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Abstract

Fruits play a fundamental role in human nutrition, serving as a key source of essential
vitamins and minerals. However, the global fruit industry is facing a significant challenge:
the shortage of labour for harvesting, which remains a predominantly manual task. Au-
tomated fruit-harvesting robots present a promising solution to address this labour gap
and maintain stable production. These robots can operate continuously without fatigue,
yet they struggle to accurately assess fruit ripeness, which is a critical factor influencing
harvest quality and timing. While numerous laboratory-based techniques for evaluating
ripeness have been developed, their application in field settings is limited due to the
complex and variable conditions of real-world orchards.

To address these challenges, this thesis explores deep learning for determining fruit
ripeness through vision models and high-quality fruit image datasets. Specifically, this
thesis introduces NinePeach, a large dataset of peach images, and PeachSOLO, a one-
stage model designed for peach instance segmentation. PeachSOLO achieves an average
precision (AP) of 72.12, surpassing Mask R-CNN (69.91 AP). This thesis then proposes
LightStraw, a lightweight model for strawberry instance segmentation. It requires con-
siderably fewer parameters (17.42M) and floating-point operations (78.3G) than Mask
R-CNN (35.08M/877.4G). This thesis also combines peach and strawberry images into a
single dataset and proposes a query-based segmentation model FruitQuery. FruitQuery
achieves the best AP of 67.02 with only 14.08M parameters, outperforming 13 other
models with 33 variants, including three series of YOLO. Finally, this thesis develops
AppleSSL, a self-supervised method for assessing in-field apple ripeness under occlusion.
Using less than 1% labelled images, AppleSSL reconstructs obscured parts and provides
ripeness scores from 0.0 to 1.0, surpassing 15 other self-supervised methods and one
supervised method.

Overall, this thesis demonstrates that deep learning can enable practical, accurate, and
efficient ripeness estimation in real-world environments, supporting robotic fruit picking

and contributing to smart, precision agriculture.
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Chapter 1

Introduction

1.1 Research Motivation

Fruits are an important part of the human diet. Fruit ripeness determination is a critical
task in modern agriculture, directly influencing harvest timing and overall fruit qual-
ity across both pre- and post-harvest stages. Accurate ripeness assessment not only
informs precise fertilisation schedules, crop health monitoring and yield estimation in
the pre-harvest phase, but also supports grading, storage, and transportation decisions
to minimise spoilage in the post-harvest phase [132]. Traditional ripeness determina-
tion methods, such as manual inspection or biochemical analysis, suffer from several
limitations, including subjectivity, labour intensity, and poor scalability for large-scale
production systems due to the need for specialised and expensive equipment. These chal-
lenges are further complicated by the need for non-destructive techniques that preserve
fruit integrity while delivering consistent and reliable assessments across different fruit

varieties and environmental conditions.

Deep learning, a subset of artificial intelligence (AI) characterised by its ability to au-
tomatically learn hierarchical feature representations from raw data, holds great promise
to overcome these constraints. By leveraging neural networks and other architectures,
deep learning can extract complex patterns directly from images, eliminating the need
for handcrafted features and reducing dependence on domain-specific expertise [118].

The motivation of this research is to explore deep learning as a practical, precise, and
scalable solution for fruit ripeness determination. Specifically, the solution should enable
instance-level fruit recognition under complex, real-world conditions, such as occlusions,
lighting variation, and different viewing angles, while maintaining high accuracy and
generalisability. Furthermore, it should be lightweight and efficient enough for deployment
on in-field platforms, such as picking robots. Finally, the solution should also reduce
reliance on manual annotations and provide end-users the flexibility to make decisions

based on their own ripeness criteria.
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1.2 Problem Statement

Although deep learning has significantly advanced computer vision and has been widely
adopted across various agricultural applications, its application to fruit ripeness determi-
nation remains limited, with several critical challenges yet to be addressed.

First, most existing studies focus on fruit classification or object detection tasks, which
can identify the presence and category of fruit but fail to provide precise instance-level
localisation or shape information. Only a few studies have applied segmentation methods
in fruit-related tasks, and even fewer have explored their use in ripeness estimation. This
presents a significant gap, as instance segmentation can capture more detailed spatial
information that is critical for assessing subtle ripeness differences.

Second, most datasets in prior studies are relatively small in scale, consisting of only
a few hundred images, and are often made private. This restricts reproducibility, com-
parative evaluation, and broader academic progress. In the rare cases where instance
segmentation masks are publicly available, ripeness labels are absent. Moreover, in the
limited studies where fruit ripeness is considered, the task is commonly simplified to a
binary classification (unripe vs. ripe), which fails to reflect the multi-stage fruit ripening
process. This indicates the need for publicly available, high-quality datasets that combine
instance-level annotations with multi-category ripeness labels.

Third, segmentation models typically demand more computational resources than
classification or detection models due to the higher complexity of the task. However,
the need for lightweight models that are suitable for deployment on resource-constrained
platforms, such as picking robots or embedded agricultural devices, is often ignored.
The development of efficient, lightweight instance segmentation models for fruit ripeness
determination, therefore, remains an under-explored area.

Fourth, existing ripeness prediction methods largely depend on manually defined la-
bels, which are based on fixed visual criteria determined by annotators. Although it is
an effective and widely-used solution, these labels may not align with the preferences
of different end-users across regions, markets, or supply chains. Consequently, models
trained on such labels may lack adaptability in wide applications. There is a clear need
to explore alternative approaches to reduce reliance on human annotations and allow for

a more flexible, user-oriented ripeness assessment.

1.3 Research Contributions

This thesis makes several contributions to the development of deep learning methods
for fruit ripeness determination. These contributions directly address the key challenges
identified in the problem statement and correspond to the research objectives outlined

earlier. They are summarised as follows:
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1. Creation and enhancement of datasets for ripeness determination.
A high-quality peach dataset named NinePeach is created and made publicly avail-
able. It contains 4599 images of nine peach cultivars at various ripeness stages,
captured under natural field conditions. To the best of the author’s knowledge, it
is the largest and most diverse peach dataset with instance-level ripeness labels.
In addition, a public strawberry instance-level dataset (3100 images) is extended
with different ripeness labels to facilitate its application in maturity assessment.
These two datasets are further combined to support multi-class ripeness determi-
nation under real-world conditions. Together, they serve as valuable benchmarks

for future research.

2. Proposal of a one-stage CNN instance segmentation model to predict
peach ripeness.
A novel one-stage CNN model called PeachSOLO is proposed for peach instance
segmentation. Unlike traditional two-stage approaches, PeachSOLO does not need
bounding box proposals as prior knowledge. It directly identifies peach instances by
their centre locations and sizes, and then predicts their categories at the same time.
The model incorporates both channel and spatial attention to improve object de-
tection capabilities in key channels and spatial locations. PeachSOLO outperforms
the state-of-the-art Mask R-CNN with 2.21 higher average precision points.

3. Development of lightweight Transformer-based fruit segmentation mod-
els for embedded devices.
Two lightweight models are developed to address the computational demands of seg-
mentation tasks. The first, named LightStraw, is an efficient CNN-based model for
strawberry instance segmentation. It adopts efficient self-attention for a lightweight
backbone to extract semantic features. The CoordConv and Instance Activation
Maps are introduced to add position and instance-aware weighted maps to the
model. LightStraw demonstrate efficiency by requiring much fewer parameters
(17.42M) and floating-point operations (78.3G) compared to Mask R-CNN (35.08M
/ 877.4G), making them suitable for deployment on embedded devices. The sec-
ond, named FruitQuery, is a query-based end-to-end segmentation framework that
combines convolutional features with Transformer decoders. Trained on the com-
bined peach-strawberry dataset, it supports multi-stage ripeness classification while
maintaining a small model size. FruitQuery achieves the highest average precision of
67.02 with only 14.08 M parameters, outperforming 13 state-of-the-art models with
33 variants. Both models achieve competitive accuracy with significantly reduced
parameters and computational cost, making them suitable for use on resource-

constrained or embedded devices in agricultural environments.
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4. Introduction of a self-supervised learning method to predict ripeness for
occluded apples with few labels.
A novel self-supervised framework, named AppleSSL, is introduced to estimate ap-
ple ripeness in scenarios where fruits are partially hidden by leaves or branches.
The method applies contrastive learning and image reconstruction tasks to learn
from a large number of unlabelled data, requiring only a small fraction of labelled
images. It generates a continuous ripeness score instead of discrete pre-defined cat-
egories, offering greater flexibility for end-users to make their decisions. AppleSSL
achieves the best Structural Similarity Index Measure of 0.75 and the second-best
Peak-Signal-to-Noise Ratio of 25.36 for reconstructing missing apple parts, whilst
using the fewest 86.3M parameters. It outperforms 15 other self-supervised meth-
ods and a supervised method in the ripeness score prediction, with the smallest

score 0.0127 for fully unripe and the highest score 0.8933 for fully ripe apples.

1.4 Publications

1. Zhao, Z., Hicks, Y., Sun, X., & Luo, C. (2023). Peach Ripeness Classification based
on a New One-stage Instance Segmentation Model. Computers and FElectronics in
Agriculture, 214:108369. 10.1016/j.compag.2023.108369

e This work corresponds to Chapter 3.

e Contributions: Zhao, Z.: Methodology, Software, Validation, Visualization,
Writing, Data curation. Hicks, Y.: Methodology, Writing, Supervision. Sun,
X.: Methodology, Writing, Supervision. Luo, C.: Resources, Writing.

2. Zhao, Z., Hicks, Y., Sun, X. (2024). Faster Segmentation Models for Peach
Ripeness Determination. In Proceedings of the Cardiff University School of En-
gineering Research Conference 2024, pages 33-37. 10.18573/conf3.i

e This work corresponds to Chapters 3 and 4.

e Contributions: Zhao, Z.: Methodology, Software, Validation, Visualisation,
Writing, Data curation. Hicks, Y.: Methodology, Writing, Supervision. Sun,
X.: Methodology, Writing, Supervision.

3. Zhao, Z., Hicks, Y., Sun, X., McGuinness, B. J., & Lim, H. S. (2024). Lightweight
and Efficient Attention-based CNN Models for In-field Strawberry Instance Segmen-
tation. 2024 IEEFE 20th International Conference on Automation Science and Engi-
neering (CASE), pages 3294-3299, ISSN:2161-8089. 10.1109/CASE59546.2024.10711802

e This work corresponds to Chapter 4.
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1.5 Thesis Outline

This thesis is divided into several chapters corresponding to the above main research

questions.

Chapter 1 — Introduction

This chapter introduces the background and motivation of the research, followed
by a problem statement. It outlines the research objectives, summarises the key
research contributions, lists relevant publications, and concludes with the structure
of the thesis.

Chapter 2 — Literature Review

This chapter reviews existing methods for fruit ripeness assessment. It begins with
the biological background of fruit ripening, followed by traditional approaches such
as colour inspection, spectral methods, and aroma analysis. It then discusses the
role of machine learning and deep learning, including self-supervised learning in

fruit ripeness determination, and highlights the current research gaps.
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1.5. Thesis Outline

Chapter 3 — PeachSOLO

The chapter introduces the NinePeach dataset, a large, high-quality collection cap-
turing real-world conditions like varying light, fruit adhesion, and occlusion. This
chapter also presents PeachSOLO, a one-stage instance segmentation model for
peach ripeness classification. It integrates channel attention and spatial attention
to enhance feature representation, enabling accurate detection under complex con-

texts.

Chapter 4 - LightStraw

This chapter proposes lightweight, efficient CNN models for strawberry instance
segmentation. The models integrate efficient self-attention and novel components
to enhance positional and instance-level understanding. Their accuracy and com-

putational efficiency are validated through extensive experiments.

Chapter 5 — FruitQuery

This chapter combines peach and strawberry datasets and introduces FruitQuery,
a lightweight, end-to-end query-based instance segmentation model for multi-stage
ripeness determination. The model combines convolutional features with Trans-
former decoders. Experimental comparisons show that the model outperforms 13
other models with 33 variants, highlighting its competitive accuracy and low com-

putational cost.

Chapter 6 - AppleSSL

This chapter presents a self-supervised framework, AppleSSL, with a reconstructor,
feature extractor, and predictor for in-field occluded apple ripeness. Trained on a
limited number of labelled data (<1%), it reconstructs missing parts and predicts
continuous ripeness scores, outperforming 15 self-supervised and one supervised
methods. It demonstrates good performance under occlusion and shows the ability

to cover different ripeness criteria from different users.

Chapter 7 - Conclusions and Future Work
The final chapter summarises the main findings and contributions of the thesis. It
also discusses the limitations of the current work and suggests potential directions

for future research.



Chapter 2

Literature Review

2.1 Background of Fruit Ripeness

2.1.1 Introduction

Fruits are an essential part of the human diet, providing vital nutrients such as vitamins,
minerals, and antioxidants that contribute to overall health and well-being. They play a
foundational role in supporting growth in children and sustaining physiological functions
across all ages [249]. Regular fruit consumption has been shown to help prevent various
forms of malnutrition, including under-nutrition and obesity, and reduce the risk of non-
communicable diseases [67]. Given their nutritional significance, ensuring that fruits reach
consumers in an optimal state is necessary for maximising health benefits and maintaining
market value.

Food waste remains a significant global challenge, especially in the context of a growing
global population. Food and Agriculture Organisation of the United Nations (FAO)
estimated that one-third of all global food production is lost or wasted, with fruits and
vegetables being among the most wasted food categories [31]. This not only causes severe

environmental damage but also exacerbates food insecurity.

~ Ripeness %
@ Pre-harvest Post-harvest GZFQ

Producer o - Consumer
e In-field = *  Off-field
*  Fertilisation @ e Grading
*  Health monitoring % e Storage
*  Yield estimation o= *  Transportation

*  Selective harvesting * Retail

Figure 2.1: Ripeness is a key factor throughout the whole process of fruit production.
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A major factor contributing to this wastage is improper harvesting and storage prac-
tices, which result in substantial losses along the supply chain. World Wide Fund for
Nature UK (WWF-UK) reveals that up to 14% of total food production is lost post-
harvest based on total harvest weight, including at retail stages, with 8.3% wasted at or
around harvest and 7.0% during farm-stage post-harvest activities [290]. It is estimated
that the food lost on farms alone is enough to feed the world’s undernourished population

almost four times over [289].

Building on the issue of fruit waste, one of the key factors influencing losses is ripeness.
The ripeness of fruit plays a crucial role throughout its entire production lifecycle from
pre-harvest to post-harvest, directly affecting harvest timing and consumer satisfaction,

as shown in Fig. 2.1.

In the pre-harvest stage, fruit ripeness is considered by producers to schedule precise
fertilisation, monitor crop health and estimate the yield. It also helps the development
of selective harvesting, one practice of precision agriculture, ensuring that fruits are har-

vested only when grown with the desired flavour, texture, and nutritional profile [208].

In the post-harvest stage, ripeness continues to play a vital role before the fruits reach
consumers. Activities such as grading, storage and transportation have to take ripeness
into account, as overripe fruits are prone to spoilage during handling and moving, while
under-ripe fruits may fail to meet consumer expectations in terms of taste and appearance.
Effective ripeness management becomes critical to preserve product quality and maximise
value [132].

2.1.2 Biology of Fruit Ripening

Fruit ripening is a highly coordinated, genetically programmed, and irreversible natural
process involving a series of physiological, biochemical, and organoleptic changes. In
most cases, a green, hard and immature fruit becomes more colourful, softer, sweeter,
and aromatic [81]. For example, a green apple may turn red or yellow, while its flesh
softens and gains sweetness, making it ready to eat. These changes matter in farming

because they affect when fruits are picked and how good they taste for consumers.

The phenotypic changes during fruit ripening are complex and varied. Numerous
physical and chemical attributes can be quantified during ripening. These include size,
shape, texture, firmness, external colour, internal colour, the concentration of chloro-
phyll, starch, sugars, Soluble Solids Contents (SSC), Total Soluble Solids (TSS), oils,
and internal ethylene concentration [241]. Ethylene, for instance, acts like a signal to
start softening and colour shifts in fruits such as bananas or tomatoes. These traits help
farmers know the best time to harvest and ensure fruits meet market needs. The main

aspects of fruit ripening and relevant tools are summarised in Table 2.1.
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Table 2.1: Key aspects and tools for assessing fruit ripening characteristics.

Aspect Description Tools
Colour Ripening fruits change colour due to the breakdown Tmnacin
[192) of chlorophyll (green) and the synthesis of carotenoids Spec trg(;)scg(;),
(yellow/orange) and anthocyanins (red/purple). P 24
Volatiles Ripening fruits produce aromas through the metabolic GOMS!
1205] process. Compounds such as esters, alcohols, and alde- E—Nose2’
hydes are closely linked to the fruit’s flavour.
Texture Enzymatic, such as pectin methylesterase breakdown
(Firmness)  of cell wall components such as pectin, cellulose, and  Fluorescence
[268] hemicellulose, softening of the fruit flesh.
Sugar Hydrolysis of starch into simpler sugars like glucose,
Content fructose, and sucrose. This process is driven by en-  Spectroscopy
[254] zymes, which contribute to the increase in sweetness.
Acidit Organic acids such as malic acid and citric acid are
[175]}/ metabolised through respiration or converted into sug- Titration, pH

ars, reducing the fruit’s sourness.

L GC-MS: Gas Chromatography-Mass Spectrometry
2 E-Nose: Electronic Noise

2.2 Sensing Methods for Ripeness Determination

Based on the biology of fruit ripening, extensive research has been conducted on develop-
ing methods to determine fruit ripeness over recent decades. Most sensing methods rely
on non-destructive techniques, such as colourimetry, spectral imaging and spectroscopy.
Some of these methods are shown in Fig. 2.2, and a comprehensive summary is provided
in Table 2.2.

2.2.1 Colour Inspection

Colourimeters are analytical instruments designed to quantify the colour of the fruit
by measuring its absorbance or reflectance of specific wavelengths of light. They are
more accurate than human visual assessment using CIELAB colour space. This method
has been applied to various fruits, including apples [69], bananas [193], mangoes [125],
tomatoes [64], and peaches [70].

Visible imaging, by contrast, refers to the use of digital cameras to capture a two-
dimensional image in RGB colour space. It employs technologies such as charge-coupled
devices (CCD) or complementary metal-oxide-semiconductor (CMOS) sensors to detect
red, green, and blue wavelengths. For example, an approach was proposed to assess fruit

ripeness by extracting mean RGB values from four directional images of a fruit [55].
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Figure 2.2: Some sensing methods used for determining fruit ripeness.

However, colourimeters require controlled lighting conditions and calibration, making
them less feasible for rapid, in-field assessments. Similarly, visible imaging struggles
with inconsistent results due to variations in illumination and fruit orientation, often

demanding extensive manual processing.

2.2.2 Spectral Imaging

Hyperspectral imaging (HSI) and multispectral imaging (MSI) represent two widely
adopted methodologies within spectral imaging.

HSI generates a three-dimensional imaging cube with images at a range of narrow,
contiguous spectral bands. A single spectrum can be extracted from each pixel, rep-
resenting the absorption properties and the textural information of fruit samples. For
instance, [75] collected HSI data on strawberries at early ripe and ripe stages, covering

a wavelength range of 370 to 1015 nm, with specific wavelengths of 530 nm and 604 nm
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selected for field samples, and 528 nm and 715 nm for laboratory samples.

