotal role of medical imaging 

in its management. It also discusses advanced medical image analysis techniques 

and outlines future directions, with a focus on emerging technologies such as novel 

imaging biomarkers and personalised treatment approaches. 

1.3 Glioblastoma Multiforme  

Globally, cancer affects millions of patients each year, with brain tumours 

representing a significant and particularly challenging subset. Among brain 

tumours, GBM stands out as the most frequent and aggressive primary malignancy. 

GBM accounts for approximately 57% of all gliomas and 48% of all primary 

malignant central nervous system (CNS) tumours. Its incidence increases with age, 

and it disproportionately affects men, accounting for approximately two-thirds of 

all cases. In the United States, the prevalence of GBM is reported to be 9.23 per 

100,000 population [1]. GBM is characterised by its poor prognosis, with a median 

survival of only about 15 months [2], making it one of the most rapidly lethal forms 

of cancer. 

1.4 Defining Brain Structure and Function 

Understanding brain tumours requires a foundational knowledge of normal brain 

structure and function. The brain, as a part of the CNS, is a complex organ with 

distinct regions and cell types, each playing crucial roles in human physiology and 

cognition. The nervous system is broadly divided into two main components: the 

CNS and the peripheral nervous system. The CNS, which is the focus of this thesis, 

encompasses the brain and spinal cord. At its most basic level, the CNS is composed 

of neurons, the fundamental units of the nervous system, and supporting cells called 

neuroglia [3]. 
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The brain itself can be categorised into three major divisions: 

• Forebrain: This includes the cerebrum, the largest part of the brain 

responsible for higher-order functions, and the diencephalon. 

• Midbrain:  Connecting the pons and cerebellum to the forebrain. 

• Hindbrain: Comprising the medulla oblongata, pons, and cerebellum. 

The brainstem, a critical structure, includes the medulla oblongata, pons, and 

midbrain [4].  

The CNS is comprised of two primary components: grey matter and white matter. 

Grey matter is characterised by the presence of neuronal cell bodies and dendrites, 

whereas white matter is composed exclusively of axons, also known as nerve fibres. 

The distinctive grey colouration of grey matter is due to the high concentration of 

neuronal cell bodies and their associated organelles. In contrast, white matter owes 

its name to the abundance of myelinated nerve fibres, which are enveloped by a 

lipid-rich myelin sheath comprising 70-80% lipid material [5]. This myelin sheath is 

responsible for the white appearance of white matter. 

The nervous system covers two fundamental cell types: neurons and glial cells, 

which are shown in Figure 1.2. Neurons propagate electrical and chemical signals, 

while glial cells play important roles in modulating neuronal activity and supporting 

signal transmission [6]. Glial cells, accounting for approximately 90% of the brain's 

cellular composition, provide essential support and functional regulation for 

neurons. The CNS contains three main types of glial cells: astrocytes, 

oligodendrocytes, and microglia. Astrocytes are the most abundant glial cells, 

characterised by their star-shaped morphology. They provide essential structural 

and metabolic support to neurons. Oligodendrocytes, which have small cytoplasm, 

extend multiple processes that form myelin sheaths. Microglia, the smallest glial 

cells in the CNS, function as immune cells that remove debris[7]. Grade IV 
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astrocytoma, widely known as GBM, originates from astrocytes and is characterised 

by rapid proliferation and a poor prognosis [8]. 

 

 

 

Figure 1.2 Healthy Brain Cells: Neuron, Oligodendrocyte, Astrocyte[8]. Astrocytic and 
oligoastrocytic glial tumour types of these healthy cells were classified as GBM[9].  

1.5 Brain Tumours: Definition, Types, and Classification 

A tumour is an abnormal growth of cells in the body, primarily caused by errors in 

the genetic code that controls cell division. These genetic alterations disrupt the 

normal cell cycle, inhibiting programmed cell death (apoptosis) and driving 

excessive cell growth (proliferation). As a result, these malfunctioning cells 

accumulate, forming a mass of tissue that we call a tumour. In the context of brain 

tumours, this process occurs within the confines of the non-elastic, stiff skull, 

leading to neurological symptoms and signs even before treatment begins [10]. 

Tumours can be classified into two main categories based on their behaviour and 

potential impact: i) Benign tumours: These are non-cancerous growths that 

generally remain localised. They tend to have well-defined borders and don't 

infiltrate surrounding tissues or metastasise to distant sites. However, their growth 

can still cause local pressure effects. ii) Malignant tumours: These cancerous 
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growths are characterised by their ability to invade surrounding tissues and 

potentially metastasise to other parts of the body through the bloodstream or 

lymphatic system. Brain tumours are further categorised based on their origin: i) 

Primary Brain Tumours: These originate in the brain itself and can be either low-

grade or high-grade. ii) Secondary (Metastatic) Brain Tumours: These originate 

from cancers in other parts of the body and spread to the brain, which is the most 

frequent brain tumour in adults [11]. The WHO has established a grading system for 

brain tumours, which is crucial for treatment planning and prognosis: i) Grade 1 and 

2: Low-grade tumours, which grow slowly. ii) Grades 3 and 4: High-grade tumours, 

which grow more rapidly. Glioblastoma, the focus of this thesis, is classified as a 

Grade 4 tumour in the 2021 WHO report on brain tumours [12], representing the 

highest level of malignancy. The first step in managing brain tumours, as with other 

cancers, is to achieve an accurate diagnosis by identifying the current extent of the 

disease, referred to as staging [13]. This process heavily relies on medical imaging, 

which forms the foundation for the radiomic analyses explored in this thesis. The 

unique challenges posed by brain tumours, such as their location within the skull 

and their potential to cause significant neurological deficits regardless of 

malignancy, underscore the critical importance of advanced imaging and analysis 

techniques in their management. 

1.6  Traditional Treatments in Glioblastoma Multiforme 

Although significant progress has been made in the molecular and cellular aspects 

of glioma biology, GBM patients have poor prognosis, highlighting the significant 

challenges in translating basic scientific insights into efficient clinical treatments. 

Currently, the conventional therapeutic options, encompassing surgical resection, 

radiotherapy, and temozolomide (TMZ) chemotherapy, yield a median OS of 

approximately 15-18 months [14] in selected patient cohorts enrolled in clinical 

trials, accompanied by a 5-year survival rate of under 10% [15], [16], [17]. GBM is a 

highly malignant and aggressive brain tumour that poses significant therapeutic 

challenges owing to its diffuse infiltrative growth pattern [18] and inherent 

resistance to established treatment modalities [19]. The standard therapeutic 
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strategy typically begins with extensive surgical resection to remove as much of the 

tumour tissue as possible. 

1.6.1 Surgical Resection 

Surgical resection of brain tumours emerged as a viable treatment option in the 

early 1980s. However, the field of neurosurgery experienced a paradigm shift with 

the advent of frameless stereotaxy in the 1990s. This groundbreaking innovation 

significantly advanced the precision and efficacy of surgical tumour removal 

techniques. Image-guided surgery has significantly enhanced the precision of 

surgical instrument placement in neurosurgical procedures. Advanced imaging 

techniques such as MRI have revolutionised the ability to accurately delineate 

tumour margins [20], [21]. 

The extent of tumour resection, often described as gross total resection (GTR), is an 

important determinant of treatment outcomes in brain tumour surgery. In the case 

of highly aggressive tumours such as GBM, advances in surgical methodologies and 

technologies have substantially improved the quality and effectiveness of 

treatments. A significant correlation has been established between the degree of 

tumour resection and patient survival rates, underscoring the importance of 

achieving GTR in the surgical management of brain tumours, particularly for 

patients with GBM [22]. 

Intraoperative imaging modalities, such as fluorescence-guided surgery, offer a real-

time solution for accurately delineating tumour margins during neurosurgical 

procedures. This is particularly crucial in addressing the complex challenge of "brain 

shift", a phenomenon characterised by the dynamic displacement of brain tissue 

during surgery, resulting in discrepancies between the pre-operatively planned 

tumour location and its actual position in the operating room [23]. This imaging 

modality facilitates the identification of residual cancer tissue following tumour 

resection, thereby enabling a more precise removal of cancerous tissue and 

ultimately refining the surgical approach to improve patient outcomes. 
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1.6.2 Chemotherapy 

Following surgical resection, the standard treatment protocol for GBM involves a 

multimodal approach combining TMZ chemotherapy with radiotherapy [24]. This 

regimen typically consists of a 6-week phase of concurrent TMZ and radiation, 

followed by an adjuvant TMZ phase. TMZ elicits its anti-tumour effects through a 

dual mechanism, involving both direct cytotoxic damage to tumour cells and indirect 

induction of programmed cell death pathways, including apoptosis, autophagy, and 

cellular senescence [25]. Additionally, TMZ has been shown to enhance the efficacy 

of concurrent radiotherapy, resulting in a synergistic increase in treatment 

efficiency [26]. Notwithstanding its therapeutic benefits, TMZ therapy is 

accompanied by considerable side effects, such as hematologic (blood-related) 

toxicity and thrombocytopenia (a decrease in thrombocyte count) [27]. 

1.6.3 Radiation therapy 

Radiotherapy is an important treatment modality for GBM, especially for addressing 

microscopic cancer cells that are inaccessible to surgical resection. Modern 

radiotherapy employs X-ray photons, gamma photons, and protons, typically 

administered over a 6-week period. Three-dimensional conformal radiation therapy 

(3D-CRT) facilitates the delivery of precise radiation beams, informed by Computed 

Tomography (CT) and MRI guidance, with a 1-2 cm margin surrounding the tumour 

[28]. 3D-CRT utilises X-rays to target the tumour, inducing both direct and indirect 

Deoxyribonucleic acid (DNA) damage through low-linear energy transfer 

interactions. Despite the inherent complexity of 3D precise targeting, this approach 

enables the effective treatment of residual GBM cells while minimising side effects, 

thereby offering a therapeutic advantage over conventional methods [29]. The 

treatment of GBM has shown improved outcomes with the use of combination 

therapies. Notably, the application of carbon proton irradiation in conjunction with 

TMZ has demonstrated enhanced OS rates compared to TMZ paired with proton-

induced irradiation. However, a significant obstacle hindering the effectiveness of 

radiotherapy at the cellular level is the issue of oxygenation, as the oxygen levels 

within cells play a crucial role in determining the success of radiotherapy, and 

hypoxic conditions can limit its efficacy [29], [30]. 
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Heterogeneity in cancer is a challenging issue that significantly impacts the 

treatment of highly heterogeneous GBM. Additionally, drug delivery to the target 

site is hindered by multiple barriers: the blood-brain barrier (BBB) [31], cancer 

stem cells (CSCs) [32], the intertumoural heterogeneity in GBM [33] and the unique 

brain microenvironment [15], making it a major obstacle to overcome in GBM 

treatment. Researchers are exploring new treatments for glioblastoma, including 

immunotherapy (Chimeric antigen receptor (CAR) T-cell) [34], targeted therapy 

[35]. Nanomedicine is an emerging treatment approach for GBM, which seeks to 

effectively deliver therapeutic agents to the brain and is currently being evaluated 

in ongoing clinical trials [36]. Additionally, a ketogenic diet [37], high in fat and low 

in carbohydrates, has shown promise as an adjuvant therapy, potentially impairing 

cancer cell growth and survival. These novel approaches aim to improve the quality 

of GBM treatment. Ongoing clinical trials are investigating the effectiveness of these 

treatments, alone and in combination, to determine their optimal use in GBM 

treatment [38]. GBM treatment and management can be enhanced through 

personalised medicine (or precision medicine), aligning with the National Health 

Service (NHS) aims in the United Kingdom to enhance patient care [39]. This method 

can incorporate medical imaging analysis, specifically radiomics, as a tool for risk 

stratification and prognostic prediction [40]. Additionally, invasive methods such as 

biopsy have limitations due to the genetic heterogeneity of GBM tumours, as they 

can only obtain samples from a small, localised portion of the tumour [41]. In 

contrast, radiomics can assist a more comprehensive assessment of tumour 

characteristics by analysing the entire lesion non-invasively [42]. 

1.7 Diagnostic Imaging for Brain Tumours 

Advanced imaging technologies are essential tools in modern medicine, providing 

non-invasive methods to visualise internal anatomical structures and physiological 

processes, particularly in the context of brain tumour diagnosis and treatment. 

These techniques allow clinicians to assess intracranial conditions without 

resorting to exploratory surgery, significantly improving patient care and outcomes. 

These imaging modalities serve multiple purposes throughout the patient care 

continuum, from initial detection and diagnosis to treatment planning, monitoring 
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therapy response, and long-term surveillance. The ability to generate detailed, 

three-dimensional (3D) representations of brain anatomy and function has 

revolutionised neuro-oncology, enabling more precise and personalised treatment 

strategies.  

For individuals presenting with neurological symptoms, neuroimaging is a critical 

diagnostic step. Two primary modalities dominate this field: CT and MRI. 

1.7.1 Computed Tomography 

CT is a key imaging modality used to generate cross-sectional images representing 

a patient's anatomy [43]. The fundamental process involves an X-ray tube (source) 

and detector, with the patient positioned between them (shown in Figure 1.3a). The 

X-ray beam is rapidly rotated around the patient's body, producing tomographic 

(cross-sectional) images, or 'slices', which are then used by computer algorithms to 

reconstruct a 3D volume. The same figure demonstrated the first CT scan for 

prognostic tool (b) and the recent post-contrast CT scan (c). 

 

Figure 1.3 Introduction to Computed Tomography: a) a visual representation of a CT 
scanner [44] b) the first CT scan as a prognostic tool, 1971, London, UK [45] c) a 

modern post-contrast CT scan [46]. 

The principle behind CT imaging lies in the differential attenuation of X-rays by 

various tissues. Tissues with higher density, characterised by a higher atomic 

number, exhibit increased X-ray attenuation. This differential attenuation is 

quantified using Hounsfield Units (HU), creating a spectrum from air (-1000 HU) to 

bone (+1000 HU). Figure 1.4 illustrates the various tissue intensities of a human 
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brain in greyscale [47] and shows different tissue densities for CT brain scans in HU 

scale from -1000 to 1000+ for CT [48]. 

 

Figure 1.4 Hounsfield scale ranging from -1000 to 1000+ for different tissue 
intensities [48].  

The ability of CT to differentiate tissues based on density makes it particularly useful 

for identifying certain types of brain abnormalities, especially those involving bone, 

bleeding, or calcification. However, it's important to note that CT involves ionising 

radiation, which carries potential health risks that must be considered when 

choosing imaging modalities. CT imaging offers several key benefits: a) Speed: CT 

scans can be performed rapidly, which is crucial for time-sensitive cases like trauma. 

b) Haemorrhage detection: CT excels in visualising blood in meningeal spaces and 

brain tissue. c) Paediatric trauma: CT is often the preferred choice for assessing 

injuries in children. d) Bone visualisation: CT provides exceptionally clear images of 

skull fractures and other bone abnormalities. e) Cost-effectiveness: CT is generally 

less expensive than MRI. However, CT also has limitations: a) soft tissue contrast: 

CT is less effective at detecting ischemia, infarcts, and brain oedema compared to 

MRI. b) Grey-white matter differentiation: CT cannot distinguish as clearly between 

grey and white matter as MRI can. These characteristics make CT an invaluable tool 

in emergency settings and for initial assessments, but it may be complemented by 

MRI for more detailed soft tissue evaluation in non-urgent scenarios. 

1.7.2 Magnetic resonance imaging  

MRI exploits the abundant presence of protons, particularly hydrogen nuclei, in 

human tissues to generate high-resolution images of anatomical structures[49], 

which is shown in Figure 1.5. The fundamental principle underlying MRI is based on 

the magnetic moments arising from the nuclear spin [50]. 
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Figure 1.5 Introduction to Magnetic Resonance Imaging: a) A whole-body 3T MRI 
scanner is designed to provide high-resolution imaging of all anatomical regions. 
This system includes a superconducting magnet with a horizontal, solenoid main 
field. During imaging, the patient is positioned at the centre of the tunnel. b) T2-

weighted (T2) axial brain scans with hyperintense tumoural lesion [51].  

These protons, behaving analogously to miniature bar magnets, exhibit a spin 

characteristic that causes them to rotate or align when subjected to an external 

magnetic field [52]. In the absence of such a field, the magnetic moments of these 

protons are randomly oriented due to the influence of local magnetic fields 

generated by surrounding electrons. MRI technology harnesses the magnetic 

susceptibility of these protons to produce detailed images of the brain and other 

bodily structures [47]. The imaging process involves the application of a 

radiofrequency pulse (RP), which is essentially a brief transmission of radio waves 

within the magnetic field encompassing the patient. The intensity of this RP can be 

modulated depending on the specific imaging protocol employed. The concept of 

resonance in MRI refers to the phenomenon where protons absorb the radio wave 

energy when the frequency of the RP matches their precession frequency. Upon 

termination of the RP, excited protons revert to their equilibrium state through 

relaxation processes. This relaxation results in the emission of electromagnetic 

energy, manifesting as a detectable signal. In clinical MRI, this signal is typically 

measured in the form of an "echo". This echo is captured by specialised receiver coils 

and then processed and digitised to construct a visual representation of the targeted 

anatomical region, such as the brain [47]. The unique ability of MRI to manipulate 

and detect these subtle magnetic interactions at the atomic level allows for the 
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generation of highly detailed soft tissue images, making it an invaluable tool in 

neuroimaging and the diagnosis of brain tumours. The "echo" from relaxed protons 

is detected, and the variations in these time constants contribute to the construction 

of T1 and T2 images. T1 represents the time constant for protons realigning with 

the magnetic field axis, while T2 denotes the time constant for proton dephasing, 

also known as T2 decay. Increased T1 and T2 relaxation times result in darker T1 

scans and brighter T2 scans compared to surrounding normal tissues (shown in 

Figure 1.6).  

 

Figure 1.6 Magnetic Resonance Imaging Sequences: a) T1-weighted Contrast-
enhanced (T1ce) axial MRI scan showing a large enhancing, isointense lesion with 

oedema b) T2 axial MRI scan showing a hypointense mass with surrounding oedema 
(from our local dataset: STORM_GLIO) [53]. 

By manipulating radiofrequency pulse timing and sequences, clinicians can 

selectively produce T1 or T2 images. Advanced techniques like diffusion-weighted 

imaging and magnetic resonance spectroscopy offer additional tumour 

characterisation capabilities [54]. A standard MRI system incorporates a 

superconducting magnet generating a static magnetic field, typically 1.5 or 3 Tesla. 

This magnet houses radiofrequency transmitter and receiver coils for nuclear spin 

excitation and signal detection, alongside gradient coils for spatial encoding. The 

detected radiofrequency signals undergo analogue-to-digital conversion and 

Fourier transformation to reconstruct images. While MRI offers superior soft tissue 

contrast compared to CT, it necessitates longer acquisition times. Patient motion, 
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including physiological movements, can induce phase errors and consequent image 

artifacts. Advanced acquisition strategies and fast imaging sequences, such as 

breath-hold sequences and cardiac gating, have been developed to mitigate motion-

related artifacts and reduce scan duration. MRI provides unique tissue 

characterisation capabilities, which are particularly advantageous in neuroimaging. 

Notably, MRI's utilisation of non-ionising electromagnetic radiation presents a 

significant safety advantage over CT's X-ray-based approach [54]. Three primary 

terms are employed to describe signal intensities in T1 and T2 images: 

hyperintense, hypointense, and isointense. These descriptors are used to 

characterise lesions relative to healthy brain tissue. In T1 imaging, hyperintensity 

refers to a signal shift towards the appearance of fat tissue, manifesting as increased 

whiteness compared to surrounding brain tissue. Conversely, in T2 imaging, 

hyperintensity denotes a signal shift towards the appearance of cerebrospinal fluid, 

which typically appears white in normal subjects. In both T1 and T2 sequences, 

hypointensity describes a signal shift towards the appearance of air or bone, 

resulting in a darker appearance relative to surrounding brain tissue. Isointensity is 

characterised by similar grey shades or textures between the lesion and adjacent 

brain tissue, indicating comparable signal intensities [47]. These relative signal 

intensities play a crucial role in lesion detection and characterisation, aiding in 

differential diagnosis and treatment planning. 

Comparative Analysis of MRI and CT: Advantages and Limitations 

MRI offers significant advantages over CT in neuroimaging. Primarily, MRI's 

versatility allows for the visualisation of a wide spectrum of both physiological and 

pathological brain structures through various pulse sequence manipulations. 

Furthermore, MRI provides superior soft tissue contrast, enabling detailed 

characterisation of both normal and abnormal brain tissue. However, MRI is not 

without limitations. Several key disadvantages warrant consideration: 

Limited sensitivity to acute haemorrhage: MRI may fail to adequately depict acute 

or subacute subarachnoid haemorrhage or intraparenchymal bleeding, potentially 

leading to missed diagnoses in critical cases. 
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Prolonged acquisition times: The extended duration required for MRI scanning 

renders it suboptimal for acute cases or trauma scenarios where rapid imaging is 

crucial. 

Higher cost: MRI examinations generally require greater expenses compared to CT 

scans, which may impact resource allocation and patient access. 

Acoustic noise: The considerable noise generated during MRI sequences can be 

problematic, particularly for paediatric patients or those with heightened sensitivity 

to auditory stimuli. 

These factors underscore the importance of judicious selection between MRI and CT 

modalities based on clinical context, patient characteristics, and resource 

availability [47]. Additionally, MRI provides limited bone detail and suboptimal 

visualisation of calcifications, which can be crucial in specific diagnostic scenarios. 

Magnetic Resonance Imaging for Characterising Brain Tissue 

MRI offers multiplanar capabilities, allowing for visualisation of the brain in axial, 

coronal, and sagittal planes (Figure 1.7). While axial imaging remains the standard 

for routine brain examinations, all planes provide valuable diagnostic information 

and can be utilised based on specific clinical requirements. 

 

Figure 1.7 Planes for Brain Imaging: a) Axial plane b) Coronal plane c) Sagittal plane 

for T1ce MRI sequence (obtained from our local dataset: STORM_GLIO [53]) 
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 The superiority of MRI over CT in neuroimaging is primarily attributed to its 

enhanced spatial and contrast resolution. MRI facilitates exquisite delineation of 

brain anatomy and provides superior characterisation of pathologies, particularly 

those in proximity to the skull base, which are often poorly visualised on CT. The 

FLAIR sequence (shown in Figure 1.8), a specialised MRI technique, further 

augments the visibility of brain pathologies by suppressing the cerebrospinal fluid 

signal, thus increasing lesion conspicuity. 

 

Figure 1.8 Widely used Magnetic Resonance Imaging Sequences: a) T1ce sequence, b) 
T1 sequence c) FLAIR Sequence for a GBM patient in the STORM_GLIO dataset [53]. 

The application of contrast enhancement in MRI significantly improves diagnostic 

yield, particularly in the evaluation of neoplastic processes. Paramagnetic contrast 

agents, typically gadolinium-based, accumulate in areas of BBB disruption, resulting 

in hyperintense signals on T1 images, thereby ET visibility and characterisation. 

While the spectrum of intracranial neoplasms is vast, this research focuses 

specifically on GBM, an aggressive entity within the broader category of gliomas, 

tumours arising from glial cell lineages. GBMs typically exhibit heterogeneous signal 

characteristics on MRI. On T1 sequences, these lesions generally demonstrate 

hypointensity relative to healthy brain tissues, whereas T2 sequences reveal 

hyperintensity. This signal pattern reflects the complex histopathological features 

of GBM, including areas of necrosis, haemorrhage, and vasogenic oedema. The 

integration of advanced MRI techniques, including perfusion-weighted imaging, 

diffusion tensor imaging, and magnetic resonance spectroscopy, offers additional 
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avenues for tumour characterisation, treatment planning, and response assessment 

in GBM management. These modalities provide insights into tumour vascularity, 

cellular density, and metabolic profile, respectively, enhancing our understanding of 

tumour biology, potentially guiding personalised therapeutic approaches and 

assessing treatment response [55]. 

1.7.2.1 Repetition Time (TR) and Time to Echo (TE) 

In MRI, two critical parameters that govern image contrast and quality are TR and 

TE, which are shown in Figure 1.9. These parameters are fundamental to pulse 

sequence design and optimisation. TR is defined as the temporal interval between 

successive radiofrequency excitation pulses applied to the same slice or volume of 

tissue. This parameter primarily influences T1 contrast in the resultant images. TE, 

conversely, refers to the duration between the initial radiofrequency excitation 

pulse and the peak of the echo signal during signal acquisition. TE is a critical 

determinant of T2 contrast in MRI images. The manipulation of TR and TE allows for 

the generation of various contrast mechanisms in MRI, including T1, T2, and proton 

density-weighted images. This versatility in contrast manipulation underlies the 

diagnostic utility of MRI across numerous clinical applications, particularly in 

neuroimaging for the characterisation of brain tumours. 

 

Figure 1.9 TR and TE of spin echo sequence[56].  

MRI Sequences in Advanced Neuroimaging: MRI employs a variety of pulse 

sequences to generate images with different tissue contrasts, each offering unique 

diagnostic information. The most frequently utilised sequences in clinical practice 

are T1 and T2. T1 sequences are characterised by short TR and TE parameters. 

These sequences predominantly reflect the T1 relaxation properties of tissues, 

determining image contrast and signal intensity. T1 images are particularly useful 

for delineating anatomical structures and detecting fat-containing lesions. 
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Conversely, T2 sequences employ longer TR and TE times. The resultant images 

primarily reflect the T2 relaxation characteristics of tissues, providing excellent 

contrast for pathological processes associated with increased tissue water content, 

such as oedema or inflammation. FLAIR sequences represent a modification of T2 

imaging, utilising an inversion recovery pulse to nullify the signal from 

cerebrospinal fluid. This technique enhances the visibility of periventricular and 

cortical lesions by suppressing the high signal intensity typically observed in fluids 

on T2 images. An additional important sequence in neuro-oncological imaging is 

T1ce scans. This technique involves the intravenous administration of a gadolinium-

based contrast agent prior to image acquisition. Gadolinium, a non-toxic 

paramagnetic substance, enhances the visibility of lesions with disrupted BBB, such 

as many primary and metastatic brain tumours. The strategic application of these 

diverse MRI sequences allows for the comprehensive characterisation of brain 

pathologies, facilitating accurate diagnosis and treatment planning in neuro-

oncology. The integration of advanced quantitative and functional MRI techniques 

further augments the diagnostic capabilities of conventional sequences, providing 

insights into tumour biology and treatment response. Advancements in 

neuroimaging techniques have expanded their applicability in the diagnosis and 

prognosis of GBM, facilitating their integration into personalised medicine 

(precision oncology) [40]. 

1.8 Precision Oncology in the Treatment of Glioblastoma Multiforme 

Supporting the NHS’s objective of improving treatment quality [39], personalised 

medicine is important in oncology, also known precision oncology, particularly for 

handling the challenges of GBM management [57]. Precision oncology describes a 

paradigm shift of therapeutic strategies in cancer, utilising a sophisticated approach 

that treats each tumour as a unique fingerprint rather than applying a one-size-fits-

all strategy. It is a personalised approach to cancer treatment that aims to enhance 

the quality of care by tailoring therapy to individual tumours’ unique genetic and 

molecular characteristics. This can be achieved through omics analysis, which 

encompasses genomics, pathomics, and radiomics, providing a comprehensive 

understanding of the tumour’s genetic, pathological, and radiological 
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characteristics. By leveraging these precision biomarkers [58], precision oncology 

enables the identification of optimal therapy options, resulting in more effective 

treatment strategies that are specifically tailored to each patient's distinct tumour 

characteristics. By addressing the challenges outlined in the previous section and 

harnessing biomarkers, the outcomes for patients with GBM can be improved. 

Radiomics, the focus of this thesis, is poised to play a substantial role in the future 

of precision oncology [40]. 

1.9 Radiomics Overview 

Radiomics is an evolving field in medical image analysis that contains the extraction 

of complex, high-dimensional quantitative features from medical images, offering 

potential enhancement for the understanding of tumour biology [59]. The diagnosis, 

grading, and characterisation of brain tumours typically rely on invasive biopsies 

[60]. However, due to the inherent genetic heterogeneity within GBM tumours, 

biopsy samples often yield limited information, as they are restricted to a small, 

localised region of the tumour tissue [41]. According to Beig et al. [42], image 

analysis utilising radiomics holds promise as a potential alternative to biopsies, 

especially in cases where biopsy procedures are not feasible or pose significant risks 

to the patient. Radiomic analysis targets to uncover hidden patterns and subtle 

features that are imperceptible to the human eye, transcending the limitations of 

visual evaluation by physicians and potentially enhancing the outcomes of 

personalised and precise patient care, as noted by Gillies et al. and Shaheen et al. 

[61], [62]. 

As artificial intelligence (AI) continues to advance, the field of radiomics has 

diverged into two distinct areas. Despite the well-defined engineered features 

grounded in mathematical concepts, the deep features extracted from AI-based 

medical imaging analysis are hindered by the "black box" issue, stemming from 

complex decision-making processes involving non-linear relationships. This is 

occurring against a backdrop of increasing calls for transparency in AI-driven 

medical image analysis. The opaque nature of AI poses significant challenges in 

healthcare, where interpreting the rationale behind decisions is crucial [63]. 
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Although Explainable AI (XAI) techniques provide a means to glimpse into these 

models, they occasionally fail to capture the full scope of computational complexity, 

which could lead to discrepancies with established clinical practices [64]. Due to the 

limitations posed by the black box issue, this thesis focuses exclusively on 

engineered features. 

On the other hand, the field of engineered radiomics faces significant challenges 

regarding reproducibility and validation. The diverse software implementations 

available can produce varying RFs from identical medical images, leading to 

inconsistent outcomes. Moreover, the lack of feature reproducibility across different 

datasets presents a substantial obstacle for the external validation of radiomics-

based models [61], [65]. In response to these challenges, the Image Biomarker 

Standardisation Initiative (IBSI) conducted a comprehensive study examining 

radiomics reproducibility, with the goal of establishing standardised RFs for the 

clinical use [66]. 

Based on the radiomics guidelines [67], [68], there are several steps for radiomic 

analysis, namely: image acquisition, data curation (image processing), image 

segmentation, feature extraction, feature selection, and model building. The 

radiomic workflow is shown in Figure 1.10. 
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Figure 1.10 The radiomic workflow. 

1.9.1 Acquisition and Data Curation 

The acquisition step of the radiomics analysis requires a high-quality image, which 

is obtained using specialised scanners such as CT, MRI or Positron Emission 

Tomography (PET). These modern imaging devices have a wide range of acquisition 

and image reconstruction protocols, but standardisation across medical imaging 

centres is often challenging. While routine radiologic features used in clinical 

practice are not affected by this variability, variations in acquisition and 

reconstruction parameters can introduce changes in image analysis that are 

unrelated to biological effects, thereby impacting the extraction of meaningful 

information from numeric biomarkers in radiomics [61]. 

Complex medical imaging studies, like those utilising multi-sequence MRI, are 

becoming more prevalent in GBM research, the focus of this thesis. However, 

analysing the resulting data poses challenges due to intensity variability in MRI 

scans, which makes comparisons between study visits or subjects difficult. The 

intensity variability in MRI necessitates a critical preprocessing step known as 
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intensity normalisation, which reduces inconsistencies originating from variations 

in scanner parameters, patient positioning, and acquisition protocols. Additionally, 

this preprocessing step minimises significant intensity fluctuations across imaging 

datasets, which could compromise the accuracy of radiomic analyses [69], [70], [71]. 

This standardisation process improves the comparability of MRI scans across 

different imaging sessions and subjects, enabling more reliable analysis and 

interpretation of the data [72]. 

Consequently, the development and implementation of optimised preprocessing 

protocols are essential for achieving analytical precision, methodological 

reproducibility, and clinical applicability in GBM radiomics analysis. Preprocessing 

methodologies remain heterogeneous across radiomics research, reflecting the 

absence of a definitive standardised pipeline. While IBSI [66] works toward protocol 

standardisation for reproducible engineered radiomics features, significant 

variation persists in practical applications. Global initiatives exemplified by BraTS 

have emerged as pivotal drivers of neuro-oncologic research advancement. By 

offering extensively standardised datasets with a preprocessing pipeline via the 

Cancer Imaging Phenomics Toolkit (CaPTk) software [73], [74] for tumour 

segmentation, survival prediction, and radiogenomic investigation, these platforms 

facilitate systematic methodology assessment and accelerate innovation in clinical 

neuroimaging analytics. 

CaPTk implemented the BraTS preprocessing pipeline, which is particularly 

valuable, as the BraTS challenge applies the same pipeline structure to its multi-

institutional datasets. This alignment is important for reproducibility and helps 

enhance clinical translation efforts. CaPTk provides detailed information on the 

BraTS preprocessing pipeline, including intermediate outputs that facilitate 

comparison with custom pipelines. Its graphical user interface-based workflow 

requires no additional adjustments, minimising effort for reproducibility. We aimed 

to optimise the pipeline to meet the specific needs of our local dataset. Furthermore, 

skull stripping and automated tumour segmentation steps are optional in the 

preprocessing pipeline, and we explored enhancing generalisability by replacing 
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tools in these steps with up-to-date alternatives. The skull stripping tool, included 

as an optional step in CaPTk, is outdated. In Chapter 2, we adopted HD-BET [75], an 

up-to-date DL model was trained on a large multi-institutional dataset from 37 

European centres, which outperforms alternative publicly available tools such as 

FSL BET [76] and AFNI 3dSkullStrip [77].  

Radiomic analysis of multiparametric Magnetic Resonance Imaging (mpMRI) data 

necessitates various preprocessing procedures, with the CaPTk handling several but 

not all of these steps: 

1. Format Conversion: Digital Imaging and Communications in Medicine (DICOM) 

images are converted to standard formats like Neuroimaging Informatics 

Technology Initiative (NIfTI) for easier processing [57]. DICOM is the standard 

format utilised in clinical settings, integrating image data, comprehensive 

metadata, and communication protocols for hospital-wide applications. In 

contrast, NIfTI is the preferred format in neuroimaging research, providing 

broader data type support and efficient handling of multidimensional data 

for post-processing and analysis [78]. 

2. Resampling: Images are resampled to a uniform voxel size (e.g., 1 mm³) to 

correct differences in scanner settings and slice thickness [57], [66], [71] 

3. Co-registration: Different image sequences from the same patient are aligned 

to a reference coordinate for accurate multi-modal comparisons [57], [71]. 

4. Brain Extraction (skull-stripping): Non-brain tissues (e.g., skull) are removed 

to focus on the brain region and reduce intensity variation [70], [71], [79]. 

5. Intensity Normalisation: Various normalisation techniques, encompassing 

Nyul, WhiteStripe, and Z-score normalisation, serve to standardise intensity 

distributions across datasets [70]. Although these approaches effectively 

harmonise intensity distributions, the field lacks definitive evidence to 

support the selection of a single superior methodology [80]. 