MST is similar but different from HSI, as it acquires a limited number of predefined,
discrete spectral bands, rather than capturing hundreds of spectral bands as in HSI. These
bands are typically wider and non-contiguous, designed to target particular spectral fea-
tures of interest, making MSI more computationally efficient and suitable for in-field
applications. For instance, [181] employed MSI with five wavelengths to correlate scat-
tering profiles with the firmness and SSC of apples, achieving a high correlation for both
quality attributes.

However, HSI requires significant computational resources and sophisticated equip-
ment, often limiting its use to laboratory settings and reducing real-time applicability.
MSI sacrifices spectral resolution for efficiency, potentially missing subtle ripeness indi-

cators, and requires careful band selection, which may not generalise across fruit types.

2.2.3 Spectroscopy

Spectroscopy is a fundamental analytical technique that examines the interaction of elec-
tromagnetic radiation with matter, widely employed in fruit quality assessment to evalu-
ate physicochemical properties. The sensing principle involves illuminating a sample and
capturing its spectral response, which reflects its chemical composition and structural
characteristics. Unlike HSI, spectroscopy typically acquires spectral data from a single
point or a small area, without spatial information. Near-infrared spectroscopy stands out
as the most prevalent method in this domain, offering rapid and non-destructive analysis
of fruit samples. For example, [32] highlighted its extensive application in determining
fruit quality attributes, such as ripeness and composition. In a specific study, [109] devel-
oped an automated classification procedure for peaches, utilising multispectral imaging
to compute ratio images (red at 680 nm divided by infrared at 800 nm), effectively distin-
guishing ripeness stages. Similarly, [201] investigated visible-near-infrared (450-1040 nm)
hyperspectral reflectance imaging to assess the internal properties and sensory attributes
of two varieties of nectarines, demonstrating its efficacy in quality monitoring.

However, spectroscopy-based methods often require expensive equipment and careful
calibration, which can restrict their use to controlled laboratory environments. Further-

more, their accuracy may vary across different fruit species.

2.2.4 Fluorescence

Fluorescence is an optical technique that leverages the emission of light from a sample
following excitation by specific wavelengths, offering a non-invasive approach to assess
fruit ripeness and quality parameters. This method relies on the detection of fluorescence
signals, often linked to compounds such as chlorophyll, which diminish as fruits ripen.

For example, [21] developed a fluorescence imaging system that measured emissions at
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690-740 nm, excited by UV-blue and red light, achieving strong correlations between flu-
orescence signals and quality attributes such as firmness and SSC in fresh apples, despite
minimal changes in skin hue. However, the same study noted weaker correlations for
peaches and nectarines, suggesting variability across fruit types. Notably, their system
did not require dark adaptation of samples, though it was designed exclusively for labo-
ratory use, highlighting limitations in its practical application. These findings underscore
fluorescence as a promising tool for ripeness determination, with its efficacy dependent
on fruit species and experimental conditions.

However, fluorescence relies on specialised equipment that is often confined to lab-
oratory settings, making it less suitable for field use. The technique’s sensitivity to
fruit-specific responses and the need for controlled conditions further limit its scalability

and real-time applicability.

2.2.5 Aroma

Aroma analysis is a key method for evaluating fruit ripeness and quality by detecting
Volatile Organic Compounds (VOC) using techniques such as Gas Chromatography-Mass
Spectrometry (GC-MS) and Electronic Nose (E-Nose) systems. These methods provide
valuable insights into the aromatic profiles that define fruit ripeness. For instance, the E-
Nose has been applied to monitor mandarin ripeness across different harvest dates, linking
VOC to quality parameters such as firmness, SSC, and acidity [84]. Similarly, GC-MS has
been utilised to characterise the aroma of bananas, identifying and observing the evolution
of critical VOCs during ripening and drying processes, where some compounds diminish
while others remain stable under varying temperature conditions [22]. Additionally, in
kiwifruit, GC-MS analysis of bound volatiles revealed fluctuations in VOC across under-
ripe, ripe, and over-ripe stages, although these compounds showed limited influence on
the characteristic aroma of ripe fruit [76].

However, aroma-based methods often require costly, sophisticated equipment and con-
trolled laboratory environments, restricting their use outside specialised settings. More-
over, the complexity of interpreting VOC data and the variability in compound detection
across fruit species can reduce their consistency and practicality for large-scale applica-

tions.

2.2.6 Summary

The sensing methods mentioned above provide detailed insights for fruit ripeness deter-
mination but come with notable limitations. Many of these techniques rely on expensive,
specialised equipment that can be cost-prohibitive for widespread adoption. They often
require controlled laboratory conditions, making them impractical for on-site or field use.

Additionally, the complexity of data processing and the need for precise calibration can
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slow down analysis, while variability across fruit types reduces their general applicability.
These constraints, high costs, lack of portability, and challenges in efficient implementa-

tion limit their scalability and accessibility.

2.3 Machine Learning for Ripeness Determination

2.3.1 Introduction

To overcome the limitations of sensing ripeness determination methods, researchers have
turned to machine learning (ML) techniques as an alternative. Machine learning enables
automated, non-destructive ripeness prediction by learning patterns from data, often
using visual features extracted from fruit images or simple sensor data.

This chapter introduces the foundations of machine learning in the context of fruit
ripeness estimation, outlines common model structures and workflows, and reviews their
typical applications. ML methods utilise knowledge-based insights and pattern recogni-
tion capabilities to enhance the accuracy of fruit ripeness determination. Unlike sensing
methods that rely on biochemical measurements, these methods enable non-destructive

identification and classification of fruit ripeness stages, often taking fruit images as inputs.

2.3.2 Concepts and Algorithms

Machine learning is a data-driven approach that builds models capable of learning from
examples. These models use training data to identify patterns and relationships, which
are then used to make predictions or classifications on new, unseen data [118].

A key feature of traditional ML methods is their reliance on feature engineering, which
is the manual extraction of meaningful attributes from raw data. These features, such as
colour histograms or texture descriptors, are often designed with domain expertise and
significantly influence model performance.

Common machine learning algorithms can be broadly divided into two categories:
supervised and unsupervised learning.

On the one hand, supervised learning algorithms are trained on labelled data, where
each input is paired with a known output. These models learn to map inputs to out-
puts and are widely used for classifying object categories or predicting scores. Typical
examples include Linear Regression [60], which models relationships between features,
and Support Vector Machines (SVM, 51), which are effective for binary or multi-class
classification problems. K-Nearest Neighbours (KNN, 52) predicts the output for a test
sample by identifying the K closest samples in the training data based on a distance met-
ric, while Artificial Neural Networks (ANN, 101) can capture more complex, non-linear

relationships, though they require more data and tuning. Naive Bayes (NB, 282) is based
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on Bayes’ theorem, which assumes independence between features and is commonly used

for classification tasks.
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Figure 2.3: The example of using K-means to cluster fruits.

On the other hand, unsupervised learning methods work with unlabelled data, aiming
to uncover hidden structures or groupings. These are especially useful when labelled
training samples are unavailable. K-means clustering [186], for example, groups fruit
samples based on similarities in features like colour or texture, as shown in Fig. 2.3. It
is simple and widely used for preliminary data exploration. More advanced methods like
Gustafson—Kessel clustering [96] allow clusters to take on elliptical shapes, offering more
flexibility when object features are not evenly distributed.

Both types of algorithms provide different strengths depending on the availability of
data. However, their performance often relies on manually designed features, such as
colour histograms or texture descriptors, which may not fully capture the complex visual

patterns.

2.3.3 Applications

Machine learning has a wide range of applications, from email spam filtering and fraud
detection in finance to personalised recommendation systems, permeating many aspects
of daily life. For example, Logistic Regression was used to predict football match results
[222], and NB was applied to check whether social media contents express hatred for
people [136].

ML methods have also been applied to determine fruit ripeness, as summarised in
Table 2.3. Supervised learning algorithms such as SVM, KNN, NB, ANN, and various
regression models are the most frequently used. These methods are well-suited for clas-
sification and regression tasks where labelled data, such as predefined ripeness stages,
is available. They have been applied to fruits like avocado [44], blueberry [154], mango
[287], papaya [17], and tomato [64], often using features such as colour, texture, or spectral
signatures extracted from images or sensors.

Unsupervised techniques like K-means and Gustafson—Kessel clustering are commonly
used when label information is unavailable or difficult to obtain. These methods group

fruits based on similarities in visual or spectral features and have been employed for
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Table 2.3: Machine learning for fruit ripeness determination.

Fruit Machine Learning Methods References
Apple Random Frog 2020, [311]
Avocado SVM, KNN, Ridge Regression, Lasso Regression 2020, [44]
Banana K-means, Gustafson-Kessel 2012, [55]
Blueberries KNN, NB, Supervised K-means Clustering 2014, [154]
Grape KNN, SAE, Logistic Regression, Decision Tree 2018, [240]
Mango K-means, NB, SVM 2022, [287]
Oil palm fruit Fast Fuzzy C-means 2024, [228]
Papaya KNN, SVM, NB 2021, [17]
Peach ANN, LDA, Random Forest 2022, [173]
Pear SAE 2018, [303]
Tomato SVM, LDA 2015, [64]

Abbreviations: LDA (Linear Discriminant Analysis), KNN (K-Nearest Neighbours), NB (Naive
Bayesian), SVM (Support Vector Machines), SAE (Stacked Auto-Encoders), ANN (Artificial Neural
Network)

bananas [55] and mangoes [287], among others. [311] also incorporates a hybrid ap-
proach that combines supervised classifiers with feature selection techniques, to reduce

dimensionality and predict apple ripeness.

Across all applications, these models demonstrate flexibility in handling different data
types and fruit species. However, they typically rely on manually designed features
and domain-specific knowledge, which may limit their scalability and performance when

applied to more complex or diverse datasets.

2.3.4 Summary

Machine learning offers a flexible and efficient alternative to sensing ripeness determi-
nation methods. Its ability to work with visual and sensor data makes it suitable for

real-time, non-destructive ripeness assessment in both laboratory and field conditions.

Though ML models are generally lighter and more interpretable, they rely more heav-
ily on manually engineered features and may struggle with complex, high-dimensional
data. These challenges have led to the growing use of deep learning methods (discussed
in the next section), which aim to automatically learn more robust features directly from

raw data.
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2.4 Deep Learning for Ripeness Determination

2.4.1 Introduction

Deep learning (DL) is a specialised subset of ML that focuses on building models using
artificial neural networks with multiple layers. While both are subfields of artificial in-
telligence (AI), deep learning distinguishes itself by its ability to automatically extract
features and learn hierarchical representations from raw data, often achieving superior

performance in complex tasks. The relation between DL, ML and Al is shown in Fig. 2.4.
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Figure 2.4: The relation between deep learning, machine learning and artificial intelli-
gence.

Inspired by the structure and function of biological neural networks, deep learning
models focus on developing systems capable of simulating humans’ cognitive functions
like learning and decision-making. It is also called a deep neural network or deep neural
learning [118]. A biological neural network is illustrated in Fig. 2.5. This inspiration

has led to the development of DL, which is capable of solving problems in vision and

language.
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Figure 2.5: A biological neural network.

Deep learning distinguishes itself by automatically learning features from data through
multi-layer neural networks, eliminating the need for extensive manual feature engineer-
ing. The term “deep” is because the structure of artificial neural networks consists of
input, output, and multiple hidden layers [118].

Each layer contains units that transform the input data into features that the next

layer can use for a specific predictive task. Features extracted by each layer progress from
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Figure 2.6: A deep learning network for image classification.

simple to complex. For instance, in image processing tasks, initial layers may capture
edges and textures, intermediate layers learn structural patterns, and final layers grasp
semantic information [20]. Thanks to this structure, deep learning can automatically
extract features from raw data, learn hierarchical representations, and analyse complex
patterns. A simple example of deep learning is shown in Fig. 2.6.

Deep learning does well with large datasets and powerful computational resources, us-
ing backpropagation algorithms to optimise large model parameters for high-dimensional,
nonlinear data. It has been successful in various tasks, such as image recognition, natural

language processing, and speech recognition [118].

2.4.2 Deep Learning Structure

Fig. 2.7 shows a typical structure of a deep learning model. A deep learning model usually
consists of five essential components: a network (an input layer, hidden layers, and an
output layer), a loss function, regularisation, a learning rate scheduler and an optimiser

[118]. Each of them plays a distinct role in processing data and making predictions.

Network

A typical network comprises an input layer, hidden layers and an output layer. Layers
are the fundamental building blocks of deep learning models, determining how data is
processed and transformed as it moves through the network [118].

First, the input layer serves as the starting point of the model, which takes raw data
like images and processes it into vectors or tensors. Its structure is determined by the
number of features in the input data, such as pixel values. Second, the hidden layers form

the core part of the network. They consist of multiple layers that progressively transform
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Figure 2.7: The typical structure of a deep learning model.

and extract features from the input. These layers learn hierarchical representations, with
earlier layers capturing basic patterns (e.g., edges in images) and deeper layers identifying
more complex structures or semantics [102]. Third, the output layer generates the final
prediction based on the processed information. For example, in classification tasks, the
output is the probabilities for each class, while in regression tasks, the output is continuous
values.

Table 2.4 summarises some common deep learning networks for different tasks. This

thesis mainly focuses on computer vision tasks.

Activation Function

Activation functions are crucial components of deep learning models as they introduce
nonlinearity into the network, enabling it to learn and represent complex patterns in
data. Without activation functions, the entire model would behave like a linear function,
regardless of the number of layers, limiting its ability to solve non-linear problems [118].

Some common activation functions are shown in Table 2.5. For example, Rectified
Linear Unit (ReLU) is a popular activation function that helps address the vanishing

gradient problem.

Loss Function

The loss function measures the discrepancy between the predicted outputs and ground

truths, providing feedback for optimisation. This measurement is used to compute gra-
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Table 2.4: Common deep learning networks.

Network Description Task

Uses convolutional layers to capture spatial hier-

CNN [146] L Computer Vision
archies in images.
Processes sequential data by maintaining a mem- Time Series
RNN [237] . . .
ory of previous time steps. Forecasting

Transformer Uses attention mechanism to capture relation- Natural Language

[271] ships between input elements. Processing
ViT Applies. transfo'rmer a.rchitecture to the image by Computer Vision
[59] processing the image into patches and sequences.
GAN Generates realistic data by training two networks .
. - L Generation
[87] in competition: a generator and a discriminator.
Autoencoder Learns to compress data into a lower-dimensional )
Compression

[9] representation and then reconstruct it.

Abbreviations: CNN (Convolutional Neural Network), RNN (Recurrent Neural Network), ViT (Vi-
sion Transformer), GAN (Generative Adversarial Network)

Table 2.5: Common deep learning activation functions.

Sigmoid Swish Softmax ReLU Tanh
1.0 “ 5 1.0 5 1
0.5 0.5 1
‘ -5 ‘ 5
-5 0 5 =5 é —iO 0 10 -5 0 5
1 x evi 2
ofx) = flz) = fla:) = f(x) = maz(0,2) f(x)

dients through backpropagation, which quantifies how each model parameter contributes
to the error [118]. Effective loss functions not only reflect the problem’s requirements but
also impact the model’s convergence rate and overall performance. A well-chosen loss
function ensures that the optimisation process aligns with the intended goals, improving
the model’s ability to generalise [20].

Some common loss functions are listed in Table 2.6. For example, cross-entropy loss

is often used for classification, while mean squared error is suitable for regression tasks.

Optimiser

Optimisers are algorithms that are designed to adjust the network’s parameters to min-

imise the loss function. Optimisers calculate updates to model weights based on gradients
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Table 2.6: Common deep learning loss functions.

Loss Formula™ Task
i e
Cross-Entropy (CE) 1 L& . . .

Loss [20] -~ ; ; Yic1og(Pic) Classification
Dice Loss [256] 22 il Segmentation

1 —
Syt > U

* N is the batch size, y is the label, § is the prediction, C' is the number of classes

computed via backpropagation, often incorporating techniques to accelerate convergence
and avoid local minima [118]. The choice of optimiser is important as it directly influences

model performance, convergence speed, and stability [230].

Some common optimisers are detailed in Table 2.7. For instance, the widely used
optimiser Stochastic Gradient Descent (SGD) provides a simple and effective update rule,

and the Adam optimiser can adjust learning rates based on momentum and variance of

gradients.
Table 2.7: Common deep learning optimisers.
Optimiser Description Update Rule”
Updates weights using a small
SGD [227] bei)tch of datag. ° Ori1 = 0 — 11V J (01)
Momentum Builds on SGD by adding a 6,1 = 60, — nVyJ(0;) + vy, where v,
219] weighted average of past gradi- is the accumulated gradient and [ is
ents. the momentum term.
Opp1 = 0 — 77—Amt , where m; =
Adam Uses Momentum and variance of s . \/g_f te€ .
gradients to adjust learning rates 1-57 and 3; = 1-p; are estimates of
[138] for each parameter. the gradient’s first and second mo-
ments.
my
AdamW An improved version of Adam Or1=0—17 ( N + >\9t) , where
. t
[178] that decouples weight decay ) ig the weight decay coefficient, 1

from the gradient-based update.

and 7, are defined as above.

* 0 is the weight, ¢ is the time step, 7 is the learning rate, J is the loss function, V is the gradient
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Regularisation

Regularisation techniques are employed to prevent overfitting, ensuring that the model

generalises well to unseen data. Overfitting occurs when a model becomes excessively

complex and learns to memorise the training data rather than capture the underlying

patterns. Regularisation introduces penalties or constraints during training, discouraging

overly complex models that might overfit [118].

Some common regularisation methods are detailed in Table 2.7. For example, L1 and

L2 regularisation add penalties to the loss function based on the magnitude of the model’s

weights, thereby encouraging simpler models with smaller weights.

Table 2.8: Common deep learning regularisation methods.

Regularisation Description

Type

L1 [100] Adds a penalty of > |0] to the loss function,
Regularisation  where ) is a hyperparameter and 6 is the weight.

Add penalty

L2 [100] Adds a penalty of A>_ 62 to the loss function,

Regularisation  also known as weight decay.

Add penalty

Batch [120] Normalises the input to each layer to a mean of Improves training

Normalisation 0 and a standard deviation of 1.

stability

Dropout [251] during training.

Randomly sets a fraction of input units to zero  Deactivate part

of network units

Early Stopping Stops training when the model’s validation per-

[20] formance begins to degrade.

Training strategy

Table 2.9: Common deep learning rate schedulers.

Scheduler Description

Expression

Decays the learning rate n every

StepLR [118] fixed number of steps.

| t/step-size|

M=oY , where
v is the decay factor.

Decays the learning rate exponen-

Exponential LR [118] tially over time.

n =no-e N where A is
the decay rate.

CosineAnnealingLR.  Decays the learning rate according
[177] to a cosine function.

M = Omn + 300 —

Tmin) (1 + cos (ﬁ >>

Learning Rate Scheduler

The learning rate is one of the most important deep learning parameters, as it controls

the step size of weight updates; too high a learning rate may cause the model to overshoot
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optimal solutions, while too low a learning rate can lead to slow or stagnated convergence
[118]. A learning rate scheduler modifies the learning rate dynamically based on the
training progress, typically reducing it over time to fine-tune the model in later stages of
training [230].