• Nyul: Matches intensity distributions using a reference histogram. 
• WhiteStripe: Uses Z-score normalisation based on Normal Appearing 

White Matter (NAWM). 

• Z-Score: Averages intensity values across the whole brain mask. 
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6. Bias Field Correction: Intensity inhomogeneity within tissues is reduced [81] 

7. ROI/ Volumes of interest (VOI): The precision of ROI segmentation represents 

a cornerstone of radiomics analysis, directly affecting feature extraction and 

model dependability [69]. Automated delineation methods have gained 

prominence due to their inherent reproducibility and the reduction of inter-

rater variability, a crucial consideration for biomarker development and 

clinical translation [82].  

8. Harmonisation: Harmonisation techniques are essential in multicentre 

radiomics studies to address the "centre effect," which refers to the 

variability in RFs arising from differences in scanners, acquisition protocols, 

and reconstruction settings across institutions [83]. 

• ComBat: Originally developed for genomic batch effect correction, 

ComBat harmonisation has been successfully repurposed for 

radiomics applications, where it has shown promise in reducing 

centre-specific variations and enhancing the reproducibility of multi-

institutional results [83], [84]. 

9. Grey-level discretisation (binning): It is essential to calculate textural 

features by grouping similar intensity levels (bins), simplifying image 

representation, and reducing noise impact [67]. Two fundamental 

discretisation strategies are employed: 

• Fixed Bin Number (FBN): This method adaptively modifies bin widths 

to maintain consistent bin quantities throughout the intensity range, 

proving especially advantageous for MRI data by compensating for 

contrast variations and augmenting feature reproducibility [66]. 

• Fixed Bin Size (FBS): This approach implements uniform bin width 

across the intensity spectrum, demonstrating efficacy in CT and PET 

imaging [85] but limited applicability in MRI due to its non-

standardised intensity metrics. 

The choice of discretisation method (FBS or FBN) and the number of bins 

significantly impact the generalisability and accuracy of radiomics models across 
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diverse datasets. However, the potential benefits of increased bin quantities for 

feature consistency must be weighed against the potential risks of decreased 

classification accuracy in certain diagnostic scenarios, emphasising the need for a 

nuanced understanding of the relationships between bin quantity, feature 

consistency, and classification performance in radiomics model development [70]. 

Reporting preprocessing steps, including tools, parameters, and public code 

releases, is critical for reproducibility. IBSI provides guidelines, recommending 

relative discretisation for MRI to handle variable intensity ranges. 

1.9.2 Segmentation 

Image segmentation, the delineation of ROI in 2D or VOI in 3D, is the crucial first 

step in any radiomics pipeline, defining the area for feature calculation.  It is also the 

most critical, challenging, and debated step of radiomic analysis [61]. Segmentation 

methods range from manual delineation to semi-automatic techniques using 

algorithms like region-growing or thresholding, and finally to fully automated 

approaches, often employing DL [67]. 

Manual and semi-automated segmentation, frequently corrected by physicians, are 

widely used but possess inherent limitations. Manual segmentation is notably time-

consuming, particularly with large datasets. Both approaches introduce observer 

bias, weakening the robustness and generalisability of RFs due to intra- and inter-

observer variability in ROI/VOI delineation [82]. Therefore, studies employing these 

methods should thoroughly assess this variability by excluding non-reproducible 

features, utilising thorough evaluations of intra- and inter-observer bias [67]. 

Initially, ML approaches utilising hand-crafted features were employed for brain 

tumour segmentation in BraTS [86]. However, DL has demonstrated superior 

performance due to its ability to extract complex features [87]. Fully automated 

image segmentation in medical imaging uses DL models like U-Net [88] and others, 

such as atlas-based methods [89], to achieve accurate and reproducible results. 

Many open-source algorithms have been developed for segmenting various organs, 

mainly focusing on entire organs rather than specific tumour regions. Automated 

segmentation is beneficial as it can enhance the consistency and generalisability of 
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RFs, thereby overcoming variability issues caused by differing observations. 

However, the generalisability of these algorithms remains challenging across multi-

institutional datasets. External validation with such datasets is ongoing, 

emphasising the need for further research to create more robust and generalisable 

segmentation algorithms [61]. This study examines the performance of automated 

segmentation models driven by DL algorithms, with particular emphasis on their 

generalisability when tested on external validation datasets under clinical settings. 

1.9.2.1 Impact of Domain-Specific Preprocessing and ROI Characteristics  

The variability in MRI intensity arises from factors such as differences in scanner 

models, manufacturers, and acquisition techniques, posing challenges for the 

generalisation of ML and DL-based segmentation methods. Consequently, 

standardisation of MRI intensity is necessary, which might improve the 

generalisability of ML/DL-based segmentation models. The application of intensity 

normalisation techniques has shown improvements in the metrics of convolutional 

neural network (CNN)-based brain tumour segmentation [90]. The primary 

objective of brain tumour segmentation is to delineate active tumour tissue, 

including ET, necrotic (NCR) tissue, and oedema (swelling adjacent to the tumour). 

In radiotherapy, GTV is delineated for treatment planning, defined as "the gross 

palpable or visible/demonstrable extent and location of the malignant growth" [91]. 

Duman et al. highlighted the significant similarity between the GTV and TC [92]. Due 

to the difficulty in differentiating between tumour and healthy tissues, given their 

overlapping imaging characteristics, multiple MRI modalities such as T1, T1ce, T2, 

and FLAIR are commonly employed. The Response Assessment in Neuro-Oncology 

(RANO) working group provides guidelines regarding specific MRI modalities for 

GBM [93]. In clinical settings, the diversity of MRI modalities in brain tumour 

segmentation introduces challenges, including varying sequences, image quality, 

resolution, and slice thickness across different modalities, as well as the complexity 

involved in integrating these diverse data sources for precise tumour delineation. 
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1.9.2.2 A general overview of automated medical image segmentation 

Current medical image segmentation methods can be grouped by the type and 

availability of annotations utilised when training a model. As the most traditional 

method, fully supervised approaches require a large amount of precisely labelled 

data at the pixel level, yielding outstanding performance benchmarks [94], [95] 

while simultaneously demanding a considerable manual annotation burden [96]. 

Recent studies have increasingly explored non-fully supervised paradigms [97], 

such as semi-supervised [98] and weakly supervised [99] learning techniques to 

reduce dependence on large-scale labelled data [96]. By utilising a small quantity of 

labelled data and a large amount of unlabelled data, semi-supervised techniques aim 

to achieve a competitive performance and less labelling effort [96]. Weakly 

supervised methods aim to reduce annotation complexity with lower-effort 

annotations such as image-level labels, point annotations, bounding boxes and 

scribbles [97]. It needs models to learn detailed boundaries from sparse and limited 

forms of supervision. On the other hand, unsupervised segmentation eliminates 

dependence on annotated data, detecting patterns or representations from images 

via approaches [100]. While these methods effectively reduce the dependency on 

labelling workload, they often achieve lower accuracy compared to more supervised 

techniques [97]. 

 Traditional brain tumour segmentation methods, such as thresholding [101], 

regional growth [102], active contour [103] and feature-based machine learning, 

can segment tumours with a moderate performance. However, the big challenge is 

complex tumour shapes and unclear boundaries due to hand-crafted features, which 

are time-consuming, need expert input, and have low generalisability. Also, tumour 

heterogeneity and variations across imaging devices limit the model performance 

[104]. As a result, researchers are increasingly exploring more advanced methods 

to address these challenges. DL-based approaches have recently advanced the 

accuracy of brain tumour segmentation. Research has focused on improving 

network architectures and model robustness. Although CNN-based models are good 

at capturing local correlations [105], their ability to model long-range dependencies 
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and capture global context is still limited [104]. CNN-based U-Net and its variants 

have dominated developments until around 2020, leveraging skip connections to 

maintain high-resolution features [104]. U-Net has an encoder-decoder setup 

connected by skip-connections: the encoder extracts features at various scales, and 

the decoder utilises these connections to generate the segmented image. U-Net is 

widely known for its effectiveness in complex medical image segmentation across 

different tasks [88], [106]. Additionally, the challenge of 3D medical image analysis 

is solved by replacing all 2D convolutional layers in U-Net with 3D convolutional 

layers, consequently introducing the 3D U-Net [107]. Therefore, 3D medical images 

with full spatial context can be used directly for U-Net model training. Another 

model, V-Net [108], was introduced by utilising shortcut connections from ResNet 

[109] in 3D medical images. For several segmentation tasks, U-Net and 3D U-Net 

achieve good performance. However, the models may have issues for different 

datasets and different domain-specific segmentation tasks. The models need 

parameter changes for optimum performance [105]. Following its introduction, 

thousands of studies have cited the U-Net, with many architectural changes and 

extensions for improving segmentation accuracy and model adaptability. 

Accordingly, Isensee et al. [95] noted that properly optimised U-Net architectures 

establish a good performance benchmark, and outperforming them is still a 

challenge with alternative models. As a result, the authors proposed nnU-net (“no 

new net”), which trains a basic U-Net model by automatically adapting by using the 

dataset features. nnU-net has shown high performance in 49 different segmentation 

tasks, ranking first in 21 of them [95], and continues to be a highly competitive 

framework in medical image segmentation [105]. 

The attention mechanism enhances neural networks by allowing them to focus on 

important regions or features in input data, improving their ability to capture 

critical information. It has been integrated into various models to increase 

performance on tasks involving small or complex structures [105]. The U-Net model 

with an attention mechanism was introduced by helping to focus more on important 

areas in the input image, which significantly improves the model’s ability to localise 

abdominal organs [110]. A Cross-Task Guided Attention module was proposed 



 

 
32

[111], using information from previous tasks to guide attention. Attention 

mechanisms can be classified into spatial and channel attention. Spatial attention is 

widely applied to help models concentrate on important areas by expanding the 

receptive field [105]. A U-Net variant integrated spatial attention modules, such as 

SA-UNet [112], proposed attention modules at the interface between the encoder 

and decoder, allowing the network to focus on more informative spatial regions for 

retinal segmentation. Unlike spatial attention, channel attention focuses on inter-

channel connections within a feature map, enhancing task-relevant channels by 

changing their weights for better feature representations [105]. Channel attention 

only considers the channel-wise information; it may miss important spatial 

relationships between features, which can reduce its performance in some medical 

image tasks. To handle this issue, CPCANet [113] was proposed by combining 

Channel Prior Convolutional Attention module with a spatial attention module to 

balance attention weights. The model achieved good performance in cardiac 

diagnosis and skin lesion segmentation. A dense connection is a densely connected 

structure in deep learning where each layer’s output is passed to all later layers as 

input, creating rich forward and backward connections [114]. This dense structure 

enhances information propagation and introduces a solution for gradient vanishing. 

A densely connected 3D model [115] was introduced by adding dense connections 

to traditional CNNs. Despite its increased GPU memory consumption, this model 

helped the model preserve information between layers and achieved higher 

performance than that of 3D U-Net. Li et al. [116] introduced a dense U-Net model 

with a lower GPU requirement, utilising a hybrid architecture that combines a 2D 

Dense U-Net with a hierarchical fusion of 3D contextual information, tailored for 

liver tumour segmentation. 

Multi-scale methods in image processing work by analysing the input at different 

scales, allowing models to understand both local details and broader contextual 

information [105]. Unlike the standard U-Net, which utilises a single scale, these 

methods give a broader and more effective feature representation. UNet++ 

improves upon the original U-Net by introducing sub-networks with multi-scale 

approach by replacing long skip connections across diverse medical image 
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segmentation tasks [117]. However, Huang et al. [118] defined that UNet++’s dense 

skip connections limit the sufficient capturing of the full-scale. Therefore, UNet 3+ 

[118] addresses this problem with full-scale skip connections utilising low-level 

features with semantic information in multiscale approach. The previous structures 

are known as inter-layer multi-scale methods due to collecting features from 

different encoder levels and combining them in the decoder. Another type, known 

as intra-layer multi-scale methods, captures features at different scales, such as 

Atrous Spatial Pyramid Pooling module [119] and a densely connected version of 

this module [120]. MSNet [121] was introduced for polyp segmentation, which uses 

inter-layer multi-scale method and aims to reduce redundant information caused by 

combining these features. Additionally, the intra-layer version of this unit was 

added to the structure, leading to M²SNet model [122]. 

Since 2020, Transformer-based architectures like Vision Transformer have gained 

popularity for capturing long-range dependencies, showing superior segmentation 

performance compared to CNNs [104]. The Transformer [123], initially introduced 

for sequence data such as language sequences, has been successfully extended to 

image processing through the Vision Transformer. It operates by dividing images 

into patches and utilising self-attention mechanisms to capture global contextual 

relationships. In medical image segmentation, Transformer-based models can be 

classified into two groups: pure Transformer methods and hybrid methods that 

utilise the strengths of Transformers and other methods, such as CNNs [105]. Pure 

Transformer models are still not common in medical image segmentation, as most 

methods continue to rely on convolution layers [105]. To explore convolution-free 

model use in 3D segmentation, Karimi et al. [124] proposed dividing 3D images into 

patches, flattening them into 1D embeddings, and applying Transformer blocks with 

self-attention to capture global information. The model matched or outperformed 

the state-of-the-art CNNs in the experimental results. To adapt Transformers for 

vision tasks, Liu et al. [125] proposed the Swin Transformer, which utilises Shifted 

Window Multi-Head Self-Attention to reduce computational cost. On the other hand, 

Cao et al. [126] developed Swin-Unet, a Transformer-based model using shifted 

windows for 2D medical image segmentation. Although the model is similar to U-
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Net with skip connections, windowed attention limits to capture of global features 

while improving the extraction of local features. Recent research has explored 

combining CNNs and Transformers to improve accuracy on medical image 

segmentation. These hybrid models are usually grouped as using serial, parallel, or 

skip connections, taking advantage of both convolution and attention mechanisms 

[105]. One common hybrid approach is the serial connection of CNNs and 

Transformers, where image patches converted from CNN feature maps are fed into 

a Transformer module. TransUNet [127] is a version of this design by using a hybrid 

CNN-Transformer encoder and a Transformer in the decoder to preserve fine details 

like organ shapes and boundaries. nnFormer [128] is a hybrid model that 

interleaves CNN and Transformer blocks. Additionally, it stands out by using 

volume-based multi-head self-attention to handle effectively 3D medical images. In 

a parallel connection, CNNs and Transformers process information side by side 

[105]. TransFuse [129] integrates both CNN and transformer in parallel to combine 

features from different levels of the encoder. It proposed a new fusion method with 

a shallow network for better inference speed and efficient model size. Additionally, 

Yuan et al. [130] developed CTC-Net with two parallel branches: one CNN encoder 

and one Transformer encoder with a Swin Transformer decoder. They also 

introduced a feature complementary module to fuse features from two branches, 

which extracts local features and long-range dependency. In hybrid models using 

skip connections, Transformers and CNN are linked in the U-shaped structure, 

connected by skip connections [105]. UNETR [131] is a hybrid model utilising skip 

connections that utilise a Transformer in the encoder and connect it to a CNN 

decoder through multiple levels. Although UNETR improves segmentation accuracy, 

it increases model size. UNETR++ [132], which includes an Efficient Pairwise 

Attention module, separating spatial and channel attention and sharing weights 

among attention branches to reduce model size while keeping high-quality 

segmentation outputs. 

CNNs are not effective at capturing global features. Also, Transformers need large 

datasets, which is an important challenge in the medical domain due to the scarcity 

of medical image data. Because of these limitations, researchers have started 
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exploring new architectures to improve segmentation [104]. Mamba, introduced for 

natural language processing in 2023 [133], is a selective state space model. On the 

other hand, state space models have also performed well in visual tasks [134]. 

Recently, more medical image segmentation methods have started using Mamba, 

showing it could be a promising direction [105]. It addresses the ineffectiveness of 

CNNs for global contextual information while simultaneously preserving the 

computational efficiency through linear complexity, in contrast to the quadratic 

complexity of self-attention mechanisms in Transformers [104]. To use Mamba in 

computer vision, Li et al. developed VMamba [134], a backbone network. Its main 

part, the VSS block, applies a 2D-Selective-Scan module that scans images to 

combine information from several directions. Recent research based on VMamba 

has mainly focused on improving accuracy with the pure selective state space model 

[135], reducing computational cost [136], and adjusting the model for different 

cases such as such as avoiding training from scratch [137]. VM-UNet [135], inspired 

by V-Mamba, was developed as the first model entirely based on selective state 

space models for medical image segmentation tasks. The model uses VSS blocks in 

both encoder and decoder within a novel U-Net-like architecture and adds addition 

operation instead of concatenate operation in the skip connections. Although it 

outperformed the state-of-the-art models, the authors noted further improvements, 

such as decreasing the model size, can enhance the applicability of real-world 

medical scenarios [135]. Real-world clinical settings have challenges due to limited 

computational resources. Thus, developing approaches that enhance U-Net’s 

performance in capturing global features, without increasing computational cost, is 

important. Mamba-based architectures provide a promising direction in this regard 

[105]. LightM-UNet [136] is a lightweight model that integrates U-Net with Mamba, 

significantly reducing the model size. Despite its compactness, it surpasses state-of-

the-art methods on various medical segmentation tasks. Additionally, Swin-

UMamba [137], pretrained on ImageNet, outperformed state-of-the-art models. In 

addition to VMamba-based models, recent research has explored the direct 

integration or enhancement of Mamba blocks in novel architectures. U-Mamba 

[138], utilising a hybrid CNN-Mamba block, is another model that designed for 

medical image segmentation. U-Mamba, based on nnU-net, can automatically adjust 
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to different datasets. It performs well in areas like abdominal imaging, endoscopy, 

and cell segmentation. On the other hand, a recent study [139] showed that the 

model doesn’t always outperform nnU-net, meaning its success might depend on the 

dataset characteristics [105]. Previous Mamba-based models were not specifically 

designed for 3D medical segmentation. To develop a Mamba-based model for 3D 

medical imaging, SegMamba [140] was proposed with a new tri-orientated Mamba 

module, which improves 3D feature extraction by using three different directions. 

The model is good at capturing global features while reducing training memory and 

inference time [140]. 

For brain tumour segmentation, Isensee et al. [141] used their model as the baseline 

3D U-Net with minor modifications in the BRATS 2017 Challenge.  Also, A 

lightweight 2D U-Net with an attention mechanism was proposed, outperforming 

state-of-the-art models in the same dataset [142]. Although U-Net variants were 

widely used until 2020 [104], alternative models to U-Net were also proposed, such 

as a decision tree-based method utilising SegNet for the same dataset [143]. Several 

of the U-Net variants have been proposed that integrate attention mechanism, 

DenseNet and ResNet architectures, including Res-U-Net [144], Hybrid ResU-Net 

[145], JGate-AttResU-Net [146], Hybrid DenseNet121-U-Net [147]. The U-Net 

model, along with variants, has achieved strong performance in brain tumour 

segmentation by using skip connections [104]. Despite its advantage, these models 

often have issues in capturing global features, which affects segmenting tumours for 

complex patterns. Transformer-based approaches with self-attention to represent 

global contextual information surpassed U-Net on the BRATS 2020 dataset [148]. 

Wang et al. [149] introduced TransBTS for brain tumour segmentation, utilising a 

Transformer in a 3D CNN. On the other hand, CoTr [150] was proposed, which 

performs a sparse-attention Transformer with 3D CNN, aiming more efficient global 

context representation for 3D segmentation tasks. A recent study [151], covering 

various CNN-based and Transformer-based models, showed that transformer-based 

models, including the study’s proposed TransUNet architecture, achieved 

competitive or superior results while notably increasing model size, training time 

and memory usage compared to nnU-net [95] across various medical datasets. 
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Additionally, TransUNet achieved a slight improvement over the extended nnU-net 

[152] on the BraTS 2021 dataset [151]. 

On the other hand, MambaBTS [153], inspired by the Mamba architecture, proposed 

a U-Net-based network incorporating a cascade residual multi-scale convolutional 

strategy for brain tumour segmentation. The model has fewer parameters and 

superior accuracy over state-of-the-art models on the BraTS 2019 dataset. MUNet 

[154] combined U-Net with Mamba by introducing an SD-SSM module for both 

global and local features and an SD-Conv module for minimising feature 

redundancy. Thus, the model outperformed state-of-the-art models on the BraTS 

2020 dataset while including a lower number of parameters relative to most models, 

excluding U-Net. CDA-mamba [155] was introduced to balance accuracy and 

efficiency for brain tumour segmentation, which outperforms state-of-the-art 

models on the BraTS 2023 dataset while providing the lowest inference time. Also, 

SegMamba ranked second in accuracy in the same study, while yielding low 

inference time. Additionally, the study was computationally intensive for training, 

with GPU memory consumption reaching 32 GB [155]. One-dimensional selective 

scanning mechanism of the original Mamba is limited to the extraction of spatial 

information in high-dimensional visual data [156]. Although current methods 

attempt to mitigate this limitation, they are insufficient, highlighting the necessity 

for further research [156]. Based on this, current Mamba-based methods in 3D 

medical imaging remain limited in their capacity to represent spatial dependencies 

in multiple directions and to extract high-resolution spatial features, which is 

important for accurate segmentation [155]. 

1.9.2.3 Current challenges in medical image segmentation 

Although deep learning has driven significant improvements in medical image 

segmentation, important challenges remain that compromise methodological 

robustness, computational efficiency, and clinical applicability. These obstacles 

originate from both the medical imaging data and the design limitations of current 

segmentation algorithms [96]. Medical imaging data present heterogeneity across 

modalities (e.g., MRI, CT, ultrasound), acquisition parameters, and institutional 



 

 
38

settings. For instance, MRI scans from varying scanners may exhibit discrepancies 

in resolution, contrast, and artefact characteristics, leading to domain shifts that can 

significantly degrade model performance [96]. A major challenge is overfitting [96], 

posing a critical limitation in medical image segmentation, characterised by strong 

performance on training samples coupled with diminished accuracy on unseen data. 

This challenge often exists when model complexity surpasses the heterogeneity and 

scale of the training data due to the limited availability of annotated medical imaging 

datasets. Data scarcity in deep-learning medical imaging arises not only from image 

availability but also lack of annotation [157]. Producing pixel-precise labels is time-

consuming and expensive [158], particularly for rare diseases [159]. Additionally, 

privacy and governance frameworks limit cross-institutional sharing [160], [161] 

while many researchers have no clinical access. Variability across scanners, 

acquisition settings, and demographics introduces systematic domain shift, while 

weak or noisy boundaries introduce annotation noise [160]. These limitations 

hinder the effectiveness of deep learning models and motivate data-efficient 

alternative methods [159], including data augmentation [162] and non-fully 

supervised methods [97]. Additionally, the overfitting issue is deepened by the poor 

generalisation ability of many models, which leads to decreased performance on 

unseen clinical datasets. This significantly limits their clinical application 

[104]. Current research on medical image segmentation rarely provides sufficient 

validation to determine which models have the potential for clinical translation 

[163]. Although a model may achieve high overall segmentation accuracy, high 

variability in its performance can make it unsuitable for clinical applications, where 

patient safety is a critical concern [163]. For example, low performance on even a 

few cases could lead to serious consequences for patients [163]. Also, robust domain 

adaptation and transfer learning methods are important to enhance the transition 

of models to clinical applications [104]. For instance, Sharma et al. [164], Yang et al. 

[165], and Dai et al. [166] have introduced innovative methods aimed at enhancing 

cross-domain performance, thereby addressing this issue [104]. 

DL models with large parameters need significant computational resources and long 

training times, a challenge that is amplified when models are deployed on large-
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scale medical imaging datasets or perform inference on high-resolution 3D medical 

images. Transformer-based models achieve state-of-the-art performance in tasks 

like brain tumour segmentation but demand significant GPU memory and extended 

training times due to their self-attention mechanisms, multi-scale feature fusion 

methods [96]. On the other hand, CNN-based 3D U-Net [107] achieves high 

segmentation accuracy in 3D medical images. However, its high computational 

burden in both training and inference reduces efficiency, especially in clinical 

settings with limited resources [96]. Lightweight architectures [150], [167] have 

been designed to enhance computational efficiency. However, these architectural 

simplifications often impair the capacity to capture detailed anatomical structures 

and to generalise effectively across heterogeneous datasets [96]. 

1.9.2.4 CNN-based U-Net variants 

Considering the challenge of data scarcity, CNN-based U-Net variants such as nnU-

net achieved robust performance under different clinical scenarios. In a 

comprehensive study using 12 multi-institutional real-world clinical datasets [168], 

nnU-net maintained high performance for brain tumour segmentation even when 

MRI sequences were incomplete or varied in quality. Notably, nnU-net 

demonstrated strong generalisability, maintaining consistent segmentation 

performance across all datasets, supporting its ability in different clinical settings. 

Additionally, recent comparative studies using real-world datasets have 

demonstrated that nnU-net outperformed both Mamba-based and Transformer-

based models in various medical image segmentation tasks, including clinically 

defined contouring formats [169], [170]. On BraTS 2021 dataset, a recent study 

noted that nnU-net achieved segmentation results on par with state-of-the-art 

Transformer-based and Mamba-based models for brain tumour segmentation 

[139]. In addition to addressing challenges of data limitation or generalisability on 

real-world scenarios, CNN-based U-Net variants are known for cost-effectiveness. 

For example, nnU-net has proven to be an effective choice, demonstrating high 

segmentation accuracy alongside shorter training times and lower computational 

costs when compared to current Transformer-based and Mamba-based models 
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[171]. While requiring significantly less GPU memory and training time, nnU-net 

matches the performance of more resource-intensive, state-of-the-art segmentation 

models [139]. Although the extended nnU-net [152] with retraining achieved 

slightly lower segmentation accuracy than TransUNet on the BraTS 2021 dataset, 

nnU-net required nearly half the GPU memory, training time, and inference time 

compared to TransUNet, confirming the efficiency and competitiveness of U-Net-

based models like nnU-net in different scales, such as 2D and 3D [151]. 

In our study, the U-Net architecture, along with its self-configuring variants, nnU-

net [95] and the extended nnU-net [152] were selected as the segmentation models 

due to their demonstrated efficacy, adaptability, and suitability in real-world 

scenarios. The ability of nnU-net to autonomously adapt preprocessing, model 

training, and postprocessing methods [95] makes it particularly well-suited for 

domain-specific segmentation tasks in resource-limited clinical settings. In addition, 

our research explored domain-specific adaptations to preprocessing and data 

handling strategies, aiming to enhance both resource efficiency and segmentation 

performance relative to nnU-net’s default self-configuring pipeline. Our research 

assessed whether customised, domain-specific modifications, particularly in areas 

such as focusing on different GBM contouring formats, normalisation methods and 

rigid registration-related resampling, can improve ensemble segmentation 

performance. Through a systematic assessment of alternative preprocessing 

approaches coupled with modified U-Net variants at different scales (2D, 2.5D and 

3D), our study aimed to deliver competitive performance with enhanced 

computational efficiency, while improving model generalisability on our institution-

specific dataset. 

1.9.2.5 The related work for the proposed strategy  

In early applications, computer vision techniques demonstrated success under 

specific conditions for analogous tasks; however, medical image segmentation is 

still a challenge due to the complexities of feature representation [172]. Although 

this challenge persists, DL methods have shown promise in image segmentation 

tasks. CNNs are renowned for their capacity to learn complex patterns and features. 
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In order to segment tumours effectively using CNNs, extra feature extraction 

methods are often implemented [173]. In recent years, transformers have found 

widespread adoption in computer vision, including image segmentation tasks [123]. 

These models, utilised either independently or in conjunction with CNNs, effectively 

capture both local and global information in medical image segmentation. Most 

studies integrate transformer architectures with the U-Net or similar variations 

[174]. Given the numerous advancements and diverse methodologies in computer 

vision, it is important to classify the predominant models essential for navigating 

the complexities of medical image segmentation tasks.  

Contemporary models are generally categorised into two principal types: (1) multi-

class segmentation, and (2) cascaded versions of binary class segmentation, which 

provide all-in-one, end-to-end solutions for each sub-tumour, namely ET, TC, and 

WT of brain tissue. Multi-class segmentation is effective in delineating multiple 

tumour classes. Unlike the multi-class segmentation, binary class segmentation may 

offer distinct advantages, such as simpler optimisation processes [175]. In binary 

class segmentation, the multi-class problem is subdivided into three separate 

models, each targeting a specific sub-region for each class. Subsequently, all sub-

regions are segmented using either cascaded or simple binary class models [175], 

[176]. Additionally, 2D models employing binary classification may outperform 3D 

models using the multi-class segmentation approach [177]. Tumour classes are 

represented in two ways: labels (non-overlapping masks) and sub-regions 

(overlapping masks). Labels are categorised as ET, NCR tissue, and oedema, while 

sub-regions include (i) ET, (ii) TC; encompassing ET and necrosis, and (iii) WT; 

including ET, necrosis, and oedema  [178]. On the other hand, multi-class 

segmentation primarily focuses on label segmentation rather than region-based 

techniques. However, previous studies indicate that optimisation based on sub-

regions rather than labels yields superior results [179], [180], [181], [182]. 

It is vital to highlight that the generalisability of DL models poses a significant 

challenge, particularly in the field of medical imaging research. For instance, a state-

of-the-art model was developed using the BraTS dataset but evaluated on a local 



 

 
42

dataset, which resulted in a marked discrepancy. The segmentation performance on 

the local dataset did not match the high accuracy observed with the BraTS dataset 

[183]. Furthermore, another study investigated the substantial impact of MRI 

scanner variability on medical image analysis. This study analysed datasets from 

two different scanners, each containing data from 50 patients, and demonstrated 

the potential improvements achievable through diverse methodological approaches 

[184]. The root cause of these scanner-induced differences lies in variations in MRI 

acquisition parameters, such as slice thickness, matrix size, echo time, and TR. These 

findings underscore the requirement for more comprehensive research efforts 

focused on improving segmentation accuracy on local datasets. Such efforts are 

important in enhancing the universal applicability and reliability of DL models 

across varied clinical settings. Addressing these challenges will contribute 

significantly to the advancement of medical imaging technologies. Therefore, we 

proposed a novel strategy to handle these challenges in Chapter 5. The main 

contributions of this research include the following: 

1. This work constitutes the first thorough investigation within the literature into 

the application of various normalisation techniques employed on MR, specifically in 

the context of segmentation tasks for DL models. 

2. This study introduces Region-Focused Selection Plus (RFS+), a novel and 

adaptable framework applicable to a wide range of DL models. By combining various 

segmentation techniques, normalisation methods with ensemble learning, RFS+ 

achieves superior accuracy in brain tumour segmentation while enhancing its 

applicability across heterogeneous datasets. 

3. Through methodically investigating the impact of various normalisation methods 

on U-Net architectures, RFS+ framework attains higher Dice Similarity Coefficient 

(DSC) metrics across all regions. This paradigm facilitates the discovery of region-

specific optimal normalisation strategies when utilising a unified model. For 

example, the migration of models conditioned under one methodology, particularly 

multi-class segmentation, to characterise domains such as ET, TC, and WT for GTVs 

frequently yields suboptimal outcomes. Nevertheless, RFS+ excels at identifying the 
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most effective model for specific contours, especially when translating knowledge 

between different contour categories (e.g., from TC to GTV) [92]. 

4. Via ensemble learning, RFS+ combines the top three models exhibiting superior 

DSC metrics in training data evaluation, as identified through its algorithmic 

framework. Implementation within a 2D U-Net infrastructure yields segmentation 

performance that surpasses the state-of-the-art models, representing a substantial 

boost in accuracy. Notably, RFS+ demonstrates a quantifiable enhancement in DSC 

performance, achieving a 1% improvement over its predecessor methodology. 

5. This research thoroughly examines a state-of-the-art model, recognised as the 

BraTS 2021 challenge winner and implemented using its original Docker image, by 

testing it on a local dataset. Such an evaluation addresses an important gap in the 

field, where models trained on the BraTS training dataset are predominantly 

validated and tested on BraTS-specific datasets, with minimal attention given to 

their performance on local datasets. By presenting the segmentation performance 

of this model on local datasets, the study highlights its generalisability, offering 

meaningful insights and establishing a cornerstone for future research and practical 

developments in this field.  

1.9.3 Feature extraction 

After image acquisition and data curation, feature extraction is performed to 

calculate quantitative characteristics from the ROI/VOI. This study employs RFs that 

are standardised according to IBSI [66] and implemented through the SPAARC 

Pipeline for Automated Analysis and Radiomics Computing (SPAARC) software 

package [185], [186]. 

The following radiomic feature families are used, identified by IBSI: 

 Shape-based Features: 

• Morphological 

 First-order Features: 

• Intensity-based Statistics 
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• Intensity Histograms  

• Intensity-Volume Histogram  

 Texture Features: 

• Gray Level Co-occurrence Matrix  

• Gray Level Run Length Matrix  

• Gray Level Size Zone Matrix 

• Grey Level Distance Zone Matrix  

• Neighbourhood Gray Tone Difference Matrix  

• Neighbourhood Grey Level Dependence Matrix  

1.9.4 Machine Learning and Deep Learning Models 

After extracting RFs, the final step involves developing predictive and prognostic 

models for clinical applications in cancer research, such as prognosticating patient 

outcomes, predicting treatment responses, and evaluating tissue malignancy 

characteristics. Radiomic models often suffer from multicollinearity, with many 

redundant RFs. In a recent radiomics study, the majority of extracted features 

showed strong inter-feature correlation across different tumour types [187]. Due to 

the large number of RFs extracted, feature selection becomes an important factor of 

the radiomics workflow by eliminating redundant and non-informative data [68]. 

This removes highly correlated and non-discriminative features, preventing the 

models from overfitting risk, thereby enhancing their robustness and 

generalisability with only the most relevant and distinctive features contributing to 

the analysis [61]. Additionally, an effective method is to exclude features that are 

not robust under perturbations. As an example of GBM survival analysis, this 

requires examining radiomic feature consistency under slight modifications in ROI 

delineation, preprocessing protocols, or scanner-related factors [188]. Another 

challenge is that radiomic models trained on single-centre datasets tend to have a 

significant performance drop on external multicentre datasets [188], limiting their 

clinical translation due to low generalisability. Also, these models must be designed 

to handle incomplete data, addressing issues of data sparsity and scarcity since 

comprehensive information is not always available for every patient [61], [189].  
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DL-based models that capture intra-tumour heterogeneity and provide successful 

differentiation of patient cohorts [190]. While DL-based models offer efficiency by 

bypassing extensive preprocessing and have shown strong performance in medical 

imaging, their 'black box' nature limits interpretability and hinders clinical use 

[191]. Although many interpretability approaches have been developed for DL-

based models, the lack of biological grounding in these explanations still exists 

[192]. Also, DL-based models are effective on large datasets, which are often 

unavailable for rare diseases [191]. When considering these challenges, DL–based 

models perform on par with traditional radiomic models, but the improvement is 

not statistically significant and comes at the cost of low interpretability [193]. 

Additionally, a recent review reported no consistent evidence supporting a clear 

advantage of deep radiomics approaches [194]. These challenges might be solved 

by curating larger, heterogeneous, and publicly accessible datasets [195]. On the 

other hand, traditional ML-based radiomic models offer higher interpretability but 

moderate performance compared to DL-based models [192]. Additionally, 

traditional ML-based radiomic models are well-suited to limited data, while DL-

based radiomic models have good performance with large datasets [191].  

Clinicians must consider a trade-off between accuracy and interpretability, with the 

latter, in some cases, prioritised in clinical decision-making [192]. Complex radiomic 

models with a high number of texture features limit interpretability for researchers 

and clinicians. Smaller, well-defined feature sets improve interpretability and 

clinical trust, since each feature can be directly examined through its mathematical 

definition [187]. The establishment of interpretable radiomic models necessitates 

systematic feature engineering methods. Current guidelines, particularly those 

outlined by van Timmeren et al. [67], advocate for dimensional reduction, 

specifically recommending feature sets comprising 3-10 parameters to mitigate 

overfitting risks and enhance model transparency. Also, the biological rationale of 

selected features can foster clinical trust, which is considered good radiomic 

practice [196]. 
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1.9.4.1 Feature Selection for Interpretable ML-based Radiomic Models 

Among traditional feature selection methods in radiomics, LASSO is the most 

frequently utilised method [197]. Despite their widespread use, such traditional 

methods, including LASSO, mostly collect unstable feature sets under different 

preprocessing strategies or Cross-Validation (CV), limiting reproducibility and 

robustness [198], [199]. These methods consider RFs as an independent variable, 

without focusing on their intercorrelations [198]. When there is a high correlation 

among a group of features, LASSO preserves only one variable arbitrarily while 

excluding the others [200]. Despite this limitation, the selection results in easier-to-

interpret models due to a small feature set [201]. Additionally, LASSO cannot 

capture potential nonlinear dependencies among features due to its inherently 

linear nature [202], [203]. However, LASSO has computational advantages [204]. 

Evolutionary algorithms, such as Genetic Algorithms (GA), are good at global search 

and have recently been utilised for feature selection [205], [206]. On the other hand, 

SI-based Particle Swarm Optimisation (PSO) exhibits a trade-off between 

exploration and exploitation [207]: particles initially explore the search space 

widely and then refine the search around promising regions in the exploitation 

phase [208]. PSO frequently suffers from two limitations: random initialisation, 

which delays convergence, and ignoring feature redundancy, resulting in poor 

model performance [209]. Designing an initialisation strategy based on the feature 

selection task can enhance PSO performance [206]. For example, a hybrid method 

employs PSO for global search while using traditional methods to exploit these 

regions [206]. To increase performance and achieve results competitive with the 

state of the art, we explored alternative feature selection methods, including PSO 

and GA, using up to 10 RFs within a similar preprocessing pipeline and the same 

contouring format, as well as multiple contours from the BraTS challenge. PSO 

generally performs well across tumour types in survival analysis [208], while GA has 

shown promising results in the prediction of genetic mutations [210]. Considering 

the limitations of LASSO for feature selection, it collects unstable feature sets and is 

limited by its linear nature. Nature-inspired algorithms such as PSO and GA can 

explore nonlinear relationships among features. While GA is good at global search, 
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it cannot keep information from the previous iterations [208]. On the other hand, 

PSO is a good solution for a balanced feature selection method when searching for 

feature subsets. However, PSO has limitations also, such as the initialisation of 

feature subset generation and feature redundancy. To overcome these limitations, 

LASSO was utilised, which is good at feature redundancy and model robustness. 

Therefore, our study focused on a novel hybrid LASSO-PSO feature selection method 

to combine these strengths and achieve a competitive result in OS analysis of GBM 

using traditional ML-based models in Chapter 3. 

The investigation leveraged two distinct datasets: BraTS 2020 [211], [212], [213], a 

publicly accessible, multi-institutional resource, and a single-institution dataset 

from The Río Hortega University Hospital Glioblastoma Dataset (RHUH-GBM) [214]. 

Both datasets demonstrate compliance with radiomics quality metrics through their 

implementation of the standardised BraTS preprocessing protocol and consistent 

delineation of anatomically defined regions (ET, TC, and WT).  The model choice was 

established upon dual criteria: first, adherence to the principle of model selection as 

proposed by Meneghetti et al. [215] in radiomic research, which emphasises the 

relationship between reduced complexity and enhanced interpretability and 

generalisability; second, observed evidence from a systematic literature review 

[216] identifying the top three most frequently implemented ML models in 

radiomics research. Consequently, only these two models, Random Survival Forests 

(RSF) and regularised Cox Regression (Cox-LASSO), as these models exclusively 

satisfied both aforementioned criteria. Traditional ML models offer advantages over 

DL models, particularly in terms of interpretability. While DL approaches have 

demonstrated significant capabilities, their complex architectural designs and 

extensive parameterisation often hinder transparency in decision processes [67].  

Although Meneghetti et al. [215] relied on traditional feature selection 

methodologies to extract a limited set of two RFs in conjunction with a single clinical 

feature, resulting in moderate performance within a distinct cancer type, van 

Timmeren et al.’s framework [67] capitalised on a more expansive upper threshold, 

incorporating up to 10 features as described in their guideline. Based on a recent 
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review on radiomics and GBM OS analysis [216], most time-to-event radiomic 

studies [217], [218], [219] integrate multiple clinical features and more than 10 RFs. 

However, the inclusion of numerous clinical features may be constrained by data 

sparsity, particularly in rare medical domains [189]. Furthermore, the use of more 

than 10 RFs and RFs that are not aligned with IBSI guidelines [66] can reduce 

reproducibility and generalisability in multi-institutional studies. Therefore, there 

is a need for an alternative feature selection method that satisfies these constraints 

while ensuring interpretability and maintaining performance without degradation. 

Such a method, leveraging engineered RFs and interpretable ML models, should 

achieve performance on par with or surpassing that of DL-based models or 

traditional ML models utilising more than 10 RFs and multiple clinical features. This 

underscores an important gap in the current literature. This study employed LASSO 

regression as the baseline feature selection method, a well-established and widely 

utilised technique in radiomics and other fields. Its utility and interpretability in the 

context of radiomics have been confirmed by previous research, including recent 

radiomic studies [215], [216] and various benchmarking analyses [220]. Nature-

inspired algorithms such as evolutionary-based GA and SI-based  PSO are gaining 

traction in radiomics research [208], [210]. SI-based algorithms offer effective 

approaches to feature selection [221] and model building [208], offering the 

potential to enhance prediction performance in the challenging context of radiomic 

analysis for patients with GBM. The methodological framework extends the 

application domain of SI optimisation beyond its implementation in DL contexts, 

such as SwarmDeepSurv [208]. While SwarmDeepSurv utilised an SI-based feature 

selection and DL-based modelling across multiple cancer types in the study, the 

results did not achieve statistical significance for risk stratification in GBM time-to-

event analysis. Various radiomic research tasks have leveraged nature-inspired 

hybrid feature selection methods. For instance, O6-Methylguanine-DNA 

Methyltransferase (MGMT) status prediction in GBM has been explored using a 

hybrid nature-inspired method (GA) [210], while treatment response prediction in 

oropharyngeal cancer [209], and breast tumour classification [222] have utilised 

hybrid nature-inspired (PSO) approaches. Based on this, we explored a novel hybrid 

feature selection method, representing the first application of PSO in traditional ML-
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based radiomic models for OS analysis in GBM. The proposed feature selection 

method includes three phases: (i) Correlation analysis was applied to reduce 

multicollinearity among RFs, ensuring that highly correlated features were 

minimised. (ii) LASSO with CV not only reduced the number of selected features but 

also explored a wider range of potential feature subsets, from 2-feature to 9-feature, 

resulting in a total of eight enriched feature pools. (iii) PSO with a balanced search 

prioritised local search while still maintaining exploration of the broader feature 

space across each feature pool. 

In Chapter 4, our study aimed to enhance clinical translation efforts by utilising our 

local dataset (STORM_GLIO), clinically defined ROIs, and clinically driven 

modifications to the preprocessing pipeline applied to this real-world data. 

Compared to Chapter 3, the survival analysis in Chapter 4 was more challenging as 

it included STORM_GLIO alongside the BraTS 2020 dataset. Unlike the BraTS 2020 

dataset, STORM_GLIO was curated according to the clinical requirements outlined 

in Chapter 2. To address performance drops on unseen datasets due to differences 

in preprocessing pipelines and contouring formats, we aimed to develop a 

reproducible and interpretable radiomic model using a small set of robust features, 

achieving reliable yet moderate performance. A recent review suggests employing 

traditional feature selection methods, such as LASSO or Minimal Redundancy 

Maximum Relevance (mRMR), in radiomic research to achieve high performance 

with limited complexity [191]. This will result in radiomic models that are easier to 

interpret. Although traditional feature selection methods are widely used for their 

advantages in redundancy reduction and enhancing model robustness, they often 

collect unstable feature sets under different preprocessing pipelines, which limit 

reproducibility [198]. To address the reproducibility issue introduced by traditional 

feature selection and the heterogeneity of the datasets (different contouring formats 

and preprocessing pipelines), we performed a robustness analysis. This analysis 

resulted in the development of a radiomic model that achieved moderate 

performance when applied to a different cancer type [215].  
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Additionally, the BraTS 2020 dataset was utilised in both Chapter 3 and Chapter 4, 

since it originates from 19 institutions with diverse clinical protocols and scanner 

parameters, making it a highly heterogeneous resource. Therefore, this dataset is 

highly suitable for addressing the generalisability issue of single-centre radiomic 

analyses [188]. On the other hand, the BraTS data include only two clinical variables 

in addition to OS.  However, age was the only clinical variable consistently available 

for all patients across all datasets, along with all four MRI sequences, in Chapters 3 

and 4. This limitation could be addressed in the future by incorporating additional 

clinical variables across multi-institutional datasets. While this represents a 

limitation of the study, it also had the advantage of reducing model complexity, 

thereby facilitating interpretability.  

To ensure interpretability and applicability within limited clinical settings, such as 

using a minimal number of clinically based contours and MRI sequences, we selected 

ML models over DL models due to the latter's "black box" nature. ML techniques 

facilitate more transparent decision-making processes, which are essential for 

developing survival analysis models in GBM. Ultimately, our goal is to establish 

reliable and interpretable tools that support and enhance clinical decision-making. 
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2. Data Curation for multiparametric MRI Glioblastoma 

Multiforme data  

2.1 Introduction 

The implementation of radiomics preprocessing protocols necessitates careful 

consideration of institution-specific imaging parameters and local data 

characteristics. Although standardisation remains crucial for broader applicability, 

the efficacy of preprocessing methodologies can be significantly influenced by local 

imaging conditions and protocols [70]. A systematic framework for preprocessing 

our local dataset STORM_GLIO was developed and is described herein, 

incorporating purpose-built adaptations that address the complexities of 

translating radiomics analysis into clinical practice while maintaining concordance 

with standardised medical procedures. An analytical assessment of preprocessing 

methodologies highlights the importance of tailored modifications, whereby this 

chapter systematically investigates their integration into the established BraTS 

pipeline, providing qualitative comparative evidence to substantiate these 

adaptations' efficacy in addressing the distinct parameters and limitations inherent 

to our institutional dataset. By introducing targeted workflow enhancements, this 

study aims to mitigate the complexities and inconsistencies inherent to multi-

sequence MRI data while also optimising the performance and robustness of 

radiomic model-based analysis, thereby improving the overall reliability and 

generalisability of the developed radiomic models. A thorough investigation of 

fundamental preprocessing steps is performed, encompassing the conversion of 

DICOM to NIfTI, rigid registration protocols, brain tissue extraction, application of 

noise reduction algorithms, implementation of intensity standardisation 

techniques, delineation of tumour tissues, to improve the reproducibility and 

clinical utility of the radiomic-based model results. Essentially, the evaluation 

criteria are grounded in a dual consideration of technical performance metrics and 

clinical applicability, allowing for a nuanced assessment of the developed approach 

and ensuring that it is optimised for real-world clinical deployment, where technical 

capabilities must be balanced against practical clinical constraints. The 

methodological framework established herein serves as a cornerstone for 
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subsequent thesis chapters, wherein sophisticated radiomics analytical approaches 

and automated segmentation investigations are extensively explored and validated. 

2.2 Material and Methods 

2.2.1 Datasets 

In this study, four different GBM collections were utilised.  

BraTS 2020: BraTS 2020 dataset [211], [212], [213]  is a unique and valuable 

resource for the medical imaging research community, offering a standardised 

collection of pre-operative MRI scans, as NIfTI files, with annotations that precisely 

delineate three tumour sub-regions (ET, TC and WT), and facilitating the 

development and evaluation of automated segmentation algorithms and survival 

analysis. Table 2.1 shows BraTS 2012~2021.  

Table 2.1 BraTS datasets with three tasks: segmentation, disease progression, 
survival prediction and MGMT classification [178]. 

Year Total 
Data 

Training 
Data 

Validation 
Data 

Testing 
Data 

Tasks Timepoint 

2012 50 35 NA 15 Segmentation Pre-operative 

2013 60 35 NA 25 Segmentation Pre-operative 

2014 238 200 NA 38 Segmentation Longitudinal 

2015 253 200 NA 59 
Segmentation, 

Disease 
Progression 

Longitudinal 

2016 391 200 NA 191 
Segmentation, 

Disease 
Progression 

Longitudinal 

2017 477 285 46 146 
Segmentation, 

Survival 
prediction 

Pre-operative 

2018 542 285 66 191 
Segmentation, 

Survival 
prediction 

Pre-operative 

2019 626 335 125 166 
Segmentation, 

Survival 
prediction 

Pre-operative 

2020 660 369 125 166 
Segmentation, 

Survival 
prediction 

Pre-operative 

2021 2040 1251 219 570 
Segmentation, 

MGMT 
classification 

Pre-operative 
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In order to facilitate research in both automated tumour segmentation and survival 

prediction, BraTS 2020 dataset, has been carefully curated to include 660 cases, of 

which 236 GBM cases are accompanied by survival analysis data, and leveraging the 

expert manual labels established in BraTS'12-'13 and maintained in BraTS'17-'20 

[212]. By incorporating four standardised MRI sequences per case, the dataset 

enables a detailed examination of brain tumour characteristics, featuring T1 images 

for anatomical reference, T1ce images for assessing gadolinium uptake, T2 images 

for visualising pathological features, and FLAIR images for delineating oedema, 

thereby supporting the development of more accurate and reliable diagnostic and 

therapeutic strategies. The dataset was pre-processed using a standardised   

pipeline [212], which included three key steps: co-registration to align all images to 

the same anatomical template, resampling to achieve a uniform 1 mm³ isotropic 

resolution within a 240 × 240 × 155 matrix, and skull-stripping to remove non-brain 

tissues, thereby ensuring data consistency and quality. In order to ensure accurate 

and reliable tumour segmentation, the dataset features expert-validated labels for 

three tumour sub-regions: ET: label 4, peritumoral oedema (ED: label 2), and 

necrotic/non-enhancing tumour core (NCR/NET: label 1), which are used to define 

clinically relevant tumour regions, including WT ( label 1,2 and 4), TC (label 1 and 

4), and ET (label 4), with a robust quality assurance process involving multiple 

raters, standardised labelling protocols, and neuroradiologist verification in Figure 

2.1.  
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Figure 2.1 GBM sub-regions a)ET, b)TC, c)WT and sub-tumours d) ED, ET, NCR [178]. 

With the inclusion of three key clinical parameters (OS, Age, and Resection Status), 

the dataset offers a unique opportunity for researchers to investigate the 

relationships between these parameters and patient outcomes, enabling survival 

prediction tasks. 

BraTS 2021: BraTS 2021 challenge dataset [211], [212], [213], comprising 1251 

training cases, 219 validation cases, and 570 testing cases, is a unique and valuable 

resource for the medical imaging research community, offering a standardised 

collection of pre-operative MRI scans, as NIfTI files, with annotations that precisely 

delineate three tumour sub-regions (ET, TC and WT), and facilitating the 

development and evaluation of automated segmentation algorithms and the 

classification  of genetic mutation, MGMT, status. This comprehensive dataset 

incorporates four different MRI sequences: T1, T1ce, T2, and FLAIR. The dataset was 

established to facilitate the advancement and validation for tumour segmentation 

tasks and radiogenomics Table 2.1. In order to facilitate accurate tumour 

segmentation and radiogenomics analysis, the image pre-processing pipeline 

consisted of three key stages: spatial co-registration to standardise a comprehensive 

MRI-based reference of normal adult human brain anatomy (SRI24) [223], skull-

stripping to isolate brain tissue, and volumetric standardisation to 1 mm³ isotropic 

resolution within a 240 × 240 × 155 matrix, which enabled the creation of high-
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quality images for expert neuroradiological assessment and segmentation. With a 

standardised annotation protocol, experienced neuroradiologists conducted 

manual tumour segmentation to identify and label three primary tumour 

compartments: NCR as label 1, ED as label 2, and ET as label 4, and subsequently 

calculated two derivative tumour metrics: TC, which combined NCR and ET regions, 

and WT, representing the entire tumour region in Figure 2.1.  

STORM_GLIO: The STORM_GLIO dataset, a clinical repository of GBM cases collected 

in Wales between 2014 and 2018, was utilised to validate our methodology, with a 

focus on a subset of 53 cases that provided complete imaging profiles, featuring a 

comprehensive MRI protocol including T1, T1ce, T2, and FLAIR sequences. In 

contrast to BraTS, the STORM_GLIO dataset is characterised by several key 

methodological distinctions, including the implementation of DICOM formatting and 

the preservation of acquisition-specific image resolutions and matrix dimensions. 

Additionally, a manual annotation approach was employed, utilising Clinical Target 

Volume (CTV) and GTV, where GTV represented the delineations of the observable 

tumour extent [91]. The preprocessing workflow integrated two essential tools: a) 

CaPTk to handle image registration, b) HD-BET to handle skull-stripping [75], 

ensuring BraTS-compliant standardisation. The preprocessing workflow integrated 

two essential tools: a) CaPTk to handle image registration, b) HD-BET to handle 

skull-stripping [75], ensuring BraTS-compliant standardisation. This preprocessing 

pipeline, compatible with the BraTS protocols and designed for seamless integration 

into clinical use, was complemented by clinical information, including patient age 

and survival outcomes. Notably, the technical implementations of BraTS and 

STORM_GLIO differ in terms of file formatting, with BraTS utilising NIfTI and 

STORM_GLIO employing DICOM. In addition, the two datasets vary in image 

standardisation approaches, as BraTS maintains uniform parameters (1 mm³ 

isotropic resolution within a 240 × 240 × 155 matrix), whereas STORM_GLIO 

preserves acquisition-specific, variable parameters. Furthermore, in contrast to the 

BraTS dataset, which utilises a detailed sub-regional classification system (ET, TC 

and WT), the STORM_GLIO dataset employs a consolidated GTV and CTV approach 

to tumour annotation, highlighting the diversity of methodological approaches to 
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tumour segmentation and analysis in brain tumour research (can be seen in Figure 

2.2) 

 

Figure 2.2 A patient from STORM_GLIO with clinical contours 

, a) T1ce MRI sequence, b) CTV, c) GTV. 

In light of these distinctions, it is essential to carefully evaluate dataset selection, 

model development strategies, and the interpretation of cross-dataset analyses, as 

the differences between the BraTS and STORM_GLIO datasets can significantly 

influence the validity and reliability of research findings in brain tumour 

segmentation and radiomic-based survival analysis. 

UPenn-GBM: The University of Pennsylvania glioblastoma dataset (UPenn-GBM) 

repository represents the most comprehensive open-access dataset for de novo 

glioblastoma cases currently available to researchers [224]. The collection pairs 

advanced mpMRI with rich patient metadata, along with clinical, demographic, and 

molecular information. Comprising 611 cases, all imaging data originated from 

standardised pre-operative assessments at the University of Pennsylvania Health 

System (UPHS), with additional follow-up imaging available for selected patients 

prior to their second surgical intervention. The repository contains 671 total scans 

(611 pre-operative, 60 follow-up) from 630 patients. Patient demographics show an 

age distribution of 18-89 years, with males comprising 60% of the cohort. The 

imaging protocol encompasses multiple MRI sequences: T1, T1ce, T2, FLAIR, and for 

the majority of cases, Diffusion tensor imaging, and dynamic susceptibility contrast 

acquisitions. The dataset also consists of expert-curated annotations defining key 
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tumour components (ET, NCR and ED), initially computer-generated and 

subsequently manually verified. Data preparation for the UPenn-GBM cohort 

followed a systematic pre-processing approach. Each imaging study underwent file 

format transformation from DICOM to NIfTI, followed by reorientation of all mpMRI 

volumes to conform to the left-posterior-superior (LPS) coordinate framework. The 

registration pipeline utilised the T1ce scan as the reference, which was initially 

aligned to the SRI24 atlas and resampled to uniform 1 mm³ voxels. Subsequent rigid 

registration brought all other MRI sequences into spatial alignment with this 

standardised T1ce image. The N4 bias field correction technique was implemented 

across all MRI modalities to normalise signal intensities [81]. The 'mri_deface' 

algorithm was applied to remove facial features from all aligned scans, followed by 

transformation of the defacing masks to match the original image coordinates. The 

BrainMaGe tool performed skull-stripping operations to extract brain tissue, 

maintaining effectiveness across all imaging sequences. The scans before and after 

skull-stripping were available for comparison. Multiple stages of the preprocessing 

pipeline incorporated expert manual verification and adjustment to maintain 

optimal data quality. Researchers can access the entire dataset through the Cancer 

Imaging Archive (TCIA) platform. The fifty patients from the dataset were utilised 

for skull-stripping as it provided both pre- and post-skull-stripping scans, allowing 

it to serve as a reference. 

2.2.2 Implementation details  

Preprocessing was performed utilising a PC running the Windows operating system, 

equipped with 32 GB of system RAM and an Intel i7-11700 processor. For each step 

of the BraTS preprocessing pipeline, the CaPTk 1.9 software was utilised [73], [74]. 

HD-BET was employed as an alternative method for skull-stripping. To ensure an 

independent and clinically adaptable pipeline, custom code was developed utilising 

Python libraries. Preprocessing and analysis were performed using the following 

tools and libraries in Python v3.9.19. The utilised libraries were detailed in 

Appendix A. The clinical relevance of the pipeline results was confirmed through 

clinician approval in a clinical setting.  The complete, Python-based alternative 

workflow is available at [https://github.com/krmdmn/preprocesing_pipeline].   
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For quantitative comparison, DSC was utilised. The DSC was calculated to evaluate 

the overlap between segmented regions, specifically for brain tissue and tumour 

segmentation. This metric is commonly used to assess the performance of medical 

image segmentation tasks. It assesses the similarity between the ground truth 

segmentation and the predicted segmentation. The DSC metric ranges from 0 to 1, 

where a score of 1 indicates perfect overlap, and a score of 0 indicates no overlap.  
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                                         ( 2.1)    

Here: 

• Y_(true,pos) represents the set of positive voxels (or pixels) in the ground 

truth segmentation. 

• Y_(pred,pos) represents the set of positive voxels (or pixels) in the predicted 

segmentation. 

• |Y_(true,pos) ∩ Y_(pred,pos)| denotes the intersection of the two sets, i.e., the 

number of correctly predicted positive voxels (true positives). 

• |Y_(true,pos)| is the total number of positive voxels in the ground truth. 

• |Y_(pred,pos)| is the total number of positive voxels in the prediction. 

2.2.3 Study Design 

In our study, all GBM datasets, except STORM_GLIO, underwent standardisation 

through the BraTS preprocessing pipeline, which can be accessed and replicated 

using CaPTk software. The standardised preprocessing workflow (shown in Figure 

2.3) consisted of the following steps: (a) DICOM to NIfTI conversion, (b) N4 bias field 

correction (temporary: due to prevent possible information loss), (c) reorientation 

of all scans to LPS coordinate system, (d) registration of all scans to the T1ce 

sequence, and (e) a two-phase rigid registration was implemented: T1ce was first 

registered to SRI24, after which all other sequences were aligned to the same atlas 

space.  (f)  skull-stripping: Removal of non-brain tissue.  
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Figure 2.3 The BraTS preprocessing workflow is integrated in CaPTk [73]. N4 bias 
field correction is applied for optimal registration. However, this is not applied in the 

final co-registered output images, which indicated with a red asterisk. 

The workflow of the STORM_GLIO dataset includes the following steps: (a) DICOM 

to NIfTI conversion, (b) registration of all scans to the T1ce sequence, and (c) skull-

stripping: Removal of non-brain tissue (d) NIfTI to DICOM conversion (for 

automated contours). The dataset initially acquired in DICOM format, originated 

from radiotherapy planning cases. The radiotherapy planning process involved 

delineating both GTV and CTV on T1ce sequences that were co-registered with CT 

scans. Registration to the SRI24 was not performed in this study. The manual 

contours on T1ce scans represented critical clinical decisions, so we chose to 

preserve their original form by avoiding this registration step that might introduce 

unwanted deformations. When we attempted to reverse-transform the GTV contour 

or automated segmentations (generated from BraTS-pre-processed STORM_GLIO 

scans) back to their original DICOM space, we encountered problematic deformation 

artefacts (can be seen in Figure 2.4,b). 



 

 
60

 

Figure 2.4 Deformation was observed on the contour border (red arrow) during the 
re-registration of the GTV contour for a STORM_GLIO patient after applying the 

standardised preprocessing pipeline: a) T1ce MRI sequence b) deformation of the re-
registered GTV contour c) GTV original contour 

Interpolation artefacts in the resampling step of the BraTS pipeline were observed 

across different patient cases within the STORM_GLIO dataset (shown in Figure 2.5). 

A modified version of the BraTS preprocessing pipeline tailored to our specific 

institutional needs, was developed to overcome these limitations and support 

quantitative medical imaging analyses (radiomics analyses and automated brain 

tissue extraction and automated tumour segmentation). Preprocessing procedures 

were performed within the native DICOM coordinate system, thereby preserving the 

spatial integrity of the data throughout the entire pipeline. CaPTk, which follows the 

BraTS preprocessing pipeline, was employed to collect the intermediate and final 

outputs from preprocessing pipelines. The primary modification implemented in 

our preprocessing pipeline, distinguishing it from the standard pipeline, was the 

removal of the spatial alignment step involving registration to the SRI24 atlas. 
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Figure 2.5 The interpolation artefacts were demonstrated with red arrows in a), b) 
and c) for different STORM_GLIO patients. 

A comparative analysis using the DSC metric was performed on the UPenn-GBM 

dataset (providing both raw and skull-stripped reference scans) to evaluate the 

effectiveness of CaPTk's DeepMedic-based brain extraction tool [225] against the 

state-of-the-art HD-BET method for skull-stripping. The DeepMedic model is 

designed for multi-modal input, requiring four MRI sequences for processing. Unlike 

DeepMedic, HD-BET processes a single MRI sequence, typically T1, and 

demonstrates exceptional segmentation accuracy with this sequence [75]. A 

quantitative comparison of the tumour segmentation results generated by the 

DeepMedic model [72] (integrated within the CaPTk implementation of the BraTS 

pipeline) was performed using the DSC metric. These segmentations were derived 

from the STORM_GLIO dataset, which was pre-processed using both the standard 

and modified pipeline configurations. 

2.2.3.1 BraTS Pipeline vs. Proposed Clinical Workflow 

The CaPTk implementation of the BraTS preprocessing pipeline was evaluated and 

modified to meet the requirements of our clinical workflow. Following a review of 

the standard BraTS preprocessing workflow, we presented our clinically adapted 

pipeline and its associated optimisations.  

In the BraTS workflow, initial MRI preprocessing involves LPS coordinate 

reorientation, preparing volumes for the subsequent rigid registration step using 

the SRI24 neuroanatomical template. To achieve preliminary intensity 
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normalisation and noise reduction, a temporary N4 bias field correction is applied 

to the imaging data. All sequences (T1, T2, and FLAIR) are initially registered to the 

T1ce volume, which is subsequently aligned with the SRI24 atlas template. Using the 

computed transformation matrix from this registration process, other MRI 

sequences are spatially normalised to match the atlas coordinate space. The 

complete set of four MRI sequences is then input into the DeepMedic AI model from 

CaPTk to facilitate automated skull-stripping of the brain volumes. Using automated 

segmentation method from CaPtk’s DeepMedic AI model, the pipeline generates 

BraTS labels by identifying three distinct regions: ET, TC, and WT. The full pipeline 

is demonstrated in Figure 2.6.  

 

Figure 2.6 The BraTS standardised preprocessing pipeline. 

The clinical implementation framework incorporates preprocessing algorithms by 

leveraging intermediate computational outputs generated by CaPTk. This approach 

enhances the quality of outputs while ensuring seamless integration into clinical 

practice workflows. In contrast to traditional atlas-dependent such as SRI24, 

Colin27, MNI152, ICBM452, and LPBA40, registration frameworks, our modified 

approach implements reorientation-based image processing to facilitate direct 

spatial alignment of multimodal sequences (T1, T2, FLAIR) with the T1ce reference 

volume. By implementing this approach, we maintain the integrity of the original 

spatial matrices of the T1ce scan and its aligned sequences, effectively avoiding 

potential distortions of the clinical contours associated with atlas registration 

Figure 2.4. Our modified framework replaced the DeepMedic-based implementation 

in CaPTk by adopting the HD-BET model. This approach offers superior 

performance metrics and a unique capability to perform skull-stripping using a 

single-sequence input, with optimal results achieved when utilising T1 sequences. 
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After the completion of the skull-stripping step, the DeepMedic algorithm, 

implemented as part of the CaPTk software, was conducted to generate automated 

tumour segmentations. For the final step, the generated contour was converted to 

Radiotherapy Structure format (RTSTRUCT) for compatibility with clinical systems 

(Figure 2.7). 

 

Figure 2.7 The proposed workflow aligned with the clinical settings. 

The experimental study was designed to facilitate a systematic comparative analysis 

between the conventional BraTS preprocessing pipeline and our clinically adaptable 

preprocessing pipeline. The proposed methodology underwent clinical validation 

via a comprehensive evaluation, encompassing quantitative metrics and qualitative 

assessments across preprocessing pipelines.  

By eliminating the need for atlas registration and utilising optimised computational 

tools, particularly HD-BET, the proposed framework aimed to enhance 

preprocessing efficiency by reducing undesirable deformations of the local scans 

(due to having lower quality MRI scans compared to the open-access datasets) and 

the clinical contours. This results in an adaptable pipeline with automated brain 

tumour segmentation, designed for radiomics applications in clinical settings. 
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2.3 Results 

Automated brain tissue extraction was accomplished by employing the CaPTk 

platform and the HD-BET computational architecture. The outputs of this procedure 

were illustrated in Figure 2.8 for STORM_GLIO dataset. 

 

Figure 2.8 Visual Representation of Skull Stripping Step: a) The MRI Scan for 
STORM_GLIO b) CaPTk result c) HD-BET result: HD-BET provided superior brain 

tissue segmentation for the STORM_GLIO dataset, producing well-defined boundaries 
compared to the output of CaPTk. In contrast, CaPTk resulted in significant 

information loss in brain tissue segmentation, yielding notably poor outcomes. 

Figure 2.9 presents a comparative analysis, quantified using the average DSC, to 

evaluate the performance of the skull-stripping tools. A fifty-patient cohort of the 

UPenn-GBM dataset was used for this analysis. Quantitative analysis revealed that 

HD-BET exhibited superior segmentation accuracy, achieving an average DSC of 

97.9% when utilising only T1 sequences, which yielded the highest DSC among all 

individual MRI sequences. In contrast, CaPTk achieved an average DSC of 94.6% by 

incorporating all four MRI sequences. 



 

 
65

 

Figure 2.9 Skull Stripping Result Comparison: The box plot compares CaPTk using all 
four MRI sequences against HD-BET applied separately to T1, T1ce, T2, and FLAIR, 

with mean values displayed at the top. 

The execution time (in seconds) was demonstrated in Table 2.2. When running on a 

CPU, HD-BET required a significantly longer processing time than CaPTk. An 

automated tumour delineation tool for comparative analysis, integrated with 

CaPTk's DeepMedic algorithm, was performed after the successful execution of both 

the BraTS and the proposed clinical pipelines. 

Table 2.2 The average DSC (%) for skull stripping, Execution time (seconds) between 
the CaPTk and HD-BET tools. Execution time was assessed on i5 4-core CPU with 16 

GB RAM, GTX 1050 4 GB VRAM. 

            MRI-Scans   

Models T1 T1ce T2 FLAIR 
ALL 

Scans 
Execution Time  

HD-BET 97.9 97.7 97.8 97.5 - 88.62 (GPU) 1920.36 (CPU) 
CaPTk - - - - 94.6 315.56  (CPU) 

TC segmentation region was replaced with a clinician-approved GTV region after 

expert clinical consultation and thorough validation [92]. A comparative 

visualisation of the standard and modified pipeline implementations within an 

example patient from the STORM_GLIO dataset is presented in Figure 2.10 with each 

pipeline's DSC. The DSC metric obtained from the quantitative assessment of the 
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standard BraTS protocol was 84.01%. The integration of advanced methodological 

modifications in the clinically optimised pipeline framework demonstrated superior 

quantitative outcomes, yielding an DSC of 89.38%. 

 

Figure 2.10 DICOM-Compatible Alignments: The alignment results are demonstrated 
using the T1ce MRI scan, showing a) the GTV region (green, approved by clinicians), 
b) the automated TC region generated by the BraTS pipeline (red; 84.01% DSC), and 
c) the automated TC region produced by the proposed pipeline (blue; 89.38% DSC). 

d) The overlapping of each label is visualised on the same scan. 

Average DSC metrics of automated tumour segmentation were derived from the 

STORM_GLIO dataset for both the BraTS Pipeline and the Proposed Pipeline, 

yielding values of 68.09% and 73.74%, respectively, as depicted with Box plots in 

Figure 2.11. 

 

Figure 2.11 Tumour segmentation on MRI scans using CaPTk showed 68.09% DSC 
accuracy for the BraTS Pipeline and 73.74% for the Proposed Pipeline. 
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2.4 Discussion 

The preprocessing steps plays an important role in medical image analysis 

protocols. Therefore, it may require modification and optimisation to effectively 

address the challenges introduced by the variability and complexity of clinical 

scenarios. The experimental results showed that spatial registration to original 

DICOM coordinates improves automated tumour segmentation, with a notable 

impact on boundary region segmentation accuracy. The change in dimensions from 

standardised matrix parameters (240×240×155 for SRI24) to native scan 

resolutions (e.g., 256×256×20 slices) creates significant challenges for quantitative 

medical image analysis. These challenges are more pronounced in lower-quality 

clinical MRI acquisitions, which demonstrate significant heterogeneity compared to 

the standardised, high-fidelity imaging protocols prevalent in public datasets. 