Some common learning rate schedulers are summarised in Table 2.9. For instance,
StepLR reduces the learning rate by a fixed factor every few epochs, while Exponential LR

exponentially decreases it by a fixed rate at every epoch or step.

2.4.3 Computer Vision Tasks
Overview

Deep learning has emerged as a transformative tool across diverse domains, leveraging its
ability to model complex patterns and representations from large-scale data. In natural
language processing, it powers applications such as machine translation, chatbots, and
sentiment analysis, enabling systems to understand and generate human-like text [118].
In audio processing, deep learning drives advancements in speech recognition, music gen-
eration, and sound classification, effectively capturing temporal and spectral features
[110]. In computer vision, it supports tasks like image classification, object detection,
and facial recognition, revolutionising visual data interpretation [142]. In recommenda-
tion systems, deep learning uses neural collaborative filtering to personalise suggestions
in e-commerce and content platforms [107]. These successes stem from deep learning’s
hierarchical feature learning and adaptability across multimodal data.

Rapid developments in deep learning have made it a powerful tool, helping achieve the
goal of digital, precise, and smart farming. In particular, models proposed for computer
vision tasks have been applied to solve a wide range of agricultural problems. Fig. 2.8
illustrates some deep learning applications in agriculture, including plant disease recog-
nition, pest and weed recognition, tree branch recognition, and fruit recognition.

First, plant diseases can severely affect crop health, often beginning with subtle signs
like spots or wilting on leaves and stems that can spread rapidly if missed. Deep learning
supports early diagnosis by detecting these signs, helping farmers intervene before losses
grow [116, 242, 151, 89, 264].

Second, fields often face problems from insects and weeds that disrupt crop growth.
Insects like aphids damage crops directly and spread viruses, while weeds compete with
crops for nutrients, water, and sunlight, reducing yields. Deep learning enables the effec-
tive differentiation of these threats [74, 73].

Third, seed quality is vital for successful planting, particularly for crops like sunflow-
ers, where size, shape, and health influence germination and output. Poor seeds risk
uneven growth or crop failure. Deep learning helps automate seed counting, and quality

checks ensure only the best are chosen [94, 143].
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Figure 2.8: Some deep learning applications in agriculture.
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Fourth, understanding tree structures is useful in orchard management, where branch
patterns are handy for robotic pruning, health checks, or yield estimation. Manual in-
spection is slow and inconsistent. Deep learning insists on detecting tree branches with
high efficiency [308, 285].

Finally, fruit recognition is essential for managing orchards efficiently. Missing ripe
fruits or over-picking affects profits and planning. Deep learning enables accurate iden-
tification of fruits on trees, improving harvesting accuracy and field decisions [317, 229,
13, 265, 274, 275, 297]. These applications will be explored further in the next section.

In summary, deep learning is changing agriculture by making tasks easier and smarter
across different areas. It supports better crop monitoring, resource use, and reduced
waste, all at a lower cost. Its growing use is enhancing crop productivity and supporting
sustainable farming practices for the future. These improvements help address global

food security challenges by increasing food production to meet growing needs.

Classification Object Detection

Categories Bounding boxes

Sematic Segmentation Instance Segmentation Panoptic Segmentation

Sematic masks Instance masks Panoptic masks

Figure 2.9: The vision tasks of deep learning.

Fruit Recognition

This thesis focuses on its application within computer vision, a field where deep learning
is used to extract and interpret patterns from images. Specifically, various vision tasks are
explored, including image classification, object detection, and segmentation (both seman-
tic and instance), that are important to the automated determination of fruit ripeness.

The comparison of these vision tasks is illustrated in Fig. 2.9.
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Computer vision has been widely adopted for fruit detection, enabling accurate fruit
identification and localisation in images or videos. This capability is foundational in
fruit production, as it supports tasks such as tracking crop development and guiding
automated systems. Additionally, it has been extended to determining fruit ripeness,
which is a critical factor in optimising harvest timing and ensuring quality. Recent
studies on various fruit applications using deep learning are summarised in Table 2.10.

In terms of model structure, CNN and ViT are two main architectures for computer
vision over the past few years. CNN is good at capturing local spatial patterns through
convolutional layers, making it highly effective for tasks like image classification and ob-
ject detection. Its hierarchical structure reduces computational complexity, though it
may not capture global context as efficiently, and typically benefits from larger labelled
datasets. Meanwhile, ViT leverages self-attention mechanisms to capture long-range de-
pendencies across an entire image, offering excellent performance on tasks requiring global
understanding, particularly with ample data. It can be more computationally demand-
ing and often rely on pre-training, but its flexibility makes it highly adaptable. Both
architectures have significantly advanced computer vision, each with unique strengths

and manageable trade-offs.

Image Classification Image classification entails assigning a category to an entire
image based on its content. In the context of fruit ripeness determination, this task
involves training a model to distinguish between classes such as ripe or unripe fruit.

Several studies have developed CNN models to classify fruit ripeness, such as banana
[235], mangosteen [198], mulberry [197], grape [225], papaya [17], tomato [310], and
strawberry [75]. These models have proven effective in distinguishing ripe from unripe
fruit, showcasing the ability to replace the traditional hand-crafted methods with deep
learning models.

However, a key limitation of these studies is that most classification efforts have been
conducted in controlled, off-field environments, where fruit images are captured indoors
under consistent lighting and background conditions. This reliance on ideal settings

makes it challenging to adapt these models for uncontrolled, real-world scenarios.

Object Detection Building upon classification, object detection not only identifies the
presence of objects within an image but also localises them using bounding boxes. This
capability enables the precise identification and isolation of individual fruits in complex
scenes.

For example, these applications include the basic detection for fruit counting or yield
estimation, such as apple [257], tree inflorescences [291], citrus fruit [179], kiwifruit [71],
litchi [160, 130], mango [91, 281], passion fruit [152], pear [226], and strawberry [301, 61,
108]. These efforts demonstrate that deep learning is capable of handling different real
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scenarios, whether the fruit is in-field with lots of occlusions or at nighttime with limited
lighting.

The limitation of the above studies is that they do not consider fruit ripeness during
the detection process. There are some exceptions, such as apple [265, 292|, strawberry
[321, 299], and tomato [141], which combine ripeness with locating fruits.

It is noted that most of the current fruit detection models are based on the You
Only Look Once (YOLO) series. For instance, [292] applied YOLOvS to classify apple
ripeness into three stages. In addition. [108] proposed a real-time improved YOLOv5s
for robotic strawberry harvesting. [301] introduced Stolon-YOLO to detect strawberry
stolons in greenhouse environments. [35] combined fusion clustering with YOLOvV5 to
tackle Camellia oleifera fruit detection under multiple occlusions. [323] further extended
this task by providing modified lightweight YOLO for C. oleifera fruit ripeness deter-
mination in orchards. [226] presented YOLO-RCS to detect the phenological period of
Yuluxiang pears. [185] adopted STRAW-YOLO for the identification of strawberries and
their key points.

However, detection models help find fruits but only give the boxes’ coordinates around
fruits, which does not provide more details about the fruit. This creates a gap in figuring

out fruit ripeness accurately with detection models only.

Segmentation Segmentation takes the detection even further by providing detailed,
pixel-level information about fruits, enabling a detailed spatial understanding of the im-
age. It contains three categories: semantic, instance and panoptic segmentation. As
panoptic segmentation also segments the background, which is usually unnecessary for
fruit ripeness studies, it is not discussed further.

Semantic segmentation labels all pixels belonging to a specific class without distin-
guishing between separate instances. For example, in an image of multiple apples, all
apple pixels would be labelled as “apple”, irrespective of whether they belong to distinct
objects. Some studies have been conducted on fruit semantic segmentation, which labels
all pixels of a fruit type as one category. Examples include apple [13, 158], cucumber [6],
grape [275], mango [135], and tomato [114].

Unlike semantic segmentation, instance segmentation differentiates between individual
objects of the same class, making it ideal for analysing clusters of fruits. For instance, it
can segment and identify each fruit in a bunch of apples, facilitating ripeness evaluation
on a per-fruit basis. Some studies have explored fruit instance segmentation, which gives
a unique label to each individual fruit. It provides more precise details for fruit ripeness
determination, therefore, it is the key focus of this thesis.

Fruit instance segmentation models can be grouped into two types: CNN-based and
Transformer-based.

On the one hand, CNN-based models have dominated vision architectures for a long
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time, of which Mask R-CNN [105] is the pioneer of instance segmentation. Lots of fruit
instance segmentation models are based on Mask R-CNN. For example, [233] showcased
that Mask R-CNN was effective in detecting, segmenting, and tracking grape clusters,
demonstrating its robust performance across significant variations in shape, colour, size,
and compactness. [127] improved Mask R-CNN by adopting ResNet and DenseNet as the
backbone to construct a picking robot vision detector, which improves the recognition
accuracy of apples in the environment of overlaps and occlusions. [202] introduced Mask
R-CNN to detect and segment individual blueberries of four cultivars and classify them
into two maturity stages. Similarly, Mask R-CNN and its modified version are adopted to
build strawberry fruit detectors with better universality and robustness than traditional
machine vision algorithms [304, 217].

Besides, only few CNN-based segmentation models are not based on Mask R-CNN. For
example, [128] constructed a fast segmentation model for green fruits FoveaMask, which
integrates a position attention module into the embedding mask branch to aggregate
valuable information. [133] proposed a one-stage detection model DaSNet-v2, which
combines an instance and a semantic segmentation branch, performing apple instance
segmentation and tree branches semantic segmentation. [246] designed an edge-guided
fruit segmentation model, which included modules specially designed to locate potential
target areas and sharpen the edges. [245] proposed a multi-scale adaptive YOLO for
grape pedicel instance segmentation.

On the other hand, Transformer-based models have gained more attention recently.
Based on the vanilla ViT, several Transformer-based models like DETR [26], MaskFormer
[40] and SegFormer [293], etc, have arisen.

Some studies combined Transformer models with CNN models to perform segmenta-
tion. For example, [275] proposed a parallel network structure DualSeg, which leverages
the advantages of CNN at local processing and Transformer at global interaction for
grape peduncle segmentation. [291] introduced a Transformer-based CNN model MTY-
OLOX, for the detection of full tree inflorescences in the uncontrolled orchard environ-
ment. [257] presented a focal bottleneck Transformer network FBoT-Net, to incorporate
global semantic information with local feature information through the focal bottleneck
Transformer module for small green apple detection.

It can be seen that Transformer-based models have not been widely applied in fruit
detection. Here are some other applications in relevant agricultural sectors. [206] pro-
posed a segmentation model HSI-TransUNet for crop mapping, which processes the spa-
tial and spectral information of HSI and UAV images simultaneously. [151] presented
an improved Transformer-based model to achieve fast recognition of multiple classes of
strawberry diseases.

However, most current work still relies on Mask R-CNN and YOLO models. The

potential of Transformer in fruit instance segmentation has not been well explored. In-
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stance segmentation is more complex than classification and detection, one of the reasons
is that pixel-level ripeness labels are tough to get. Therefore, there is a gap in applying

fruit instance segmentation for ripeness determination.

Integration with In-field Robots

In fruit production, robots bring deep learning models into the field for practical use.
Locating fruits quickly and accurately is the foundational prerequisite for building a
fruit-picking robot. These robots sense their surroundings and guide a mechanical arm
to pick the fruit. They can alleviate labour shortages by taking over repetitive tasks,
improving production efficiency.

Fig. 2.10 illustrates several typical in-field fruit-picking robots. Most agricultural
robots share a similar setup: an autonomous mobile platform, a light mechanical arm with
multiple joints, a force feedback system with a flexible end effector, a vision system with
many sensors, a drive control system, a decision-making system, and auxiliary software
and hardware [263]. Significant research efforts across the world have been devoted to
the development of fruit-harvesting robots in recent years. For example, [122] built a
multi-purpose gripper with vacuum suction and rotation, evaluated in both laboratory
and commercial orchard settings, achieving a 66.1% success rate for apple thinning and
showing promise for harvesting. Other examples include automatic picking systems for
apple [133], litchi [160], and radiata pine [190].

Before deep learning became common, researchers used basic vision tools to locate
fruits. For instance, [247] designed a cost-effective harvester that picked 84% of the
apples in a commercial orchard using a simple machine vision algorithm. Similarly, [34]
proposed vision algorithms for fruit-picking robots to move, locate themselves, and pick
fruits efficiently. However, these methods are specifically designed for a particular fruit,
limiting their generalisability to other fruit types.

The rise of deep learning has sped up the growth of in-field robot systems. It is now
widely used to build the vision system or software parts for fruit-picking robots. For
example, [24] evaluated an apple harvester with YOLOv4, finding that a “horizontal pull
with bending” motion outperformed a human-like one in success rate and speed while
avoiding stem-pulling and bruising. [205] used an improved YOLOv4 to search for sweet
peppers in dense fields, using the centre of each detection box as the picking target point.
[153] applied an improved YOLOv5s for a dragon fruit robot to work in day and night
environments and deployed it on a mobile device. [134] built an apple system with a light
detection network and PointNet, achieving an 80% success rate and a cycle time of 6.5
seconds in both laboratory and orchard tests. [195] introduced a spatio-temporal model
to detect in-field pineapples accurately for a picking robot. [144] developed a dual-arm

robotic apple-harvesting system with O2RNet detection model, achieving a 60% success
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rate in field trials and demonstrating significant harvest time improvement. [212] used
Faster R-CNN for an asparagus-harvesting machine. For kiwifruit, [199] applied Faster
R-CNN to locate fruits in RGB images and extract their coordinates. [309] proposed
an apple harvester prototype that integrates a Mask R-CNN for segmentation, which
contains a three-joint arm and a vacuum gripper, showing good performance in field
tests.

It can be seen that detection models are the most common choice for robot vision
systems to find fruit in the field, which only gives the coordinates of the fruits’ bounding
boxes. Segmentation models, especially instance segmentation models, give detailed pixel-
level information about fruits, which helps robots not just locate fruits but also check
fruit ripeness in the field. Then robots can decide if the fruits are ready to be picked,
thus harvesting them selectively. This shows there is a gap between the segmentation
model with in-field robots. Developing fast and efficient segmentation models for robots

is necessary to improve fruit production efficiency.
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Figure 2.11: The comparison of supervised, unsupervised, and self-supervised learning.

2.4.4 Self-Supervised Learning

The deep learning models discussed earlier, such as those for detection and segmentation,
are supervised models. These models usually need a lot of labelled data to achieve
satisfactory performance. However, collecting and labelling such data is expensive and
time-consuming. It often requires skilled people with expert knowledge to mark the data
correctly, which can slow down research and real-world applications.

Self-supervised learning (SSL) is one of the solutions to tackle these problems [93].
It helps models learn useful features from large amounts of unlabelled data, eliminating

the need for human labels. This makes it faster and cheaper to build models, especially
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when labelled data is hard to get. Fig. 2.11 shows the difference between supervised,
unsupervised and self-supervised learning, based on [58]. Unsupervised learning looks
for patterns in the input data without any guidance. SSL is a subset of unsupervised
learning, which aims to learn discriminative features from unlabelled data on its own.

A key concept in SSL is the pretext task, which is a carefully designed objective
that encourages the model to learn meaningful representations without requiring explicit
human annotations [93]. Specifically, “pretext” denotes that the task being solved is
not the primary objective but serves as a means to generate a robust pre-trained model.
Then, the acquired models can be fine-tuned with a small amount of labelled data for
downstream tasks such as detection and segmentation, saving time and effort.

There are some common pretext tasks, including context-based methods, contrastive
learning, generative algorithms and contrastive generative methods [93]. This thesis fo-
cuses on contrastive learning and generative algorithms, which are represented by masked
image modelling. Fig 2.12 illustrates the basic structures of contrastive generative and
masked image modelling, of which the actual details can be different depending on method

designs.
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Figure 2.12: Contrastive learning (top) and masked image modelling (bottom).

Contrastive Learning

Contrastive learning (CL) is built upon the foundation of simple instance discrimination
tasks. It trains models to distinguish between similar and dissimilar data points by
maximising the similarity between positive pairs (similar instances) and minimising the
similarity between negative pairs (dissimilar instances). CL usually has an encoder-only
structure.

Early CL methods were based on negative examples. For instance, MoCo [104] keeps a
memory of negative examples and updates it to compare with positive pairs. SImCLR [36]

takes a simple design by using lots of negative examples from the same batch, boosting
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feature quality with strong image augmentations like flipping or cropping. These methods
are built upon the foundation of simple instance discrimination tasks, for which negative
examples can be used as supervision.

Later, self-distillation-based CL came up to avoid the need for negative examples.
These models focus on matching two changed versions of the same image. BYOL [90]
uses one network to predict another’s output, learning features without negatives. SwAV
[28] adds clustering to group similar images, which aims to make two codes derived from
different views consistent. SimSiam [38] keeps it simple by matching two views of an
image directly, while FastSiam [221] speeds up the matching for quicker training. These
methods stop the model from giving the same answer for everything, a problem called
collapsing.

Another type, feature decorrelation-based CL, aims to make learned features stand
apart from each other. Barlow Twins [305] pushes features to be different while keeping
them tied to the image, using a trick to balance them. VICReg [11] adds rules to keep
features varied and stop them from shrinking or growing too much. These methods help
the model pick up clear, unique details from data, which can improve tasks like spotting

fruits in messy field images.

Masked Image Modelling

Masked image modelling (MIM) is another SSL method that trains models by covering
up parts of an image and asking them to predict what is hidden. By filling in the blanks,
the models learn how different parts of an image fit together, helping to figure out the
shape, texture, and details of objects. Different from CL methods, MIM leverages co-
occurrence relationships among image patches as supervision signals. MIM usually has
an encoder-decoder structure.

MIM has gained significant popularity and demonstrated good performance. MAE
[103] covers big chunks of an image, up to 75%, and trains the model to reconstruct them
using a simple encoder-decoder design. It is fast and works well as it forces the model
to focus on the big picture, not just small details. SimMIM [294] takes a lighter method,
using smaller masks and a direct prediction approach. It is simpler and quicker, making it
handy for real-time tasks. BEiT [10] adds a twist by turning image patches into tokens,
like words in a sentence, and predicts them using a transformer model. This teaches
the model deeper connections. Context Autoencoder [37] focuses on nearby patches to
guess the missing ones, helping the model learn local details, like object edges or colour
changes.

MIM offers a different way to learn from images compared to CL. It digs into the
details within a single image, using patch links to build strong features without labels.

MIM emphasises the importance of a robust representation that remains resilient to
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input noise. This fits well with tasks like segmentation for fruit ripeness, where every

pixel counts.

Applications

SSL has been explored in various agricultural studies to address different challenges. The
examples below demonstrate how SSL can perform well with little or no labelled data,

offering a practical tool for farming tasks.

For classification tasks, SSL helps identify plant conditions and features. [314] built a
CL method to find leaf diseases, adapting to new settings with few labels to quickly spot
health problems. Similarly, [167] developed a transformer-based approach that pre-trains
on unlabelled data with a masking step and then classifies pests and diseases, proving
SSL can tackle tough farm issues. [319] took SSL further by using drone data to estimate
soybean yield and check lodging, blending different data types with CL to follow growth
from flowering to maturity. Along the same lines, [72] created SSMDA, a cherry maturity
classification model that uses multi-feature CL to assess ripeness with minimal labelled

data, focusing on details like colour and shape.