Notably, the recent BraTS challenges (BraTS 2023, 2024 and 2025) emphasised 

limited-resource, lower-quality MRI scans, such as those from Sub-Saharan African 

datasets [226], [227], [228], aiming to encompass diverse clinical settings, an 

important consideration for future research directions. Notably, the recent BraTS 

challenges (BraTS 2023, 2024 and 2025) emphasised limited-resource, lower-

quality MRI scans, such as those from Sub-Saharan African datasets [226], [227], 

[228], aiming to encompass diverse clinical settings, an important consideration for 

future research directions. The observed qualitative divergence reflects the 

challenges of real-world practice, where image acquisition frequently occurs under 

non-ideal conditions. This underscores the necessity of modified preprocessing 

pipelines to optimise both the performance and reliability of automated 

segmentation and radiomic analysis.  

When MRI scans are subjected to interpolative up-sampling to achieve enhanced 

spatial resolutions (such as SRI24; 240×240×155), inconsistencies and 

morphological perturbations are commonly introduced. The perturbations arising 

from interpolative up-sampling negatively affect the accuracy of automated skull 

stripping and automated tumour segmentation. This, in turn, leads to a cascading 

degradation in downstream quantitative imaging analyses, with a particularly 

noticeable impact on radiomic analysis [70], [71], [79]. The quantitative 
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methodology of radiomics, which highly relies on accurate tumour delineation for 

hand-crafted feature extraction [67], exhibits reduced robustness and impaired 

external validity when subjected to segmentation (ROI) errors. These findings 

highlight the fundamental importance of preserving native scan integrity during 

preprocessing to avoid distortions and ensure methodological consistency. Further 

research is necessary to assess the proposed pipeline’s effectiveness in radiomic 

studies. Additionally, the algorithmic refinements within our modified 

preprocessing framework resulted in significant increases in segmentation 

accuracy, as evidenced by improved DSC metrics.  

Skull stripping task remains an important step in medical image analysis for brain 

tumours. However, there is ongoing research exploring the feasibility of conducting 

brain tumour segmentation without skull stripping. HD-BET has been regarded as 

one of the closest approaches to manual segmentation references (gold standard), 

yet skull stripping still has a significant impact as part of the preprocessing pipeline, 

as highlighted by Pacheco et al. [79]. Additionally, HD-BET requires only a single 

MRI scan to perform brain tissue extraction, providing critical flexibility in scenarios 

where data scarcity or sparsity poses a challenge in clinical applications [69], [189]. 

These observed improvements, achieved through the systematic mitigation of 

diverse technical challenges such as preserving image quality, reducing 

interpolation artefacts, and improving delineation accuracy, suggested that the 

proposed preprocessing pipeline may enhance computational reliability. This can 

potentially lead to more accurate and adaptable segmentation outcomes across 

varying imaging conditions. This advancement in automated segmentation tasks is 

essential for radiomic research, as it enhances both the reproducibility and 

generalisability of radiomic models [69]. By enabling precise tumour segmentation, 

it may facilitate more reliable feature extraction, with the potential for wider 

applications across varied patient datasets and clinical environments [71]. This 

might enable the generation of reproducible and transferable results, ultimately 

enhancing the clinical utility of radiomic analyses and related computational 

procedures and paving the way for their broader adoption in clinical practice. 
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2.5 Conclusions  

This chapter presented refinements to the standardised pipeline for medical image 

analysis, demonstrating substantial gains in the precision of both automated brain 

tissue extraction and tumour segmentation. These methodological adjustments are 

designed to be flexible even within the constraints of typical clinical environments, 

where data availability and quality can be limited, by utilising a single MRI scan with 

HD-BET for skull stripping instead of CaPTk. Moreover, these enhancements are 

intended to facilitate straightforward integration into existing clinical workflows, 

supporting advancements in medical image analysis, such as radiomics. The 

modified clinical pipeline's ability to address technical challenges may enhance its 

practical usability and support efforts to bridge the gap between current research 

and real-world clinical implementation. This work lays the groundwork for 

subsequent chapters that will demonstrate its practical application and explore its 

potential in both data-rich and resource-constrained environments, contributing to 

ongoing developments in the field of medical imaging and its impact on patient care.
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3. A Novel Swarm Intelligence-Driven Feature Selection for 

Interpretable Machine Learning in Glioblastoma Multiforme 

Overall Survival Analysis 

3.1 Introduction 

This chapter investigated the potential of radiomic analysis using high-quality 

imaging cohorts, free from the typical limitations of clinical data. This investigation 

will employ the BraTS standardised preprocessing and utilise up to ten 

interpretable RFs derived from three different tumour regions aligned with the 

BraTS contouring format. This approach not only aimed to match the performance 

of DL-based analyses but also to enhance the transparency of ML models with a 

novel feature selection method and uncover potential biomarkers. 

This research introduced a novel hybrid feature selection framework, building upon 

the foundations laid by Meneghetti [215] and Al-Tashi [208], integrating PSO-

supported LASSO into a conventional ML pipeline to enhance feature selection 

efficacy. The research aimed to improve upon the reproducibility of a radiomic-

based survival analysis in GBM by implementing a standardised approach to data 

preprocessing and segmentation. The validation strategy incorporated a dual 

approach: direct external validation utilising open-access institutional data 

repositories and systematic comparison with previously published studies based on 

established radiomics research guidelines. For the first time, this study explored an 

SI-based feature selection approach with traditional ML models applied to GBM 

time-to-event radiomic analysis, evaluating its capability to achieve statistically 

significant patient risk stratification.  

3.2 Material and Methods 

The radiomic-based model development and validation framework utilised a total 

of 276 GBM cases derived from two distinct sources: 1) a multi-institutional dataset 

from BraTS 2020 Challenge, comprising 236 cases [211], [212], [213], and (2) a 

single-institutional dataset from RHUH-GBM, contributing 40 cases [214].  
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RHUH-GBM covers 40 patients suffering from GBM who underwent surgical 

treatment between January 2018 and December 2022. To be included in this study, 

patients were required to meet three criteria: (1) a confirmed diagnosis of GBM; (2) 

surgical resection classified as either GTR or Near total resection (NTR), ensuring an 

Extent of resection (EOR) ≥ 95% with no residual enhancement; and (3) availability 

of complete MRI data, including preoperative, early postoperative (within 72 

hours), and recurrence imaging. However, this particular analysis focused solely on 

preoperative MRI scans. The imaging protocol included T1, T2, T1ce, FLAIR, and 

apparent diffusion coefficient (ADC) sequences, ensuring comprehensive 

radiological assessment. For both datasets, four preoperative MRI sequences (T1, 

T1ce, T2, and FLAIR) were utilised in this study, following the RANO guidelines [93] 

to ensure standardised imaging assessment. 

The study framework, represented in Figure 3.1, implemented time-to-event 

analysis, stratifying into low- or high-risk groups to assess OS, with the endpoint 

defined as the interval between initial pathological diagnosis and either death 

(censored=1) or final follow-up (censored=0). To ensure robust model development 

and validation, BraTS 2020 dataset was randomly divided into a discovery cohort (n 

= 188, 80%) for internal validation during model training and selection, and an 

unseen test set (n = 48, 20%) for the final evaluation of the selected model. RHUH-

GBM cohort was preserved as an independent external validation dataset.  
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Figure 3.1 The study Design: This study utilised an internal dataset as the discovery 

cohort for feature selection and model development, a holdout test cohort for 

validating the model on unseen data, and an external dataset for additional 

validation. 

Clinical parameters were initially derived from the discovery cohort and 

subsequently integrated with engineered RFs extracted from three distinct tumour 

regions (ET, TC and WT) on pre-treatment MRI scans. Radiomic feature selection, 

followed by the construction and optimisation of risk stratification models, was 

performed using the discovery cohort. Model parameters were tuned to maximise 

predictive performance on this dataset. The predictive performance of these models 

was then evaluated via a two-stage validation strategy: first, internal validation 

using a hold-out test set from BraTS 2020 dataset; and second, external validation 

using the independent RHUH-GBM dataset to rigorously assess model 

generalisability. Risk stratification model performance was evaluated using the 

Concordance Index (C-index), Kaplan-Meier curves (KM plots), and the log-rank test. 
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The preprocessing steps of the BraTS dataset was described in Chapter 2; in 

summary, uniform spatial sampling was established through isotropic voxel 

resampling (1 × 1 × 1 mm³) and consistent 240 × 240 × 155 matrix dimensions was 

yielded across all MRI scans.  

RHUH-GBM dataset was processed following an image pre-processing pipeline 

[214], which maintains consistency with BraTS 2020 dataset. The pipeline included 

the following steps: (1) conversion of imaging data from DICOM to NIfTI format; (2) 

rigid registration of T1ce scans to the SRI24 anatomical atlas, followed by alignment 

of T1, T2, FLAIR to the transformed T1ce scan; (3) brain extraction on all co-

registered volumes using the DL-based tool; and (4) Z-score intensity  

normalisation. Both datasets maintain uniform voxel resolution (1×1×1 mm³) and 

matrix size (240×240×155) across all MRI scans. To ensure reproducibility and 

facilitate potential clinical translation for this study, image preprocessing followed 

the standardised guidelines of IBSI [66]. To maintain consistency across datasets, 

tumour segmentation followed BraTS 2020 Challenge protocol, identifying ET, TC, 

and WT regions. TC included ET and necrosis; WT encompassed ET, necrosis, and 

oedema. A two-step methodology was employed for tumour contouring in both 

BraTS 2020 and RHUH-GBM datasets. First, DL-based automatic segmentation was 

performed to segment tumour regions. This was subsequently reviewed and 

validated by neuroradiologists, ensuring consistency with clinical standards [211], 

[214]. A total of 1,980 (4×3×165) RFs were extracted per patient, derived from four 

MRI sequences, three tumour regions, and 165 features per region. These features 

were extracted using the MATLAB version of SPAARC (https://www.spaarc-

radiomics.io/, accessed on 1 January 2025) [185], [186]. The extracted imaging 

features quantify tumour characteristics such as shape, texture, and intensity 

patterns. To ensure reproducibility and comparability, all features were extracted 

using a 3D approach and standardised following the guidelines of IBSI. The 

important image pre-processing parameters and extracted RFs are summarised in 

Table 3.1. For reproducibility, the details of preprocessing parameters were in 

Appendix Figure B- 1.   
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Table 3.1 The IBSI standardised preprocessing parameters for radiomic analysis 

Parameters  
Voxel Spacing [1, 1, 1] 
Interpolation Method Spline 
Bin method  FBN 
Bin value 64 
Analysis Type 3D 

Model development followed a systematic workflow designed with three different 

feature selection approaches to ensure robust model development and minimise 

overfitting risks. The model development workflow, as outlined in Figure 3.2, 

comprised four sequential phases: (i) feature pre-processing, 

 

Figure 3.2 The study workflow for Feature Selection and Hyper-parameter 
optimisation.  

(ii) feature selection  (detailed in Appendix Figure B- 2 for LASSO-RANK, Appendix 

Figure B- 3, Figure B- 4 and Figure B- 5 for LASSO-GA, and Appendix Figure B- 3, 

Figure B- 6 and Figure B- 7 for LASSO-PSO), (iii) hyperparameter tuning, and (iv) 

model training with internal validation using data from the discovery cohort. All 

steps were performed using five-fold CV. The detailed description of the steps is as 

follows. 
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i) Z-score normalisation was implemented to address feature scale variability, 

ensuring reliable RFs. This normalisation was applied to the training dataset, with 

the computed parameters later used to normalise the holdout test set and external 

validation dataset.  

ii)The feature selection process included three approaches: one established method 

and two novel variations utilising stochastic feature selection algorithms [221]. The 

established LASSO-RANK algorithm [229], documented in Leger et al. [230], 

provided the methodological foundation. Additionally, this study introduced a novel 

two-phase hybrid feature selection approach. The first phase was based on LASSO-

RANK, which excluded only the feature ranking step while generating a feature pool. 

This pool was subsequently processed using algorithms, specifically GA [231] and 

Table 3.2 Hyperparameters for PSO and GA were set based on the example source 
codes, with the exception of Maximum Features, which was adjusted to 9 (the total 

feature number for each feature subset) for GA, leading to improved model 
performance. 

Algorithm PSO Algorithm GA 

Particle Number 30 Population Number 50 

Estimator LASSO Estimator LASSO 

CV 3 CV 5 

Scoring Negative Mean 

Squared Error 

Scoring Negative Mean 

Squared Error 

Max Iteration 10 Crossing-over 

Probability 

0.5 

  Mutation 

Probability 

0.2 

  Number of 

Generations 

40 

  Maximum Features 9 

  Population Number 50 
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PSO [232] to optimise feature selection. The proposed models are referred to as 

LASSO-GA and LASSO-PSO. The LASSO-RANK method, serving as the baseline 

approach, employed a five-fold CV strategy to identify a subset of up to nine RFs, 

ranging from 2-feature to 9-feature subsets. However, the novel two-phase 

approach employed GA or PSO to refine the feature pool obtained from the 

regularised Cox regression for feature selection (Lasso). GA and PSO, unlike the 

deterministic selection of LASSO-RANK, use stochastic (randomness), iterative 

search processes to identify optimal feature subsets. The hyperparameter 

configurations for these algorithms are provided in Table 3.2. The details of each 

algorithm were provided in Appendix Figure B- 3. The estimator was LASSO, with a 

negative mean squared error metric for each nature-inspired feature selection step. 

Risk stratification was performed using two survival analysis models: Cox-LASSO 

and RSF [233]. These models have been tuned for survival analysis, optimising the 

ability to handle censored time-to-event data while prioritising predictive accuracy, 

model interpretability and reproducibility.  

iii) Hyperparameters for each model were tuned using bootstrap resampling of the 

training (discovery) dataset. This approach was selected to mitigate the risk of 

overfitting and enhance model performance on unseen data.  

iv)Following the radiomics guidelines outlined by van Timmeren et. al [67], the total 

number of features, including the clinical variable of patient age, was restricted to a 

maximum of ten. LASSO-RANK method identified from 2-feature to 9-feature RFs in 

each of the five CV folds, and these eight variant feature pools were then ranked by 

their selection frequency, utilising 200 bootstrap iterations.  

Additionally, LASSO-GA and LASSO-PSO methods utilised the eight different feature 

pools for the final RFs, utilising k-fold CV and bootstrap methods. Model validation 

employed a bootstrap resampling approach (200 iterations) applied to the 

discovery cohort, utilising the selected feature subset to assess risk stratification 

performance. The C-index served as the principal metric for evaluating model 

robustness and predictive accuracy. The established workflow involved the 

development and optimisation of prognostic models using the discovery cohort. 
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Model performance was then assessed on two independent datasets: a holdout test 

set (the hold-out portion of BraTS 2020 data) and an external validation set (RHUH-

GBM). This two-stage validation process was implemented to evaluate both model 

accuracy and generalisability to unseen data.  

The log-rank test was used to compare survival distributions between the discovery 

and the holdout test sets. Additionally, these comparisons were conducted between 

the discovery cohort and the external validation cohort. Differences in continuous 

variables were evaluated using the Mann-Whitney U test. For evaluating the patient 

risk stratification performance of radiomic models, the KM curve was employed to 

examine the risk scores generated by the prognostic models, grouping patients into 

low- and high-risk cohorts based on the median risk score serving as the cut-off or 

the threshold. The statistical significance of the difference in survival distributions 

between the two risk groups was evaluated using the log-rank test. C-index was used 

to evaluate the stratification performance of the prognostic models, with 200 

bootstraps applied to the discovery, the holdout test and the external validation 

cohorts to compute the confidence index (95% CI) [234].  

Statistical analyses, including survival analyses, were conducted with the Python 

programming language (version 3.10). Statistical significance was defined as a p-

value less than 0.05. The study of image preprocessing and statistical analysis is 

illustrated in Figure 3.2. The relevance of features was assessed using permutation 

feature importance, as implemented in Sklearn v1.5.2. Additionally, PSO and GA 

algorithms were implemented in ps-optimize v2.0.4 and sklearn-genetic v0.6.0, 

respectively. 

3.3 Results 

The clinical characteristics of the discovery, hold-out test, and external validation 

cohorts are outlined in Table 3.3. The discovery cohort had a median OS of 12.05 

months, while the hold-out test cohort demonstrated a slightly higher median OS of 

14.44 months; however, there was no statistically significant difference (p = 0.58). 

Likewise, in the external validation cohort, the median OS was recorded at 12.13 

months, which did not differ significantly from the discovery cohort (p = 0.59). 
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Table 3.3 Characteristics of clinical variables for discovery and hold-out test and 
external validation datasets. 

Variable Discovery 

Dataset 

Median 

(range) 

Holdout 

Test 

Dataset       

Median 

(range) 

Statistical 

Cohort 

Comparison 

Discovery 

Dataset    

Median 

(range) 

External 

Validation 

Dataset   

Median 

(range) 

Statistical 

Cohort 

Comparison 

Age 

(Years) 

62.4 

[19.0-

86.7] 

60.6 

[27.8-

85.9] 

U: 0.55, p-

value: 0.3 

62.4 

[19.0-

86.7] 

64.0 

[45.0-

78.0] 

U: 0.46, p-

value: 0.55 

OS 

(months) 

12.05 

[0.17-

52.03] 

14.44 

[1.0-58.9] 

U: 0.47, p-

value: 0.58 

12.05 

[0.17-

52.03] 

12.13 

[3.0-

41.47] 

U: 0.47, p-

value: 0.59 

LASSO-RANK and LASSO-GA methods performed best with the 6-feature pool, 

whereas LASSO-PSO demonstrated superior performance with expanded feature 

sets, requiring a 9-feature pool to achieve the highest performance. To mitigate 

potential multicollinearity among the RFs, the first step was performed before 

feature selection. This involved calculating the Spearman correlation coefficients 

between all pairs of RFs and excluding features exhibiting high correlations 

(Spearman's ρ > 0.95). This reduced the initial feature set to 767 RFs. The final 

feature pool for each selection method was established as the collection of features 

identified across all five folds, excluding repetitions. This approach yielded 16 RFs 

for both LASSO-RANK (the 6-feature pool) and LASSO-GA (the 6-feature pool), and 

18 RFs for LASSO-PSO (the 9-feature pool). In the LASSO-RANK approach, the six 

features with the highest selection frequency were incorporated into the final 

model, setting the selection threshold to six due to the 6-feature configuration. 

Conversely, the internal validation procedures demonstrated guided the decision of 

the final feature sets for LASSO-GA and LASSO-PSO, which comprised 2 RFs and 10 

RFs, respectively, as presented in Table 3.4. 
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Table 3.4 The selected RFs for each feature selection method, with their respective 
MRI sequences and Labels indicated in parentheses. Notably, Morphological features 
are associated with contour morphology (shape) rather than a specific MRI sequence.  

The MRI sequences utilised for radiomic feature extraction are specified in 
parentheses (FLAIR sequence, T1 sequence), along with ROIs used for feature 

extraction (ET label, TC label, WT label). 

LASSO-RANK (6 feature) LASSO-GA (2 feature) LASSO-PSO (10 feature) 

morph_volume (TC label) 

morph_av (TC label) 

morph_comp_1 (TC label) 

morph_diam (TC label) 

morph_pca_maj_axis (TC 

label) 

morph_pca_elongation (TC 

label) 

 

stat_skew (T1 sequence, TC 
label) 
dzm_zdnu_3D (FLAIR 
sequence, TC label)  
 

morph_pca_maj_axis (TC 
label) 
morph_pca_flatness (TC 
label) 
morph_comp_1 (TC label) 
morph_vol_dens_aee (TC 
label) 
morph_area_dens_aee (TC 
label) 
ngl_dc_entr_3D (FLAIR 
sequence, WT label) 
dzm_zdnu_3D (FLAIR 
sequence, TC label) 
szm_lgze_3D (FLAIR 
sequence, ET label) 
szm_lgze_3D (FLAIR 
sequence, TC label) 
stat_skew (T1 sequence, TC 
label) 
 

Hyperparameter tuning for Cox-LASSO and RSF was performed through 200 

bootstrap iterations on the entire discovery cohort by utilising the selected RFs and 

the clinical feature (age). The final hyperparameter configurations, utilising k-fold 

CV and bootstrap methods, for each model with each feature selection method, are 

provided in Appendix Table B- 1. Prognostic models were developed using the entire 

discovery cohort, utilising a clinical-radiomic signature that combined patient age 

with the final set of selected RFs. The LASSO-based feature selection approaches 

identified a subset of highly predictive RFs across multiple MRI sequences, 

effectively reducing the number of selected features while preserving predictive 

strength. The resulting Cox-LASSO model, recognised for its interpretability among 

ML methods [235], achieved the highest C-index of 0.64 on the internal validation 

dataset during the model-building step when utilising LASSO-PSO or LASSO-GA 

feature selection approach (Figure 3.3 b). In the out-of-bag bootstrap  (OOB) 
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evaluation, the prognostic model utilising LASSO-PSO achieved a C-index of 0.67, 

outperforming the same model with LASSO-GA (C-index = 0.64) on the discovery 

dataset (Figure 3.3c), confirming its superior model robustness.  

The results of RSF models using LASSO-PSO achieve a C-index with 0.64 in the 

internal validation dataset (Figure 3.3b). However, due to the overall poor 

performances, C-index values were included for the discovery, holdout, and external 

validation datasets for the best RSF model with LASSO-PSO, which achieved a 

bootstrap OOB C-index of 0.74, as presented in Appendix Table B- 2. 

 

Figure 3.3 The C-index values for each model on each feature selection method and 
their corresponding ML algorithms were assessed for GBM time-to-event analysis. The 
results are presented as follows: (a) CV training performance, (b) CV validation 
performance, and (c) OOB evaluation. 

Within the discovery cohort, the radiomic model using Cox-LASSO, built using a set 

of 10 RFs (Table 3.4), demonstrated notable predictive strength, as evidenced by a 

C-index of 0.64 (95% CI: 0.60–0.68). From the radiomic model, Dzm_zdnu_3D, a 

texture feature from 10 RFs achieved the highest hazard ratio (HR) of 1.15 (95% CI: 

0.87–1.76) shown in Table 3.5. This feature calculates the distribution uniformity of 

zone frequencies across spatial distances.  
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Table 3.5 Univariate and Multivariate Cox regression analysis for Discovery and Holdout test datasets. 

  Discovery 
cohort 

Holdout test 
cohort 

Discovery cohort Holdout test cohort 

Model Variable HR [95% CI] HR [95% CI] p-Value C-Index p-
Value 

C-Index 

Clinical 
Model 

Age 1.32           [1.16-
1.52] 

1.78                

[1.44-2.58] 
3×10-2 0.59     [0.55-

0.64] 
7×10-5 0.71  [0.62-

0.79] 

Radiomic 
Model 

morph_pca_maj_axis (TC label) 1.08          [0.77-
1.47] 

2.06          [0.85-
8.72] 

4×10-4 
0.64 [0.60-

0.68] 
2×10-2 

0.61 [0.52-
0.72] 

morph_pca_flatness (TC label) 1.13           [0.81, 
1.42] 

1.39           [0.62, 
3.74] 

morph_comp_1        (TC label) 0.92           [0.57, 
1.51] 

2.81           [0.50, 
15.15] 

morph_vol_dens_aee (TC label) 0.89           [0.55, 
1.45]  

0.41           [0.07, 
2.13]  

morph_area_dens_aee (TC label) 1.12           [0.83, 
1.70] 

2.38          [0.26, 
12.77] 

ngl_dc_entr_3D (FLAIR sequence, 
WT label) 

0.91           [0.76, 
1.07] 

0.41           [0.15, 
0.84] 

dzm_zdnu_3D (FLAIR sequence, 
TC label) 

1.15           [0.87, 
1.76] 

1.14           [0.56, 
2.51] 

szm_lgze_3D (FLAIR sequence, ET 
label) 

0.88           [0.45, 
1.15] 

0.51       [0.004, 
27.53] 

szm_lgze_3D (FLAIR sequence, TC 
label) 

0.93           [0.69, 
1.35] 

1.23          [0.08, 
14.69] 

stat_skew             (T1 sequence, TC 
label) 

0.86           [0.65, 
1.07] 

1.06           [0.72, 
2.47] 
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Lower scores indicate a more homogeneous distribution of zones, whereas higher 

scores highlight localised clustering, indicative of increased intratumoral 

heterogeneity. Half of the selected features were extracted from two MRI sequences 

(FLAIR: 4/10; T1: 1/10), while the remaining half were shape-based features 

(Morphological: 5/10). These RFs exhibited low inter-feature correlations 

(Spearman's ρ < 0.3), indicating their relatively independent contributions to the 

model. In the hold-out test dataset, the radiomic model achieved a moderate C-index 

(0.61, 95% CI: 0.52–0.72). Morph_comp_1, a shape-based feature, from 10 RFs 

achieved the highest HR of 2.81 (95% CI: 0.50–15.15) shown in Table . This feature 

evaluates the similarity between the targeted ROI and a perfect sphere, helping as 

an indicator of morphological compactness. 

In the training (discovery) dataset, the clinical–radiomic model, which integrates 

both the clinical feature (Age) and 10 RFs, demonstrated the best C-index (0.67, 95% 

CI: 0.63–0.70). As reported in Table 3.6, this model achieved a C-index of 0.71 (95% 

CI: 0.61–0.79) in the hold-out test dataset. Two RFs were identified as highly critical 

for defining high-risk groups, as their values exceeded 2.0 for HR. Specifically, 

szm_lgze_3D (FLAIR sequence, ET label) exhibited an HR of 2.46 (95% CI: [0.004–

27.53]), while morph_pca_flatness (TC label) demonstrated an HR of 2.20 (95% CI: 

[1.00–6.30]). The szm_lgze_3D, a texture feature, is to calculate the presence and 

distribution of zones with lower grey-level intensities in ROI (ET label). The latter 

radiomic feature, morph_pca_flatness, is a shape-based feature described as the 

inverse ratio of the major to the least axis length. Its value approaches 1 as ROI (TC 

label) becomes closer to a perfect sphere, reflecting a higher level of shape 

uniformity. Additionally, the clinical-radiomic model achieved a C-index of 0.64 in 

the external validation dataset. 

With a Kaplan–Meier curve cut-off of 0.012 (Appendix Table B- 3), the statistical 

significance of survival differentiation between stratified risk groups (low- and 

high-risk) was assessed with the use of the log-rank test. Significant differences 

were found in the training (discovery) dataset (p-values of 1 × 10-8), in the hold-out 

test dataset (2 × 10-4), and the external validation dataset (1 × 10-2)  
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Table 3.6 Multivariate Cox regression analysis for Clinical-Radiomic Model. 

  Discovery cohort Holdout test 
cohort 

Discovery cohort Holdout test cohort 

Model Variable HR [95% CI] HR [95% CI] p-Value C-Index p-Value C-Index 

Clinical-
Radiomic 

Model 

Age 1.36           [1.17-
1.67] 

1.92                   
[1.23-4.29] 

1×10-8 
0.67 

[0.63-
0.70] 

2×10-4 
0.71 [0.61-

0.79] 

morph_pca_maj_axis (TC label) 1.23          [0.89-
1.67] 

1.72          [0.68-
9.95] 

morph_pca_flatness (TC label) 1.17           [0.81, 
1.47] 

2.20           [1.00- 
6.30] 

morph_comp_1 (TC label) 0.90           [0.58, 
1.53] 

1.60           [0.52- 
8.76] 

morph_vol_dens_aee (TC label) 0.94           [0.58, 
1.53]  

0.36           [0.08- 
1.91]  

morph_area_dens_aee (TC label) 1.04           [0.74, 
1.59] 

1.98           [0.48-
8.57] 

ngl_dc_entr_3D (FLAIR sequence, WT 
label) 

0.87           [0.70, 
1.04] 

0.54           [0.16- 
1.17] 

dzm_zdnu_3D (FLAIR sequence, 
TC label) 

1.14           [0.88, 
1.73] 

1.07           [0.37-
2.18] 

szm_lgze_3D (FLAIR sequence, ET 
label) 

0.85           [0.42, 
1.12] 

2.46           
[0.004-27.53] 

szm_lgze_3D (FLAIR sequence, TC 
label) 

0.99           [0.74, 
1.38] 

0.54           [0.08, 
14.69] 

stat_skew (T1 sequence, TC label) 0.88           [0.67, 
1.11] 

0.92           [0.55, 
2.20] 
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shown in Figure 3.4. The Kaplan–Meier plots demonstrated the model’s consistent 

ability to differentiate low- and high-risk groups across both datasets. P-values 

demonstrated significant differentiation among low and high-risk groups, a finding 

that was consistently replicated in the external validation cohort. For each future, 

the permutation importance (feature importance) was demonstrated in Appendix 

Table B- 3. Further details, including feature weights and KM curve threshold, were 

provided in Table B- 3. Feature importance analysis and feature weights of the final 

model highlighted the clinical feature, Age, as the most influential predictor. 

 

Figure 3.4 Kaplan–Meier curves display survival differences in the discovery, hold-out 
test and external validation cohorts, categorised into low- and high-risk groups by 

the Cox–LASSO model. The small p-values suggest strong statistical reliability in 
distinguishing between risk groups. 
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Among RFs, morph_pca_maj_axis demonstrated a predominant influence. This 

shape-based feature characterises the maximum axial extent of the ROI-

encompassing ellipsoid (TC label), computed via principal component analysis and 

corresponding to the major eigenvalue (λmajor). Both age and morph_pca_maj_axis 

demonstrated an increased likelihood of a patient being stratified into the high-risk 

group. Their combined influence suggests that older age and a greater major axis 

length of the ROI-encompassing ellipsoid are significant predictors of poor 

prognosis and greater tumour aggressiveness (shown in Figure 3.5). As expected, 

both age and tumour size emerged as important predictors. 

 

Figure 3.5 The feature importance for the final clinical-radiomic model. 

3.4 Discussion 

This study presents a risk-stratification model that incorporates a clinical feature 

and RFs to categorise GBM patients into low- and high-risk groups using 

preoperative MRI. The model development process followed rigorously established 

radiomics guidelines, emphasising interpretability, structured methodology, 

reproducibility, and generalisability. The feature selection process identified 10 RFs, 

sourced differentially from FLAIR and T1 MRI sequences. MRI sequence-

independent morphological features predominated the selected feature set (5/10 

RFs), with texture-based features derived from FLAIR comprising the second largest 
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group (4/10 RFs). The contribution from the T1 sequence was limited to a single 

first-order feature. With the exception of two texture-based features derived from 

ROIs of ET and WT labels, all RFs were extracted utilising the TC label. The clinical–

radiomic model achieved a C-index of 0.71 in the hold-out test dataset, 

demonstrating statistically significant stratification between low- and high-risk 

groups. In the external validation dataset, the model attained a C-index of 0.64, with 

a statistically significant log-rank test p-value, further supporting its predictive 

robustness. Research reproducibility was ensured through multiple measures: 

employment of open-access datasets for both primary and external validation 

analyses, public release of code implementations, and detailed documentation of 

radiomic feature extraction and processing protocols. A comparative analysis of this 

study’s results against prior research was presented in Table 3.7. To ensure 

consistency in comparison, only studies that utilised RFs (deep features and 

engineered features) and clinical information were included, while those relying on 

subjective assessments (e.g., VASARI features) or RFs with low reproducibility risk 

prior to the first IBSI study [66] were excluded. While Fathi et al. [219] exemplifies 

typical single-centre research constraints, Gomaa et al.'s study [217] uniquely 

distinguishes itself through its implementation of external validation protocols, 

enabling robust methodological comparisons. To minimise study limitations, we 

expanded the patient cohort by integrating multi-centre datasets, including BraTS 

2020 for internal study and RHUH-GBM for external validation. While this approach 

enhances the study's robustness, potential biases may still exist, underscoring the 

need for additional validation in different clinical environments to strengthen its 

clinical applicability. Verduin et al. [218]  reported a C-index of 0.69 with a model 

that included five RFs and five clinical features. Fathi et al. [219] achieved a C-index 

of 0.70 using a model composed of 24 RFs and three clinical features. Concordance 

indices of 0.71, 0.67, and 0.62 were achieved by Gomaa et al. [217] for the UPenn-

GBM, UCSF, and RHUH-GBM cohorts, respectively, using a methodology that 

incorporated an unlimited number of deep features alongside four clinical 

parameters. 
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Table 3.7 The comparison of the proposed study with recent radiomics studies. 

Study 
ML 

Model 

Log-
rank 
Test 

Signific
ance 

C-index 
(Dataset) 

Feature Details 
IBSI 1,2 

Standardis
ed 

Feature 
Limitatio
ns (3-10 
features) 

Verdui
n et al. 
[218] 

Multi 
model 

Cox 
regres

sion 

Yes 

0.69 
(Maastricht 
UMC + and 

Radboudum
c) 

5 RFs 
(engineered), 5 

Clinical Features 
(age, sex, EOR, 

Adjuvant 
treatment, 

MGMT) 

Partially 
(not 

aligned 
with IBSI 

2) 

Yes 

Fathi et 
al. 

[219] 

Cox-
PH 

Yes 
0.7 (UPenn-

GBM) 

24 RFs (deep 
features, 

engineered 
features), 3 

Clinical Features 
(age, sex, EOR) 

No No 

Gomaa 
et al. 
[217] 

Transf
ormer-
based 

DL 
model 

Yes 

0.71(UPenn-
GBM), 67 
(UCSF),62 

(RHUH-
GBM) 

No info for 
number of Deep 

features, 4 
Clinical Features 
(age, sex, MGMT, 

kps) 

No No 

Al-
Tashi 
et al. 
[208] 

Swarm
DeepS

urv 
(SI-

based 
DeepS
urv) 

No 
(0.14>0

.05) 

0.61 (TCGA-
GBM) 

 

49 RFs, Clinical 
Feature (Not 

provided) 
Yes No 

Propos
ed 

Cox-
LASSO 

Yes 

0.71 Brats 
2020, 0.64 

(RHUH-
GBM) 

10 RFs 
(engineered), 1 
Clinical Feature 

(Age) 

Yes No 

Propos
ed (10 
limit) 

Cox-
LASSO 

Yes 

0.71 Brats 
2020, 0.63 

(RHUH-
GBM)  

7 RFs 
(engineered), 1 

Clinical Features 
(Age) 

Yes Yes 

 

Similarly, Verduin et al. [218] attained a C-index of 0.69; their approach utilised 

convolutional filters that did not adhere to IBSI guidelines for convolutional filter 

implementation [236]. Al-Tashi et al. [208] developed a time-to-event analysis 

model using SI algorithms with a DL-based survival model and 49 RFs, reporting a 
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C-index of 0.61 and a non-significant p-value of 0.14 (p > 0.05). Unlike most 

radiomics studies that rely on Cox regression, Al-Tashi et al. along with Gomaa et al., 

explored alternative modelling approaches: SwarmDeepSurv, transformer-based 

DL models for survival analysis, which are still a challenge for clinical 

implementation due to their “black box” nature.  