For detection tasks, SSL helps find unusual patterns. [45] applied it to spot crop
anomalies by mixing up image channels, training the model to catch oddities like damage
or disease in crops. In a related effort, [171] paired an autoencoder with an SSL classifier
to detect strawberry anomalies using hyperspectral images, finding odd fruits without

needing many labels.

For segmentation tasks, SSL helps outline plant parts with precision. [80] used a
semi-self-supervised method for wheat head segmentation, adjusting deep learning to
new fields with just a few labelled images to mark wheat heads. Likewise, [157] designed
CoRE-Net, a two-step SSL approach for leaf vein segmentation, starting with a bit of
supervised training before switching to self-supervised learning to trace vein patterns like
branching with little labelled data. Another study, [46], introduced SSL-NBV for 3D
plant reconstruction by robots, predicting the best scanning angles from unlabelled data

to help robots map plants efficiently.

These studies highlight SSL’s promising ability in agriculture, covering tasks from
spotting diseases to mapping plants. Still, most efforts target disease detection, anomaly
finding, or yield tracking, with little work on fruit detection and ripeness determination.
This gap shows a clear need for SSL in fruit ripeness research, making it a key area for

this thesis to investigate, especially for improving in-field robot systems.
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2.5 Summary

This chapter reviewed the development of fruit ripeness determination methods, from
sensing techniques to machine learning and deep learning approaches.

Sensing methods, such as spectroscopy and fluorescence analysis, can provide detailed
internal insights but have major limitations. These include high equipment costs, the
need for controlled environments, complex calibration, and poor scalability, making them
unsuitable for practical in-field use.

Machine learning methods offer more flexible and cost-effective alternatives. They
can process visual and sensor data for non-destructive ripeness estimation. However,
many ML models depend on hand-crafted features and struggle with complex or high-
dimensional data, which limits their general use in varied field conditions.

Deep learning has emerged as a more powerful approach, capable of automatically
learning features from raw data. It has been widely applied in agriculture for tasks such as
fruit detection, classification, and segmentation, offering better accuracy and adaptability
than earlier methods. Among these tasks, instance segmentation is especially relevant
to ripeness evaluation, as it enables per-fruit analysis. CNN-based models like YOLO
and Mask R-CNN have shown good results, while Transformer-based models are being
explored for their ability to capture global features. However, challenges remain in dealing
with occlusions, variable lighting, and the need for large labelled datasets.

Integrating deep learning models with in-field robots enables selective harvesting,
which can help reduce labour demands. However, most current systems use object de-
tection rather than segmentation. To help develop in-field robots, lightweight instance
segmentation models are needed.

One of the main limitations of existing deep learning methods is their reliance on
large amounts of labelled data. To address this, self-supervised learning is a promising
solution. It allows models to learn from unlabelled data using methods like contrastive
learning and masked image modelling. Although self-supervised learning has been used
in other agricultural tasks, its use in ripeness estimation is still limited.

In conclusion, deep learning is a promising method for fruit ripeness determination.
However, its effectiveness is still limited by some challenges mentioned above. This thesis
explores instance segmentation, self-supervised learning models tailored for practical use

in real agricultural environments.



Chapter 3

PeachSOLO: A One-stage Instance
Segmentation Model for Peach

Ripeness Classification

3.1 Introduction

Despite the progress made in fruit instance segmentation and ripeness classification using
deep learning, the literature reveals several practical limitations that hinder real-world
deployment. Most existing datasets are limited in scale and diversity, especially in terms
of representing the full spectrum of ripeness stages under complex natural conditions such
as variable lighting, occlusion by leaves or stems, and multi-fruit overlap. In addition,
while two-stage models like Mask R-CNN offer strong performance, they are often compu-
tationally intensive and less suitable for resource-constrained applications in agricultural
settings.

This chapter addresses these challenges by introducing a new large-scale and high-
quality annotated dataset called NinePeach, which captures nine peach cultivars at var-
ious ripeness stages in real orchard environments. To effectively leverage this dataset,
this chapter proposes PeachSOLO, a novel one-stage, anchor-free instance segmentation
model that integrates both channel and spatial attention mechanisms to enhance feature
representation. Without relying on a region proposal network, PeachSOLO directly de-
tects peaches and classifies their ripeness with improved precision and efficiency. Empir-
ical evaluations demonstrate that PeachSOLO surpasses state-of-the-art models in both
accuracy and segmentation quality, while maintaining faster inference speeds, making it
well-suited for practical use.

The remainder of this chapter presents the dataset construction process, the architec-
ture of PeachSOLO, and detailed experimental analyses that validate its effectiveness in

challenging in-field scenarios.
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3.2 Dataset

3.2.1 Image Collection

Peach images were collected from an experimental orchard in Huazhong Agricultural
University, Wuhan, China. The collection was conducted between May and June 2022 and
included nine cultivars of peaches: Dahongpao, Qingfeng, Chunmei, Chunmi, Chunxue,
Songsen, Maotao, Youpantao, and XiahuiNo5. The image capture device used was a

smartphone whose specifications are detailed in Table 3.1.

Table 3.1: Specifications of the mobile device used.

Aspect Details
System OS Android 11
CPU Octa-core (1x3.2 GHz Kryo 585 3x2.42 GHz
Kryo 585 4x1.80 GHz Kryo 585)
Main Camera Sony IMX598(1/2”)
Focal Length 4.7 mm

The camera was positioned at a distance of 30-50 cm from the peaches and captured
images from various angles. It is noted that all peach images were acquired under natural
lighting conditions and in real-world production settings, where the peaches exhibited di-
verse physical configurations. These configurations include but are not limited to isolated
peaches, peaches that are in close proximity to one another, peaches that are partially
obscured by leaves, stalks or other peaches, and peaches that are illuminated from the
opposite side. The images were originally captured and stored in JPEG format at a res-
olution of 4000x3000 pixels. Samples of images from each kind of peach are presented in
Fig. 3.1.

3.2.2 Image Preprocessing

A total of 3849 images were selected to form the dataset, representing nine cultivars of
peaches that have been classified into three distinct stages of ripeness: unripe, semi-
ripe, and ripe. Two annotators were independently in charge of carrying out the image
labelling process, and one reviewer would make decisions in case of disagreement. All
cultivars of peach were annotated individually.

Each image was manually labelled using Label Studio [266], generating ground-truth
labelled images containing individual segmentation masks of all peaches depicted in the
image. The labelling process adhered to a rigorous standard, which involved generating

a precise mask for each peach captured in the image, even in challenging scenarios where
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Figure 3.1: The 9 cultivars of peach in NinePeach.

the peaches may have appeared nearly imperceptible due to distance, occlusions, or their

proximity to the image boundaries. The overview of Label Studio is shown in Fig. 3.2.
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Figure 3.2: The overview of Label Studio.

The instance category distribution of 3849 peach images is presented in Fig. 3.3. Some
cultivars lack images of the ripe stage due to objective conditions. For example, there are
relatively fewer Chunmi and Songsen trees, and their ripe fruits are dropped by weather or
picked by animals, whilst Maotao takes a longer time to become ripe than other cultivars,

which exceeded the collection schedule. Therefore, the “long-tail” phenomenon exists in
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the dataset, which is discussed in Section 3.5.1.
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Figure 3.3: Instance category distribution of NinePeach.

To reduce the computational requirements of the models, the images were resized to
1024 x 768 pixels using the ‘mogrify’ library. For every cultivar of peach, the images were
randomly split with a ratio of 7:3 for training and validation sets, respectively. Then,
the individual training sets and validation sets were combined to form a total training
set of 2690 images and a total validation set of 1159 images. To alleviate the “long-tail”
problem, the number of semi-ripe and ripe instances was increased by oversampling 750
randomly selected images that did not contain unripe instances to make the category
distribution more balanced. The data augmentation methods used included random
angle rotation, random jitter, and random flipping. Thus, the balanced dataset called
NinePeach was created to contain 3240 images for training and 1359 images for validation.
The instance category distribution of the dataset is detailed in Table 3.2. A sample of

annotation is shown in Fig. 3.4.

Figure 3.4: Original image (left), individual masks (middle), and annotated image (right).
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3.2.3 Dataset Summary

The NinePeach dataset! comprises 4599 images (1024 x 768) of nine peach cultivars, which
were taken under natural illumination and in real-world production settings, including
peaches with factors like different intensities of natural light, multi-fruit adhesion, and
occlusion caused by stems and leaves. This dataset is divided into training (3240 images)
and validation (1359 images) subsets, and each peach is categorised into three ripeness

stages: unripe, semiripe, and ripe.

Table 3.2: The instance category distribution of NinePeach dataset.

Original Balanced
Category
Training  Validation = Training  Validation
unripe 3669 1717 3669 1717
semiripe 2768 1140 3312 1307
ripe 1403 589 1689 737
Total 7840 3446 8679 3761

A statistical overview of NinePeach is presented in Table 3.3. The distribution of peach
instances demonstrates a relatively balanced representation across different sizes, with a
higher proportion of large-sized instances in the training set. The number of instances per
image and the pixel ratio remain stable across all sets, indicating a consistent frequency

of occurrence and an overall average peach shape.

Table 3.3: Statistics of the NinePeach dataset.

Aspect Category Training Validation
Small (area < 322%) 0.01 0.01
Ratio of size Medium (32% < area < 967) 0.18 0.17
Large (area > 96%) 0.81 0.82
Mean /standard Number of peach instances 2.68/2.06  2.77/1.98

deviation Ratio of peach pixels per image (%) 5.03/5.11  4.92/4.82

3.3 Method

3.3.1 Model Structure

The proposed model PeachSOLO is designed to simultaneously segment instance masks

and predict their categories using full instance mask annotations as supervision. Unlike

! The NinePeach dataset is made publicly available at ninepeach_link.


https://drive.google.com/drive/folders/1vCSoqVGWhy4pvyEVlW-oLH8uN2S_nUKo?usp=share_link
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anchor-based segmentation models, which rely on predefined anchor boxes to propose
object regions, PeachSOLO is anchor-free. Anchor boxes are randomly generated rectan-
gles used to hypothesise object sizes and locations. Instead of using them, PeachSOLO
directly predicts object locations and boundaries.

The architecture of PeachSOLO is presented in Fig. 3.5. The model consists of three
parts: a backbone, a feature pyramid network, and a shared detection head following
the pipeline from SOLOv2 [277]. The details of these three parts are explained in the

following section.
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Figure 3.5: The architecture of the proposed PeachSOLO.

In contrast to Mask R-CNN, PeachSOLO does not rely on an RPN to generate pro-
posals, which would reduce much calculation and resource consumption. Specifically, it
directly identifies object instances by their centre locations and sizes. To determine object
locations, the input image would be divided into a uniform grid of size S x S, resulting
in S? possible centre location classes. If the centre of an object falls within a grid cell,
that cell is responsible for predicting the object’s semantic category and segmenting its
instance. Later in the chapter, it is also demonstrated that PeachSOLO outperforms
the original baseline due to the embedding of the convolutional block attention, which

enables the model to focus on objects in key channels and spatial locations.

Feature Extractor

Image feature extraction is the process of identifying and extracting relevant information
or features from an image. PeachSOLO employs a feature extractor, which is made up
of two parts: a backbone and a Feature Pyramid Network (FPN, 162).
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The backbone extracts the low-level features, such as edges and angles, while the
high-level features are fed into a classifier to determine the object category. ResNet [106]
and Swin Transformer (SwinT, 172) are used as the backbone.

ResNet was proposed to solve the image classification task. It overcame the vanishing
gradient problem that can occur in very deep neural networks by introducing residual
blocks. The residual blocks allow information to flow directly from earlier layers to later
layers without being affected by intermediate layers.

SwinT is a recently proposed neural network for visual recognition tasks that has
shown strong performance. It uses a hierarchical architecture where image patches are
progressively downsampled to multiple scales. This enables it to capture both local
and global features in an image. Additionally, SwinT incorporates a shifted window
mechanism that improves the processing of spatially adjacent patches, further enhancing
its ability to capture fine-grained details. The output of the backbone is made of a set of
feature maps at four different resolutions (C2 to C5).

The FPN is introduced to extend the backbone network, which is especially effective
for the detection of targets at different scales. FPN works by taking the feature maps
produced by the backbone at different levels of the network, and building a feature pyra-
mid that includes high-level features with strong semantics, as well as low-level features
with strong spatial information. The final output of the FPN consists of a set of feature
maps at four resolutions.

Overall, the ResNet/SwinT with FPN are powerful architectures for image feature
extraction, as they leverage the strengths of both ResNet/SwinT and FPN to extract
high-level and low-level features from the input image and combine them to accurately

detect objects at different scales.

Detection Head

Given the output of the pyramid network, the detection head consists of two branches: a
kernel branch and a feature branch, accepting each pyramid feature as input. The output
of the feature pyramid is denoted as P.

In the kernel branch, P is resized into a shape of S x S x (', and then a series
of 4 convolution layers and a final 3 x 3 x D convolution layer are used to produce
the kernel K € RS*5*DP) Tt should be noted that in the first of the four convolution
layers, two additional input channels are concatenated, which contain pixel coordinates
normalised to the range of [—1, 1] following CoordConv [169]. In each grid, the kernel
branch predicts D-dimensional outputs, which indicate the predicted convolution kernel
weights. The final stage of the kernel branch involves the use of two convolution layers
to generate predictions for the kernel and category; the last convolution layer used to
predict category is a Deformable Convolution Network (DCN, 56). The weights of the
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detection head are shared among different levels.

In the mask feature branch, P is first passed through Convolutional Block Attention
Module (CBAM, 286). CBAM introduced attention to design network architecture, which
consists of Channel Attention Module and Spatial Attention Module. These two mod-
ules use max pooling and average pooling to extract feature information from channels
and spatial locations. By connecting Channel Attention Module and Spatial Attention
Module, CBAM enables the model to increase its expressive ability, focus on important
features and suppress unimportant ones. CBAM does not change the shape of input
features, therefore the shape of the output of CBAM remains the same as P. Then,
feature pyramid fusion is applied to learn a unified and high-resolution mask feature
representation. This is achieved through multiple stages of convolution layers, group
normalisation, ReLU activation, and 2x bilinear upsampling, and the FPN features (P2
to P5) are scaled into 1/4 of the original image size. Similar to the use of CoordConv
in the kernel branch, normalised coordinates are also concatenated with the FPN feature
P5, enabling the model’s position sensitivity. A final 1x1 convolution layer is applied on
scaled features (P2 to P5) to generate mask feature F' € RUTXWxE),

Here, the D from the kernel branch is set equal to E, implying that the predicted
kernel is for a 1 x 1 convolution. After the mask kernel K;; from the kernel branch and
mask feature I’ from the mask branch are obtained, a dynamic convolutional operation
is employed to generate the instance mask of S? channels corresponding to S x S grids.

The operation can be written as:

where K;; € R™>E is the convolution layer kernel predicted by the kernel branch,
and M;; € RVH*Wis the mask prediction containing only one instance whose centre is
at grid cell (7,7). For example, if D and E are set equal to 4, the mask branch would
generate an output with a shape of H x W x 4. The kernel branch would generate an
output with a shape of S x S x 4, which can be viewed as S? 1 x 1 convolution kernels
whose depths are 4. The dynamic convolutional operation would use the two outputs
above to get the predicted mask. At last, the predicted mask would be post-processed to

get the peach instance segmentation results.

3.3.2 Model Training

Loss Function

In this chapter, the proposed model only generates the predictions of peach categories
and peach masks. To simultaneously consider the performance of both predictions, the

loss function is designed to consist of two major components: the classification loss L
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and the mask loss L,,.sk, and A is the weight factor of mask loss.

L= Lclass + )\Lmask’ (32)

where L5 is the focal loss [163] for semantic category classification and L, is the

dice loss [256] for mask prediction. The focal loss Lqss is calculated as follows:

Lclass - —Oé(]. - p)leg(p) (33)

where « is set to 0.25 and v is set to 2.0 in this study. p is the probability of the
predicted instance. A sigmoid operation is used to calculate p.

The dice loss L, 18 calculated as follows:

2 ‘Ex,y (px,y'q:c,y”

Lmask =1~
Yoylay + Yoy,

(3.4)

where p,, and g, refer to the value of pixel located at (x,y) in predicted mask p and

ground truth mask q.

Training Details

Resb50, Res101 and SwinT are used as backbones. For Resb0 and Res101 backbone, the
batch size is set to 16 with 27K iterations in all, and the initial learning rate is set to
0.005 and divided by 10 at iterations 18K and 24K. For SwinT backbone, the batch size
is set to 4 with 54K iterations in all.

The initial learning rate is set to 0.005 and divided by 10 at iterations 36K and 48K.
Additionally, PeachSOLO is also trained on nine individual peach datasets separately to
validate the generalisation ability of PeachSOLO. Res50 is used as the backbone network,
the batch size is set to 16 with 10K iterations, and the initial learning rate is set to 0.005
and divided by 10 at iterations 6K and 8K. An SGD optimiser is used with a weight
decay of 0.0001 and a momentum of 0.9. The learning rate is warmed up for the first
1000 iterations, then updated according to the StepLR method.

The backbone is initialised with pre-trained weights on ImageNet [142], and all con-
volution layers in the detection head are initialised with a normal distribution. The data
augmentation strategies used in training contain random horizontal flipping, resizing the
input images such that the shortest side is one of 640, 672, 704, 736, 768 or 800 pixels
while the longest is at most 1333. The number of grids for four feature map levels is (40,
36, 24,16).

The loss weights for L. are set as {unripe:1.0, semiripe:1.5, ripe:2.0} to pay more
attention to categories with fewer instances. The A of the loss function L is set to 3

during training.
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3.3.3 Model Inference
Evaluation Metrics

e Average Precision (AP)
The average precision and average recall are frequently used to measure the perfor-

mance of segmentation models. The definitions of precision and recall are:

TP
Precision = —— ,
recision = o (3.5)
TP
l = ——— .
Reca TP T TN (3.6)

where TP is the number of true positive cases that the target is a fruit and is
correctly detected, FP is the number of false positive cases that the target is not a
fruit, but it is wrongly detected, and FN is the number of false negative cases that

the target is a fruit, but it is not detected.

AP is a standard measure for measuring the sensitivity of the network to a target
object and is an indicator that reflects the global performance of the network. The
higher the AP value, the better the detection accuracy of the proposed model.
Following the criterion of MS COCO [164], mean AP is used as the primary metric
to evaluate the model performance, which is calculated by averaging 10 Intersection
over Union (IoU) thresholds ranging from 0.50 to 0.95 across all categories. Three
different sizes of objects are defined based on the instance area: small area (< 32%),
medium area (322 ~ 96%) and large area (> 96%). AP values for IoU thresholds
of 0.50, 0.75, and three different object sizes, referred to as AP, AP75, APgman,

AP edium and APiage are reported,.

e Learnable Parameters (Params)
The learnable parameters refer to the weights and biases within the model’s layers,
which are adjusted during the training process to optimise performance and make
accurate predictions. The total number of learnable parameters in a model is often

considered an indicator of its capacity and complexity.

e Floating-point Operations (FLOPs)
Floating-point operations is a measure of the computational complexity of a deep
learning model. It represents the number of arithmetic operations performed by the
model during the process of forward propagation, where input data passes through
the layers of the model to produce output predictions. FLOPs is typically quantified

in terms of the number of multiplications and additions performed by the model.
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e Frames per second (FPS)
Frames per second is a measure of the model inference speed, which indicates how
many input images the model can process per second. A higher FPS reflects faster
model execution, which is critical for real-time applications such as autonomous
driving or in-field analysis. It is influenced by factors such as model size, hardware

performance, and optimisation techniques.