Our study achieved C-indices of 0.71 (BraTS 2020) and 0.64 (RHUH-GBM) using only 

10 RFs extracted exclusively from FLAIR and T1 MRI sequences, along with the 

clinical feature Age. This performance matched or exceeded that of previous studies 

while using a minimal feature set. It is important to highlight that our study, which 

employs interpretable models (Cox-LASSO) and reproducible RFs in accordance 

with IBSI guidelines [66], demonstrated superior performance on the same external 

validation dataset (RHUH-GBM) when compared to the methodology of Gomaa et al. 

[217]. By systematically testing feature selection techniques and ML models, our 

novel SI-based feature selection method, LASSO-PSO, identified 10 RFs with the use 

of a clinical feature. Among the 10 RFs, morph_pca_maj_axis, a modality-

independent morphological feature, exhibited the highest generalisability in the 

validation set.  

This feature selection method enhanced the model’s adaptability, enabling robust 

predictions across different healthcare settings, from small clinics to large research 

institutions, and ensuring generalisability across diverse datasets. Analysis of 

feature weights and importance (shown in Table B- 3) indicated that high-risk 

patients tend to exhibit greater axis length (the major eigenvector from PCA 

analysis), as extracted by the morph_pca_maj_axis feature, from a morphological 

feature family. Moreover, the zone distance non-uniformity (ZDNU: dzm_zdnu_3D), 

derived from the Gray Level Distance Zone Matrix (GLDZM), measures the 

distribution uniformity of zones across distances. Higher values indicated greater 

tumour heterogeneity, correlating with an increased likelihood of aggressive 

tumour types and high-risk patient classification. The two most influential RFs were 

quantified using the TC label. Among these features, dzm_zdnu_3D was derived from 

the FLAIR MRI sequence, emphasising its role in characterising tumour 
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heterogeneity. In this study, LASSO-PSO outperformed both LASSO-RANK and 

LASSO-GA in terms of identifying an optimal feature subset for radiomic model 

development. This result is consistent with the findings of a detailed review of SI-

based feature selection methods conducted by Rostami et al. [221], who similarly 

found the PSO algorithm to be effective for feature selection in comparison to other 

SI algorithms, especially in selecting the minimum number of features.  

To the best of our knowledge, this is the first SI-based feature selection approach 

with traditional ML models to demonstrate statistically significant risk group 

stratification (time-to-event analysis). Furthermore, the proposed model 

demonstrated superior or comparable performance despite utilising a restricted set 

of clinical and RFs. To ensure compliance with van Timmeren et al.’s guideline [67], 

we excluded RFs presenting low feature importance (<0.01, shown in Figure 3.5), 

namely, szm_lgze_3D from FLAIR MRI sequence and TC label, and 

morph_vol_dens_aee and morph_area_dens_aee, both extracted from TC label from 

the initial set of 10 RFs. This modified model retained discriminative capacity, 

yielding concordance indices of 0.71 and 0.63 for BraTS and RHUH-GBM cohorts, 

respectively. While the predefined limitation of 3–10 features played an important 

role in shaping the feature pool, SI-based feature selection may achieve greater 

performance if a larger set of RFs is considered, a prospect that merits exploration 

in future studies.  

Within the domain of medical research, significant challenges arise from data 

scarcity and imbalance, attributable to the infrequent occurrence of certain 

conditions, limited patient cohorts, and gaps in clinical records, all of which obstruct 

the collection of extensive datasets [189]. In response to clinical data challenges, our 

study incorporated only the clinical variable of age due to incomplete clinical 

information across datasets. While this choice represents a limitation, it enabled us 

to maximise the patient cohort. Furthermore, the utilisation of only two MRI 

sequences, FLAIR and T1, enhances the feasibility of clinical implementation by 

reducing dependency on multiple MRI sequences. The present research addressed 

potential retrospective sampling bias through the utilisation of multi-institutional 
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data (BraTS 2020 dataset), further strengthened by external validation (RHUH-GBM 

dataset). Future model optimisation pathways encompass the integration of 

expanded clinical parameters (age, genetic markers, MGMT, survival metrics, KPS) 

and comprehensive omics data (genomic, pathomics etc.). The present study 

intentionally excluded DL-based RFs from the analytical framework, acknowledging 

their potential to improve survival prediction accuracy but prioritising 

reproducibility and interpretability, which currently restricts their clinical use 

[237]. To reduce the risk of overfitting, our workflow integrated hyperparameter 

optimisation alongside data resampling techniques (bootstrap). Within this 

optimised framework, the performance of the risk-stratifying model was thoroughly 

evaluated using both a hold-out test dataset and an external validation dataset. Also, 

this study achieved a score of 96.8% from METhodological RadiomICs Score 

(METRICS) [238], which is a quality score for radiomic research. As illustrated in 

Appendix Figure B- 8, future radiomic research needs a thorough evaluation of two 

critical metrics from the current results: the robustness analysis (item #14) and uni-

parametric imaging comparison (item #23). 

3.5 Conclusions 

We developed and validated an interpretable clinical–radiomic model in this study, 

leveraging a novel SI-based hybrid feature selection method to stratify patients with 

GBM diagnosis into high- and low-risk categories based on OS. This study 

implemented an SI-based hybrid feature selection method in combination with a 

traditional ML model, Cox-LASSO, while following radiomic research guidelines. 

Additionally, it addresses important clinical challenges, enhances model 

interpretability and minimising feature number, underscoring its potential for 

clinical applicability and reproducibility. This framework, based on the previously 

specified criteria, achieved better predictive performance than that recently 

reported in prior studies by Poursaeed et al. [216]. Our model utilises 10 

independent RFs from the FLAIR and T1 MRI sequences, along with the clinical 

feature, age, as predictive variables. With the recent standardisation of 

convolutional filters under the IBSI consensus guidelines [236], we plan to integrate 

standardised convolutional filters for engineered feature extraction in the future. In 
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addition, our aim is to be actively engaged in research that explores the potential of 

SI-based feature selection and model development to elevate predictive 

performance.  

Future research directions encompass two key trajectories: first, the integration of 

comprehensive clinical parameters (age, sex, KPS, MGMT etc.) and expanded 

imaging modalities (PET, CT, ultrasound etc.) into the analytical framework; second, 

the optimisation of engineered feature extraction through strategic reduction of 

both MRI sequence requirements and label (ROI) numbers. Future performance 

optimisation frameworks include both imaging advancement through diffusional 

and functional MRI sequence integration and molecular characterisation expansion 

via multi-omics biomarker incorporation (genomic, transcriptomic, and 

metabolomic datasets). The integration of additional imaging modalities, supported 

by larger, multi-institutional external validation cohorts, has the potential to 

enhance the accuracy and reliability of predictive models, thereby enhancing clinical 

decision-making in GBM treatment and management. All RFs, code are publicly 

accessible through the repository at https://git.cardiff.ac.uk/c21099143/si-

feature-selection-for-radiomics.
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4. Reproducible Radiomic Analysis for Overall Survival 

Prediction in Glioblastoma Multiforme 

4.1 Introduction 

In this chapter, we examined a minimum set of engineered RFs to develop and 

validate traditional ML models that offer reproducibility and interpretability for 

prognostic assessment of OS in GBM patients. The research prioritised identifying 

robust RFs derived from MRI sequences and a single clinical ROI, leveraging multi-

institutional retrospective data to enhance practical implementation and clinical 

adoption of radiomic methodologies.  

Previous studies have demonstrated the efficacy of MRI-based radiomic analysis in 

stratifying into high and low-risk groups (time-to-event analysis) for GBM patients 

[239], [240], [241], [242]. However, proposed radiomic models frequently 

employed an excessive number of features (n>10) [243], leading to an increase of 

overfitting issues and interpretability challenges [67]. This approach conflicts with 

established radiomic guidelines that highlight the importance of the interpretability 

and generalisability of radiomic models [67]. For the time-to-event analysis of GBM 

patients, radiomic models that successfully provide risk-based stratification require 

RFs that are stable, reproducible, and easy to interpret (n=<10). This has been 

achieved in other types of cancers by following established guidelines [215], [244]. 

In this study, the aim was to close this gap by focusing on reproducible, stable RFs 

and interpretable ML models. The model building focused on a minimal set of RFs 

to stratify GBM patients into high- and low-risk groups based on OS data. We address 

real-world data challenges under a different preprocessing pipeline for 

STORM_GLIO compared to the BraTS 2020 dataset, along with limitations like 

relying on a single region of interest, specifically GTV in neuro-oncology 

radiotherapy planning, and the limited MRI sequences and varying acquisition 

parameters across patients. 
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4.2 Material and Methods 

4.2.1 Study Population 

In this research, radiomic signatures were developed and validated using data from 

289 GBM patients. Two datasets were utilised: (1) the publicly available BraTS 

Challenge 2020 [211], [212], [213], which included 236 GBM cases, and (2) a local 

dataset named STORM_GLIO. The STORM_GLIO dataset is a retrospective collection 

of patients diagnosed with GBM and treated at our institution between April 2014 

and April 2018, comprising 53 eligible cases out of 108 patients. Both datasets 

included four preoperative MRI sequences: T1, T1ce, T2, and FLAIR, following the 

guidelines of the RANO working group [93]. Additionally, both datasets included 

information on OS and patient age. 

4.2.2 Study Design 

The study design is illustrated in Figure 4.1. OS was evaluated through a time-to-

event analysis, which measured the time interval (in days) between the patient's 

initial pathology-based diagnosis and either their death (denoted as censored = 1) 

or their last confirmed living date (denoted as censored = 0). The study population 

was split into two groups utilising random allocation: 80% were assigned to the 

training dataset and 20% to the validation dataset to train a model for predicting 

time-to-event outcomes. 
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Figure 4.1 The study workflow: dataset splitting, feature extraction, stability analysis, 

model building, and model validation. 

The process began with collecting clinical parameters from the training group. In 

radiotherapy planning, GTV is defined as the visible or palpable extent of the 

malignant tumour [91]. Duman et al. demonstrated a remarkable similarity between 

GTV and TC, emphasising their potential interchangeability [53], [92], [245]. 

Building on this finding, RFs were obtained from the pre-treatment MRI scans, 

specifically targeting the voxels within GTV for STORM_GLIO and the TC for BraTS 

dataset as defined by expert manual contouring. Next, these RFs were combined 

with the collected clinical parameters, potentially enhancing the generalisability of 

the radiomic models. The development and internal validation of risk-stratification 

model signatures were performed using the training dataset, followed by 

subsequent validation using the independent validation dataset. 
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4.2.3 Image Pre-Processing and Feature Extraction 

The BraTS dataset, including MRI scans from 19 different institutions, was acquired 

using a variety of clinical protocols and scanners. To maintain consistency and 

quality, the images underwent a series of pre-processing steps. First, the MRI scans 

were converted from DICOM to NIfTI format to facilitate further processing. Next, 

N4 bias correction was applied temporarily to the scans as a preparatory step for 

registration [81] The MRI sequences, namely T1, T2, and FLAIR were then registered 

to the MRI T1ce sequence, and subsequently, the T1ce sequence was registered to 

the SRI24 anatomical atlas [223]. This pre-processing process provided co-

registered, resampled volumes with uniform 1 × 1 × 1 mm3 isotropic voxel 

dimensions.[223]. This pre-processing process provided co-registered, resampled 

volumes with uniform 1 × 1 × 1 mm3 isotropic voxel dimensions. 

To further refine the images with the skull-stripping step, a pre-trained DL model 

was performed for brain tissue extraction from all scans. The extracted images with 

variable intensity values were then normalised using intensity Z-scoring. All pre-

processing steps were executed using CaPTk [74]. The resulting images had a fixed 

voxel resolution of 1 × 1 × 1 mm3 and a matrix size of 240 × 240 × 155. 

For the image pre-processing of the STORM_GLIO dataset, we employed a similar 

approach to that used in the curation of the BraTS 2020 dataset with consideration 

of our clinical settings. Specifically, our pre-processing pipeline involved two key 

steps: (1) skull stripping using the HD-BET algorithm [75], and (2) rigid registration 

of all sequences to align with the T1ce modality, a workflow that has been previously 

validated [53], [245]. Additionally, unlike the BraTS dataset, we did not perform 

registration to the SRI24 atlas, as it was not compatible with our clinical 

requirements.For the image pre-processing of the STORM_GLIO dataset, we 

employed a similar approach to that used in the curation of the BraTS 2020 dataset 

with consideration of our clinical settings. Specifically, our pre-processing pipeline 

involved two key steps: (1) skull stripping using the HD-BET algorithm [75], and (2) 

rigid registration of all sequences to align with the T1ce modality, a workflow that 

has been previously validated [53], [245]. Additionally, unlike the BraTS dataset, we 
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did not perform registration to the SRI24 atlas, as it was not compatible with our 

clinical requirements. 

Following this, the MRI scans were uniformly resampled using B-splines to an 

isotropic voxel size of 1 × 1 × 1 mm3. Before resampling, the size of the MRI scans 

was varied in size, as detailed in Table 4.1. Our image pre-processing pipeline and 

settings were guided by the recommendations of IBSI [66]. 

Table 4.1 Selection of relevant MRI acquisition parameters (average, standard 
deviation) for the scans included the STORM_GLIO dataset. 

 T1  T1ce  T2 FLAIR 
Thickness  (mm)  4.77 +/-0.47  4.76 +/-0.47  4.74 +/-0.56  4.81 +/-0.39  

TR (ms) 489 +/-96  494 +/-98  5627 +/-1856  8084 +/-1832  
Echo Time (ms)  11 +/-2  11 +/-2  97 +/-8  112 +/-27  

Inversion Time (ms) 0  +/-0  0 +/-0  0 +/-0  2217 +/-259  
Field Strength (T)  1.54 +/-0.24  1.5 +/-0  1.54 +/-0.24  1.54 +/-0.24  

Rows  426 +/-145  424 +/-146  546 +/-185  475 +/-219  
Columns  417 +/-147  415 +/-148  527 +/-198  458 +/-232  

Pixel spacing (mm) 0.62 +/-0.19  0.62 +/-0.19  0.48 +/-0.14  0.59 +/-0.21  
Slice Spacing  (mm) 5.99  +/-0.73  5.98  +/-0.74  6.27  +/-0.96  6.34  +/-0.72  

SAR  1.09 +/-0.77  1.07 +/-0.76  0.91 +/-0.53  0.69 +/-0.67  

In the BraTS 2020 challenge, three different tumour regions were defined: ET, TC, 

which encompasses both ET and NCR regions, and WT, including ET, NCR, and 

oedema regions. In contrast, the STORM_GLIO dataset included manually delineated 

GTV segmentation, defined as the visible extent of malignant growth [91]. Previous 

validations [53], [92], [245] have established that GTV and TC are analogous regions, 

indicating potential suitability for radiomic analysis. Therefore, both contours were 

treated as interchangeable for radiomic analysis.  

Utilising the scans of the four MRI sequences associated with each patient, a total of 

660 RFs (4 × 165) were extracted using the MATLAB version of SPAARC 

(https://www.spaarc-radiomics.io). These RFs are a broad range of numerical 

indicators that capture various aspects of tumour characteristics, including shape, 

texture, and intensity patterns. All features were standardised according to IBSI 

guidelines [66] and extracted using a 3D approach. The image pre-processing 
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settings and the names of the collected RFs are demonstrated in Appendix Figure C- 

1. 

To assess the robustness of the RFs against variations in acquisition parameters and 

patient positioning, we employed image augmentation techniques similar to those 

used by Zwanenburg et al. [246]. In this research, we performed rotations (−4°, −2°, 

0°, 2°, 4°) and volume changes (−20%, −10%, 10%, 20%) to the GTVs in the training 

cohort (detailed in Appendix C, Figure C- 5). A set of 20 variant images per patient 

was generated, which were used for feature stability analysis. To evaluate the 

consistency of each feature across these variations, we computed the intra-class 

correlation coefficient (ICC) with a 95% CI. Any feature with an ICC below 0.75 at 

the lower bound of the 95% CI was considered unstable and was removed from the 

feature set used in the model-building process. The same exclusion criteria were 

conducted for the features extracted from the validation cohort. 

4.2.4 Identifying a Clinical and Radiomic Signature 

For OS analysis, three feature selection methods were utilised, which enhanced the 

model's generalisability and mitigate overfitting issue. Our approach to identifying 

a clinical and radiomic signature involved a four-step process: (i) feature pre-

processing, (ii) feature selection, (iii) hyperparameter optimisation for the ML 

models, and (iv) model building with internal validation. The detailed workflow of 

feature selection is demonstrated in Figure 4.2.  
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Figure 4.2 Feature Selection Workflow: Correlation analysis using Spearman and 
Pearson methods, feature selection through Lasso Cox, mRMR, and Mutual 

Information, ranking features over multiple iterations, and feeding the model with 
the selected features. 

To ensure the reliability of our results, we used three-fold CV with 33 repetitions on 

the training data for all steps except (iv) model building, following the approach 

utilised by Kim et al. [247]. 

(i) In the feature pre-processing step, we applied the Yeo-Johnson transformation to 

align the feature distributions with a normal distribution [248]. Subsequently, 

features were z-score normalised. Both the transformation and normalisation 

processes were applied to the training dataset. The derived parameters during the 

process of the training dataset were used to normalise the features in the validation 

dataset. This ensured features exhibited consistent and similar distributional 

properties between the two datasets, an important requirement for robust model 

training and validation. 

(ii) Building on the methodology of feature selection established by Leger et al. 

[230], the study conducted three distinct methods for feature selection: mutual 

information (MutInfo) [249], mRMR [250], and Lasso [229]. Upon completion of the 

feature selection process, three prognostic models were employed: Cox-LASSO, 

gradient boosting survival (GBS), and RSF [233]. These models are purpose-built for 
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time-to-event analysis, providing diverse analytical approaches that can potentially 

increase the accuracy and robustness of risk stratification. 

(iii) To address overfitting, hyperparameter tuning was performed using bootstrap 

sampling of the training datasets for each model. 

(iv)  To comply with the radiomic guidelines and meet the minimum requirement of 

three features for radiomic analysis, including clinical information (age) [67], the 

two features collected from each of the 99 CV runs were counted and ranked based 

on their frequency of occurrence. 

The prognostic models, built using three features, were evaluated on 200 bootstraps 

of the entire training dataset to assess their stratification performance using the C-

index. This workflow was applied to construct prognostic models on the training 

dataset, and the developed models were then tested on the validation dataset. 

4.2.5 Statistical Analysis 

A comparative analysis of the survival distributions in the training and validation 

datasets was performed using the log-rank test. To evaluate whether significant 

differences existed in the distribution of categorical variables within the clinical data 

between the training and validation cohorts, the χ2 test was employed. Continuous 

variables, on the other hand, were assessed using the Mann-Whitney U test to 

determine if any notable differences were present. The prognostic models 

generated risk scores that were analysed using KM curve survival analysis. The 

median risk score was used as the threshold (cut-off) to categorise patients into 

high- and low-risk groups. The resulting KM curve was then assessed using the log-

rank test to determine its statistical significance in stratifying the risk groups.  

To further validate the prognostic models, the C-index was calculated to assess their 

risk stratification performance, which indicates how well the models can predict 

patient outcomes.  To calculate the 95% CI for the C-index, 200 bootstraps were 

performed on both the training and validation cohorts [234]. In addition to the C-

index, the integrated Area Under the Curve (iAUC) was calculated, offering a more 
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detailed understanding of their predictive abilities over time [251]. Unlike the 

conventional area under the curve (AUC), which provides a static evaluation of 

model performance, the iAUC provides a dynamic evaluation, capturing the models' 

performance as it changes over time. Moreover, the iAUC was calculated at 11 

months for all models, as specified by our clinicians, to provide a more detailed 

understanding of the model's performance at this critical time point.  

 

Figure 4.3 Overview of the framework used for feature selection and hyperparameter 
optimisation. 

All statistical and survival analyses were conducted utilising Python software 

version 3.9.  A p-value of less than 0.05 was considered statistically significant, 

indicating that the observed differences were unlikely to occur by chance. The image 

preprocessing and statistical analysis workflow are illustrated in Figure 4.3, 

providing a visual representation of the steps involved in the analysis. Finally, 

permutation feature importance was calculated using the scikit-learn library 

(version 1.3.2) to determine the relative importance of each feature in the models. 

4.3 Results 

The clinical attributes of the training and validation cohorts are presented in Table 

4.2, which highlights the median OS of 11.9 months and 12.3 months for the 
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respective cohorts. Notably, the OS data between the two cohorts did not exhibit a 

statistically significant difference (p = 0.48, Table 4.2). Following a robustness 

analysis, 523 stable RFs remained out of the initial 660. Each robust radiomic 

feature for all four MRI sequences was listed in Appendix (Figure C- 2 and Figure C- 

3). Appendix Figure C- 4 illustrates the robustness of feature families as a percentage 

across all MRI scans in total. 

Table 4.2 Characteristics of clinical variables for training and validation datasets. 

Variable 
Training dataset 
Median (range) 

Validation dataset 
Median (range) 

Statistical Cohort  
Comparison  

Age (years) 61.1 [18.98–86.27] 63.4 [31.0–86.65] U: 0.65, p-value: 0.74 
OS (months) 11.9 [0.17–58.9] 12.3 [0.7666–57.7] U: 0.63, p-value: 0.48 

OS < 11-month (%) 43.7% (101/231) 39.7% (23/58) χ2: 0.19, p-value: 0.66 

Additionally, all RFs demonstrated a weak correlation with age, as evidenced by 

correlation coefficients below 0.3 (Spearman < 0.3). After excluding RFs with high 

correlation coefficients (Spearman > 0.95), a total of 227 RFs remained. These 

robust RFs were then utilised to perform feature selection using a three-fold CV 

setting with 33 repetitions, resulting in a total of 99 runs. Subsequently, a pool of 37 

RFs was collected through LASSO feature selection. The top two RFs were selected 

from this feature set due to their high frequency of occurrence. To further refine the 

prognostic model, 200 bootstrapping iterations were applied to the entire training 

cohort to select the hyperparameters for each three-feature model, which included 

the top two RFs and age. Details of the selected hyperparameters and predefined 

settings can be found in Appendix Table C- 1. The radiomic model in the training 

cohort yielded optimal results using only two RFs: morph_av (morphological, 

occurrence: 31%) and dzm_zdnu_3D (texture, occurrence: 16%). These two RFs, 

derived from the FLAIR modality, exhibited a weak correlation with each other 

(Spearman < 0.6), indicating their complementary nature. The model demonstrated 

a C-index of 0.60 (95% CI: 0.54–0.66) and a HR of 2.72 (95% CI: 1.66–4.46), 

suggesting its potential for predicting patient outcomes. 

The comprehensive analysis and rigorous feature selection process employed in this 

study aimed to identify the most informative RFs and optimal hyperparameters for 

developing a robust prognostic model. By leveraging the strengths of Lasso-Cox 
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feature selection and bootstrapping, the study sought to minimise the impact of 

overfitting and ensure the generalisability of the model to unseen data. A clinical-

radiomic signature that integrated age, and two RFs was developed to develop 

prognostic models for the training cohort. The top two RFs, identified through 

feature selection methods, are presented in Table 4.3.  

Table 4.3 The selected feature names are shown for each feature selection method. 
Each feature is displayed with its dependent modality in parentheses, except for 

"morph_av," which is a modality-independent feature. 

Feature Selection Method 

Lasso MutInfo mRMR 

morph_av 

dzm_zdnu_3D  
(FLAIR sequence) 

szm_glnu_3D  
(T1ce sequence) 

stat_p10  
(T2 sequence) 

dzm_zdnu_3D  
(FLAIR sequence) 

szm_glnu_3D  
(T1ce sequence) 

Additionally, the Lasso feature selection method was the most successful, producing 

optimal RFs that necessitate the minimum number of MRI sequences. Furthermore, 

the Cox-LASSO model, recognised for the highest interpretability among the ML 

models by Luo et al. [235], demonstrated a C-index of 0.64 for internal validation, as 

illustrated in Figure 4.4c. Morph_av (IBSI: 2PR5) is a shape-based feature that 

provides a surface-to-volume ratio, offering insights into tumour morphology. 

Dzm_zdnu_3D (IBSI: V294), on the other hand, is a texture feature that quantifies 

the association between spatial location and grey level value by measuring the size 

of homogeneous zones (groups) within a specified distance. This feature captures 

the distribution of such zone counts across various distances, providing a 

comprehensive understanding of tumour texture. The feature is derived from 

GLDZM.  
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Figure 4.4 C-index of models based on each feature selection method and each 
corresponding ML algorithm for the prognosis of GBM. (a) CV-Training results. (b) 

CV-Validation results. (c) Bootstrap OOB. 

The pairing of morph_av and dzm_zdnu_3D demonstrates the importance of 

considering both morphological and textural characteristics for accurate prognosis. 

The feature importance of each feature in the ML models was demonstrated in Table 

4.4. 

Table 4.4 Permutation feature importance: Permutation feature importance was 
conducted test for 200 repetitions 

Feature Selection Method Feature Names ML Model (Cox-LASSO) 

Lasso 
morph_av 0.001 

dzm_zdnu_3D (FLAIR) 0.07 
Age 0.06 

mRMR 
dzm_zdnu_3D (FLAIR) 0.03 

szm_glnu_3D (T1ce) 0.02 
Age 0.06 

Mutational Information 
stat_mean (T1) 0.01 

cm_joint_entr_3D_comb (FLAIR) 0.02 
Age 0.09 

The radiomic model achieved the highest C-index of 0.62 (95% CI: 0.54–0.71) and a 

HR of 2.97 (95% CI: 0.8–10.99) in the validation dataset, as detailed in Table 4.5. On 

the other hand, the combined clinical–radiomic model, utilising a clinical feature 

alongside RFs, achieved the top C-index of 0.63 (95% CI: 0.56–0.74) within the 

training dataset, as demonstrated in Table 4.6. This model had a C-index of 0.69 

(95% CI: 0.62–0.75) in the validation dataset. 
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Table 4.5 Univariate Cox regression analysis. 

Univariate Cox Regression Analysis 

Dataset Model Variable HR [95% CI] p-value C-index iAUC 11m-iAUC 

Training 
Clinical model Age 1.32[1.15–1.50] 0.010 0.59 [0.53–0.64] 0.67 0.62 

Radiomic model RFs Risk Score 2.72[1.66–4.46] 0.007 0.60 [0.54–0.66] 0.67 0.63 

Validation
Clinical Model Age 1.63 [1.23–2.16] 0.006 0.63 [0.56–0.68] 0.66 0.67 

Radiomic model RFs Risk Score 2.97 [0.8–10.99] 0.290 0.62 [0.54–0.71] 0.79 0.78 

Table 4.6 Multivariate Cox regression analysis. 

Multivariate Cox Regression Analysis 

Dataset Model Variable HR [95% CI] p-value C-index iAUC 11m-iAUC 

Training 
Clinical–

radiomic Model 

Age 1.30 [1.14–1.49] 

6 × 10−5 0.63 [0.56–0.74] 0.68 0.69 morph_av 1.02 [0.87–1.20] 

dzm_zdnu_3D 1.36 [1.13–1.62] 

Validation
Clinical-

radiomic Model 

Age 1.60 [1.21–2.13] 

7 × 10−5 0.69 [0.62–0.75] 0.78 0.81 morph_av 1.58 [1.08–2.29] 

dzm_zdnu_3D 1.89 [1.19–3.01] 
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 Table 4.7 Feature weights and cut-off value. The weight of each feature and the cut-
off value for risk-stratification into low and high-risk groups. 

  Weights 

Feature Name 
morph_av -0.107019 

dzm_zdnu_3D (FLAIR) 0.208010 
Age 0.340629 

Cut-off Value Median value of risk scores 0.015 

For the KM curve, the cut-off value was set at 0.015 and feature weights were 

calculated, as shown in Table 4.7. In the training dataset, the log-rank p-value was 

6×10−5. For the same cut-off value, the log-rank p-value was 7×10−5 in the validation 

dataset (refer to Figure 4.5a, b). The KM plots effectively highlight the reliable 

capability of the model to separate between high- and low-risk groups across both 

datasets. The clear separation of survival curves, along with the highly significant p-

values, highlights the model's capability and potential predictive strength for 

diverse, previously unseen patient populations.  This robust predictive performance 

indicates that the model might be an effective tool for adjusting prognoses and 

developing personalised treatment strategies based on individual risk profiles. On 

the other hand, differences between the training and validation KM curves 

highlighted the need for future studies to incorporate larger unseen cohorts and 

additional clinical variables. Increasing both sample size and clinical variables 

would enable broader patient characteristics to be captured, thereby improving 

model robustness and generalisability.  
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Figure 4.5 Kaplan–Meier plots showing differences between a) training and b) 
validation datasets stratified into high or low-risk groups by the Cox–Lasso model. 

The small p-values indicate a highly reliable differentiation between the risk groups. 

At 11 months, the iAUC of the prognostic model using only two RFs was 0.63 for the 

training dataset and 0.78 for the validation dataset. The iAUC of the model with just 

the age information reached 0.62 in the training dataset and 0.67 in the validation 

dataset. The clinical–radiomic model, which combined age with two RFs, achieved 

an iAUC of 0.69 in the training dataset and 0.81 in the validation dataset. As 

presented in Table 4.6, the HR highlights the most significant influence from the 

GLDZM-based feature, with a value of 1.89 in the validation dataset. Both age and 

morphology features show nearly equivalent effects, with values of 1.60 and 1.58, 

respectively. Figure 4.6 offers a visual representation of the risk groups using 

example cases, including MRI FLAIR images and a 3D tumour mesh of the relevant 

patient. 
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Figure 4.6 The visualisation of risk groups (first row: high risk, second row: low risk) 
for median OS values of each group. For each case, a transverse slice from the FLAIR 

scan (a) is coupled with a 3D mesh of the tumour. (a) FLAIR (b) Tumour Mesh. 

4.4 Discussion 

This study presents the development of a clinical-radiomic prognostic model aimed 

at stratifying GBM patients into high- and low-risk categories utilising preoperative 

MRI scans. There is important factor that the transition from the RTSTRUCT format 

to a mask can impact radiomic analysis when employing various software platforms 

[252]. To ensure consistency, we utilised a single software platform (Python) for 

generating masks within the STORM_GLIO dataset. Through robustness analysis of 

RFs, feature selection methods identified two RFs derived exclusively from the MRI 

FLAIR sequence. The clinical-radiomic model demonstrated a C-index of 0.69 upon 

validation, with significant differences detected between the stratified risk groups. 

A comprehensive evaluation of our study's findings with existing research is 

provided in Table 4.8, where we applied rigorous inclusion criteria to select studies 

that solely employ RFs, concentrate on GBM (Grade 4), and explore time-to-event 

(overall survival) outcomes. Studies not adhering to these criteria were excluded. 

The table highlights potential biases, particularly concerning patient sample size, 

such as limited cohorts and single-centre studies, which might affect the validity and 

reliability of results. For example, although Hajianfar et al. [242] reported the 



 

 
108

highest C-index, their study involved the smallest patient cohort. To address this, we 

endeavoured to maximise our patient cohort across multiple centres; however, 

potential biases persist in our study. Notably, Cepeda et al. [240] developed a model 

using multiple MRI sequences and 10 RFs, achieving a C-index of 0.61 and an iAUC 

of 0.77. Similarly, Tixier et al. [239] reported an AUC of 0.75 with 57 RFs. Verma et 

al. reported similar results (AUC = 0.78) using a more extensive set of over 300 RFs, 

derived from multiple MRI modalities [241]. Furthermore, Hajianfar et al. reported 

a C-index of 0.77 [242] utilising convolutional filters not standardised by IBSI at the 

time of publication [236]. Our study demonstrated a comparable C-index and 

achieved the highest iAUC at 11 months. We achieved this result by leveraging the 

largest patient cohort, a minimal set of RFs, RFs derived exclusively from the MRI 

FLAIR modality, and a single ROI (GTV). Through our experiments with various 

feature selection methods and ML algorithm combinations, we found that 

incorporating age, along with two RFs, a modality-independent morphology feature 

(morph_av) and a GLDZM feature (dzm_zdnu_3D) from the MRI FLAIR modality, 

yielded the most desirable performance in terms of generalisability on the 

validation set. This approach enhances the model's performance across diverse 

healthcare settings, from small local clinics to large research hospitals, offering 

reliable predictions and valuable insights from various data sources. 
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Table 4.8 The comparison of recent similar studies with our study. 

References No. of 
patients 

MRI 
Sequence 

Region of 
Feature 

Extraction 

Extracted 
Feature 
number 

Selected 
Feature 
Number 

Feature 
number 

guideline 
(3–10) 

ML model Validation 
method 

IBSI 
guideline 

Performance 
metrics 

Tixier et al. 
[239] 

234 T1 
Gd-ET, NEC, 

NET, TC 
88 57 No Lasso Five-fold CV Yes AUC: 0.75 

Cepeda et al. 
[240] 

203 
T1ce, T1, 
T2, FLAIR 

Tumour, 
Peritumoural 

15,720 10 Yes 
Random 
Forest 

Survival 
Five-fold CV 

Partially 
(Convolution

al Filters) 

iAUC: 0.77 
C-index 0.61 

Verma et al. 
[241] 

150 
T1ce, T2, 

FLAIR 
ET, NCR 3792 316 No - 

Five-fold CV 
 

Partially 
(Convolution

al Filters) 
AUC: 0.78 

Hajianfar et 
al. [242] 

119 FLAIR, T1ce ET, TC, NEC, ED 4471 - No Cox Boost 
Three-fold 

CV 
Bootstrap 

Partially 
(Convolution

al Filters) 
C-index: 0.77 

Our Study 289 FLAIR GTV (TC) 689 
2 

(without 
Age) 

Yes Cox-LASSO 

Three-fold 
CV 
33 

repetitions 
Bootstrap 

Yes 
C-index: 0.69 

iAUC: 0.81 
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As illustrated in Figure 4.6, high-risk patients are characterised by irregular 

boundaries and a non-smooth, irregular shape, indicated by a higher surface area to 

volume ratio (morph_av). Additionally, ZDNU from GLDZM, which measures zone 

size and distance variability in a 3D image (dzm_zdnu_3D), is elevated in high-risk 

patients, reflecting a greater degree of heterogeneity in textural patterns (in Figure 

4.6a). This suggests that even seemingly homogeneous regions can exhibit 

significant zone size variations at different distances. Combining RFs with age 

resulted in improved outcomes compared to using clinical information alone for 

GBM, as also demonstrated by Cepeda et al. [240]. While integrating clinical (age) 

and radiomic data can enhance model performance, it may cover the importance of 

clinical factors. Without a rigorous feature selection and model-building approach, 

models risk overfitting the training data and struggling with new datasets with poor 

prognostic prediction, underscoring the importance of integrating clinical and 

radiomic features in a balanced approach. In the medical field, challenges such as 

data sparsity, scarcity, and imbalance arise due to the limited availability of data on 

rare diseases, small patient cohorts, and missing clinical information, hindering the 

collection of comprehensive datasets [189]. In our research, we experienced similar 

difficulties in gathering comprehensive data, including a variety of MRI sequences 

(T1, T1ce, T2, and FLAIR) and a range of clinical parameters such as age, genetic 

information, survival metrics, and Karnofsky performance status. Acknowledging 

these clinical limitations, we maximised the patient cohort by collecting limited 

clinical data and extracting radiomics features from a minimal yet informative set of 

MR sequences. By adopting this strategy, we aimed to align the trade-offs between 

data availability and model performance. Moreover, the risk of bias associated with 

the retrospective dataset was mitigated by assembling a multi-centre patient cohort 

with the largest feasible sample size. 