Inferenece Details

The data augmentation strategy used in inference is only resizing the input images such
that the shortest side is 800 pixels while the longest is at most 1333 pixels.

During the inference, the preprocessed input image would be passed through the
backbone network, the feature pyramid network, and the detection head to generate two
predictions. The first prediction from the kernel branch includes the predicted category
scores and predicted mask kernels, while the second prediction from the feature branch
includes predicted mask features.

Then, the predicted mask kernels are utilised to perform a convolution operation
on the predicted mask feature to generate predicted soft masks, followed by a sigmoid
operation, with the value range being [0,1]. A threshold of 0.5 is used to convert predicted
soft masks to binary masks. It is noted that the final category scores are calculated by
pixel-wise multiplication of the predicted category scores with binary masks, followed by
division by the count of binary masks. Then, the top 500 predictions are kept, and the
redundant predicted masks are removed via Non-Maximum Suppression (NMS).

Finally, the predicted masks are reshaped and interpolated to the original image size.

3.4 Experiments and Results

3.4.1 Experiments

In this chapter, the experiments are based on Detectron2 [288] and have been carried out
using Python 3.9.13 and PyTorch 1.13 on a computer with the specifications shown in
Table 3.4.

It is demonstrated that the proposed PeachSOLO achieves competitive results com-
pared to Mask R-CNN on the NinePeach dataset. A detailed ablation study of the de-
tection head and class loss weights is also provided. To check how well the model adapts,
the model is trained separately on individual peach datasets. Lastly, the segmentation

results are visually shown, and the computational details are calculated.
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3.4. Experiments and Results

Table 3.4: The computer specifications.

Aspect Details
System OS Cent OS 7
CPU Inter Xeon Gold 6152 @2.1 GHz
GPU 2 x Nvidia Tesla V100
Memory 32.0 GB

3.4.2 Main Results

PeachSOLO and state-of-the-art Mask R-CNN are trained using the NinePeach dataset,
and their instance segmentation performance is then compared. Fig. 3.6 illustrates the

training loss and periodic evaluation (14 checkpoints for Res50/101 and 6 checkpoints for

SwinT) results of the proposed model with different backbones, with the losses converged

and evaluation results stabilised at the end of the training. The results are presented in

Table 3.5.
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Figure 3.6: The training loss (solid line, left ordinate) and evaluation AP (dash line,

right ordinate)

of the proposed PeachSOLO.

PeachSOLO with a SwinT backbone achieves the highest AP of 72.12 in all experi-
ments. Besides, PeachSOLO outperforms Mask R-CNN on overall AP when using the

same backbone.

First, with increasing backbone complexity and capacity, performance gains are pro-
gressively enhanced. For example, PeachSOLO increases about 1.66 and 5.79 AP when
changing Resb0 to Res101 and SwinT. This observation means the FPN and the detection
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head need more representative features generated by a stronger backbone as a condition
for segmentation.

Second, PeachSOLO has a lower AP75 and a higher AP5, than Mask R-CNN, which
indicates that PeachSOLO is stricter when outputting predictions. This suggests a slight
confidence reduction of PeachSOLO, which is caused by the pixel-wise calculation on
predicted category scores with binary masks in the inference phase. Mask R-CNN first
proposes a bounding box and then generates a high-quality mask within that box, might

allow for finer mask refinement and thus better performance at stricter IoU thresholds.

Table 3.5: Instance segmentation results on the NinePeach validation set.

Model Backbone AP APSO AP75 APsmall APmedium APlarge APunripe APsemiripe APripe

% Res50-FPN  65.02 75.53 70.93 1747 36.10 77.31 63.98 59.65 71.43
Sé Res101-FPN  66.02 7591 71.76  13.01 33.93 78.29 64.92 60.25 72.99
=
= Swin-FPN ~ 69.91 83.11 76.26 24.26 45.81 76.47 64.57 64.09 76.08
=
8 Res50-FPN  66.33 78.59 68.95  13.92 32.03 76.57 65.21 61.93 71.86
% Res101-FPN  67.99 77.73 70.84 11.21 32.41 78.75 65.76 62.39 75.84
o
qug SwinT-FPN 72.12 83.76 7549 11.52 40.25 82.19 68.24 69.26 78.87

Third, compared to Mask R-CNN which has relatively higher APy, .1 and AP cdium,
PeachSOLO tends to have better performance in predicting large peach instances, which
is similar to related work [304]. Large object detection of PeachSOLO benefits from the
mask feature fusion in the mask feature branch, which fuses features of different scales
to get a unified and high-resolution feature representation. Mask R-CNN employs a
RPN that generates numerous anchor boxes at different scales and aspect ratios. This
systematic generation and refinement of proposals can be effective at localising smaller
and medium objects.

Finally, PeachSOLO outperforms Mask R-CNN on every ripeness AP, which demon-
strates that it has better segmentation performance. Notably, both models are relatively
good at predicting ripe peach instances. It is suggested that the complexity of segment-
ing ripe instances is reduced because the ripe peach not only has a conspicuous colour
to distinguish, but also appears alone usually as a result of naturally falling fruit and

artificial fruit thinning.

3.4.3 Ablation Results

A series of ablations is conducted to investigate the impact of different components in
the detection head and different loss weights in the loss function on segmentation perfor-

mance.
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Detection Head

The detection head plays a critical role in the proposed model. Table 3.6 shows the abla-
tion results of the components of the detection head. Compared to the vanilla baseline,
adding coordinates and replacing the last convolution with a deformable convolution at-
tains 2.11 and 2.47 AP gains. Besides, adding the CBAM for stronger spatial perception
ability gives a significant 4.55 AP improvement. The proposed model leverages the above

three components and improves the baseline by 5.66 AP.

Table 3.6: Ablation on different components of the detection head.

Model AP AP75 AP50 APunripe APsemiripe APripe

Vanilla 59.81 77.00 62.48 53.52 58.03 67.88
+Coord 61.92 76.22 64.54 57.63 598.57 69.57
+DCN 62.28 74.56 63.83 60.39 57.42 69.04
+CBAM 64.36 76.57 66.60 61.91 61.32 69.84
=PeachSOLO 65.47 77.29 68.13 63.42 62.31 70.67

Class Loss Weights

As the category distribution of the dataset is imbalanced, different weights for different
categories are needed to reduce the imbalance. Table 3.7 shows some ablation results
on different loss weights set for three categories. The loss weight settings {unripe:1.00,
semiripe:1.50, ripe:2.00} demonstrated the best performance, emphasising the importance
of specific losses and thereby enhancing model performance. However, overly imbalanced
weight setting {1.00 : 2.00 : 3.00}, which pays much more attention to semiripe and ripe

instances, deteriorates model performance.

Table 3.7: Ablation on different weights for class loss.

Weights AP APz APsy APunipe APsenmivipe APhipe
1.00 : 1.00 : 1.00 65.02 77.86 67.53 63.94 59.97 71.18
1.00: 1.25: 1.75 63.59 75.79  65.70 61.64 59.47 69.66
1.00 : 1.50 : 2.00 66.33 78.59 68.95 65.21 61.93 71.85
1.00 : 1.75: 225 65.33 77.64 67.71 63.89 60.49 71.62

1.00 : 2.00 : 3.00 63.06 74.14 65.60 60.75 58.10 70.34
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3.4.4 Combined and Separate Training

The segmentation performance of training PeachSOLO with Res50-FPN on separate (t/o
separate) and combined (t/o combined) NinePeach dataset are compared. The results
are shown in Table 3.8. The evaluation results of the model trained using NinePeach
perform better compared to those of models trained using individual peach datasets.
The average AP improvement stands at 21.05, with Songsen showing the most significant
enhancement at 36.61. It is suggested that after merging the datasets, not only does
the distribution of peach categories become more balanced, but the model also has more
data samples for learning the characteristics and patterns of peaches in different ripeness

stages, thus improving the generalisation ability.

Table 3.8: The comparison of training on separate and combined NinePeach dataset.

t/o separate t/o combined

Peach AP AP;; APy | AP AP;; APy
1.Dahongpao 39.52 57.74 38.44 | 57.48 69.92 59.69
2.Qingfeng  48.96 66.73 48.66 | 76.77 84.30 79.84
3.Chunmei 3792 56.41 38.19 | 72.78 82.70 77.12
4.Chunmi 46.55 59.38 45.74 | 49.38 56.64 51.07
5.Chunxue  50.81 68.38 52.68 | 73.87 82.98 79.30
6.Songsen 32.60 59.77 31.54 | 69.21 76.17 T4.75
7.Maotao 46.06 62.08 46.65 | 53.90 61.13  55.69
8.Youpantao 38.34 57.47 37.13 | 61.71 73.62 64.84
9.XiahuiNo5 54.59 70.33 55.32 | 69.76 78.52 72.02
Average 43.93 62.03 43.82 | 64.98 74.00 68.26

3.4.5 Visualisation

The peach segmentation performance of PeachSOLO is visualised in Fig.3.7. As shown
in Fig. 3.7 (left), besides the easy cases when the peaches are fully visible and can
be segmented accurately, PeachSOLO is capable of detecting peaches in more complex
cases. Specifically, when the peaches overlap with each other or are partially obscured
by tree branches or leaves, PeachSOLO still performs well in identifying them accurately.
The good segmentation performance shows the feasibility of the dynamic convolution
operation in the detection head, of which two operators are mask features and mask
kernels that are both learned from the output of the feature pyramid network.

It is worth noting that PeachSOLO not only detects multiple peaches of varying sizes
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within a single image accurately, but also generates almost as smooth boundaries as the
ground truths, benefitting from fused and high-resolution mask feature representation
after CBAM operation. Fusing features of different scales that merge the information
of peaches of varied sizes to a unified feature enables the model to make predictions of
varying sizes at the same time. The high-resolution mask feature brings larger predicted

masks, which means negligible loss when reshaping them back to their original sizes.

Missing prediction

Figure 3.7: Segmentation visualisations of PeachSOLO, with accurate (left) and non-
accurate (right) examples.

However, there are a few cases where called wrong prediction and missing prediction
output by PeachSOLO as shown in Fig. 3.7 (right). Wrong prediction means that two
or more objects are wrongly predicted to be one object, or a part of the background is
wrongly predicted as a peach. It is assumed that a wrong prediction occurs when some
parts in the image have similar features to each other or with known category features,
which makes the model regard them as the same object or target objects. On the other
hand, if peaches are too obscured to be discovered or look like the background because
of misleading light conditions, the model tends to ignore them or treat them as the
background, resulting in the problem of missing prediction in these scenarios.

Furthermore, the peach segmentation performance between PeachSOLO and Mask
R-CNN is compared in Fig. 3.8. The red and blue boxes are used to emphasise the
difference. In the case Fig. 3.8 (left), Mask R-CNN ambiguously predicts the leaf as a
part of the peach, while PeachSOLO can segment the peach without the leaf clearly. It can
be observed that PeachSOLO produces more precise and smoother boundary predictions
than Mask R-CNN. Fig. 3.8 (middle) shows a challenging case where a peach is occluded
by leaves and stalks at the same time. PeachSOLO segments the peach almost perfectly;
it accurately detects the peach in most of the regions, especially those along the tricky
boundaries, while Mask R-CNN cannot clearly segment the boundaries between the peach

and leaves and stalks, producing much more inaccurate and incomplete predictions. In
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Figure 3.8: The segmentation comparison of Mask R-CNN (top) and the proposed Peach-
SOLO (below).

Fig. 3.8 (right), Mask R-CNN predicts one peach separated by a leaf as two individual
peaches, whilst PeachSOLO predicts the separated parts as one object.

3.4.6 Model Complexity

The number of learnable parameters, FLOPs, FPS and maximum GPU memory usage
during training between PeachSOLO and Mask R-CNN using the same backbone Res50-

FPN are compared. The results are shown in Table 3.9.

Table 3.9: The complexity comparison of PeachSOLO and Mask R-CNN.

Params FLOPs Max Mem.
Model FPS
(M) (G) (M)
Mask R-CNN  43.93 174.9+1.0 8.33 11135

PeachSOLO 46.17 213.4+0.2 11.11 8542

PeachSOLO has 2.24M more parameters than Mask R-CNN, most of which are intro-
duced by convolution layers. This means that PeachSOLO is more complex and requires
more data for training. PeachSOLO has more 38.5G FLOPs than Mask R-CNN, show-
ing that PeachSOLO has higher computational complexity. PeachSOLO runs 25% faster
than Mask R-CNN during inference, which indicates that PeachSOLO is relatively faster
to execute. PeachSOLO saves 2593M GPU memory than Mask R-CNN, which makes it
hardware-friendly to be trained on different devices.

Although PeachSOLO has more parameters and FLOPs than Mask R-CNN; it ben-

efits from a one-stage design, which avoids the region proposal step and reduces overall
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processing time. Moreover, PeachSOLO shares its detection head across feature levels,
enabling more efficient multi-scale processing. Operations such as DCN are also well
supported by the underlying framework and can be accelerated through GPU parallel
computing. These design and implementation choices contribute to the faster inference
speed compared to Mask R-CNN.

In summary, Mask R-CNN has fewer parameters and FLOPs but longer inference
time and more GPU memory usage as a result of the abundant anchors generated during
training and inference. Despite having more Params and FLOPs, PeachSOLO manages
to keep inference time and GPU usage relatively low. It maintains better accuracy and
precision than Mask R-CNN while delivering results faster. PeachSOLO is able to per-
form a larger number of FLOPs quickly, striking a fine trade-off between performance and
complexity. This efficiency can be attributed to the detection head that is anchor-free and
shared between different feature map levels, which allows PeachSOLO to maximise com-
putational power while minimising memory requirements and enables it to be potentially

deployed on GPUs with limited memory capacities.

3.5 Discussion

3.5.1 The Details of NinePeach

According to the current state of the literature, there is no official standard for classify-
ing the ripeness of peaches on trees. With the cooperation of a botanist specialising in
peaches, the peach ripeness is determined into three stages subjectively. The only crite-
rion is that annotators must choose their first judgment when meeting ambiguous cases.
Similar to other large datasets, the NinePeach dataset also has a long-tail phenomenon,
which refers to a situation where few categories have a high frequency of occurrence, while
most categories have relatively few instances, forming a “long tail” in the distribution
curve. The images were additionally oversampled to increase the number of instances of
fewer categories and set different weights for different categories to alleviate this problem.
The improved dataset has a balanced category distribution, facilitating the training of a

large and well-performing peach instance segmentation model.

3.5.2 Limitations

PeachSOLO demonstrates accurate peach detection capabilities, even when peaches are
obstructed by tree branches or leaves. However, in a few cases where certain regions within
the image exhibit similar features to each other or with known category features, it may
generate false predictions, or missing predictions occurring when peaches are too obscured

or look like the background due to lighting conditions. These unreliable predictions were
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attributed to the larger receptive field of PeachSOLO and the misleading illumination
conditions of the image.

The incorporation of CBAM has led to a noteworthy 4.55 point increase in AP, but
it has also augmented the complexity of the model, with the extensive use of convolu-
tion operations resulting in an elevation of both learnable parameters and floating-point
operations. The potential improvement direction of PeachSOLO is to reduce unreliable

predictions and to reduce computational complexity.

3.6 Summary

Precise identification of the peach ripeness stage plays a crucial role in developing au-
tomated harvesting systems for large peach orchards, as it enhances picking efficiency
and reduces production costs. Motivated by this, a high-quality peach dataset called
NinePeach and a one-stage peach instance segmentation model were constructed in this
chapter.

The NinePeach dataset comprises a total of 4599 peach images, categorised into three
distinct stages of ripeness: unripe, semiripe, and ripe. This dataset aims to reproduce the
natural field conditions, including images with factors like different intensities of natural
light, multi-fruit adhesion, and occlusion caused by stems and leaves.

The proposed one-stage peach instance segmentation model does not require an RPN
to generate bounding box proposals. The prediction of masks is obtained through dy-
namic convolution operations on the mask feature and kernel feature output from two
branches. Channel attention and spatial attention are considered to enhance the ability
to detect objects in key channels and spatial locations, which brings a significant positive
impact on model performance. Benefitting from the anchor-free and memory-friendly
design, the proposed model achieves a delicate balance between model performance and
complexity, manifested by the fact that it utilises fewer GPU resources while delivering
faster and better predictions compared to Mask R-CNN.

At present, the released large peach dataset provides a foundation for further peach-
related studies and reduces their workload. The proposed model can accurately detect
peaches and generate their smooth boundaries, even in some cases where peaches are
occluded, which establishes a robust basis for further work, like peach picking point
estimation and peach disease monitoring. These advances create opportunities for offering
practical solutions for farmers, applying this technology to other fruits or crops and

considering the ever-evolving nature of agriculture.



Chapter 4

LightStraw: Lightweight CNN-based
Strawberry Instance Segmentation
Models

4.1 Introduction

Building upon the instance segmentation framework introduced in the previous chapter,
which focused on accurate peach ripeness identification, this chapter explores the devel-
opment of lightweight CNN models for strawberry instance segmentation. Unlike the
previous chapter, the emphasis here is not on fruit maturity classification but on design-
ing segmentation models that are both accurate and computationally efficient, aiming to
support real-time deployment in resource-constrained agricultural environments.

Strawberries are a high-value fruit crop that often requires labour-intensive cultiva-
tion and harvesting. Automating the segmentation of individual strawberry instances can
significantly enhance harvesting efficiency and enable precise yield estimation. However,
many state-of-the-art instance segmentation models, such as Mask R-CNN, require ex-
tensive computational resources, limiting their practicality in real-world field conditions.

To address this challenge, this chapter introduces a series of CNN-based instance
segmentation models, collectively referred to as LightStraw. These models integrate a
self-attention-based backbone for enhanced semantic feature extraction, a feature pyramid
network for multi-scale representation, and a decoder that incorporates both coordinate-
aware features and instance activation maps. A bipartite matching algorithm is used
during candidate selection, allowing for efficient instance assignment without the need
for sorting or Non-Maximum Suppression.

Experimental results show that the proposed models achieve substantial improvements
over original and simplified Mask R-CNN baselines, both in terms of accuracy and effi-

ciency. Specifically, they reduce the number of parameters and floating-point operations

62



Chapter 4. LightStraw: Lightweight CNN-based Strawberry Instance Segmentation
Models 63

while maintaining high segmentation performance, making them suitable for deployment

on edge devices in practical agricultural scenarios.

4.2 Dataset

4.2.1 StrawDI Dbl Overview

The StrawDI_Db1 dataset [217] comprises 3100 images captured in strawberry plantations
at various times throughout a complete picking campaign. These images were taken using
a mobile phone, featuring a resolution of 4032 x 3024 pixels, 8 bits per colour channel,
and stored in JPEG format. Then, the images have been rescaled to 1008 x 756 pixels
in PNG format. These images are organised into training (2800 images), validation (100
images), and testing (200 images) subsets, respectively.

A statistical overview of the dataset is presented in Table 4.1. The distribution of
strawberry instances demonstrates a relatively balanced representation across different
sizes, with a slightly higher proportion of medium-sized instances in the training set. The
number of instances per image and the pixel ratio remain stable across all sets, indicating
a consistent frequency of occurrence and an overall average fruit shape. The StrawDI_Db1
dataset offers instance-level annotations for all sets. Example annotations are illustrated
in Fig. 4.1.

Table 4.1: Statistics of the StrawDI_Db1 dataset.

Aspect Category Train Val Test
Small (area < 322%) 0.21 0.22 0.22
Ratio of size Medium (32% < area < 96%) 0.48 0.44 0.48
Large (area > 96%) 0.31 0.34 0.30

Mean /standard Number of strawberry instances 5.8/2.9 5.7/2.7 5.7/2.8

deviation Ratio of strawberry pixels per image (%) 5.6/2.7 5.7/2.4 5.4/2.5

4.3 Method

4.3.1 Model Structure

The proposed model is designed to be lightweight and efficient in performing strawberry
instance segmentation, of which the architecture is shown in Fig. 4.2. It is constructed
by two main parts: an encoder and a decoder. The encoder consists of a backbone and an

FPN, which extracts contextual information from images and builds multi-scale features
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Figure 4.1: Sample images and annotations of StrawDI_Db1.

for later prediction. The decoder is anchor-free and does not require an RPN to generate
anchors; it mainly contains two branches and predicts class and masks directly based on

features extracted by the encoder.
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Figure 4.2: The architecture of the proposed LightStraw.

4.3.2 Encoder
Backbone

Modelling in computer vision has been dominated by CNNs for a long time. On the
other hand, the tremendous success of Transformer in the language domain inspired the
emergence of Vision Transformer (ViT). Compared with CNNs, ViT offers a powerful
approach to capturing global dependencies and contextual understanding in images. The
attention mechanism plays a crucial role in capturing relationships between different parts

of an image in ViT, enabling ViT to attend to and aggregate information from all image
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patches simultaneously. Therefore, instead of directly using CNNs like ResNet as the
backbone in the previous chapter, an efficient attention-based backbone is proposed to
extract features from input images.

The vanilla self-attention is calculated by Eq. (4.1). Firstly, the input embedding,
including positional encoding, is linearly transformed into three sets of vectors: query @),
key K and value V. Then, the attention scores are computed using the scaled dot-product
attention mechanism. For each token, its attention to other tokens is determined by the
dot product of its query vector with the key vectors of other tokens. Next, the result
is scaled by the square root of the dimension of the key v/dj. The attention scores are
normalised using the Softmax function to obtain attention weights. Finally, the value V
are multiplied by the attention weights, and the resulting weighted vectors are summed

to produce the attention output.

T

Vdy,

The vanilla self-attention in ViT undergoes a sequence of steps that contribute to its

Attention = Softmax(

1% (4.1)

progressive and effective modelling of relationships between different parts of an input
image. However, the vanilla self-attention has a quadratic time and space complexity

with respect to the sequence length, which makes it computationally expensive.

e Efficient Multi-head Self-Attention (EMSA) To alleviate the problem, the
Efficient Multi-head Self-Attention [312] is adopted as the basic block of the back-
bone. The detail is shown in Fig. 4.3. Firstly, a set of linear layers is adopted on
2D input token [n, d,,] to obtain query ). Then, the input token is reshaped to 3D
one [n, h,w] and performs a depth-wise convolution operation to reduce its dimen-
sions to [n,h/s,w/s] by a factor s. Next, similar to the vanilla self-attention, the
attention scores are computed using the scaled dot-product attention mechanism.
Before the softmax operation, PWConv is used to model the interactions among
different heads, which is a 1 x 1 pixel-wise convolutional layer, as shown in Eq. (4.2).
In the end, the resultant values from each head are concatenated and subjected to

a linear projection to create the final output.

EMSA = SoftmaX(PWConv(Q—KT))V (4.2)

Vdy
Self-attention does not inherently understand the order or position of tokens in a
sequence. Positional encoding is used to provide this important information. Here,
a simple module is used to encode positions in Eq. (4.3). Specifically, a 3 x 3 depth-
wise convolution layer is applied to generate pixel-wise weight and then scaled by

a sigmoid function o(-).
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Figure 4.3: The backbone of the proposed LightStraw.

PE(z) = z x a(DWConv(z)) (4.3)

e Patch Embedding Attention was originally designed for processing sequences of
data, to apply it to images, it is necessary to convert the spatial information of the
3D image into a 2D sequence. Here, a stack of three 3 x 3 convolutional layers is
used, which is with stride=3/1/2, padding=1/1/1, as shown in Eq. (4.3). Batch
Normalisation and ReLU activation are applied sequentially for the first two lay-
ers. The first two convolutional layers downsample and adjust channel dimensions,
while the third further reduces spatial dimensions and increases output channels.
Positional encoding is applied after the third convolutional layer, making it suitable

for integration into the attention-based backbone.

To facilitate different scenarios, three different backbone variants (Tiny, Small and
Base) are designed. The pipeline of the backbone is shown in Fig. 4.3, and the specifica-

tion of backbone variants is shown in Table 4.2, of which N is the number of blocks, C'
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is the number of embedded dimensions and H is the number of self-attention heads.

Table 4.2: LightStraw backbone architecture variants.

Stage Stride Backbone-T Backbone-S Backbone-B
S0 4 Co=64 Co=64 Cp=96
S1 4 N,/Cy/H1=2/64/1 N;/Ci/H,=2/64/1 N;/Cy1/H=2/96/1
S2 8 Ny /Cy/He=2/128/2 Ny/Co/Hy=2/128/2 N5/Cy/Hy=2/192/2
S3 16 N3/C3/H3=2/256/4 N3/C3/H3=6/256/4 N3/Cs3/H3=4/384/4
S4 32 Ny/Cy/H,=2/512/8 N,/Cy/H,=2/512/8 N,/C4/H,=2/768/8

Feature Pyramid Network (FPN)

The FPN introduces a top-down architecture where higher-resolution feature maps from
earlier stages of the backbone are combined with lower-resolution feature maps from
later stages. This is achieved through lateral connections, which involve upsampling the
higher-level features and element-wise addition with the lower-level features. The pyramid
typically consists of feature maps at different resolutions, different levels represent features
at different scales. These scales correspond to different receptive fields and are crucial for
handling objects of various sizes. Here, a convolutional layer is applied to aggregate the

features of three levels into one at last.

4.3.3 Decoder

The simple decoder of Sparselnst [42] is adopted to decode the features to predictions,
which mainly consists of two branches. Before entering any branch, the feature generated

by the encoder passes the CoordConv Module F,..q.

The CoordConv Module

The F_,orq is implemented as a simple extension of standard convolution [169]. The details
of Fporq are shown in Fig. 4.2. Given an input feature [C, H, W], two coordinate channels
i and j with the size of [1, H, W] are created. Specifically, within 7, the first row is filled
with 0, the second row is filled with 1, the third row is filled with 2, etc. The j channel
is similar but with columns filled in with constant values instead of rows. Then, both ¢
and j coordinate values are linearly scaled to fall in the range [—1, 1]. Finally, channels ¢
and j are concatenated with the input feature, resulting in an output [C' + 2, H, W]. For
convolution over two dimensions, two coordinates (i, j) are sufficient to specify an input

pixel.
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This module can be regarded as a type of position embedding, which provides addi-
tional location information for later decoding operations. It is noted that two channels
are generated by coordinates, thus no extra parameters are introduced, which is friendly

to building a lightweight model.

Instance Branch

This branch consists of an Instance Activation Map (IAM) and three prediction heads.
The Instance Activation Map is inspired by Class Activation Map (CAM, 318), which
suggests that objects can probably be found in informative regions. The features ex-
tracted from the highlighted areas are rich in semantic information and exhibit instance
awareness, aiding in the recognition and differentiation of strawberries.

The details of Fj,, are shown in Fig. 4.2. The Fj,,, is a 3 x 3 convolutional layer
with 4 groups to aggregate instance features by concatenating features from a group.
Given an input feature [C, H, W], the output computed by the Fj,,, is with the shape
[C’, H, W], in which C” is the pre-set number of instance activation maps. Then, the
sparse instance features can be calculated by multiplying the output (normalised to 1)
and the transposed input. Finally, the sparse instance-aware features are forwarded to

three prediction heads to predict score, class and kernel.

Mask Branch

As validated by similar work SOLOv2 [277], it is feasible to use trained parameters as
the kernel to perform mask prediction. Given the feature generated by FPN and the
instance-aware mask kernels generated by the instance branch, the segmentation mask
for each instance can be produced by m; = w; - M, where m; is the i-th predicted mask
and corresponding kernel w;, and M is the features. The final segmentation masks adopt

bilinear interpolation to upsample to the original resolution.

A large number of proposals

. Compute overlap
. Filter proposals

Matching

. Compute cost
2. Assign proposals

Pre-defined number of proposals

Figure 4.4: Non-maximum suppression and bipartite matching.
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4.3.4 Loss Function

Different from anchor-based segmentation models that generate a large number of an-
chors, the proposed model employs the Transformer decoder to treat fruit detection as
an end-to-end dictionary lookup task. Specifically, the decoder generates a fixed number
of N predictions by decoding the N learnable query embeddings layer by layer. There-
fore, the necessity for manual processes like NMS is eliminated. Instead, the Hungarian
matching is adopted, which is a kind of bipartite matching method, to find the best
matching between predictions and ground truths for loss computation.

The difference between NMS and bipartite matching is illustrated in Fig. 4.4. NMS
generates a large number of proposals and applies heuristic filtering based on over-
lap scores to remove redundant detections. This introduces a non-differentiable post-
processing step. In contrast, bipartite matching employs a pre-defined fixed number of
proposals and assigns each proposal to a specific ground truth or a "no object” class
based on a cost matrix. By integrating this matching process directly into the optimi-
sation framework, the proposed model enables a fully end-to-end differentiable pipeline
where predictions and assignments are jointly optimised.

This model follows DETR [26], which treats the label assignment problem as a bi-
partite matching problem. Firstly, a pairwise dice-based matching score C(i, k) for the
i-th prediction and the k-th ground-truth object is introduced in Eq. (4.4), which is

determined by classification scores and dice coefficients of segmentation masks.

C(i, k) = p;.* - Dice(my, tg)® (4.4)

1,Ck

where « is a weight for two predictions {segmentation=0.8, classification=0.2}, ¢y is
the category label for the k-th ground-truth target and p;., is the probability for the
category ¢ of i-th prediction. The Dice loss is defined in Eq. (3.4).

First, all of the predictions, including class predictions, mask predictions and class
targets, mask targets, are used to calculate a cost matrix for prediction selection, where X
indicates the number of instances in a batch. The class cost and mask cost are calculated
by cross-entropy loss and Dice loss, respectively, as shown in Eq. (4.6) and Eq. (3.4).

Second, the Hungarian algorithm is used to search for the best bipartite matching by
solving the cost matrix, resulting in a matching score C(i, k) for the i-th prediction and
the k-th ground truth object. Therefore, the number of predictions is decreased from N
to match that of the targets.

The training loss is defined in Eq. (4.5):

ﬁ - >\s : »Cs + )\c : Ecls + Emask (45)

A indicates the different loss weights. A. and A4 are loss weights for classification and
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score.

L= —=%y; -log(p;) (4.6)

L is the binary cross-entropy loss for score, as defined in Eq. (4.6), where y; represents
the ground truth probability and p; represents the predicted probability.

L is focal loss for classification, as defined in Eq. (3.3).

Lask 1s the dice loss for mask, as defined in Eq. (3.4).

The evaluation metrics include AP, Params, FLOPs and FPS, as defined in Sec-
tion 3.3.3.

4.4 Experiments and Results

4.4.1 Experiments
Implementation Details

The experiments are conducted on Detectron2 using Python 3.9.13 and PyTorch 1.13 on
a computer with the specifications shown in Table 3.4.

During training, the batch size is set to 16 with 27K iterations in all, an AdamW
optimiser is used, and the initial learning rate is set to 0.005 and divided by 10 at iterations
18K and 24K. No pre-trained weights are used, and the parameters of the backbone are
initialised by a normal distribution. The training data augmentation strategy contains
random horizontal flips, resizing the input images such that the short edge is one of 416,
448, 480, 512, 544, 576, 608 or 640 pixels while the longest is at most 853.

During inference, batch normalisation uses the running averages of mean and standard
deviation computed during training, and dropout layers are deactivated during evalua-
tion, so all layers in the model are used. The data augmentation strategy is only the
resizing of input images such that the shortest edge is 640 pixels while the longest is at
most 853.

4.4.2 Results
Main Results

Mask R-CNN is a state-of-the-art instance segmentation model that has been applied
to strawberry images. An original [304] and a simplified version [217] of Mask R-CNN
have been used to perform strawberry instance segmentation. Additionally, a fully con-
volutional neural network (FCN, 216) has been proposed to solve the same task more

efficiently.
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Table 4.3: Instance segmentation results on the StrawDI_Db1 testing set.

Model Backbone AP AP; AP;; AP, AP, AP,

Mask R-CNN [304] Resb0 45.36  76.57 47.09 07.35 50.03 78.03
Mask R-CNN’ [217] Res50 43.85 7424 4513 07.54 51.77 75.90

FCNN [216] Res50 52.61 69.24 5784 16.96 65.26 53.31
Tiny 66.82 8599 T71.78 2853 70.25 87.67
LightStraw Small 69.39 8732 7396 30.04 T71.85 92.15

Base 70.22 87.70 76.05 31.44 73.63 90.29

s: small (area < 322); m: medium (322 < area < 96%); I: large (area > 962).

Table 4.3 summarises the results of other models and LightStraw on the StrawDI_Db1
testing set. As shown, LightStraw with a Base backbone achieves the highest AP of 70.22.

First, all of LightStraw demonstrates significant improvement over previous work;
even the lowest performer with a Tiny backbone has an AP 21.46, 22.97, and 14.21
higher than the original, simplified Mask R-CNN and FCNN, respectively.

Second, model performance gains are progressively enhanced as backbone complexity
and capacity increase. For example, LightStraw with Small and Base backbones deliver
2.57 and 3.4 points higher AP than the Tiny backbone. It is assumed that more features
can be provided by more layers and bigger embedded dimensions, which helps locate the

targets.

Third, the AP5q of LightStraw is larger than AP75, and of which gaps between APs5
and AP75 are narrower than the original and simplified Mask R-CNNs, indicating that
LightStraw usually output high-accurate results regardless of different IoU criteria. Fi-
nally, LightStraw demonstrates better performance when dealing with medium and large
strawberries than small strawberries. It is suggested that the reasons for this could be
that small strawberries have a similar colour to leaves and are normally covered, and they

can be lost when resizing the input images to smaller ones.

Table 4.4: Params and FLOPs of the models.

Model Backbone Params (M) FLOPs (G)
Mask R-CNN [28§] Resb0 35.08 877.4
Tiny 17.42 78.3
LightStraw Small 20.58 86.9

Base 33.54 111.7
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Model Complexity

To measure the model size and complexity, the number of learnable parameters and the
number of floating-point operations during training are computed. Previous work [304,
217, 216] did not provide information about their model size and complexity, therefore,
the complexity between Mask R-CNN with Resb50 from Detectron2 and the proposed
model is compared. The results are shown in the Table 4.4.

All of LightStraw have fewer parameters compared to Mask R-CNN, among which
the Tiny backbone has less than half the number of parameters compared to Mask R-
CNN. This indicates that the design of LightStraw is lightweight and efficient, making
the models suitable for resource-constrained environments.

LightStraw generally requires significantly fewer FLOPs for each image during infer-
ence compared to Mask R-CNN. This suggests that the proposed models are computa-
tionally efficient.

In summary, LightStraw not only has fewer parameters and requires fewer floating-
point operations during inference compared to the Mask R-CNN but also demonstrates
a trade-off between model complexity and computational efficiency, which offers options
for scenarios with strict resource constraints. The models with Tiny and Small back-
bones offer lightweight options for scenarios with strict resource constraints, while the
Base backbone provides a higher-capacity variant for tasks that demand more accurate

strawberry segmentation.

] - e A Y .

Figure 4.5: The segmentation visualisation of the proposed LightStraw.
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4.4.3 Visualisation

The performance of LightStraw is visualised in Fig. 4.5. The model can segment straw-
berries under various conditions. There are some difficult cases in which strawberries are
located at the side of the image or are partially covered, however, the proposed LightStraw

can segment them accurately.

Table 4.5: The model FPS across different devices.

Device Format LightStraw (Tiny) Mask R-CNN
NVIDIA Tesla V100 .pth 12.29 8.00
pth 3.26 2.92
Jetsoljl\ggl{lANano OHIX 0.06 / :
Art 1.40
Apple M1 .onnx 1.21 -

* Currently Mask R-CNN from Detectron2 is not supported in ONNX.

Figure 4.6: NVIDIA Jetson Orin Nano.

4.4.4 Deployment

The inference performance of the proposed Tiny LightStraw was compared with Mask R-
CNN on heterogeneous hardware platforms, including a high-performance GPU (NVIDIA
Tesla V100), an edge computing device (NVIDIA Jetson Orin Nano, as shown in Fig. 4.6),
and a general-purpose CPU (Apple M1). Table 4.5 summarises the inference time per
image using three model formats: PyTorch checkpoint (.pth), Open Neural Network
Exchange (.onnx), and TensorRT engine (.trt).

Each model format serves distinct deployment needs. The .pth format is native to the
PyTorch framework and commonly used during model development and training. The

ONNX format enables interoperability across platforms and inference engines, allowing
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deployment beyond the original training framework [49]. TensorRT is a platform-specific
optimisation for NVIDIA hardware, offering accelerated inference through kernel fusion,
precision calibration, and runtime tuning [50].

Due to current limitations, Mask R-CNN implemented with Detectron2 cannot be
exported to ONNX, and hence its inference is reported only for the .pth format on
supported devices.

Experimental results show that Tiny LightStraw consistently achieves lower inference
latency compared to Mask R-CNN under the same conditions. On the Tesla V100 GPU,
LightStraw reaches a 12.29 FPS, substantially faster than Mask R-CNN’s 8 FPS. On the
Jetson Orin Nano, LightStraw demonstrates flexible deployment performance: 1.40 FPS
using TensorRT, 0.06 FPS with ONNX, and 3.26 FPS with the PyTorch model. These
results confirm its suitability for low-power and edge scenarios.

On the Apple M1, LightStraw (onnx format) achieves a 1.21 FPS. Although slower
than optimised deployment on the Jetson platform, this result highlights the model’s
functional portability across non-specialised hardware.

In summary, the proposed model exhibits strong deployment versatility and compu-
tational efficiency. It supports multiple formats and achieves real-time or near real-time
inference across a range of devices, from data centre GPUs to edge and consumer-grade

processors, making it well-suited for practical applications.

4.5 Discussion

4.5.1 Limitations

While LightStraw shows good efficiency and accuracy in strawberry instance segmenta-
tion, its main drawbacks come from its specific focus on segmenting one type of fruit
without judging its ripeness. Ripeness information should be considered for selective
harvesting. The models, being mainly CNN-based, may not fully leverage the global
contextual understanding that Transformers might offer for more complex multi-fruit
scenarios. Also, its performance is shown using a specific strawberry dataset, and this
chapter does not cover how well it can be directly used for other fruits with different

features or in different orchard conditions.