The enhancement of our model's performance could be achieved by incorporating 

additional labels beyond the GTV, such as the multiple regions of feature extraction 

utilised in prior research, as illustrated in Table 4.8. Additionally, employing DL-

based features has the potential to improve outcomes in survival analysis. However, 
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this study deliberately excluded deep RFs due to their limited reproducibility and 

interpretability, which pose significant constraints for clinical applications [237]. 

Previous research did not emphasise essential criteria, such as employing a singular 

ROI or enhancing interpretability by minimising the number of RFs. In contrast, our 

approach aligns with the recommendations of van Timmeren et al. [67], which 

suggest for limiting the number of features in radiomic model construction to a 

range between 3 and 10. To address the issue of overfitting, we developed a 

workflow incorporating hyperparameter optimisation and data resampling. The 

prognostic model's results were reported on an independent validation dataset 

using this workflow. However, larger unseen cohorts and additional clinical 

variables are needed to enhance the generalisability and reliability of radiomic 

models.   

4.5 Conclusions 

This research presents the development and validation of a clinical-radiomic model 

for the stratification of GBM patients based on OS. Notably, this is the first study to 

employ MRI-based RFs in accordance with IBSI guidelines, while addressing crucial 

clinical challenges, interpretability, and robustness analysis in GBM contexts. Our 

approach demonstrates superior performance compared to previous studies, such 

as that by Tabassum et al. [243]. The model incorporates two independent RFs 

derived from the FLAIR MRI sequence alongside patient age. With the recent 

standardisation of convolutional filters under the IBSI guidelines, future work will 

explore their application to RFs. Additionally, future research directions include to 

leverage DL features to improve model performance, with an emphasis on ensuring 

their interpretability. This may involve the use of multimodal foundation models, 

integrating further clinical parameters such as age, sex, and Karnofsky performance 

status, or incorporating multi-modality imaging data (e.g., PET, CT). Further avenues 

for performance improvement cover the integration of diffusional or functional MRI 

sequences and the acquisition of more comprehensive clinical datasets, including 

omics data such as genomics, transcriptomics, and metabolomics. These 

enhancements, supported by larger patient cohorts, are anticipated to yield more 

accurate and reliable models.
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5. Region Focused Selection+: A Clinically Adaptable Strategy 

for Brain Tumour Segmentation 

5.1 Introduction 

In this chapter, we explored the challenges associated with deploying state-of-the-

art DL-based automated segmentation models in diverse clinical settings. Although 

promising results have been achieved with these models on standardised datasets 

such as BraTS datasets, their performance may be degraded when applied to data 

acquired with varying imaging parameters. This study examined an integrated 

approach combining refined ROI selection, alternative normalisation methods, and 

resource allocation strategies to enhance segmentation flexibility and clinical 

applicability.  

Enhancing the adaptability of DL models for brain tumour segmentation across 

varied clinical scenarios is the primary aim of this study while tackling the practical 

challenges of time and memory limitations inherent in real-world applications. To 

overcome these challenges, we introduced RFS+, which represents a significant 

departure from the region-focused selection (RFS) [92]. RFS+ moves beyond the 

limitations of RFS, which relies on Z-score normalisation for TC/GTV and uses 

tumour regions and labels as input masks, by introducing a broader framework that 

incorporates multi-class, multi-label, and binary class segmentation approaches, 

avoiding reliance on a single strategy. We employed RFS+ to train a U-Net [88] 

model on the BraTS training dataset, with the aim of improving the robustness and 

generalisability of DL models. Ensemble learning is utilised by identifying the top 

three models from the training dataset for each tumour region (ET, TC, and WT) to 

produce a unified segmentation result. Z-score intensity normalisation has been the 

predominant preprocessing technique in the majority of brain tumour segmentation 

studies to date [253]. Our research takes a broader approach by investigating 

several intensity normalisation methods and assessing their influence on 

segmentation performance using DSC metric.  

Related Works 
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In the domain of medical imaging, DL has gained notable advancements and 

widespread application. This trend is evident in the BraTS challenge, where DL 

approaches are prevalent, and CNNs constitute the core of the top-performing 

models [86]. The first-place achievement in the BraTS 2018 competition 

underscores the significance of encoder-decoder architectures in brain tumour 

segmentation, with the winning model featuring an asymmetric encoder-decoder 

structure [180]. Among the architectural paradigms in the BraTS competition, U-

Net-based architectures, leveraging encoder-decoder pathways, have maintained 

supremacy in recent years. For instance, the 2019 first-place model featured a two-

stage cascaded U-Net architecture, securing the top spot on the leaderboard [181]. 

The leading model in 2020 was a 3D U-Net, referred to as nnU-net, which functioned 

as a self-configuring framework and excelled without requiring substantial 

alterations. The nnU-net framework continued its success in 2021, achieving first 

place with an expanded U-Net architecture. Furthermore, the 2021 winning model 

incorporated innovative methodological improvements to deliver superior results 

[152]. 

In the work of Magadza et al. [253], CNN architectures are systematically grouped 

into four subcategories: single pathway, dual pathway, cascaded architectures, and 

U-Net architectures. According to Pereira et al. [90], a single-pathway architecture 

is defined by its simplicity, utilising small kernels in their layers and maintaining a 

single processing path throughout the network. In dual-pathway architectures, two 

distinct processing paths are utilised within the same network, allowing for the 

concurrent extraction of global contextual features (e.g., anatomical brain location) 

and detailed local visual features [254]. Among the different types of cascaded 

architectures, the input cascade approach is most commonly implemented. This 

approach involves using the output of one CNN as the input to another, effectively 

adding an extra image channel for subsequent stages of architectures [255]. Another 

significant strategy within cascaded architectures is hierarchical segmentation, in 

which a multi-class segmentation task is decomposed into a sequence of binary 

segmentation stages. By utilising the hierarchical structure of tumour sub-regions, 

this design addresses the issue of class imbalance present in the dataset. This 



 

 
114

approach generally starts with the segmentation of WT, followed by the generation 

of a bounding box based on the WT segmentation to inform the next stage. In 

subsequent stages, TC and ET regions are segmented in sequence. Although this 

approach results in longer training and inference times, its effectiveness has been 

demonstrated in successful applications, such as those reported by Wang et al. 

[179]. Models utilising a binary segmentation approach, benefiting from enhanced 

memory efficiency, have achieved remarkable outcomes [177]. U-Net-based [88] 

architectures have proven highly effective, as demonstrated by their adoption in the 

top-performing models of the 2020 and 2021 BraTS challenges [152], [182].  By 

employing a multi-label segmentation strategy, these models allowed for 

overlapping class representations, avoiding the need to treat each class as entirely 

separate. This study provides a comparison of these approaches, highlighting their 

respective mask representations. 

Despite their potential, both feature extraction methodologies and transformer-

based architectures in clinical integrations remain in early developmental stages 

[168], [183], having yet to surpass established performance benchmarks in BraTS 

competitions over the past three years [152], [182], [256]. Although a wide range of 

U-Net variants has been developed, this study contributes a thorough assessment of 

how ensemble learning methodologies influence fundamental U-Net structures. The 

architectural composition of DeepMedic [257] features a multi-scale 3D CNN design, 

contrasting markedly with the RFS+ framework's alternative structural approach. 

These architectural variations may have a substantial impact on the models' 

performance in brain tumour segmentation. With regard to balancing 

computational resources and model effectiveness, the Cascade U-Net [181] 

implements a hierarchical framework to enhance segmentation accuracy. By 

comparison, RFS+ emphasises computational efficiency, a feature particularly 

salient for clinical implementation. The framework's distinct capacity to 

accommodate various clinical scenarios distinguishes it from the Cascade U-Net 

model, which demonstrates more constrained adaptability.  
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Through the implementation of advanced optimisation strategies, RFS+ achieves 

superior learning efficiency compared to the deep supervision mechanisms 

characteristic of 3D Deeply Supervised Networks (3D-DSN) [257]. Moreover, RFS+ 

manifests exceptional adaptability to multiple MRI protocols and clinical 

environments, suggesting substantial benefits over 3D-DSN in heterogeneous 

medical contexts. This research utilised an array of architectures including 2D, 2.5D 

[245], 3D U-Net, and nnU-net [182], with specific attention to nnU-net based on its 

established clinical reliability. The consistent dominance of nnU-net and related U-

Net configurations in recent BraTS competitions [152], [182], [256] illustrates their 

clinical performance supremacy relative to alternative approaches such as 

DeepMedic [168]. While the predecessor RFS framework [92] operated within the 

constraints of multi-class, multi-label, and binary segmentation methodologies for 

TC and GTV, RFS+ extends this capability by incorporating specialised normalisation 

strategies optimised for each target region. Through the implementation of this 

holistic methodology, the study seeks to advance the adaptability, computational 

efficiency, and clinical applicability of segmentation models for brain tumour 

analysis. 

5.2 Material and Methods 

The methodological framework encompasses architectural specifications, pre-

processing protocols, and model hyperparameter optimisation procedures. 

Additionally, it characterises the two distinct datasets utilised: the BraTS 2021 

collection (including training and validation subsets) and the institution-specific 

STORM_GLIO collection. 

5.2.1 The Proposed Strategy: RFS+ 

The workflow for RFS, depicted in Figure 5.1 a), utilises Z-score normalisation as its 

singular normalisation technique, encompassing three distinct segmentation 

strategies optimised specifically for TC and GTV analysis.  
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Figure 5.1 The proposed strategies: (a) RFS strategy and (b) RFS+ strategy on GTV 
segmentation. 

Overlapping regions from the segmentation models are integrated into a unified 

structural representation. The enhanced methodology, RFS+, illustrated in Figure 

5.1 b), provides an adaptable framework for implementing various DL models in 

brain tumour segmentation. This refined approach addresses multiple tumour 

regions, including ET, TC, and WT with comprehensive region-specific protocols 

detailed in Appendix (Figure D- 1, Figure D- 2, Figure D- 3). RFS+ distinguishes itself 

from its predecessor through two key advancements: the integration of ensemble 

learning methodologies and the implementation of region-adapted normalisation 

techniques. The framework's architecture is anchored by two core components: 

1. Normalisation Techniques: Multiple normalisation approaches are applied 

as part of the pre-processing of MRI data. 



 

 
117

2. Segmentation Approaches: Three unique segmentation methods are used, 

pairing normalisation techniques (e.g., Z-score) with segmentation strategies 

(e.g., multi-class segmentation) to target defined regions 

The specific segmentation target (TC or GTV) is determined through the integration 

of selected normalisation techniques and segmentation approaches. Earlier 

investigations [92] have established the viability of transferring models trained on 

TC contours to GTV segmentation tasks. The selection of optimal models was 

identified on DSC metrics, evaluating performance on the training dataset (with 

15% of the data reserved as unseen) for TC/GTV segmentation. The superior 

performing architectures comprise: 

• Multi-class segmentation incorporating Z-score normalisation 

• Binary-class segmentation utilising Z-score normalisation 

• Binary-class segmentation employing Nyul normalisation 

The outputs from these three models were fused by utilising ensemble learning 

techniques. A detailed schematic representation of each segmentation strategy, its 

requisite inputs, and the encompassing RFS+ architecture is presented in Figure 5.2. 

The main figures prioritise the visualisation of TC/GTV; in contrast, Appendix 

includes detailed, high-resolution illustrations of individual segmentation 

workflows (Figure D- 4, Figure D- 5, Figure D- 6). 
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Figure 5.2 Different Segmentation Approaches: (a) Multi-class segmentation, (b) 
multi-label segmentation, (c) binary class segmentation, and (d) RFS+ for TC/GTV 

segmentation. 

5.2.2 Normalisation of MRI Scans 

To address MRI scanner-dependent intensity variation, the implementation of dual 

normalisation strategies was employed: Z-score normalisation and piecewise linear 

histogram matching (Nyul). These specific approaches were extracted from a more 

comprehensive array of normalisation techniques as detailed by Reinhold et al. 

[258], having demonstrated superior efficacy in DL applications. Appendix (Table 

D- 1) contains comparative analyses of alternative normalisation methodologies. 
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5.2.3 Network Architectures 

5.2.3.1 Segmentation Approaches 

The segmentation methodology incorporates three different approaches: multi-

class, multi-label, and binary class segmentation. The architectural distinction lies 

in mask configuration, with non-overlapping masks applied in multi-class 

segmentation, while overlapping masks were implemented in both binary class 

and multi-label approaches, as shown in Figure 5.3. 

 

Figure 5.3 Different masks: (a) The non-overlapping masks (the input for the multi-
class approach) and (b) the overlapping masks (the input for the binary class and the 
multi-label approaches; the red cross shows an example of overlapping pixels for ET 

tissue). 

The implementation encompassed three U-net architectural variants: 2D, 2.5D, and 

3D configurations. While Figure 5.4 delineates the 2D U-net configuration, the 3D U-

net implementation aligns with the architectural specifications outlined by Çiçek et 

al. [107]. 
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Figure 5.4 The proposed 2D UNET model.
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The 2.5D U-net architecture [245] expands upon the 2D U-net model through multi-

channel input processing. The design concatenates triplets of consecutive slices 

(prior, present, and subsequent) from the imaging volume, enabling effective 

utilisation of all MRI modality inputs. Figure 5.5 demonstrates the implementation 

of this three-channel approach across modalities. 

The 2D U-net architecture was adapted into three variants, with modifications solely 

in the final layer's activation function. The implementation strategy employed: 

• Sigmoid activation for binary class segmentation tasks 

• Sigmoid activation for multi-label segmentation scenarios 

• Softmax activation for multi-class segmentation applications 

These functional choices were specifically tailored to optimise performance for each 

segmentation paradigm and its corresponding mask structure. 

Input dimensionality was structured as follows: 

The 2D U-net processed inputs of size 240 × 240 × 4, where the four channels 

represented aligned T1, T1ce, T2, and FLAIR modalities. In contrast, the 2.5D U-net 

expanded the channel dimension to 240 × 240 × 12, incorporating triplets of 

adjacent slices for each modality. Both implementations maintained identical spatial 

dimensions of 240 × 240 pixels. Four sequential blocks form the encoder path of the 

U-net models, with each block employing two convolutional layers followed by 

batch normalisation to normalise feature maps and enhance training stability. Each 

convolution is followed by a ReLU activation function.  The feature maps undergo 

progressive downsampling through max-pooling operations, with the number of 

channels expanding from 64 at the input, doubling after each pooling stage (128, 

256, 512), ultimately reaching 1024 channels at the bottleneck layer. The decoder 

architecture maintains symmetry with the encoder through a series of blocks, each 

implementing a convolutional transpose layer for upsampling, followed by two 

convolutional operations.  
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Figure 5.5 Three Channel Method: An example of each modality based on the 3-channel method of the 2.5D UNET model.
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The architecture implements skip connections that bridge corresponding encoder 

and decoder levels, facilitating the preservation of fine spatial details and enabling 

the effective fusion of feature maps across the network. The network concludes with 

an output layer generating a 240 × 240 pixel segmentation mask, precisely 

corresponding to the spatial dimensions of the input imagery. As visualised in Figure 

5.2a, the multi-class segmentation implementation handles mutually exclusive 

classifications, with class structures detailed in Figure 5.3a. The architecture 

employs a softmax activation in its final layer, specifically designed to process non-

overlapping segmentation masks where each pixel belongs to exactly one class. The 

multi-label (Figure 5.2b) and binary class (Figure 5.2c) segmentation approaches 

handle non-mutually exclusive classifications, with their overlapping class 

relationships demonstrated in Figure 5.3b. The architectural design employs a 

sigmoid function in the output layer, allowing pixels to simultaneously belong to 

multiple classes.  

Both the 3D U-Net model and the nnU-net (implemented as DynU-Net in MONAI 

[259]) maintain architectural consistency across all three segmentation paradigms: 

multi-class, multi-label, and binary class. This uniformity encompasses the 

configuration of final layers and channel structures throughout all segmentation 

variants. All model variants utilise a standardised input patch size of 192 × 192 × 

128, representing an intentional departure from the original 128 × 128 × 128 

configuration in the 3D models. This dimensional adjustment prioritises the capture 

of global contextual information, ultimately enabling more time-efficient 

optimisation of the DSC performance metric. The implementation of larger patch 

dimensions facilitates the processing of greater data volumes within each iteration 

cycle. This enhancement manifests in reduced computational overhead through two 

mechanisms: decreased total iteration requirements for processing the complete 

dataset while simultaneously accelerating the training convergence process. This 

design modification exemplifies the balance between computational efficiency and 

model robustness. While facilitating faster training and enhanced global context 

capture, the larger patch size potentially introduces generalisation limitations and 
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heightened overfitting tendencies. The original nnU-net patch dimensions, though 

potentially more robust, demanded extended training periods that contradicted this 

study's primary efficiency objectives. The prioritisation of computational efficiency 

extended to the enhanced nnU-net implementation. The comparative performance 

implications of these efficiency-focused architectural decisions are thoroughly 

examined in this chapter’s results section. 

5.2.3.2 Loss Function 

The selection of loss functions for the U-Net architectures is fundamentally 

determined by the input mask characteristics, particularly the distinction between 

mutually exclusive and non-mutually exclusive class structures (as illustrated in 

Figure 5.3). This framework employs binary cross-entropy for multi-label and 

binary class segmentation scenarios, while multi-class cross-entropy is specifically 

implemented for multi-class segmentation tasks. This methodological distinction 

ensures appropriate loss function application for each segmentation approach. 

Non-overlapping input masks in multi-class segmentation tasks (depicted in Figure 

5.3a) necessitate the implementation of the softmax activation function for each 

class category. This choice directly aligns with the mutually exclusive nature of the 

class distributions. The implementation of softmax activation ensures probabilistic 

normalisation, with class probabilities summing to 1. This mathematical property 

ensures that probability increase for any single class inherently requires 

compensatory probability reduction across the remaining classes. Consistent with 

the interdependent class structure, the implemented multi-class cross-entropy loss 

quantifies distributional divergence between predictions and true labels. The 

mathematical formulation for N classes at each pixel position is: 

                                         �� = − ∑ ��,�
�
��� �� !"�,�#                       (5.1) 

In this formulation, ��,� serves as a binary truth indicator (0 or 1) specifying the 

correct class assignment for each pixel-class pair (pixel o, class c), while "�,�  

represents the corresponding predicted class probability. The overall loss metric is 

calculated by averaging values across all pixels in the image. The resulting multi-
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class segmentation method provides improved analytical precision, specifically 

addressing uneven class distributions. This approach is particularly effective for 

advanced segmentation tasks, specifically when processing hierarchical input 

masks that capture three tumour classifications: ET, TC, and WT regions. 

For binary class segmentation, each mask undergoes separate processing via the 

sigmoid function. Similarly, multi-label segmentation scenarios, characterised by 

overlapping input masks (visualised in Figure 5.3b), utilise the same sigmoid 

function methodology. Through independent class prediction processing, the 

sigmoid function yields separate class probabilities. This approach facilitates 

effective multi-label analysis by converting the task into separate binary 

classification tasks. The final loss measurement represents the average sum of 

losses from each label classification. At the pixel level, these approaches define the 

binary cross-entropy loss according to the following formulation: 

     $�� = −%� �� &"' + &1 − �' �� &1 − "'* &�' �� &1 − "'   (5.2) 

The variable y denotes the true pixel state (assigned 1 for object regions and 0 for 

background areas), whereas p expresses the estimated probability of the pixel being 

part of the object. The binary cross-entropy loss for the entire image is derived by 

calculating the mean of the pixel-wise losses. This mathematical framework, 

characteristic of binary class segmentation, offers both computational efficiency and 

analytical simplicity. The approach demonstrates particular efficacy in scenarios 

with single region input masks per training sample. Within the multi-label 

segmentation approach, the final loss is obtained by calculating the mean of region-

specific loss values. While offering enhanced analytical flexibility and capability 

compared to binary segmentation, this method presents significant trade-offs 

through its computational intensity, resource consumption, and challenges in 

managing label interdependencies. The different segmentation methods have their 

own unique strengths and weaknesses. Where traditional methods typically 

implement a uniform segmentation strategy across tumour regions, our proposed 

region-focused ensemble learning model represents a departure from this 

conventional paradigm. By combining optimised segmentation methods, each 
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utilising customised normalisation, the ensemble model harnesses method-specific 

advantages to achieve superior tumour region delineation. The novel methodology 

yields precise segmentation outcomes, particularly when addressing the challenges 

posed by complex, heterogeneous tumour morphologies. 

5.2.4 Dataset 

Model development and validation are conducted using two different datasets, with 

dedicated sets for training and testing procedures. The BraTS 2021 dataset, a 

retrospective collection of brain tumour MRI scans from multiple institutions [178], 

[211], [212], was used as the first dataset in this study. The dataset contained 1251 

training samples, 219 validation samples, and 570 testing samples at the time of our 

analysis. The dataset encompasses four MRI modalities: T1, T1ce, T2, and FLAIR, 

which together enable a detailed analysis of brain tumours. The tumour boundaries 

were carefully manually annotated by neuro-radiologists to ensure precise 

delineation.  

As illustrated in Figure 5.3, the BraTS competition categorises GBM into three 

distinct tumour sub-regions: 

1. NCR, assigned label 1, 

2. ED, assigned label 2, and 

3. ET, assigned label 4. 

The combination of these sub-regions results in three clinically significant regions: 

Label 4 designates the ET region, distinguished by its hyperintense appearance in 

T1ce images relative to T1 scans. Comprising labels 1 and 4, TC manifests hypo-

intensity in T1ce sequences and constitutes an essential region for surgical excision 

[178]. WT, formed by the combination of labels 1, 2, and 4, presents distinctive 

hyper-intense features in FLAIR images, supporting thorough tumour assessment. 

The BraTS dataset is pre-processed using skull-stripping and co-registration to align 

with a standardised anatomical template. Each modality is subsequently resampled 

to an isotropic resolution of 1 mm³, yielding a voxel matrix size of 240 × 240 × 155. 
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This study also utilises the STORM_GLIO dataset, a local dataset gathered in Wales 

from April 2014 to April 2018. The dataset consists of 108 glioblastoma patients, 

but only 53 patients have complete imaging data, including all four modalities (T1, 

T1ce, T2, and FLAIR), similar to the BraTS dataset. The adoption of DICOM 

formatting in STORM_GLIO, coupled with its non-standardised resolution and 

matrix size across patients and between MRI sequences, distinguishes it from BraTS 

and presents a challenge for analysis and processing of the dataset. The 

heterogeneity of the STORM_GLIO dataset, in terms of resolution and modality 

specifications, presents an additional challenge for preprocessing. For a detailed 

examination of the dataset, including its resolution and modality specifications, 

refer to Appendix (Table D- 5). 

5.2.4.1 Data Pre-Processing 

Dataset preparation began with 3D MRI scans (240 × 240 × 155) from BraTS 2021, 

followed by a 70/15/15 split for training, validation, and testing respectively, prior 

to generating either 2D slices (240 × 240) or 3D patches (192 × 192 × 128), as 

depicted in Figure 5.6.   

 

Figure 5.6 The use of the BraTS training and validation datasets. 

The training dataset, reduced by 10% compared to the reference model [152], yields 

155 slices per patient case for 2D U-Net implementations, while the 2.5D U-Net 

implementation employs a 3-channel slice extraction approach. The slice selection 

mechanism captured three consecutive images: central (N), preceding (N-1), and 

subsequent (N+1) slices. Synthetic black slices compensated for missing adjacent 

slices at volume boundaries to preserve the 3-channel structure. Patient-specific 

patches (192 × 192 × 128) were utilised for 3D U-Net processing, a dimensional 

choice that balanced comprehensive spatial information with processing efficiency. 
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Through this preprocessing framework, the dataset underwent targeted 

preparation to meet the distinct input specifications of both 2D and 3D U-Net 

variants. Derived from clinical practice, STORM_GLIO's MRI scans exhibited variable 

dimensions and utilise patient-specific coordinate systems, requiring mandatory 

registration procedures prior to analytical processing. The BraTS dataset provided 

pre-processed MRI scans, with T1ce modality registration aligned to the SRI24 atlas 

[223], establishing a unified coordinate system across modalities. The BraTS dataset 

provided pre-processed MRI scans, with T1ce modality registration aligned to the 

SRI24 atlas [223], establishing a unified coordinate system across modalities. The 

preprocessing pipeline further included comprehensive skull stripping and detailed 

sub-tumour class segmentation. The alignment of STORM_GLIO to BraTS standards 

involved executing a modified BraTS preprocessing pipeline, with two key 

adjustments. Integration of the CaPTk [73], [74] served as a crucial step in achieving 

format compatibility. Two key deviations from the standard pipeline were 

implemented: skull extraction was performed using the more advanced HD-BET 

[75] tool instead of CaPTk's default method, and SRI24 atlas registration was 

excluded to maintain ground truth data fidelity due to the risk of ground truth 

deformation. Two key deviations from the standard pipeline were implemented: 

skull extraction was performed using the more advanced HD-BET [75] tool instead 

of CaPTk's default method, and SRI24 atlas registration was excluded to maintain 

ground truth data fidelity due to the risk of ground truth deformation. Through 

these pipeline modifications, DL model segmentations could be effectively 

converted to RTSTRUCT, ensuring practical clinical deployment capabilities. The 

complete MRI acquisition parameters unique to the STORM_GLIO dataset can be 

found detailed in Appendix (Table D- 5) for comprehensive technical reference. 

5.2.4.2 Implementation Details   

Implementation of the training protocol for 2D and 2.5D U-Net configurations 

encompassed a comprehensive 100-epoch cycle utilising 16-sample batches, while 

employing Adam optimisation methodology [260] with learning rate established at 

0.0001. The training dataset underwent augmentation procedures including 

multidirectional image rotation and dual-axis flipping transformations with all 
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computational processes executed on specialised hardware consisting of an NVIDIA 

RTX 3070 graphics processing unit with 8 GB of dedicated memory, alongside an 

Intel i7-11700 processor and 32 GB of system RAM. Implementation of 3D U-Net 

and nnU-net model training required adjustment of key parameters, extending the 

epoch count to 150 and reducing batch size to 4 samples, while preserving the Adam 

optimisation methodology with an unchanged learning rate of 0.0001. The 

computational infrastructure for these experimental procedures comprised an 

NVIDIA RTX 3090 graphics processor featuring 24 GB of dedicated memory, 

supported by an Intel i7-11700 processing unit and 32 GB system RAM, with 

software deployment performed in a Linux operating system environment 

leveraging Python 3.9.13 and PyTorch version 1.10 frameworks. The experimental 

procedures were compared with the integration of the BraTS 2021 challenge-

winning Docker image containing the extending nnU-net framework [152], which 

incorporates a comprehensive suite of 10 distinct model architectures and advanced 

post-processing protocols. To ensure optimal segmentation accuracy, the 

STORM_GLIO dataset was resampled to a consistent isotropic resolution of 1 mm³, 

resulting in a uniform matrix size of 240 × 240 × 155, which was applied to all 3D 

models. 

After segmentation, the outputs were reverted to their original voxel size and 

dimensions, facilitating a direct comparison with the reference ground truth data. 

Quantitative assessment of segmentation accuracy was conducted using the DSC as 

the principal evaluation metric. The DSC calculation determines how well the 

predicted segmentation masks (Y_pred) match the expert-annotated ground truth 

masks (Y_true) by measuring their spatial correspondence [261]. Values of the DSC 

metric are bounded between 0 and 1, where unity indicates optimal segmentation 

performance with exact correspondence between ground truth and algorithmic 

output. By convention, cases where both the reference and predicted masks are 

devoid of tumour pixels are assigned a maximum score of 1 [182]. The segmentation 

performance assessment incorporated multiple complementary metrics beyond the 

DSC, including sensitivity (true positive rate), specificity (true negative rate), and 

the 95th percentile Hausdorff distance (HD95) for target region evaluation. These 
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measurements were calculated utilising the SegmentationMetrics library (version 

1.0.1) in Python. 
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5.3 Results and Discussion 

We conducted a systematic evaluation of the proposed approach through three 

distinct experimental protocols. The preliminary phase concentrated on 

architectural comparison and selection; wherein various candidate models were 

evaluated using the BraTS 2021 dataset to determine the optimal network 

configuration. We evaluated and compared multiple models to select the most 

effective architecture for implementing the RFS+ strategy. The second experimental 

phase employed the BraTS validation dataset to conduct a comparative assessment 

between our proposed U-net architecture and the state-of-the-art extended nnU-

net, which achieved superior performance in the BraTS 2021 challenge. The third 

experimental phase evaluated the efficacy of the RFS+ strategy by comparing the 

performance of top-ranked architectures against two baselines: the extended nnU-

net and the equivalent models without RFS+ implementation. 

5.3.1 Model Selection Using the BraTS 2021 Dataset 

We describe herein the experimental methodology, evaluation protocols, and 

comparative assessments conducted on the proposed DL models, highlighting the 

various intensity normalisation strategies employed in their respective 

implementations. Model performance evaluation was conducted using dual 
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datasets, BraTS 2021 and STORM_GLIO, facilitating a methodical selection process. 

The quantitative outcomes of these comparative analyses are summarised in Table 

5.1. TC segmentation performance is critical since GTV delineation depends on it. In 

our results, the baseline 2D U-Net (with Z-score normalisation and multi-class 

approach) achieved the best TC score. Specifically, 3D U-net and nnU-net achieved 

moderate performance due to aiming time-efficiency with a bigger patch size.     

Table 5.1 Single Model Comparison of DSC Scores for the 2D, 2.5D, 3D U-NET, and 
nnU-net with Z-score normalisation and multi-class approach on the BraTS 2021 

training dataset. 

Model ET TC WT 
nnU-net 83.96 88.34 92.53 
3D U-net 83.21 87.55 91.67 

2.5D U-net 84.34 88.55 91.64 
2D U-net 84.99 89.71 91.65 

The segmentation performance on the STORM_GLIO dataset was evaluated using 

models pre-trained on BraTS data, implementing a multi-class segmentation 

framework with Z-score intensity normalisation. The quantitative results are 

presented in Table 5.2.  

Table 5.2 Comparison of the models with multi-class approach on STORM_GLIO. 

Models GTV 
nnU-net 77.45 
3D U-net 75.74 

2.5D U-net 70.35 
2D U-net 78.43 

The 2D U-net configuration exhibited exceptional performance, achieving superior 

DSC measurements for both TC and GTV delineation compared to alternative 

architectures. The observed superiority of the 2D U-net architecture can be 

primarily attributed to its exclusive focus on individual slice processing, whereas 

the 2.5D and 3D variants, which incorporate volumetric information, demonstrated 

reduced accuracy potentially due to heterogeneous slice characteristics. For 

example, 2.5D U-Net yielded poor performance, highlighting the challenges posed 

by real-world data. Since the 2D U-Net yielded robust performance with time-
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efficient limitations, detailed 2D U-Net variants from three segmentation 

approaches were trained. 

Table 5.3 Segmentation Approach Comparison of DSC scores for binary class, multi-
label, and multi-class approaches of 2D U-net with several intensity normalisation 

techniques on the BraTS 2021 training dataset. 

Intensity  
Norm. Tech 

Segmentation Approach ET TC WT 

Nyul 
multi-class 79.44 79.53 88.98 
multi-label 83.52 88.78 92.05 
binary class 84.21 89.42 90.30 

Z-score 
multi-class 84.99 89.71 91.65 
multi-label 82.29 87.27 92.24 
binary class 85.19 89.48 92.18 

A comparative analysis of various intensity normalisation approaches applied to the 

2D U-net architecture is presented in Table 5.3, quantified through DSC 

measurements on the BraTS 2021 training dataset. For TC delineation, optimal 

performance was achieved by three distinct configurations: the Z-score 

normalisation with multi-class segmentation achieved a DSC of 89.71%, followed by 

Z-score with binary classification at 89.48%, and Nyul normalisation with binary 

classification at 89.42%. A weighted average ensemble learning strategy was 

implemented, leveraging their individual strengths within the proposed 

methodological framework. 

5.3.2 Benchmarking the RFS+ Method:  A Comparative Analysis 

The BraTS 2021 validation dataset served as the benchmark for comparative 

analysis between the developed U-net variants and both conventional and extended 

implementations of the nnU-net architecture. Z-score normalisation was uniformly 

applied across all architectural variants of DL models, with their comparative 

performance metrics on the BraTS validation cohort presented in Table 5.4.  
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Table 5.4 Comparison of the BraTS validation dataset based on online evaluation. 

Models DSC(ET) (%) DSC(TC) (%) DSC(WT) (%) 
Extended nnU-net  84.51 87.81 92.75 

nnU-net 78.65 85.96 91.67 
3D U-net 78.89 81.05 91.16 

2.5D U-net 78.80 84.23 90.90 
2D U-net 77.45 82.14 90.82 

Performance analysis revealed the extended nnU-net [152] architecture achieved 

superior segmentation results compared to both the proposed U-net variants and 

standard nnU-net implementations across all anatomical regions under evaluation. 

The enhanced performance metrics can be traced to the extended nnU-net's 

architectural modifications, which were deliberately designed to capitalise on the 

uniform size and resolution parameters inherent to the BraTS training dataset. The 

consistent matrix dimensions and resolution parameters shared between the BraTS 

validation and training datasets enabled the extended nnU-net to leverage its 

specialised modifications, resulting in elevated DSC scores across all tumours sub-

regions. The computation of DSC scores requires online submission and evaluation, 

as the ground truth segmentations for the BraTS validation dataset are maintained 

privately by the challenge organisers. The comparative DSC metrics presented in 

Table 5.4 encompass segmentation performance across U-net variants, standard 

nnU-net, and extended nnU-net implementations, thereby contextualising the 

methodology's effectiveness relative to state-of-the-art standards. 
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5.3.3 Ablation Study 

Table 5.5 Ablation study on U-net. 