4.5.2 Future Work

The limitations found in the LightStraw suggest directions for future research, mainly
focused on making the models capable of more complete fruit analysis. An important next
step is to include multi-stage ripeness classification and to make the model able to handle

multiple fruit types. This would make it more useful in practical farming situations.
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At the same time, exploring Transformer-based or combined CNN-Transformer model
designs is necessary to potentially improve performance on these more challenging tasks
by better understanding the entire image. Continuing to improve lightweight designs will
also remain important to make sure these models can be widely used on edge devices

with limited processing power.

4.6 Summary

Accurately detecting and segmenting each strawberry within real-world production envi-
ronments is pivotal for the development of automatic strawberry-harvesting robots. This
precision enables precise calculation of the number and size of strawberries, providing
accurate yield information crucial for agricultural planning and resource optimisation.

In this chapter, lightweight attention-based CNN models for strawberry instance seg-
mentation are presented, named LightStraw. The simple models consist of an encoder
(a backbone and an FPN) and a decoder. The proposed backbone is based on efficient
self-attention, which introduces several depth-wise and pixel-wise convolutional layers to
reduce the computation of vanilla self-attention. The last three of the four feature levels
extracted by the backbone are used in the FPN to save memory usage and model size.
The decoder mainly contains two branches: an instance branch and a mask branch. A
F.o0rq module is applied before any branch, which provides coordinate information to the
features. A Fj,,, module is added to the instance branch to produce instance activation
maps, which aim to highlight the informative regions for each strawberry. The bipartite
matching is used in LightStraw to avoid NMS in post-processing.

LightStraw outperforms the original and simplified Mask R-CNN with significant
21.46 and 22.97 AP improvements, respectively, among which the one with Base achieves
the highest AP of 70.22. Besides, LightStraw requires many fewer parameters and FLOPs
compared to Mask R-CNN. In summary, this study introduces lightweight, efficient, and
effective models for strawberry instance segmentation. These models hold promise for

deployment on embedded devices with limited computational resources in the future.



Chapter 5

FruitQuery: Lightweight
Query-based Segmentation Models
for In-field Fruit Ripeness

Determination

5.1 Introduction

Based on the previous chapter focused on improving segmentation efficiency through
lightweight convolutional networks for strawberries, this chapter further advances in-
stance segmentation by introducing a Transformer-based architecture capable of handling
both fruit type recognition and multi-stage ripeness determination. The objective is to
achieve fine-grained segmentation of fruits at different ripeness stages under complex in-
field conditions, while maintaining a compact and efficient model design suitable for edge
deployment.

Most existing methods in agricultural vision rely on convolutional structures, and al-
though Transformer-based models have shown promise in general computer vision, their
application to fruit instance segmentation, particularly for ripeness determination, re-
mains largely unexplored. In addition, datasets that jointly provide instance-level seg-
mentation masks and ripeness labels for multiple fruit types are extremely limited, hin-
dering progress in multi-fruit and multi-stage learning.

To address these limitations, this chapter introduces FruitQuery, a lightweight, query-
based instance segmentation model that combines convolutional and Transformer compo-
nents within an end-to-end framework. FruitQuery leverages a unified fruit dataset com-
bining peaches and strawberries with detailed ripeness annotations, and applies efficient
self-attention modules and multi-scale feature fusion to improve segmentation accuracy

and generalisation. Unlike many traditional models, it avoids post-processing steps such

76
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as non-maximum suppression by directly decoding instance queries into segmentation
masks.

Quantitative evaluations show that FruitQuery surpasses a wide range of state-of-the-
art models in both accuracy and model compactness, including several advanced YOLO
and Transformer variants. These results demonstrate that query-based instance segmen-
tation provides a promising direction for in-field fruit ripeness assessment, especially when

lightweight deployment is required.

5.2 Dataset

5.2.1 Overview

In this chapter, two public fruit datasets, the NinePeach dataset [315] and the StrawDI_Db1
dataset [217], are combined to form a unified benchmark for fruit instance segmentation.
The sample images are shown in Fig.3.1 and Fig. 4.1. Both datasets provide pixel-wise
individual annotation masks for every single fruit shown in the image.

NinePeach dataset. This dataset is divided into training (3240 images) and vali-
dation (1359 images) subsets, and each peach is categorised into three ripeness stages:
unripe, semiripe, and ripe. More details are in Section 3.2.3.

StrawDI_Db1l dataset. This dataset is divided into training (2800 images), vali-
dation (100 images) and testing (200 images) subsets. The training and testing sets are
used in this chapter. More details are in Section 4.2.1. Unfortunately, the StrawDI_Db1
dataset only offers class-agnostic annotations for strawberries, with no information pro-
vided on ripeness. Therefore, a solution to this problem is presented in the following
section.

By merging a tree-fruit (peach) and a berry-fruit (strawberry), the dataset spans
diverse canopy structures, occlusion patterns, and background textures. This variety
offers a more challenging and comprehensive setting for segmentation models, as they

must adapt to different orchard conditions and fruit morphologies.

5.2.2 StrawDI_Db1l Ripeness Annotation

Based on the previous work [15, 260], four ripeness stages are selected to distinguish the
strawberries from the StrawDI_Db1 dataset, with the criterion described in Table 5.1.
To achieve this classification, a simple but effective method is adopted for dividing
strawberries into four stages, as illustrated in Fig. 5.1.
First, the strawberry instances are cropped from the original images, and background
pixels are filtered, as the contextual information from the background was assumed to

introduce noise rather than contribute to the classification accuracy. All strawberry
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Table 5.1: Four ripeness stages of strawberry.

Category Description

rsl (Green)  Dark green, with relatively small sizes.

rs2 (White) Expanding, with white colour.

rs3 (Turning) Below 90% red and not ready to be harvested.
rs4 (Red) Over 90% red, edible and ready to be harvested.

Resize
Featurisation
Clustering

Figure 5.1: The process of strawberry mask classification.

instances are resized to 280 x 280 pixels.

Second, some machine learning methods, like Histogram of Oriented Gradients, and
deep learning methods like pre-trained CNN models are employed to extract features of
the resized strawberry instances. Then, the cosine similarity is adopted to calculate the
distance between features, resulting in similarity matrices.

Third, K-means clustering is applied to solve the similarity matrices, partitioning
them into four clusters. The clustering method with the best performance was chosen to
give the predictions.

Lastly, the clustering results were manually reviewed and corrected to ensure align-
ment with the predefined ripeness criteria. This refinement ensured that the final clus-

tering outcomes adhered to the anticipated standards.

5.2.3 Dataset Summary

In summary, this study leverages two large fruit datasets, and both of them have indi-
vidual mask annotations and ripeness stage labels. By integrating these two datasets,
it can comprehensively cover scenarios involving both tree fruit (peaches) and berries
(strawberries).

The combined dataset contains 7 different classes, with 3 classes corresponding to
peaches and 4 classes to strawberries. This detailed dataset structure ensures a compre-
hensive representation of fruit development stages, facilitating more accurate and gener-

alizable insights in subsequent analyses. Examples of images and their associated annota-
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Figure 5.2: Examples of fruit instance annotation for the StrawDI_Db1.

tions are presented in Fig. 5.2, and the distribution of instance categories is summarised
in Table 5.2.

It is noted that the quantity of fruit instances decreases progressively over time as
ripeness advances, revealing a real pattern that aligns with the natural growth and ripen-
ing process of fruit. By training on a combined dataset, the model is expected to handle
these complexities across different object types, which enhances its robustness. Addi-
tionally, the inclusion of varied fruit types in a unified dataset can improve the model’s
ability to distinguish between different objects, making it more adaptable to real-world

applications where multiple fruit categories are often present simultaneously.

5.3 Method

5.3.1 Model Structure

For fruit ripeness determination, an instance segmentation model called FruitQuery is
proposed, following the design of Mask2Former [39], which consists of a backbone, a

pixel decoder and Transformer decoders. The architecture is illustrated in Fig. 5.4.
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Table 5.2: The category distribution of the combined dataset.

NinePeach StrawDI_Db1

Category Training Validation | Category Training Validation

unripe 3669 1717 sl 6693 453

semiripe 3312 1307 rs2 4014 319

ripe 1698 737 rs3 3010 212

/ / / rsd 2517 148

Instance 8679 3761 Instance 16234 1132
Image 3240 1359 Image 2800 100
Backbone

It is well-known that the convolutional layer has inductive biases of locality and spatial
invariance, which are capable of extracting low-level, small local features. The self-
attention layer has a global receptive field and allows capturing global context information
within an image. Therefore, these two types of layers are considered to build the backbone
for multi-level feature extraction. The proposed backbone is illustrated in Fig. 5.3.

By combining convolutional layers with stronger generalisation performance and self-
attention layers with higher model capacity and stronger learning ability, it is assumed
that the backbone can achieve better generalisation performance and learning ability.
Given an input image, the backbone can generate 4 levels of features, which provide
high-resolution coarse features and low-resolution fine-grained features that usually boost
the performance of fruit segmentation. It is noted that ConvBlock is removed in the last
block in order to reduce the model parameters.

Patch Embedding. The input image is divided into a grid of non-overlapping
patches, and each patch normally covers a square region of the image and is transformed
into a fixed-dimensional embedding vector. According to different patch sizes and em-
bedding dimensions, 4 different patch embedding blocks are attached in front of each
block. As patch embedding does not inherently preserve positional information within
each patch, it is required to add positional encoding to the subsequent two blocks.

ConvBlock. The ConvBlock is made of several convolutional layers with two residual
connections. In the first residual connection, two 1 x 1 point-wise convolutional layers
(PWConv) are respectively placed before and after a 5 x 5 convolutional layer. The
5 x 5 convolutional layer has a larger receptive field to consider larger local regions
and is expected to capture large-scale features like fruit edges and textures in images.
In the second residual connection, two 1 X 1 point-wise convolutional layers are used
to perform MLP-like behaviour: increase the dimension to 4 times and then decrease

it to the desired output dimension. This operation is designed to increase nonlinear
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Figure 5.3: The proposed backbone of FruitQuery.

representation capacity and learn richer feature representations, thereby enhancing the
model’s performance and generalisation ability. The 1 x 1 point-wise convolutional layers
only involve a single pixel and have fewer parameters to learn, therefore it is suitable for
dimension expansion and compression. It is noted that ConvBlock is removed in the last
stage to reduce the overall number of learnable parameters, which contributes to a more

compact model size.

Spatial Reduction Self-Attention (SRSA). For each head of the multi-head self-
attention, the query @), key K and value V are obtained by applying three linear pro-
jections to the input embedding, including positional encoding. @), K and V have the
same dimensions N x C', where N = H x W. Then, attention scores are calculated by
the scaled dot-product attention. The scores are normalised using the Softmax function
to obtain attention weights, which are used to compute a weighted sum of the V' vectors
of all tokens, as defined in Eq. (4.1), where dj refers to the dimensionality of the key.
Tokens with higher scores contribute more to the output of the self-attention mechanism.

The main bottleneck of the self-attention layer lies in its computation cost of O(N?),
which scales quadratically with spatial dimension based on the input embedding. To

alleviate this problem, the Spatial Reduction Self-Attention is introduced, which is based
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Figure 5.4: The architecture of FruitQuery.

on the spatial reduction method proposed in PVT [276]. The main idea of it is to reduce
the length of the sequence with a reduction ratio R. For reducing computations, an input
sequence with shape (C, H - W) is reshaped to the K with shape (C-R* H-W/R?) based
on Eq. (5.1). Here, a convolutional layer with kernel_size = R and stride = R is used to
perform the reshape operation. Eq. (5.2) refers to a linear layer taking K as input and
generating a new K’ with shape (C, H - W/R?) as output.

K = Reshape(K, R) (5.1)

K' = Linear(C - R?,C)(K) (5.2)

As a result, the complexity of the efficient self-attention mechanism is reduced from
O(N?) to O(N?/R?). Tt is noted that a residual MLP layer is appended at the end of

SRSA to increase the model capacity and avoid overfitting.

To cater to diverse scenarios, two different settings for the backbone (s and xs) are
proposed. The specifications are presented in Table 5.3, where C' represents the number

of embedded dimensions, and B denotes the number of blocks.



Chapter 5. FruitQuery: Lightweight Query-based Segmentation Models for In-field
Fruit Ripeness Determination 83

Table 5.3: The specification of the proposed backbones.

Stage  Size Layer XS S
Patch Embed  Patch Size = 4, C = 4
Sl EXE 01:36 01:48
4 4
Rl = 4 Rl - 4
Patch Embed  Patch Size = 2, C' = ()
S2 EXE C2:72 C2:96
8 8
RQ - 2 R2 - 2

Patch Embed  Patch Size = 2, C' = C}
C5 =144 Cs5 = 240

S3 AW
1016 SRSA B;=3 By =3
Rg =2 R3 =2
Patch Embed  Patch Size = 2, C = C,
C, = 288 Cy, =384
S4 LW ! !
SRSA B,=1 By=2

R4:1 R4:1

Pixel Decoder

Multi-level contextual features play a crucial role in image segmentation, but employing
a complex multi-scale feature pyramid network escalates the computational workload.
For instance, multi-scale deformable attention used in Mask2Former demonstrates good
performance, but it also brings a large number of parameters. To build a lightweight
but effective model, the FPN is selected as the pixel decoder, which occupies less than
half the size of the multi-scale deformable attention. FPN works by taking the features
produced by the backbone at different levels (S1, S2, S3 and S4), and building a feature
pyramid from top to down (P1, P2 and P3) through lateral connections (S4-P1, S3-P2,
S2-P3).

A Pyramid Pooling Module (PPM, 313) is added to the top layer P1 to enlarge
the receptive field and fuses the multi-scale features, of which the detail is shown in
Fig 5.5. The input feature is divided into multiple regions of different sizes, using four
different adaptive average pooling methods to capture information at different receptive
field sizes. Then the pooled features are resized to the same size as the input, and

concatenated with the input feature, resulting in a feature of shape (C' + 4N, H,W).
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Finally, a simple convolutional layer is used to transform the shape of (C' + 4N, H, W)
back to (C, H, W) and fuse all information. Since the pooling operation does not introduce
any new parameters, the introduction of PPM enhances the model’s performance without

significantly increasing its computational complexity.

—P[ Poolingl ]—b[ Convl ]—

_>[ Pooling2 ]—P[ Conv2 ]— .
=
p—> 3
_V[ Pooling3 ]—P[ Conv3 ]— 'Y O
C.HW) —>[ Pooling4 H Conv4 ]— (C+4;\.],H,W) i

Figure 5.5: The illustration of the Pyramid Pooling Module.

The final output of the pixel decoder comprises features at three resolutions, incor-
porating both high-level features rich in semantics and low-level features rich in spatial

information.

Transformer Decoder

The Transformer decoder plays a crucial role in the model, which takes the learned fea-
tures from the pixel decoder and processes them to produce the final output predictions.
As shown in Fig 5.4, the decoder follows the paradigm of the standard architecture of the
original Transformer, transforming N embeddings of objects into output embeddings.
It is a stack of decoder layers, each of which consists of a masked attention layer, a
self-attention layer and a Feed-Forward Network (FFN). Each Transformer decoder layer
generates predictions for mask and class, but only the prediction of the last layer is used
as the final prediction. The prior layer predictions can be used for auxiliary predictions
optionally. The number of the Transformer decoder layers is set to 3 to achieve a better
trade-off between accuracy and model size, and the feature P3 from the pixel decoder is
used as pixel features.

Query Features Initialisation. The query features are important in the Trans-
former model, as they guide the decoder to attend to the most significant parts of the
input embedding. Previous research indicates that query features can be initialised from
zero [26], or can be updated by local features [39]. Although these two strategies are
effective in generating query features, they require more decoders and longer training it-
erations to refine. Inspired by Deformable DETR, which selects a set of query bounding
boxes from pyramidal features to perform object detection, and Sparselnst [42], which
introduces a simple convolutional module Fj,,, to highlight informative regions for each
foreground object.

Therefore, these two advantages are combined in FruitQuery. A Fj,,,-like convolu-
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tional module is added to efficiently initialise the query features in FruitQuery, which
directly picks the queries with high semantics from underlying multi-scale feature maps.
The simple module only consists of two convolutional layers. The first convolutional layer
is a typical 3 x 3 convolution layer with the same input and output dimensions. The sec-
ond convolutional layer is a 1 x 1 convolution layer to reduce the number of dimensions to
the number of classes +1, where the extra one means “no object ¢”. Specifically, feature
P2 from the pixel decoder is selected to generate N pixel embeddings with the highest
foreground probabilities as the query features.

Masked Attention. The cross-attention in the original Transformer decoder is re-
placed with masked attention. The standard cross-attention is computed by Eq. (5.3).
[ is the layer index, X; indicates the query features with the shape N x C' at the [-th
layer. @, = f,(Xi—1) is calculated by applying a linear transformation f, on the query
features of previous layer. K; and V] are the pixel features from pixel decoder after linear

transformations f; and f,.
X; = Softmax(Q,K})V; + X;_, (5.3)
Based on cross-attention, masked attention adds an attention mask M;_, as calcu-
lated in Eq. (5.4).

Xl = Softmax(./\/ll,l -+ QlKlt)w -+ lel (54)

The attention mask M;_; at feature location (x,y) is calculated in Eq. (5.5), where
my_1(x,y) is the binary output of the resized mask prediction of the previous (I-1) decoder

layer. mg is the binary mask prediction obtained from Xj.

0 ifmus(zy) =1
My = - (2, 9) (5.5)

—00 otherwise

5.3.2 Loss Function

The total training loss for FruitQuery is defined in Eq. (5.6):

*C - /\cl : Eclass + )\m : Emask + )\co : Cconv + /\a . ['aux (56)

A indicates the different loss weights.

L ass 1s the cross-entropy loss between the selected class predictions and class targets,
as defined in Eq. (4.6).

L ask 18 the dice loss between the selected mask predictions and mask targets, as
defined in Eq. (3.4).
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Lcony is the cross-entropy loss between the output of Fj,,-like convolutional module
and ground truth, as defined in Eq. (4.6).
As each Transformer decoder layer generates class prediction and mask prediction,

the prior predictions are used to calculate auxiliary loss Lg,,, as shown in Eq. (5.7),

D
‘Cau&? = Z( ilass + ﬁinask:) (57)

i=0
where D indicates the number of Transformer decoders. L' .uss and L',,44: use the
same loss functions as L.ass and Lask-

Based on PointRend [140], which demonstrated that a segmentation model can be
effectively trained by calculating its mask loss on a subset of randomly K sampled points
instead of the entire mask, this strategy is incorporated into FruitQuery. Consequently,
the mask loss is computed using sampled points both in the matching process and the
final loss calculation.

The evaluation metrics include AP, Params, FLOPs and FPS, as defined in Sec-
tion 3.3.3.

5.4 Experiments and Results

5.4.1 Experiments
Configuration

In this chapter, experiments are conducted based on Detectron2 and have been carried
out using Python 3.9.13 and PyTorch 1.13 on a computer with the specifications shown
in Table 3.4.