 
Z-Score  

Normalisation 
Nyul  

Normalisation 
Combined  

Method 
GTV DSC 

(%) 

 
Multi-
class 

Multi-
label 

Binary 
Multi-
class 

Multi-
label 

Binary Union Ensemble  

Base U-net 
(Multi-
class) 

Yes        78.43 

Multi-label  Yes       77.91 
Binary   Yes      78.22 

Base U-net 
(Multi-
class) 

   Yes     77.61 

Multi-label     Yes    78.20 
Binary      Yes   78.91 

RFS Yes Yes Yes    Yes  78.51 
RFS+(only 

Z-score 
normalisati

on) 

Yes Yes Yes     Yes 78.69 

Proposed 
RFS+ 

Yes  Yes   Yes  Yes 79.22 

Various segmentation methodologies and normalisation techniques were tested to 

improve ensemble learning performance. To examine the contribution of each 

segmentation approach, an ablation study was undertaken, systematically removing 

and re-evaluating each component to quantify its impact on the final outcome. The 

multi-class segmentation U-net was selected as the baseline model (designated as 

"base U-net"), a choice informed by the distinct, non-overlapping characteristics of 

the masks in the training dataset. A detailed comparative analysis is presented in 

Table 5.5, evaluating the performance of multiple U-net variants (differing in their 

segmentation methodologies and normalisation procedures) using the 

STORM_GLIO dataset within the RFS+ framework, enabling a thorough assessment 

of their relative strengths and weaknesses. The base U-net entries in Table 5.5 

establish the reference DSC metrics against which the performance of other model 

variations can be quantitatively assessed. The table was organised to showcase 

various combinations of segmentation and normalisation methods, with the 

rightmost column dedicated to the evaluation of GTV segmentation accuracy, as 
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measured by the DSC metrics, enabling a detailed examination of this key 

performance metric. A normalisation-dependent trend emerges from the results, 

where Z-score normalisation maximises DSC for the base U-net, and Nyul 

normalisation optimises performance when used in conjunction with the binary 

class model, highlighting the importance of normalisation technique selection.  

 

Figure 5.7 Predictions of models with different segmentation approaches on 
STORM_GLIO. a) T1ce, b) ground truth, c) 2D U-net Nyul/binary class, d) 2D U-net Z-

score/multi-class, e) 2D U-net Z-score/binary, and f) 2D U-net with RFS+. 

Figure 5.7 illustrates the variable performance of different segmentation and 

normalisation techniques across distinct features. The lack of a consistently 

superior configuration emphasises the importance of developing task-specific 

approaches for each segmentation objective. Implementation of the standard RFS 

technique, which combines model segmentations using a union-based fusion, 

yielded a small improvement in performance, with the DSC metric, from 78.43% to 

78.51%, as described in [245]. The RFS+ method represents an advancement over 

the traditional RFS approach by leveraging weighted ensemble learning, which 

allocates weights to models according to their accuracy on the BraTS training 

dataset. The combination of weighted ensemble learning and Z-score normalisation 

did not result in a significant improvement in segmentation accuracy (RFS+ with 

only Z-score 78.69%) compared to previous results (single models with Z-score 

normalisation: Multi-class (78.43%), Multi-label (77.91%), Binary class (78.22%), 

and RFS (78.51%)). For the RFS+ implementation with Nyul normalisation, we 

employed a selection strategy that utilised the three models achieving superior DSC 

metrics in BraTS training dataset evaluation. Evaluation of the RFS+ methodology 

on the STORM_GLIO dataset revealed outstanding results, with a DSC of 79.22% 

from a DSC of 78.43% for GTV segmentation, highlighting the effectiveness of this 
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approach in accurately delineating tumour volumes. The study's outcomes 

emphasise the importance of model diversification and ensemble learning in 

achieving enhanced performance, as the strategic integration of multiple 

normalisation methods and segmentation parameters, coupled with ensemble 

methodology, results in marked improvements in the accuracy and robustness of U-

net models. 

5.3.4 Validation of RFS+ on a Local Dataset 

This section evaluates the performance of top-performing U-net and nnU-net 

models in segmenting GTV using a local dataset, comparing the standard and RFS+-

enhanced versions of these models, as well as an expanded nnU-net configuration. 

To establish a comparative framework, we implemented the RFS algorithm [92] 

with a 2D U-net model, and conducted a performance evaluation using a suite of 

quantitative metrics, comprising DSC, HD95, sensitivity, and specificity, with the 

detailed results presented in Table 5.6, allowing for a thorough comparison with 

other models.  

Table 5.6 Comparison of recent models: base models (with Z-score normalisation and 
Multiclass approach), the proposed models, and the state-of-the-art model on the 

GTV label. Upper arrows indicate that a higher value is preferable, while lower 
arrows indicate that a lower value is most favourable.  

Models Details DSC ↑ HD95 ↓ Sensitivity ↑ Specificity ↑ 
nnU-net-

Large 
Extended nnU-net [152] 79.09 7.80 74.07 99.97 

nnU-net 
The base model 77.83 10.72 74.65 99.95 

RFS+ 78.30 8.20 73.59 99.97 

2D U-net 
The base model 78.43 8.80 77.24 99.94 

RFS [92] 78.51 11.33 78.48 99.93 
RFS+ 79.22 8.10 76.93 99.95 

Analysis of Table 5.6 demonstrates superior performance of the RFS+-enhanced 2D 

U-net model compared to the extended nnU-net implementation. This enhanced 

performance was attained through the strategic fusion of the three highest-

performing models identified during prior experimentation. The enhanced 

performance of the RFS+-integrated 2D U-net was achieved through the 

simultaneous application of three segmentation methodologies, multi-class, multi-
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label, and binary class, combined with both Nyul and Z-score normalisation 

approaches. In comparison to the extended nnU-net, which employed a single 

approach with multi-label segmentation and Z-score normalisation, the RFS+ 

ensemble methodology demonstrated enhanced performance, characterised by 

higher DSC scores in GTV segmentation and better generalisation properties, 

outperforming reference implementations. The RFS+ approach yielded about a 1% 

relative improvement in DSC over the standard RFS method, as determined by 

quantitative analysis, and this advancement in boundary delineation accuracy, 

measured by HD95, holds considerable promise for improving the effectiveness of 

therapeutic planning, encompassing both surgical and radiotherapy treatments, by 

enabling more precise targeting and treatment of tumours. A comparison of HD95 

metrics revealed that RFS+ and the extended nnU-net exhibited minimal differences 

(8.1 vs 7.8), indicating that RFS+ maintains high clinical accuracy standards while 

offering improved computational efficiency, which supports the validity of our 

approach. The empirical evidence demonstrates RFS+'s capability to enhance 

tumour segmentation accuracy, with relevance for clinical workflows demanding 

high-precision boundary definition. The model's performance characteristics make 

it especially suitable for applications where accurate tumour delineation is crucial. 

The successful deployment of computer-aided systems in clinical practice requires 

optimal sensitivity to detect tumour tissue accurately and comprehensively, a 

necessity that is heightened in situations where automated analyses play a critical 

role in informing diagnostic processes and evaluating treatment efficacy. By 

improving sensitivity from 74.07% to 76.93%, our RFS+ method was able to identify 

more tumour tissue than the state-of-the-art model, resulting in fewer false 

negatives and a more comprehensive analysis of tumour regions. The enhanced 

sensitivity demonstrated by the RFS+ method has important clinical implications, 

especially in the context of therapeutic planning, where accurate tissue 

differentiation is essential for precise radiotherapy administration and optimal 

surgical approach determination. The RFS+ approach demonstrates a comparable 

result in specificity, reaching 99.97% versus 99.95% for the top-performing model, 

while sustaining its resource-efficient profile, thereby fulfilling the objective of 
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maintaining a high level of healthy tissue recognition, which is essential for ensuring 

both clinical safety and feasible implementation in real-world settings. A 

comparative analysis of tumour segmentation performance is presented in Figure 

5.7, which displays the outputs of traditional 2D U-net architectures alongside those 

of RFS+-integrated models, revealing distinct differences in their ability to 

accurately delineate tumour regions and highlighting the advantages of the RFS+ 

approach.  

 

Figure 5.8 Predictions of models on STORM_GLIO. a) T1ce, b) ground truth (GTV), c) 
extended nnU-net model, d) nnU-net with RFS+, and e) 2D U-net with RFS+. 

The performance of the baseline models was heterogeneous and task-dependent, 

with significant variability in accuracy observed between TC and GTV segmentation, 

indicating that the effectiveness of each approach is highly contextual and that no 

single methodology consistently outperformed the others. By combining the 

benefits of different tumour segmentation methods, RFS+ creates a comprehensive 

ensemble learning method that overcomes the limitations of individual approaches, 
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resulting in improved tumour mapping capabilities and more effective detection 

outcomes. The quantitative comparison presented in Figure 5.8 reveals the 

superiority of the RFS+-augmented 2D U-net over the extended nnU-net in terms of 

comprehensive tumour tissue segmentation, with the visual results validating the 

RFS+ model's enhanced performance in detecting tumour tissue. The local dataset 

presented methodological challenges due to its heterogeneous nature, 

characterised by variations in image resolution between patients and 

inconsistencies in matrix dimensions within individual patients across different 

imaging modalities. In the presence of dataset heterogeneity, the RFS+ framework 

demonstrated superior adaptability and outperformed the winning model, 

validating its robust architectural design and ability to effectively process a wide 

range of imaging parameters and scan qualities. The development of the RFS+ 

methodology marks a substantial advancement in the field of neuro-oncological 

image analysis, as it enables the optimisation of DL models for clinical deployment, 

which is a crucial step in overcoming the challenges of applying medical AI in 

translational settings. Benchmarking results against the extended nnU-net model 

demonstrate that RFS+ offers considerable computational advantages, including a 

10% reduction in training data needs, a 67% decrease in memory usage, and a 92% 

decrease in training duration, as shown in Appendix (Table D- 2, Table D- 3, Table 

D- 4), which collectively indicate a substantial optimisation of computational 

resources. The reduction in resource requirements achieved by RFS+ is a pivotal 

development for the clinical adoption of DL models, as it facilitates the integration 

of cutting-edge segmentation technologies into existing healthcare infrastructure, 

enabling the widespread deployment of advanced diagnostic tools in clinical 

settings.  

On local test data, the RFS+ framework attained a DSC of 79.22%, indicating its 

strong capacity for precise tumour delineation in clinically relevant settings, and 

highlighting its suitability for application in real-world medical imaging contexts. 

The ensemble architecture of RFS+ combines the predictions of multiple model 

variants, each with its own normalisation strategy, to create a robust and accurate 

segmentation model that leverages the complementary learning patterns of its 
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constituent models, thereby reducing the impact of individual model biases and 

improving the detection of segmentation boundaries through a collective and 

synergistic learning process. The multi-method approach of RFS+ provides the 

flexibility to handle the complexities and variations of in real-world hospital scan 

data, making it a valuable asset for clinicians working in diverse settings. A 

systematic and rigorous comparative analysis of the RFS+ strategy against 

prominent benchmark methodologies is crucial to validate its effectiveness and 

identify areas for improvement, ensuring that its contributions are accurately 

contextualised within the broader literature and providing a foundation for future 

research and development. The architectural differences between DeepMedic's 

multi-scale paradigm and RFS+'s domain-adaptive framework result in unique 

strengths, as DeepMedic's approach is well-suited for integrating features across 

multiple spatial scales, while RFS+ exhibits superior resilience to variations in 

dataset characteristics, yet DeepMedic's sophisticated feature integration 

capabilities may offer advantages in scenarios characterised by complex tumour 

morphologies. While the Cascade U-net framework's architecture is well-suited for 

achieving high-precision boundary delineation, particularly in regions with intricate 

tumoural structures, its cascading approach incurs considerable computational 

costs, which may limit its practical implementation in resource-constrained 

settings, despite its potential advantages over RFS+ in certain scenarios. The 3D-

DSN framework's deep supervision mechanisms facilitate the capture of features at 

various scales, allowing for more detailed segmentations that may surpass those 

achieved by RFS+, and the architecture's capacity to utilise intermediate layers for 

nuanced feature detection may confer advantages that warrant thorough 

consideration in comparison to the RFS+ methodology, particularly in applications 

where subtle feature is critical. The robust generalisation capabilities of nnU-net, as 

evidenced by its performance across diverse medical image segmentation tasks, 

underscore its methodological reliability, but RFS+ offers distinct advantages 

through its efficient computational profile and demonstrates notable efficacy in 

particular dataset scenarios, particularly in resource-constrained environments 

where localised implementations are common. With its autonomous configuration 

and adaptive architectural design, the nnU-net framework exhibits exceptional 
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ability to generalise, achieving robust performance across multiple medical 

segmentation challenges and varied data scenarios, which highlights its potential as 

a reliable and effective solution for diverse clinical applications. The design of nnU-

net is guided by principles of scalability and adaptability, which has established it as 

a leading methodology in medical image analysis, and comprehensive validation 

studies have provided strong evidence of its exceptional robustness and ability to 

generalise across diverse imaging protocols and pathological conditions. Although 

the RFS+ methodology has shown encouraging preliminary results, it still lacks the 

extensive empirical validation and automated optimisation capabilities that would 

establish its robustness and generalisability, and therefore, a thorough investigation 

of its empirical validation and automated optimisation capabilities is necessary to 

determine its full potential and limitations. The scalability of the RFS+ framework is 

called into question by the robust performance of nnU-net on large and complex 

datasets, suggesting that the RFS+ framework may struggle with highly 

heterogeneous datasets or those requiring extensive computational resources, and 

highlighting the importance of addressing these potential limitations to ensure the 

framework's widespread applicability and effectiveness in real-world medical 

imaging scenarios.  

The RFS+ methodology has demonstrated notable performance in specific dataset 

contexts, including localised applications, but the current validation framework is 

largely restricted to comparisons with nnU-net, indicating a potential gap in the 

evaluation process that could be addressed by conducting more extensive 

comparative analyses across a range of methodologies to further establish the 

methodology's relative merits and limitations. A more comprehensive 

understanding of RFS+'s capabilities and limitations can be achieved through future 

research that undertakes extensive comparative analyses, incorporating a wide 

range of current methodological approaches, which would enable a more nuanced 

evaluation of its performance metrics and provide valuable insights into its relative 

strengths and weaknesses within the context of contemporary solutions. Clinical 

datasets, marked by substantial heterogeneity in terms of imaging protocols, patient 

characteristics, and pathological conditions, pose a fundamental challenge to the 
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generalisability of DL models, including RFS+-based approaches, highlighting the 

need for careful consideration of these factors in the development and validation of 

such architectures. The findings of this study, which focused on GTV/TC 

segmentation using ET and NCR labels from a local dataset, demonstrate that the 

effectiveness of intensity normalisation techniques is highly context-dependent, 

varying significantly across different datasets and label categories, and thus, 

highlighting the importance of continued research to address this critical issue and 

develop more robust and generalisable normalisation strategies. 

5.4 Conclusions 

The current research investigates the advantages of employing the RFS+ approach 

for brain tumour segmentation in MRI, particularly in the context of clinical datasets 

with heterogeneous characteristics, such as varying resolution parameters and 

matrix dimensions, to assess its effectiveness and generalisability in complex and 

diverse imaging environments. The assessment of model performance yielded 

dataset-specific results, with the extended nnU-net showing excellence in BraTS 

validation metrics and the proposed 2D U-net with RFS+ integration achieving 

outstanding results in the local dataset analysis, particularly in GTV segmentation 

tasks, where it attained a DSC accuracy of 79.22%, underscoring the need for careful 

model selection and optimisation for specific datasets. The superior performance of 

the model in local dataset analysis can be attributed to its ability to effectively 

manage variability in imaging parameters, such as non-standardised resolutions 

and diverse matrix sizes, which is a common feature of real-world datasets, but not 

typically seen in more standardised datasets like BraTS, highlighting the model's 

ability to generalise to diverse imaging conditions. These results demonstrate the 

vital importance of adapting intensity normalisation methodologies to specific ROI, 

such as TC and GTV, and show that customised approaches can significantly enhance 

segmentation performance, emphasising the need for nuanced and region-aware 

normalisation strategies. In the BraTS 2021 validation cohort, the U-net model 

employing a multi-class approach yielded varied performance metrics for different 

tumour regions, with DSC scores ranging from 77.45% for ET to 82.87% for TC and 

90.82% for WT, demonstrating the model's ability to adapt to distinct tumour 



 

 
143

characteristics and segmentation challenges. A comparative analysis demonstrated 

the superiority of the RFS+ strategy in local dataset applications, where its ensemble 

learning framework and heterogeneous normalisation techniques conferred unique 

operational benefits, outperforming other models and establishing its effectiveness 

in real-world scenarios. The RFS+ methodology demonstrated substantial 

computational efficiencies over the extended nnU-net, with empirical 

measurements showing decreased resource requirements, specifically a 10% 

reduction in training data needs, a 67% decrease in memory consumption, and a 

92% decrease in computational time, as reported in Appendix (Table D- 2, Table D- 

3 and Table D- 4). The capabilities of the RFS+ methodology, as demonstrated in this 

study, suggest that it can significantly enhance the accuracy of brain tumour 

segmentation, especially in the presence of variable clinical imaging protocols and 

data acquisition parameters, which often pose significant challenges in medical 

image analysis. The RFS+ framework's ability to balance superior segmentation 

performance, low computational overhead, and versatility in clinical applications 

marks it as a promising advancement in medical image processing. It has the 

potential to significantly benefit the field by providing medical imaging 

professionals with a reliable, efficient, and widely applicable tool. To fully establish 

the RFS+ strategy's broad effectiveness, further validation studies are required, 

involving diverse patient cohorts and extensive comparative evaluations against 

state-of-the-art segmentation frameworks, to confirm its generalisability and 

superiority in various clinical scenarios. Future research will seek to harness the 

efficiency gains of RFS+ while expanding its scope to achieve superior segmentation 

performance, with plans to conduct rigorous benchmarking exercises against state-

of-the-art methodologies in diverse clinical settings and applications, ultimately 

validating its effectiveness and versatility as a reliable tool for medical image 

analysis. To ensure that models can perform effectively in a wide range of real-world 

clinical settings, it is crucial to develop sophisticated data augmentation techniques 

that are tailored to the unique characteristics and challenges of medical imaging 

applications.
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6. Conclusions and Future Works 

6.1 Clinical Data Curation for Glioblastoma Multiforme Brain Tumour Analysis 

In Chapter 2, a preprocessing pipeline was developed to align with clinical 

requirements for GBM MRI datasets, prioritising automatic tumour segmentation 

and radiomic analysis. This involved optimising the BraTS preprocessing pipeline 

through a publicly available standardised dataset and a local GBM dataset 

(STORM_GLIO). Qualitative assessments revealed significant deformation, 

particularly at boundary regions, suggesting a potential impact on subsequent 

radiomic analyses. These findings highlight the importance of further research on 

how preprocessing methods affect the reproducibility of radiomic studies, with 

particular emphasis on ROI deformation. Additionally, Whybra and Spezi [252] 

highlighted variations in contour handling across different software platforms, 

which may affect the computation of engineered RFs. Integrating these results with 

the insights from Chapter 2 could amplify their significance, warranting future 

research to explore the direct effects of such pre-processing discrepancies on 

radiomic outcomes. On the other hand, precise brain extraction techniques remain 

essential for achieving accurate automated tumour segmentation [71], [79], thus 

highlighting their significance in radiomic analytical frameworks and clinical 

integration protocols [69]. Although brain extraction tools contribute up to 15.7% 

to automated tumour segmentation accuracy [79], exploring automated 

segmentation techniques that eliminate dependence on brain extraction tools 

remains an open and active area of research, requiring further external validation 

studies. HD-BET outperformed CaPTk for skull-stripping, benefiting from GPU 

acceleration, achieved a 20-fold speed increase compared to CPU-based execution, 

thus making it more suitable for demanding clinical workflows. The proposed 

preprocessing pipeline improved automated tumour segmentation performance, 

producing outputs in RTSTRUCT, a DICOM-compliant format. Automated DL-based 

tumour segmentation, trained on extensive BraTS-format datasets, including TC 

labels, rather than the limited availability of traditional radiotherapy GTV labels, 

may enhance segmentation accuracy in clinical settings. Automated contouring 
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software has the potential to reduce contouring time by up to 80% for various types 

of cancer, providing reliable and reproducible contours that are essential for 

planning radiation therapy [262]. Further research is essential to evaluate the 

clinical acceptability of outputs from auto-contouring studies for radiotherapy 

planning [263].  

In Chapter 4, the proposed pipeline served as the foundation for preprocessing 

STORM_GLIO and conducting subsequent radiomic analyses. The cumulative effect 

of multiple preprocessing steps lowered the DSC score of automated tumour 

segmentation below 75%, indicating that while the proposed pipeline provided an 

improvement, it remains below the performance of the recent BraTS-winning 

models, which achieved 87.81% average DSC on external validation [264]. To 

address this, Chapter 5 explores the replacement of outdated segmentation models 

like DeepMedic with state-of-the-art alternatives to improve GTV/TC segmentation 

performance for clinical settings. Future studies could aim at optimising its 

integration within radiomic workflows, with the goal of minimising segmentation-

related artefacts and enhancing the integration of PACS (Picture Archiving and 

Communication System). Addressing these challenges can help avoid common 

pitfalls in radiomic studies, thus facilitating a smoother integration into clinical 

practice [265]. With the growing use of multicentre datasets in radiomic studies, 

harmonisation of imaging data continues to be a key research focus. Notable efforts, 

such as ComBat harmonisation [67], [70], [83], [266] for multicentre MRI-based 

radiomics features, as well as comprehensive reviews on radiomic methodology and 

standardisation across imaging protocols, underscore the challenges involved. 

However, the field still lacks universally accepted standards, highlighting the need 

for further investigations to promote accuracy and reproducibility in MRI-based 

radiomic analyses. Balancing the trade-off between non-standardised (i.e., non-

reproducible) and over-standardised (i.e., potentially information-losing) MRI data 

and RFs, both prior to and following feature extraction, remains an important 

challenge [267]. This balance must be carefully managed before and after feature 

extraction to ensure the reliability and analytical value of radiomic studies. 
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6.2 A Novel Hybrid Feature Selection Method for Radiomic-Based Overall Survival 

Analysis in Glioblastoma Multiforme 

In Chapter 3, we introduced a novel SI-based feature selection methodology 

designed to enable interpretable analysis of OS prediction via traditional ML 

frameworks. Due to clinical data scarcity in the medical domain [189], the study was 

limited to include solely the clinical feature of Age. Drawing inspiration from the 

radiomic analysis guidelines articulated by van Timmeren [67], a hybrid feature 

selection strategy was formulated. Among the validated models, the Cox regression 

model with the PSO-enhanced LASSO feature selection method showed the most 

consistent performance across datasets. Additionally, the development of a novel SI-

based feature selection method that achieves state-of-the-art performance while 

maintaining a high degree of interpretability [235], a critical requirement for clinical 

applicability. To the best of our knowledge, this study constitutes the first 

development of a model with an SI-based feature selection method that achieves 

statistically significant risk stratification while prioritising interpretability without 

compromising predictive performance. Shape-based (morphological) features, 

followed by FLAIR-derived texture features, were the most influential predictors 

after age variable. Selected RFs primarily originated from TC regions. These findings 

highlight the superior performance of shape-based and FLAIR-derived texture 

features. Thus, this study suggests that future research prioritises TC as the primary 

ROI to improve model generalisability. Future research could focus on reducing the 

number of MRI sequences and ROIs, further standardising datasets, and broadening 

external validation studies. Another promising direction involves the optimisation 

of model hyperparameters to enhance performance by utilising SI-based methods 

for traditional ML models. Additionally, the integration of convolutional filter-based 

RFs [236] and DL-derived features presents opportunities for further improvement 

[268], due to an increase in complex pattern recognition. Lastly, the incorporation 

of more comprehensive clinical data alongside multi-omics datasets, encompassing 

pathomics and genomics [269], [270], holds the potential to significantly advance 

the predictive capacity of future models. As the number and variety of input features 

increase, the complexity of developing models also increases. This might require the 
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integration of DL-based features and the use of DL-based models. A key area of 

ongoing research focuses on improving the interpretability of DL models, which is 

vital for enhancing the reliability and clinical generalisability of these models [57], 

[269].  

6.3 Development of a robust and interpretable clinical-radiomic model for 

predicting overall survival in Glioblastoma Multiforme 

In Chapter 4, this study investigated radiomic analysis for GBM patients, leveraging 

varied preprocessing approaches, including the proposed pipeline in Chapter 2. 

Following the radiomic guideline [67], this study developed a robust radiomic 

model addressing existing clinical challenges and limitations. The model's 

distinctive approach encompasses reduced MRI sequence dependency, single ROI 

utilisation, and preliminary evidence supporting GTV-TC interchangeability [245]. 

For GBM OS analysis, this radiomic study encompassed the most extensive patient 

cohort reported in the literature, following the IBSI guidelines. Reproducibility 

analyses resulted in the selection of only two robust RFs. The final clinical-radiomic 

model comprises a single clinical variable (patient age) and two robust RFs: a shape-

based radiomic feature and a texture-based radiomic feature derived from the 

FLAIR MRI sequence. The developed clinical-radiomic model exhibited promising 

predictive performance in the holdout test cohort, with notable results compared to 

current literature. Future improvements in performance may be achieved through 

the expansion of the clinical dataset and the incorporation of multi-omics data, such 

as pathomics and genomics [269], [270]. The validated interchangeability between 

GTV and TC contours underscores the model's compatibility with established 

clinical workflows, facilitating seamless integration into existing practice protocols.  

While using multi-ROI may enhance the characterisation of tumour heterogeneity, 

it also might introduce variabilities, such as including both inter- and intra-tumour 

segmentation variability [67], [271], affecting feature consistency and extraction 

reliability. A simplified single-ROI method centred on the TC/GTV region might 

facilitate improved reproducibility and consistent feature extraction. The 

identification of a suitable ROI method needs careful consideration, balancing 
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reproducibility and feature consistency with clinical utility to enhance outcomes in 

radiomic analysis. This thorough investigation might enhance the development of 

clinical decision-support systems for GBM treatment and management, 

demonstrating considerable potential for future clinical implementation [265]. 

6.4 An efficient DL-based automated tumour segmentation model complained with 

clinical settings 

Chapter 5 introduced RFS+, a novel approach for automated tumour segmentation, 

aiming to mitigate performance drops of state-of-the-art DL models on clinically 

heterogeneous data [183]. Domain shift, which results from differences between 

source and target domains, such as scanner type and patient demographics, can 

reduce segmentation model performance on unseen datasets [272]. The issue 

emphasises the urgent need for models capable of generalising across domains, 

which remains an ongoing challenge [273], and draws attention to the equally 

important task of standardising practices in medical imaging [183], [267]. RFS+ 

directly addressed limited generalisability by integrating diverse normalisation 

techniques and three segmentation approaches. The DL models, using RFS+, 

compared to a state-of-the-art model, the extending nnU-Net [152]. While DL 

models achieving superior results on standardised datasets, its efficacy dropped 

notably when applied to STORM_GLIO outlined in Chapter 2. In contrast, the 

proposed RFS+ approach demonstrated a notable improvement in performance for 

the nnU-net and conventional U-Net models. On the STORM_GLIO dataset, the 2D U-

Net with RFS+ achieved the best segmentation results, matching extended nnU-Net 

performance with lower computational cost. RFS+ enhanced models showed clear 

improvements by leveraging intrinsic interrelationships between tumour regions. 

The methodology targeted limitations of resampling in suboptimal MRI acquisitions, 

with the 2D U-Net combined with RFS+ effectively reducing interpolation artifacts 

and supporting robust training on original data. However, the 2D model with RFS+ 

achieved equivalent segmentation performance with superior computational 

efficiency, indicating it could be explored further as an option for clinical viability. 

The deployment of these models in clinical workflows necessitates additional 
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external validation, as demonstrated in prior studies [183]. The significant role of 

data augmentation has been underscored by recent BraTS challenges [264]. 

Moreover, the extending nnU-Net, utilised in our study, has demonstrated 

performance comparable to recent state-of-the-art models [264], consistently 

contributing to winning ensemble strategies in the BraTS challenge since 2021 

[256], [264]. Future research directions could focus on enhancing nnU-Net 

methodologies beyond GTV segmentation to facilitate comprehensive tumour 

region analysis, including ET, TC and WT. The clinical importance of U-Net variants 

[139], suggests that further refinement and adaptation could enhance segmentation 

accuracy across diverse datasets. Moreover, while a larger patch size for 3D models 

in our study was deliberately used to shorten training time, alternative 

configurations could further optimise performance.  

In this thesis, the STORM_GLIO dataset was employed to optimise MRI data 

preprocessing for radiomic analysis while minimising deformation associated with 

resampling and registration steps. The pre-processed open-access and local 

datasets were used for radiomic analysis and automated tumour segmentation. 

Future improvements may involve the integration of additional clinical data, multi-

omics data, and DL-derived features to further enhance radiomic model 

performance [269], [270]. Moreover, to improve reproducibility, an automated and 

computationally efficient model was developed, enabling the interchangeable use of 

GTV and TC segmentation while maintaining satisfactory segmentation accuracy. 

Future applications of the presented research extend to diverse neuro-oncological 

diseases, capitalising on foundational models [274] to enhance both segmentation 

precision and radiomic analytical frameworks. This integrative approach 

demonstrates significant potential to elevate model performance metrics, enhance 

cross-cohort generalisability [272], and facilitate the translation of research 

outcomes into clinical practice [265]. The findings of this research may contribute 

to the development of advanced clinical decision support systems, thereby 

advancing personalised therapeutic strategies for GBM and additional neuro-

oncological disorders.  
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DL models continue to face challenges related to interpretability [69], [268], with 

ongoing efforts to improve transparency. This study shows that a traditional 

interpretable ML model can match the performance of DL methods. However, for 

clinical adoption, additional external validation and enhanced interpretability are 

required to ensure trust and applicability in medical practice [69], [267]. 

Additionally, reproducibility remains a critical concern in GBM radiomics research 

[71]. In addition to Combat harmonisation methods in radiomic research [83], 

physical phantom studies assessing the repeatability and reproducibility of RFs 

highlight the need for standardised methods in radiomic research for reliable 

clinical use across different clinical settings, demonstrating how acquisition settings 

and scanner differences affect feature stability [275], [276], [277], [278]. On the 

other hand, the recent introduction of more heterogeneous digital phantoms, 

specifically the ImSURE phantoms [279], facilitated an enhanced assessment of 

feature reproducibility via testing on five IBSI-standardised, open-access software 

packages. Analysis of the results indicated that only two software packages achieved 

a high percentage (>95%) of exact feature matches. DL-based methodologies, deep 

features, require more standardised applications and share generalisability issues 

with engineered RFs [70] while the IBSI contributed standardisation for ensuring 

the reproducibility of engineered RFs [236]. Additionally, studies such as TRIPOD 

[280] and METRICS [238] provided valuable tools for assessing radiomic research 

quality. Implementing rigorous statistical analysis, such as k-fold CV and bootstrap, 

further enhances the credibility and reliability of radiomics research [215], [230]. 

By helping to mitigate model overfitting, these approaches improve the 

generalisability of developed radiomic signatures to unseen data. The practical 

implementation of radiomic analysis in clinical settings is hindered by several key 

limitations, including a high dependency on ROIs [67]. One prominent example is 

the difficulty encountered in the automated tumour segmentation task of the BRATS 

challenge, specifically when dealing with MRI data acquired using low-quality 

parameters, as is often the case in regions with limited resources, such as Sub-

Saharan Africa [226]. Besides lacking external validation, data quality challenges, 

interoperability limitations, incompatibility with established clinical workflows in 

both engineered and DL-based radiomics analysis, and the computational intensity 
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of DL-based radiomic analysis present substantial obstacles to its widespread 

clinical integration [265], [281]. Future research must, therefore, focus on 

developing radiomic solutions that address these challenges to support integration 

into standard clinical practice [265]. 
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8. Appendix 

A 

 

I. Skull stripping was achieved using HD-BET (Version 1.0).  

II. Image conversion between NIfTI and DICOM, including DICOM RTSTRUCT, 

formats was handled by rt-utils (Version 1.2.7) [282] and dicom2nifti 

(Version 2.4.10), Dcmrtstruct2nii (Version v5) [283].  

III. Rigid registration was performed using ants (Version 0.0.7) [284]. Rigid 

registration was performed using ants (Version 0.0.7) [284].  

IV. Furthermore, an example of automated tumour segmentation was generated 

using a custom-trained U-Net model [92].  

V. For clinical reusability, the tumour segmentation (GTV/TC [92]) generated 

by this pipeline was converted back into DICOM format (RTSTRUCT).  

VI. For visual comparison, 3D slicer v5.6.2 [285]. The clinical relevance of the 

pipeline results was confirmed through clinician approval in a clinical 

setting. For visual comparison, 3D slicer v5.6.2 [285]. The clinical relevance 

of the pipeline results was confirmed through clinician approval in a clinical 

setting.  

VII. The complete, Python-based alternative workflow is available at 

[https://github.com/krmdmn/preprocesing_pipeline].   
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B 

IBSI standardised parameters 

{ 
  "interpolation": { 
    "new_voxel_spacing": [1, 1, 1], 
    "method": "spline", 
    "rounding_after_interp": true 
  }, 
  "feature_families": ["morph", "stats", "ih", "ivh", "glcm", "glrlm", "glszm", "ngldm", "ngtdm", "gldzm"], 
  "re_segmentation_range": {"min": "", "max": ""}, 
  "re_segmentation_outlier_filtering": {"apply": false, "sigma": 3}, 
  "bin_method": "FBN", 
  "bin_value": 64, 
  "analysis_type": "3D", 
  "texture_parameters": { 
    "glcm": {"aggregation": "merged", "distance": 1}, 
    "glrlm": {"aggregation": "merged", "distance": 1}, 
    "ngtdm": {"distance": 1}, 
    "ngldm": {"distance": 1, "alpha": 0} 
  } 
} 

Figure B- 1 The IBSI standardised preprocessing parameters 

 for radiomic analysis.
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LASSO-RANK Feature Selection 

 

Figure B- 2 The LASSO-RANK feature selection framework.
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PSA and GA feature selection Parameters 

A)For PSO algorithm: 

ParticleSwarmFeatureSelectionCV( 

            n_particles=30, 

            estimator=Lasso, 

            cv=3, 

            scoring="neg_mean_squared_error", 

            max_iter=10, 

            n_jobs=-1, 

            verbosity=0    ) 

B)For GA algorithm: 

GeneticSelectionCV( 

            estimator= Lasso, 

            cv=5, 

            verbose=1, 

            scoring="neg_mean_squared_error", 

            max_features=9,  

            n_population=50, 

            crossover_proba=0.5, 

            mutation_proba=0.2, 

            n_generations=40,  

            crossover_independent_proba=0.5, 

            mutation_independent_proba=0.05, 

            tournament_size=3, 

            n_gen_no_change=10, 

            caching=True, 

            n_jobs=-1,    ) 

Figure B- 3 Hyperparameters for (A) PSO and (B) GA were set based on the example 
source codes, with the exception of ‘max_features’, which was adjusted to 9 (the 
total feature number for each feature subset) for GA, leading to improved model 

performance. 
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Figure B- 4 The LASSO-GA feature selection framework. 

 

Figure B- 5 GA-based Feature Selection Workflow with the feature pool from LASSO. 
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Figure B- 6 The LASSO-PSO feature selection framework. 

 

Figure B- 7 PSO-based feature selection workflow with the feature pool from LASSO. 
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Table B- 1 The hyperparameters for each model and feature selection method from 
200 bootstrapped iterations of the training (discovery) dataset. 

 

Table B- 2 The RSF model performance on the discovery, the hold-out test and the 
external validation. 

  C-Index  

Model 
Feature 

Selection 
Method 

Discovery 
Cohort 

Hold-out Test 
Cohort 

External 
Validation 

Cohort 

RSF LASSO-PSO  0.74 0.63 0.58 

 

 

 

 

 

 

 

 

 

 

 

 

Model Feature Selection Hyperparameters (selected [min, max]) 
Cox-LASSO LASSO-RANK alpha = 50 [1,100] 

Cox-LASSO LASSO-GA alpha = 100 [1,100] 
Cox-LASSO LASSO-PSO alpha = 5 [1,100] 
RSF LASSO-RANK n_estimators = 10 [3,10] max_depth = 5 [3,5] 

min_samples_split =3 [3,10] 
RSF LASSO-GA n_estimators = 5 [3,10] max_depth = 5 [3,5] 

min_samples_split =10 [3,10] 
RSF LASSO-PSO n_estimators = 10 [3,10] max_depth = 4 [3,5] 

min_samples_split =10 [3,10] 
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Table B- 3 The feature Importance and weights of each feature in the final clinical-
radiomic model. 

LASSO-PSO, Selected 
Features 

Permutation Importance (Feature 
Importance) 

Feature Weight 

morph_pca_maj_axis 0.034  0.21 

morph_pca_flatness 0.011  0.16 

morph_comp_1 0.012  -0.11 

morph_vol_dens_aee 0.004  -0.06 

morph_area_dens_aee 0.003  0.04 

ngl_dc_entr_3D 0.011 -0.14 

dzm_zdnu_3D 0.016  0.13 

szm_lgze_3D (ET 
label) 

0.015  -0.16 

szm_lgze_3D (TC 
label) 

0.001 -0.01 

stat_skew 0.014  -0.13 

Age 0.067 0.31 

KM curve cut-off value  0.012 (median) 
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Figure B- 8 METRICS for the radiomic study. 



 

185 

 

C 

  "interpolation": { 
    "new_voxel_spacing": [1, 1, 1], 
    "method": "spline", 
    "rounding_after_interp": true 
  }, 
  "feature_families": ["morph", "stats", "ih", "ivh", "glcm", "glrlm", "glszm", "ngldm", 
"ngtdm", "gldzm"], 
  "re_segmentation_range": {"min": "", "max": ""}, 
  "re_segmentation_outlier_filtering": {"apply": false, "sigma": 3}, 
  "bin_method": "FBN", 
  "bin_value": 64, 
  "analysis_type": "3D", 
  "texture_parameters": { 
    "glcm": {"aggregation": "merged", "distance": 1}, 
    "glrlm": {"aggregation": "merged", "distance": 1}, 
    "ngtdm": {"distance": 1}, 
    "ngldm": {"distance": 1, "alpha": 0} 
  } 
} 

Figure C- 1 Settings in IBSI-compliant terminology for radiomics analysis carried out 
with the SPAARC code. 
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Table C- 1 The selected hyperparameters settings from 200 bootstrapped iterations 
of the training dataset. 

Model Feature Selection Hyperparameters (selected [min, max]) 
Cox-LASSO MutInfo alpha = 2 [1,5] 
Cox-LASSO mRMR alpha = 2 [1,5] 

Cox-LASSO Lasso alpha = 2 [1,5] 
GBS MutInfo n_estimators = 2 [1,5] max_depth = 2 [1,5] 

min_samples_split =2 [1,5] 
GBS mRMR n_estimators = 2 [1,5] max_depth = 2 [1,5]                

min_samples_split = 2 [1,5] 
GBS Lasso n_estimators =2 [1,5] max_depth = 2 [1,5]                 

min_samples_split = 2 [1,5] 
RSF MutInfo n_estimators = 2 [1,5] max_depth = 2 [1,5]                

min_samples_split = 2 [1,5] 
RSF mRMR n_estimators = 2 [1,5] max_depth = 2 [1,5]                

min_samples_split = 2 [1,5] 
RSF Lasso n_estimators = 2 [1,5] max_depth = 2 [1,5]                

min_samples_split = 2 [1,5] 
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Figure C- 2 The analysis of feature robustness to image perturbation the ICC result 
with 95% confidence intervals. (a) Robust RFs derived from MRI T2 sequence (b) 

Robust RFs derived from MRI FLAIR sequence.

Feature ICC  Feature ICC 

morph_av 0.92076  morph_av 0.920760181 

morph_comp_1 0.972433  morph_comp_1 0.97243257 

morph_comp_2 0.967331  morph_comp_2 0.967330818 

morph_sph_dispr 0.977456  morph_sph_dispr 0.977455567 

morph_sphericity 0.973885  morph_sphericity 0.973884708 

morph_asphericity 0.977456  morph_asphericity 0.977455567 

morph_com 0.951022  morph_com 0.957344822 

morph_diam 0.822163  morph_diam 0.82216343 

morph_pca_maj_axis 0.854746  morph_pca_maj_axis 0.854746005 

morph_pca_min_axis 0.819057  morph_pca_min_axis 0.819056982 

morph_pca_least_axis 0.829009  morph_pca_least_axis 0.829009471 

morph_pca_elongation 0.997721  morph_pca_elongation 0.997721343 

morph_pca_flatness 0.998325  morph_pca_flatness 0.998325396 

morph_vol_dens_aabb 0.985839  morph_vol_dens_aabb 0.985838655 

morph_area_dens_aabb 0.971791  morph_area_dens_aabb 0.971791454 

morph_vol_dens_aee 0.998896  morph_vol_dens_aee 0.998896164 

morph_area_dens_aee 0.969576  morph_area_dens_aee 0.969575752 

morph_vol_dens_conv_hull 0.994081  morph_vol_dens_conv_hull 0.994080656 

morph_area_dens_conv_hull 0.972753  morph_area_dens_conv_hull 0.972753038 

stat_mean 0.999829  stat_mean 0.999864934 

stat_var 0.999693  stat_var 0.999651338 

stat_skew 0.994565  stat_skew 0.982021422 

stat_kurt 0.986291  stat_kurt 0.965043972 

stat_median 0.999758  stat_median 0.999786414 

stat_min 0.956014  stat_min 0.946366895 

stat_p10 0.999454  stat_p10 0.999212717 

stat_p90 0.999631  stat_p90 0.99983049 

stat_max 0.993621  stat_max 0.996440811 

stat_iqr 0.999456  stat_iqr 0.999439142 

stat_range 0.9856  stat_range 0.992597204 

stat_mad 0.999602  stat_mad 0.999654353 

stat_rmad 0.99953  stat_rmad 0.999560613 

stat_medad 0.99962  stat_medad 0.999660608 

stat_cov 0.999332  stat_cov 0.999443399 

stat_qcod 0.99921  stat_qcod 0.999490625 

stat_rms 0.999839  stat_rms 0.999880904 

ih_mean 0.963678  ih_mean 0.968978364 

ih_var 0.973371  ih_var 0.975963505 

ih_skew 0.99459  ih_skew 0.982047444 

ih_kurt 0.986602  ih_kurt 0.965134943 

ih_median 0.969588  ih_median 0.97309014 

ih_p10 0.950862  ih_p10 0.964120546 

ih_p90 0.970655  ih_p90 0.968868079 

ih_mode 0.934456  ih_mode 0.954418304 

ih_iqr 0.980175  ih_iqr 0.976779019 

ih_mad 0.979307  ih_mad 0.977556067 

ih_rmad 0.984671  ih_rmad 0.982233735 

ih_medad 0.979051  ih_medad 0.976215491 

ih_cov 0.954109  ih_cov 0.974701902 

ih_qcod 0.96356  ih_qcod 0.977279384 

ih_entropy 0.966568  ih_entropy 0.961419303 

ih_uniformity 0.972721  ih_uniformity 0.967630681 

ih_max_grad_g 0.904699  ih_max_grad_g 0.914285395 

ih_min_grad 0.782983  ih_min_grad 0.776240385 

ih_min_grad_g 0.924512  ih_min_grad_g 0.931884298 

ivh_v10 0.873296  ivh_v10 0.865661291 

ivh_i10 0.95878  ivh_i10 0.983500996 

ivh_i90 0.898633  ivh_i90 0.921669288 

ivh_diff_v10_v90 0.873353  ivh_diff_v10_v90 0.864760578 

ivh_diff_i10_i90 0.910242  ivh_diff_i10_i90 0.953916498 

ivh_auc 0.911108  ivh_auc 0.911717174 

cm_joint_max_3D_comb 0.928759  cm_joint_max_3D_comb 0.920342635 

cm_joint_avg_3D_comb 0.964527  cm_joint_avg_3D_comb 0.968724839 

cm_joint_var_3D_comb 0.973897  cm_joint_var_3D_comb 0.97718216 

cm_joint_entr_3D_comb 0.926978  cm_joint_entr_3D_comb 0.925785534 

cm_diff_avg_3D_comb 0.858712  cm_diff_avg_3D_comb 0.870390083 

cm_diff_var_3D_comb 0.85169  cm_diff_var_3D_comb 0.856890224 

cm_diff_entr_3D_comb 0.885664  cm_diff_entr_3D_comb 0.898005442 

cm_sum_avg_3D_comb 0.964527  cm_sum_avg_3D_comb 0.968724839 

cm_sum_var_3D_comb 0.976746  cm_sum_var_3D_comb 0.980419129 

cm_sum_entr_3D_comb 0.970104  cm_sum_entr_3D_comb 0.964610448 

cm_energy_3D_comb 0.940469  cm_energy_3D_comb 0.939250816 

cm_contrast_3D_comb 0.843173  cm_contrast_3D_comb 0.851140248 

cm_dissimilarity_3D_comb 0.858712  cm_dissimilarity_3D_comb 0.870390083 

cm_inv_diff_3D_comb 0.832174  cm_inv_diff_3D_comb 0.836882519 

cm_inv_diff_norm_3D_comb 0.860657  cm_inv_diff_norm_3D_comb 0.872385715 

cm_inv_diff_mom_3D_comb 0.840128  cm_inv_diff_mom_3D_comb 0.843366565 

cm_inv_diff_mom_norm_3D_comb 0.847304  cm_inv_diff_mom_norm_3D_comb 0.855931595 

cm_inv_var_3D_comb 0.940194  cm_inv_var_3D_comb 0.945278466 

cm_corr_3D_comb 0.855733  cm_corr_3D_comb 0.880340179 

cm_auto_corr_3D_comb 0.970333  cm_auto_corr_3D_comb 0.966817906 

cm_clust_tend_3D_comb 0.976746  cm_clust_tend_3D_comb 0.980419129 

cm_clust_shade_3D_comb 0.985552  cm_clust_shade_3D_comb 0.991371209 

cm_clust_prom_3D_comb 0.961024  cm_clust_prom_3D_comb 0.980265213 

cm_info_corr1_3D_comb 0.853648  cm_info_corr1_3D_comb 0.875366413 

cm_info_corr2_3D_comb 0.837819  cm_info_corr2_3D_comb 0.859314719 

rlm_lre_3D_comb 0.816607  rlm_lre_3D_comb 0.780760008 

rlm_lgre_3D_comb 0.864755  rlm_lgre_3D_comb 0.913488108 

rlm_hgre_3D_comb 0.967179  rlm_hgre_3D_comb 0.966185099 

rlm_srlge_3D_comb 0.855126  rlm_srlge_3D_comb 0.912722029 

rlm_srhge_3D_comb 0.954411  rlm_srhge_3D_comb 0.958242685 

rlm_lrlge_3D_comb 0.878834  rlm_lrlge_3D_comb 0.864679855 

rlm_lrhge_3D_comb 0.94157  rlm_lrhge_3D_comb 0.91780559 

rlm_glnu_norm_3D_comb 0.972561  rlm_glnu_norm_3D_comb 0.966978288 

rlm_rlnu_3D_comb 0.77276  rlm_rlnu_3D_comb 0.776895975 

rlm_gl_var_3D_comb 0.970722  rlm_gl_var_3D_comb 0.974209678 

rlm_rl_var_3D_comb 0.8471  rlm_rl_var_3D_comb 0.809056718 

rlm_rl_entr_3D_comb 0.872599  rlm_rl_entr_3D_comb 0.87025388 

szm_lgze_3D 0.838601  szm_lgze_3D 0.848218827 

szm_hgze_3D 0.932925  szm_hgze_3D 0.95009253 

szm_glnu_3D 0.931846  szm_glnu_3D 0.932515853 

szm_glnu_norm_3D 0.938386  szm_glnu_norm_3D 0.945447963 

szm_zsnu_3D 0.857213  szm_zsnu_3D 0.863946565 

szm_gl_var_3D 0.928001  szm_gl_var_3D 0.94429047 

dzm_sde_3D 0.976035  dzm_sde_3D 0.967685987 

dzm_lde_3D 0.842595  dzm_lde_3D 0.843913814 

dzm_lgze_3D 0.838601  dzm_lgze_3D 0.848218827 

dzm_hgze_3D 0.932925  dzm_hgze_3D 0.95009253 

dzm_sdlge_3D 0.846933  dzm_sdlge_3D 0.84394842 

dzm_sdhge_3D 0.957964  dzm_sdhge_3D 0.960535111 

dzm_ldlge_3D 0.879763  dzm_ldlge_3D 0.854930794 

dzm_ldhge_3D 0.844661  dzm_ldhge_3D 0.846078221 

dzm_glnu_3D 0.931846  dzm_glnu_3D 0.932515853 

dzm_glnu_norm_3D 0.938386  dzm_glnu_norm_3D 0.945447963 

dzm_zdnu_3D 0.95787  dzm_zdnu_3D 0.954336859 

dzm_zdnu_norm_3D 0.974776  dzm_zdnu_norm_3D 0.963755757 

dzm_gl_var_3D 0.928001  dzm_gl_var_3D 0.94429047 

dzm_zd_var_3D 0.81288  dzm_zd_var_3D 0.81903145 

dzm_zd_entr_3D 0.947057  dzm_zd_entr_3D 0.937920378 

ngt_coarseness_3D 0.860729  ngt_coarseness_3D 0.858416347 

ngt_contrast_3D 0.904394  ngt_contrast_3D 0.899362178 

ngt_complexity_3D 0.80995  ngt_busyness_3D 0.775030948 

ngt_strength_3D 0.86086  ngt_complexity_3D 0.825168086 

ngl_hde_3D 0.810788  ngt_strength_3D 0.865097529 

ngl_lgce_3D 0.861977  ngl_lgce_3D 0.898621418 

ngl_hgce_3D 0.969952  ngl_hgce_3D 0.967250384 

ngl_hdlge_3D 0.807106  ngl_hdlge_3D 0.853342233 

ngl_hdhge_3D 0.924424  ngl_hdhge_3D 0.85457954 

ngl_glnu_norm_3D 0.972721  ngl_glnu_norm_3D 0.967630681 

ngl_dcnu_3D 0.772522  ngl_dcnu_norm_3D 0.815017394 

ngl_dcnu_norm_3D 0.810858  ngl_gl_var_3D 0.975963505 

ngl_gl_var_3D 0.973371  ngl_dc_var_3D 0.830677589 

ngl_dc_var_3D 0.883165  ngl_dc_energy_3D 0.818357201 

ngl_dc_entr_3D 0.775389    

ngl_dc_energy_3D 0.825265    
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Figure C- 3 The analysis of feature robustness to image perturbation the ICC result 
with 95% confidence intervals (ICC>0.75). (a) Robust RFs derived from MRI T1 

sequence (b) Robust RFs derived from MRI T1ce sequence

Feature ICC  Feature ICC 

morph_av 0.920760181  morph_av 0.920760181 

morph_comp_1 0.97243257  morph_comp_1 0.97243257 

morph_comp_2 0.967330818  morph_comp_2 0.967330818 

morph_sph_dispr 0.977455567  morph_sph_dispr 0.977455567 

morph_sphericity 0.973884708  morph_sphericity 0.973884708 

morph_asphericity 0.977455567  morph_asphericity 0.977455567 

morph_com 0.877918414  morph_com 0.953484498 

morph_diam 0.82216343  morph_diam 0.82216343 

morph_pca_maj_axis 0.854746005  morph_pca_maj_axis 0.854746005 

morph_pca_min_axis 0.819056982  morph_pca_min_axis 0.819056982 

morph_pca_least_axis 0.829009471  morph_pca_least_axis 0.829009471 

morph_pca_elongation 0.997721343  morph_pca_elongation 0.997721343 

morph_pca_flatness 0.998325396  morph_pca_flatness 0.998325396 

morph_vol_dens_aabb 0.985838655  morph_vol_dens_aabb 0.985838655 

morph_area_dens_aabb 0.971791454  morph_area_dens_aabb 0.971791454 

morph_vol_dens_aee 0.998896164  morph_vol_dens_aee 0.998896164 

morph_area_dens_aee 0.969575752  morph_area_dens_aee 0.969575752 

morph_vol_dens_conv_hull 0.994080656  morph_vol_dens_conv_hull 0.994080656 

morph_area_dens_conv_hull 0.972753038  morph_area_dens_conv_hull 0.972753038 

stat_mean 0.999884647  stat_mean 0.999802476 

stat_var 0.999387336  stat_var 0.999679431 

stat_skew 0.98060869  stat_skew 0.9889895 

stat_kurt 0.959809975  stat_kurt 0.972761566 

stat_median 0.999819179  stat_median 0.999647572 

stat_min 0.942354983  stat_min 0.935133065 

stat_p10 0.999761518  stat_p10 0.999368614 

stat_p90 0.999786516  stat_p90 0.999782668 

stat_max 0.98974637  stat_max 0.989210947 

stat_iqr 0.99894978  stat_iqr 0.999411257 

stat_range 0.982557806  stat_range 0.985133447 

stat_mad 0.999353753  stat_mad 0.999694604 

stat_rmad 0.999193908  stat_rmad 0.999585007 

stat_medad 0.999330022  stat_medad 0.999684001 

stat_cov 0.912794315  stat_cov 0.999670189 

stat_qcod 0.988231  stat_qcod 0.999470398 

stat_rms 0.99988182  stat_rms 0.999817172 

ih_mean 0.947526034  ih_mean 0.956900869 

ih_var 0.958814765  ih_var 0.978610271 

ih_skew 0.980698706  ih_skew 0.989040321 

ih_kurt 0.960775161  ih_kurt 0.972844544 

ih_median 0.951941841  ih_median 0.963218159 

ih_p10 0.936889993  ih_p10 0.9373602 

ih_p90 0.957365908  ih_p90 0.970748991 

ih_mode 0.937612265  ih_mode 0.942524216 

ih_iqr 0.962384158  ih_iqr 0.982295662 

ih_mad 0.967332007  ih_mad 0.983247486 

ih_rmad 0.97073438  ih_rmad 0.986199592 

ih_medad 0.966949495  ih_medad 0.983360633 

ih_cov 0.949306113  ih_cov 0.963413618 

ih_qcod 0.950630026  ih_qcod 0.972281219 

ih_entropy 0.95744013  ih_entropy 0.971628906 

ih_uniformity 0.962217446  ih_uniformity 0.972278584 

ih_max_grad 0.776302963  ih_max_grad 0.775761153 

ih_max_grad_g 0.906607807  ih_max_grad_g 0.875145293 

ih_min_grad_g 0.884536936  ih_min_grad 0.783217186 

ivh_v10 0.91498914  ih_min_grad_g 0.894054973 

ivh_v90 0.801676325  ivh_v10 0.909212576 

ivh_i10 0.885745355  ivh_v90 0.924067421 

ivh_i90 0.868020593  ivh_i10 0.979242096 

ivh_diff_v10_v90 0.914988309  ivh_i90 0.9274335 

ivh_auc 0.874628963  ivh_diff_v10_v90 0.909224704 

cm_joint_max_3D_comb 0.937622104  ivh_diff_i10_i90 0.957672185 

cm_joint_avg_3D_comb 0.948492494  ivh_auc 0.918130278 

cm_joint_var_3D_comb 0.959262936  cm_joint_max_3D_comb 0.959533745 

cm_joint_entr_3D_comb 0.944754954  cm_joint_avg_3D_comb 0.961771523 

cm_diff_avg_3D_comb 0.91930105  cm_joint_var_3D_comb 0.978681822 

cm_diff_var_3D_comb 0.892573669  cm_joint_entr_3D_comb 0.958747417 

cm_diff_entr_3D_comb 0.936812886  cm_diff_avg_3D_comb 0.910662501 

cm_sum_avg_3D_comb 0.948492494  cm_diff_var_3D_comb 0.882417835 

cm_sum_var_3D_comb 0.961907563  cm_diff_entr_3D_comb 0.938849821 

cm_sum_entr_3D_comb 0.963122252  cm_sum_avg_3D_comb 0.961771523 

cm_energy_3D_comb 0.941939305  cm_sum_var_3D_comb 0.981734707 

cm_contrast_3D_comb 0.895859555  cm_sum_entr_3D_comb 0.974668107 

cm_dissimilarity_3D_comb 0.91930105  cm_energy_3D_comb 0.958662253 

cm_inv_diff_3D_comb 0.903862752  cm_contrast_3D_comb 0.87826567 

cm_inv_diff_norm_3D_comb 0.921632444  cm_dissimilarity_3D_comb 0.910662501 

cm_inv_diff_mom_3D_comb 0.90797323  cm_inv_diff_3D_comb 0.892711464 

cm_inv_diff_mom_norm_3D_comb 0.900878667  cm_inv_diff_norm_3D_comb 0.915836479 

cm_inv_var_3D_comb 0.959792174  cm_inv_diff_mom_3D_comb 0.895767668 

cm_corr_3D_comb 0.905653517  cm_inv_diff_mom_norm_3D_comb 0.886685708 

cm_auto_corr_3D_comb 0.950520559  cm_inv_var_3D_comb 0.971851706 

cm_clust_tend_3D_comb 0.961907563  cm_corr_3D_comb 0.849849184 

cm_clust_shade_3D_comb 0.980889341  cm_auto_corr_3D_comb 0.960791099 

cm_clust_prom_3D_comb 0.951115834  cm_clust_tend_3D_comb 0.981734707 

cm_info_corr1_3D_comb 0.91364824  cm_clust_shade_3D_comb 0.985142068 

cm_info_corr2_3D_comb 0.902286443  cm_clust_prom_3D_comb 0.970451175 

rlm_sre_3D_comb 0.818259647  cm_info_corr1_3D_comb 0.878290615 

rlm_lre_3D_comb 0.854688769  cm_info_corr2_3D_comb 0.834703737 

rlm_lgre_3D_comb 0.925988971  rlm_lre_3D_comb 0.83509781 

rlm_hgre_3D_comb 0.948235436  rlm_lgre_3D_comb 0.92268266 

rlm_srlge_3D_comb 0.921088314  rlm_hgre_3D_comb 0.954838352 

rlm_srhge_3D_comb 0.942424061  rlm_srlge_3D_comb 0.907634349 

rlm_lrlge_3D_comb 0.804950405  rlm_srhge_3D_comb 0.953656375 

rlm_lrhge_3D_comb 0.911495237  rlm_lrlge_3D_comb 0.934528573 

rlm_glnu_norm_3D_comb 0.961396716  rlm_lrhge_3D_comb 0.903543411 

rlm_rlnu_norm_3D_comb 0.80826584  rlm_glnu_3D_comb 0.771473693 

rlm_r_perc_3D_comb 0.841230706  rlm_glnu_norm_3D_comb 0.970455432 

rlm_gl_var_3D_comb 0.957823961  rlm_r_perc_3D_comb 0.797913227 

rlm_rl_var_3D_comb 0.86450016  rlm_gl_var_3D_comb 0.977033066 

rlm_rl_entr_3D_comb 0.884850694  rlm_rl_var_3D_comb 0.861114832 

szm_lgze_3D 0.822841834  rlm_rl_entr_3D_comb 0.883175483 

szm_hgze_3D 0.921955367  szm_lgze_3D 0.888595458 

szm_glnu_3D 0.923295313  szm_hgze_3D 0.924315003 

szm_glnu_norm_3D 0.917228468  szm_glnu_3D 0.903552366 

szm_zsnu_3D 0.850769131  szm_glnu_norm_3D 0.940504604 

szm_z_perc_3D 0.789962403  szm_zsnu_3D 0.850808574 

szm_gl_var_3D 0.935191054  szm_gl_var_3D 0.946929789 

dzm_sde_3D 0.961121829  dzm_sde_3D 0.955991054 

dzm_lde_3D 0.838395667  dzm_lde_3D 0.83066835 

dzm_lgze_3D 0.822841834  dzm_lgze_3D 0.888595458 

dzm_hgze_3D 0.921955367  dzm_hgze_3D 0.924315003 

dzm_sdlge_3D 0.824762978  dzm_sdlge_3D 0.837220534 

dzm_sdhge_3D 0.933542135  dzm_sdhge_3D 0.913034979 

dzm_ldlge_3D 0.810612896  dzm_ldlge_3D 0.871229792 

dzm_ldhge_3D 0.865443558  dzm_ldhge_3D 0.848855501 

dzm_glnu_3D 0.923295313  dzm_glnu_3D 0.903552366 

dzm_glnu_norm_3D 0.917228468  dzm_glnu_norm_3D 0.940504604 

dzm_zdnu_3D 0.946013263  dzm_zdnu_3D 0.946450126 

dzm_zdnu_norm_3D 0.955040508  dzm_zdnu_norm_3D 0.951289254 

dzm_z_perc_3D 0.789962403  dzm_gl_var_3D 0.946929789 

dzm_gl_var_3D 0.935191054  dzm_zd_var_3D 0.820936852 

dzm_zd_var_3D 0.813205636  dzm_zd_entr_3D 0.935727593 

dzm_zd_entr_3D 0.922289191  ngt_coarseness_3D 0.857055421 

ngt_coarseness_3D 0.84561997  ngt_contrast_3D 0.895518924 

ngt_contrast_3D 0.848728851  ngt_busyness_3D 0.774624394 

ngt_complexity_3D 0.886395043  ngt_complexity_3D 0.865515599 

ngt_strength_3D 0.849445015  ngt_strength_3D 0.876313211 

ngl_hde_3D 0.851124694  ngl_hde_3D 0.837152948 

ngl_lgce_3D 0.923002167  ngl_lgce_3D 0.930034275 

ngl_hgce_3D 0.949688019  ngl_hgce_3D 0.957385136 

ngl_hdlge_3D 0.788024146  ngl_hdlge_3D 0.932270606 

ngl_hdhge_3D 0.869253791  ngl_hdhge_3D 0.791848499 

ngl_glnu_norm_3D 0.962217446  ngl_glnu_norm_3D 0.972278584 

ngl_dcnu_norm_3D 0.852985183  ngl_dcnu_norm_3D 0.814824384 

ngl_gl_var_3D 0.958814764  ngl_gl_var_3D 0.978610271 

ngl_dc_var_3D 0.867051317  ngl_dc_var_3D 0.911008321 

ngl_dc_entr_3D 0.777000195    

ngl_dc_energy_3D 0.835354209    
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Figure C- 4 Analysis of Feature Robustness for Each Feature Family across  MRI 
sequences (Percentage): (a) IH (Intensity Histograms, IBSI reference: ZVCW), (b)CM 

(Grey Level Co-occurrence Matrix, IBSI reference: LFYI), (c)IVH (Intensity-Volume 
Histogram, IBSI reference: P88C), (d) Morphological (MORPH, IBSI reference: HCUG), 
(e)STAT (Intensity-Based Statistics, IBSI reference:  UHIW), (f) NGL (Neighbourhood 
Grey Level Dependence Matrix, IBSI reference: REK0), (g) DZM (Grey Level Distance 

Zone Matrix, IBSI reference: VMDZ), (h) SZM (Grey Level Size Zone Matrix, IBSI 
reference: 9SAK), (i) RLM (Grey Level Run Length Matrix, IBSI reference: TP0I), (j) 

NGT (Neighbourhood Grey Tone Difference Matrix, IBSI reference: IPET) 
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Feature robustness analysis: 

Radiomic models can be severely affected by differences in positioning, image 
acquisition, and ROI segmentation, which introduce feature variability and limit the 
model generalisability [286]. Based on this, rigorous assessment of feature 
robustness is important. To distinguish robust from non-robust radiomic features 
in single-image analyses, perturbation-based augmentation techniques were 
performed [246]. Perturbed images (shown in Figure C- 5) covered rotation and 
volumetric shrinkage or enlargement (volume adaptation) [215], [286]. 

 

Figure C- 5 The perturbation methods : a) original b) rotation c) volume adaptation 
[246]. 
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D 

A) Normalisation Techniques  

For the BraTS dataset, this study implements several normalisation techniques, 

which can be broadly categorised into two primary types: individual time-point 

normalisation methods and sample-based normalisation methods. The individual 

time-point normalisation methods include Z-score normalisation (referred to as 

zscore-normalise), Fuzzy C-means (FCM)-based tissue mean normalisation (fcm-

normalise), Kernel Density Estimate (KDE)-based white matter mode normalisation 

(kde-normalise), and WhiteStripe normalisation (ws-normalise).  On the other 

hand, the sample-based normalisation methods consist of Least Squares (LSQ)-

based tissue mean normalisation (lsq-normalise) and Piecewise Linear Histogram 

Matching (nyul-normalise), with the exception of RAVEL normalisation (ravel-

normalise), which was deemed inapplicable in the current context. 

The results of RFS+ on ET, TC, and WT for each segmentation approach, using the 

various normalisation techniques, are summarised In Table D- 1. 

Table D- 1 Results of RFS+ for ET, TC and WT. 

Intensity 

Normalisation 

Technique 

Segmentation 
Approach 

ET TC WT 

Nyul 
Multiclass 79.44 79.53 88.98 
Multi-label 83.52 88.78 92.05 
Binary class 84.21 89.42 90.30 

Z-score 
Multiclass 84.99 89.71 91.65 
Multi-label 82.29 87.27 92.24 
Binary class 85.19 89.48 92.18 

Whitestripe 
Multiclass 83.61 87.99 90.47 
Multi-label 83.05 88.17 91.77 
Binary class 84.12 88.24 91.83 

FCM 
Multiclass 78.65 78.23 88.67 
Multi-label 77.56 79.42 87.65 
Binary class 83.65 84.21 88.53 

LSQ 
Multiclass 78.59 78.04 87.32 
Multi-label 79.34 80.11 86.59 
Binary class 82.34 84.87 83.98 

KDE 
Multiclass 79.22 77.45 88.67 
Multi-label 81.03 78.66 87.45 
Binary class 84.17 88.22 88.34 
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B) RFS+ Workflows for each region. 

 

Figure D- 1 RFS+ ET based on Table D- 1. 

 

Figure D- 2 RFS+ for TC based on Table D- 1.  

 

 

Figure D- 3 RFS+ for WT based on Table D- 1.
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C) RFS+ with each segmentation approach for each region  

Figure D- 4  shows the segmentation approaches along with their respective inputs 

and the RFS+ outputs for the ET region. 

 

 

 

Figure D- 4 a) Multiclass segmentation b) Multi-label segmentation c) Binary class 
segmentation d) RFS+ for ET. 
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Figure D- 5  demonstrates the segmentation approaches along with their 

respective inputs and the RFS+ outputs for the TC region. 

 

 

Figure D- 5 a) Multiclass segmentation b) Multi-label segmentation c) Binary class 
segmentation d) RFS+ for TC. 
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Figure D- 6  illustrates the segmentation approaches along with their respective 

inputs and the RFS+ outputs for WT region. 

 

Figure D- 6 a) Multiclass segmentation b) Multi-label segmentation c) Binary class 
segmentation d) RFS+ for WT. 
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D) Analysing Training Requirements and Time Efficiency 

The comparative analysis highlights RFS+'s exceptional resource efficiency, as it 

achieves outstanding performance while minimising computational demands, and 

when combined with 2D U-net, it yields a significant 67% reduction in memory 

usage and a substantial 92% decrease in training time compared to the extended 

nnU-net, all while maintaining high-quality segmentation results, making it an 

attractive solution for resource-constrained environments. 

Table D- 2 The extended nnU-net requirements 

Ensemble 

Models 

RTX 3070 8GB RTX 3090 24 GB 
The 

model 
number 

Total 
Time 

(Days) 
Trainable 

Time 
in 

Days 
Trainable 

Time 
in 

Days 
BL 

baseline nnUNet 
- - X 5 5 25 

BL+L+GN 
nnUNet with 
larger Unet 

- - X 2 5 10 

The 
extended 
nnU-net 

  -    35 

 

Table D- 3 The 2D U-Net with RFS+ requirements (Any region). 

Ensemble 

Models 

RTX 3070 8GB 
The 

model 
number 

Total 
Time 

(Days) 

RTX 3090    24 GB 
The 

model 
number 

Total 
Time 

(Days) 
Trainable 

Time 
in 

Days 
Trainable 

Time 
in 

Days 
2D U-Net 
multiclass  
(Z-score 

normalisation) 

X 3 1 3 X 1 1 1 

2D U-Net 
binary class  

(Z-score 
normalisation) 

X 3 1 3 X 1 1 1 

2D U-Net 
binary class  

(Nyul 
normalisation) 

X 3 1 3 X 1 1 1 

RFS+ 

 
 
 
 

   9    3 
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Table D- 4 The comparison of the ensemble methods. 

 

E) Acquisition Parameters retrieved from DICOM for STORM_GLIO 

 

Table D- 5 Acquisition Parameters of STORM_GLIO (Average, Standard deviation) 

  T1  T1ce  T2  FLAIR  

Thickness/mm  
4.77  

+/-0.47  
4.76  

+/-0.47  
4.74  

+/-0.56  
4.81  

+/-0.39  

TR/ms  
489  

+/-96  
494  

+/-98  
5627  

+/-1856  
8084  

+/-1832  

Echo Time/ms  
11  

+/-2  
11  

+/-2  
97  

+/-8  
112  

+/-27  

Inversion Time/ms  
0  

+/-0  
0  

+/-0  
0  

+/-0  
2217  

+/-259  

Field Strength/T  
1.54  

+/-0.24  
1.5  

+/-0  
1.54  

+/-0.24  
1.54  

+/-0.24  

Rows  
426  

+/-145  
424  

+/-146  
546  

+/-185  
475  

+/-219  

Columns  
417  

+/-147  
415  

+/-148  
527  

+/-198  
458  

+/-232  

Pixel spacing/mm  
0.62  

+/-0.19  
0.62  

+/-0.19  
0.48  

+/-0.14  
0.59  

+/-0.21  

Slice Spacing/mm  
5.99  

+/-0.73  
5.98  

+/-0.74  
6.27  

+/-0.96  
6.34  

+/-0.72  

SAR  
1.09  

+/-0.77  
1.07+/-0.76  

0.91  
+/-0.53  

0.69  
+/-0.67  

 

Ensemble RTX 3070 8GB RTX 3090 24 GB 

 Trainable 
Time 

in 
Days 

Trainable 
Time 

in 
Days 

The extended nnU-net - - X 35 
RFS+ x 9 X 3 