Training Details

No pre-trained weights are utilised in this work, and the parameters of all convolution
layers are initialised by a standard normal distribution. The training process incorporates
diverse data augmentation strategies to improve the model’s robustness and generalisa-
tion. These strategies contain random horizontal flips, resizing the input images such
that the shortest side is one of 416, 448, 480, 512, 544, 576, 608 or 640 pixels while the
longest is at most 768. This not only controls memory usage but also aligns with the
original resolution of the dataset images, encouraging the model to adapt to objects of
different scales.

Following the original Mask2Former design, the number of mask sampling points K
is set to 12544, corresponding to a grid resolution of 112 x 112. The loss weights are set
to {Aa:2.0, A\pn:5.0, A\p:20.0, A\;:1.0}. In contrast, the maximum prediction per image N
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is set to 100, and The depth of decoder layers D is set to 6, determined through ablation
experiments in Section 5.4.3.

An AdamW optimiser is used with a step learning rate schedule, of which the initial
rate is 0.0001, and the weight decay is 0.05. A learning rate multiplier of 0.1 is applied
to the backbone, and the learning rate is decayed by 10 at fractions 0.9 and 0.95 of the
total number of training iterations. All models are trained for 54k iterations with a batch

size of 8.

Inference Details

The data augmentation strategy used in inference is only resizing the input images such
that the shortest side is 640 pixels while the longest is at most 768 pixels. Auxiliary
predictions are not used during inference. The top 100 candidates with the highest
confidence are selected as final predictions.

During inference, the data augmentation strategy is simplified to resizing the input
images. Specifically, each image is resized such that the shortest side is scaled to 640
pixels while ensuring the longest side does not exceed 768 pixels, preserving the aspect
ratio. Auxiliary predictions, like outputs from intermediate layers or heads used during
training, are not used during inference to streamline the process and focus solely on the
final model predictions. After the model generates predictions, the top 100 candidate

predictions with the highest confidence scores are selected as the final predictions.

5.4.2 Main Results

A comprehensive segmentation comparison of different state-of-the-art backbones on the
combined fruit dataset is conducted, using FruitQuery’s architecture shown in Fig. 5.4,

and the results are summarised in Table 5.4.

Overall Performance

FruitQuery with SRSA-s (FruitQuery-s) achieves the highest overall AP of 67.02, APj,
of 79.17, and AP75 of 70.83, significantly outperforming 13 other models with a total of
33 variants. FruitQuery with SRSA-xs (FruitQuery-xs) also delivers a competitive AP of
66.46. This illustrates the superior performance of FruitQuery in fruit segmentation.

Among CNN-based models, the widely used ResNet series shows solid results, with
ResNet-50 reaching an AP of 63.92. The recent FasterNet-1 also achieves a competitive
AP of 65.25. Turning to the YOLO series, YOLOv9-c attains the highest AP of 60.41
among its variants, indicating that the YOLO series has limited performance on fruit
segmentation. In comparison, all YOLO variants fall short of FruitQuery.

On the Transformer-based side, models demonstrate more different designs and pa-

rameter counts. The variants of NextViT, GroupMixFormer, and PoolFormer generate
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similar results of AP, ranging from 62.37 to 63.50. Two CMT variants reach APs of 66.00
and 66.46, coming closest to FruitQuery’s performance. These Transformer-based models
reflect the trend toward attention-driven backbones, with noticeable performance gains
over many CNN counterparts.

However, they still fall short of FruitQuery in AP, AP5o and AP75, suggesting that the
proposed query-based design leverages features more effectively for precise fruit instance

segmentation.

Individual Performance

For the NinePeach dataset, YOLOv9-s achieves the highest AP ipe of 56.60 , while Res50
delivers the highest AP, of 69.57. However, FruitQuery attains the best performance
on semiripe peaches with an APgpiipe of 58.68, underscoring its ability to capture the
more subtle visual cues present in intermediate ripeness for peaches.

For the StrawDI_Dbl dataset, CNN-based FasterNet obtains the highest AP, of
50.14 and AP, of 77.73, while FruitQuery-s outperforms all counterparts in half of the
strawberry ripeness stages, with the highest AP, of 82.16 and AP,y of 83.74. These
gains indicate that FruitQuery can effectively handle the appearance variations in later
strawberry growth, where colour, texture, and shape have significant changes compared
to earlier stages.

Overall, within seven ripeness stages of the combined dataset, FruitQuery delivers
the best AP for three of them, indicating that FruitQuery, with the query-based design,
is capable of capturing fine-grained features within different fruit ripeness levels and

generating comparable results.

Model Complexity

The broad range of model sizes is generally related to performance: larger models typically
have more parameters, which allows them to capture more complex patterns and relations.

On the CNN-based models, FasterNet-1 is the largest CNN-based model with param-
eters of 97.70M and FLOPs of 189G, and it achieves a competitive AP of 65.25. Notably,
the YOLO series is well-known for its lightweight design, with YOLOvV9-s having 8.64M
parameters and 82.26G FLOPs, and YOLOv10-s having 7.27M parameters and 44.10G
FLOPs, but their AP of 59.91 and 58.17 are lower than many other models.

On the Transformer-based models, MobileViT-xxs exhibits the smallest parameter
count of 7.27M and FLOPs of 17.27G, while it comes with the lowest AP of 46.34.
NextViT-b is the most complex Transformer-based model with 51.02M parameters and
128G FLOPs, delivering an AP of 62.47.

FruitQuery shows a highly cost-efficient design. Specifically, the FruitQuery-xs only
utilises 10.94M parameters and 61.56G FLOPs to achieve an AP of 66.46, and FruitQuery-
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s attains the highest AP of 67.02 with 14.08M parameters and 69.33G FLOPs.

In contrast, models with similar APs to FruitQuery-xs (66.46), such as CMT-ti
(66.00), CMT-xs (66.46) and FasterNet-1 (65.25), require larger parameters and FLOPs
(14.57M/67.55G, 20.21M/78.27G and 97.70M/189.00G) than FruitQuery-xs (10.94M/
61.56G). On the other hand, models that match FruitQuery-xs in parameters and FLOPs
(10.94M /61.56G), such as YOLOvS8-s (11.79M/46.12G), MobileViT-s (11.36M/26.99G)
and SegFormer -s24 (10.19M/57.06G), deliver poorer APs (57.33, 52.90 and 58.48).

Inference Speed

CNN-based models exhibit higher inference speeds compared to Transformer-based mod-
els, consistent with the established efficiency advantages of convolutional architectures.
Among all evaluated models, YOLOvS8-t achieves the highest FPS at 44.22, followed by
YOLOv8-m (41.58) and YOLOvVS8-1 (34.36), highlighting the real-time capabilities.

The proposed FruitQuery achieves relatively high inference speeds (16.5 and 16 FPS),
demonstrating competitive inference performance. They outperform all YOLOvV9 vari-
ants, suggesting improved speed efficiency relative to this recent Transformer-based series.
In addition, FruitQuery surpasses a number of widely used Transformer-based backbones
such as LightViT-t (14.36), CMT-ti (14.06), and NextViT-s (15.06), which are specifically

designed for efficiency.

While slightly slower than MobileViT-xxs (19.74) and MobileViT-xs (19.56), Fruit-
Query is notably faster than recent models like TransXNet-s (8.22) and GroupMixFormer-
s (9.02), positioning them among the faster Transformer-based designs. These results
indicate that FruitQuery strikes a favourable balance between inference speed and model

complexity.

In summary, the results demonstrate that FruitQuery not only exhibits comparable
or even superior results to other segmentation models but also maintains a lightweight

model size and higher efficiency.

Table 5.5: Ablation on the pixel decoder.

Module AP AP50 AP75

FPN 64.97 78.41 68.88
PPM-FPN 66.57 78.98 70.22
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5.4.3 Ablation Experiments

Type of Pixel Decoder

Table 5.5 compares two different pixel decoders of FPN and PPM-FPN, in terms of model
performance. The baseline FPN achieves an AP of 64.97, APsy of 78.41, and AP75 of
68.88. In contrast, the PPM-FPN variant leads to a consistent performance boost across
all metrics, improving AP by 1.6 points from 64.97 to 66.57, AP5¢ by 0.57 points from
78.41 to 78.98, and AP75 by 1.34 points from 68.88 to 70.22. These results indicate that

incorporating PPM into the FPN enhances the overall segmentation performance.

Table 5.6: Results of ablation experiments based on FruitQuery-xs.

(a) Ablation on the number of attention head.

Head AP  AP5 APy (c) Ablation on the pixel decoder.

2 62.36  75.30  65.80
4 64.46 77.09 68.61
8 64.36  76.98 67.88

Layer AP AP; AP

1 62.85 75.78  66.59
63.98 76.93 67.72
63.91 76.69 67.86
66.41 78.98 70.20
66.68 79.31 70.40
66.80 78.95 70.85
65.94 7849 69.36
65.78  78.07 69.26

(b) Ablation on the number of queries.

Query AP AP50 AP75

80 64.54 7774 68.39
90 64.45 77.38 68.15
100 66.52 78.84 70.19
110 65.91  78.56 69.48
120 65.48  78.34 69.11

0 N O Ot = W N

Number of Decoder Attention Head

Table 5.6a compares the effect of different numbers of attention heads on model per-
formance. With just 2 heads, the model attains an AP of 62.36, AP5, of 75.30, and
AP75 of 65.80, indicating limited representational capacity. Increasing to 4 heads yields
the highest AP of 64.46, APy, to 77.09 and AP-5 of 68.61. Although further increasing
the number of heads to 8 slightly boosts AP to 64.46 and AP75; to 67.88 compared to
2 heads, it still lags behind the 4-head configuration. These results suggest that 4 at-
tention heads provide an optimal balance, offering richer feature representations without

incurring diminishing returns.
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Number of Query

Table 5.6b shows the effect of different numbers of queries on model performance. When
the number of queries is set to 100, the model achieves its highest overall AP of 66.52,
APsq of 78.84, and AP75 of 70.19. Reducing the number of queries below 100 (e.g., 80 or
90) results in poorer performance across all metrics. Conversely, increasing the number
of queries beyond 100 (e.g., 110 or 120) does not lead to any additional benefits. These
results imply that 100 queries is an optimal balance for capturing sufficient object-level

features without excessive costs.

Number of Decoder Layers

Table 5.6¢ illustrates the effect of different numbers of decoder layers on model perfor-
mance. With only 1 to 3 layers, AP stays between 62.85 and 63.98, indicating limited
representational depth. As more layers are added, accuracy steadily improves, peaking at
6 layers with an AP of 66.80, AP5y of 78.95, and AP75 of 70.85. Beyond 6 layers, model
performance begins to decline, suggesting that excessive stacking of decoder blocks may
introduce redundancy or complicate training. These findings highlight an optimal spot

at 6 decoder layers.

Table 5.7: The AP comparison of training on separate and combined datasets.

Dataset Category t/o separate t/o combined

f% unripe 43.72 51.27
g
Qg semiripe 49.07 53.93
z. ripe 62.05 66.94
3 rsl 45.57 42.29
; 152 72.55 76.73
z rs3 79.87 78.40
3 rsd 77.99 79.64
Average 61.08 64.63

5.4.4 Combined and Separate Training

The performance difference of FruitQuery-xs trained on combined (t/o combined) and
separate (t/o separate) datasets is compared, and the results are shown in Table 5.7.
For NinePeach, the combined training strategy produces notable improvements across all
ripeness levels, with AP ipe increases of 7.55 points from 43.72 to 51.27, 4.86 points for
APgemiripe from 49.07 to 53.93, and 4.89 points for AP, from 62.05 to 66.94.
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In contrast, results on StrawDI_Db1 are mixed: AP, has a significant gain of 4.18
points from 72.55 to 76.73, and AP,y also increases 1.65 points from 77.99 to 79.64.
However, the other two categories AP drops from 45.57 to 42.29 and AP, drops from
79.87 to 78.40.

Overall, training on the combined dataset boosts the model’s overall AP from 61.08 to
64.63, indicating that learning from a broader, integrated fruit distribution can enhance
generalisation for the majority of fruit ripeness stages despite limited category-specific
trade-offs.

Table 5.8: The parameters comparison of YOLOvV9 and FruitQuery.

Aspect YOLOvV9 FruitQuery
Type S m c XS S
Backbone (M) 5.72 15.52 19.95 | 4.07 7.15

Neck (M) / / /| 270 276
Head (M)  2.92 674 7.89 | 4.18  4.18
Total (M)  8.64 22.26 27.84 | 10.94 14.08

AP 59.91 60.04 60.41 | 66.46 67.02

5.4.5 Model Parameter Distribution

The parameter distribution of YOLO and FrutiQuery is summarised in Table 5.8. Based
on previous results in Table 5.4, YOLOvVY is the best-performing version of the three
YOLO series, therefore, it is selected to compare with FruitQuery and also in later com-
parisons.

YOLOv9-s has the least number of parameters of 8.64M, with a head of 2.92M, but
produces the lowest AP of 59.91. When changing the model from YOLOv9-s to YOLOv9-
m, the total parameters increase to 22.26M, with a bigger backbone and head, but bring
a tiny AP gain from 59.91 to 60.04. YOLOv9-c¢ performs better than YOLOv9-m with
the AP of 60.41, but occupies a backbone of 19.95M and a head of 7.89M.

On the other hand, FruitQuery demonstrates its ability to outperform YOLOv9 with
fewer parameter counts. Specifically, FruitQuery-xs and FruitQuery-s have an identical
head of 4.18M, which is smaller than YOLOv9-m and YOLOv9-c. The main difference
between the two variants of FruitQuery lies in the backbone. FruitQuery-s has a more
complex backbone and delivers a better AP of 67.02.

These results not only demonstrate that FruitQuery achieves a significantly better
balance between the segmentation performance and model size compared to YOLO but

also highlight its lightweight design, which enhances the potential for in-field applications.
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Figure 5.6: Segmentation visualisations of FruitQuery on NinePeach (top) and
StrawDI_Db1 (bottom).

5.4.6 Visualisation

The segmentation performance of FruitQuery is visualised in Fig. 5.6. First, FruitQuery
is capable of simultaneously segmenting peaches and strawberries without requiring sepa-
rate training for each fruit type. Second, FruitQuery demonstrates strong generalisation

ability on fruit size due to effective multi-scale feature fusion. Specifically, the size of
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peaches is relatively large compared to that of strawberries, and FruitQuery can accu-
rately segment both large and small fruit. Third, FruitQuery maintains high robustness
in complex in-field conditions, such as occlusions from tree trunks and leaves, delivering
precise fruit segmentation. These indicate that FruitQuery can accurately predict fruit

locations for downstream applications.

Image YOLOV9-¢c FruitQuery-xs
Figure 5.7: The segmentation comparison of YOLOv9 and FruitQuery.

The visualisation of FruitQuery and YOLO is also compared, as shown in Fig. 5.7. In
case (1), although YOLOvV9-c is not an anchor-based model, it still gives an inaccurate
anchor-like prediction on the strawberry, while FruitQuery provides a more precise delin-
eation of the strawberry’s shape. In case (2), YOLO-v9c’s segmentation boundary tends
to follow the rectangular outline of the bounding box, while FruitQuery closely tracks
the actual peach boundary. Additionally, YOLO-v9c ignores the small peach behind,
while FruitQuery correctly detects it. In case (3), YOLO-v9c fails to detect an evidently
visible strawberry, while FruitQuery successfully identifies and segments it. In case (4),
YOLO-v9c is unable to recognise a peach partially hidden in the background, whereas
FruitQuery correctly distinguishes the peach despite the limited visible part.
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5.4.7 Class Activation Map Analysis

Class Activation Maps (CAM, 318) is a popular visualisation technique that highlights
the regions in an image most influential to a model’s prediction. By projecting learned
feature weights back onto the original input, CAM reveals where the model allocates its
attention and provides an interpretable window into the decision-making process. The
CAM comparison of YOLO and FruitQuery is illustrated in Fig. 5.8.

Image YOLOV9-c FruitQuery-xs

Figure 5.8: The CAM comparison of YOLOv9 and FruitQuery.

In the CAM visualisations, YOLOvV9-c exhibits relatively diffuse and occasionally
misaligned attention, focusing on broader or less discriminative regions. For example,
in cases (1) and (2), YOLOv9-c has uncertain attention on the fruit and is affected by
the surrounding leaves. By contrast, FruitQuery maintains a more localised and precise
concentration of high-intensity activation around the fruit. This difference is particularly
evident in cases (3) and (4). YOLOv9-c looks at a large blur region around fruit and gives
attention to the irrelevant background, while FruitQuery accurately distinguishes between
fruit and background context, capturing finer textural cues on peaches and strawberries

and generating tightly focused activation zones.
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Consequently, the visualisations demonstrate the enhanced ability of FruitQuery to
learn the discriminative features of peaches and strawberries, such as shape, colour tran-
sition, and edge boundaries, eventually resulting in interpretable and improved segmen-

tation performance.

5.4.8 Deployment

The inference speed of the FruitQuery was evaluated on three types of hardware plat-
forms, as introduced in Section 4.4.4. For each FruitQuery variant, inference was con-
ducted under two numerical precision settings, FP32 and FP16, and across multiple de-
ployment formats, including PyTorch (.pth), ONNX (.onnx), TensorRT (.trt), and Core

ML (.mlmodel). The results are summarised in Table 5.9.

Table 5.9: The FPS of FruitQuery across different devices.

FruitQuery-xs FruitQuery-s
Device Format

FP32 FP16 FP32 FP16

.pth 16.18 18.38 16.00 16.81

les\l/:]gfllAOO .onnx 3.76 3.93 3.74 3.90
trt” 39.53 51.02 39.37 50.51

.pth 3.02 4.45 2.92 4.44

Jetsoljl\g]r)irIlANano .onnx 2.86 3.17 2.80 3.08
trt” 8.56 12.63 8.22 11.68

.ONNx 0.87 0.71 0.58 0.60

Apple M1
.mlmodel  0.40 0.43 0.37 0.40

* Due to hardware limitations, V100 is using TensorRT 8.6.1 while Orin Nano is using TensorRT
10.3.0.

The model formats .pth, .onnx, and .trt have been described in Section 4.4.4. In
addition to these, deployment on Apple M1 is extended to include Core ML (.mlmodel),
which is a model format specifically optimised for Apple’s ecosystem. It allows models
to be executed using the Core ML framework, which internally utilises the Apple Neural
Engine to accelerate inference on iOS and macOS devices.

Two numerical precision modes are compared: FP32 (single-precision floating point)
and FP16 (half-precision floating point). FP16 reduces memory usage and computa-
tion cost by representing floating-point numbers with 16 bits instead of 32, which can
accelerate inference on compatible hardware while maintaining adequate accuracy.

Inference results demonstrate that TensorRT achieves the fastest inference across all
tested hardware for both precision modes. On the Tesla V100, FruitQuery-xs has a 51.02
FPS using FP16 and TensorRT, which is more than 2.5 times faster than the PyTorch
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baseline under FP32. Jetson Orin Nano also benefits significantly from TensorRT accel-
eration, achieving a 12.63 FPS for FruitQuery-xs in FP16. This highlights the suitability
of TensorRT for edge deployment when latency is critical.

Compared to the V100 and Jetson platforms, the Apple M1 incurs higher inference
latency. The ONNX-based deployment shows low FPS for both model variants. More-
over, Core ML deployment with .mlmodel results in even longer running time, with
FruitQuery-s requiring a 0.40 FPS under FP16. Despite this, the Core ML format en-
ables compatibility with Apple-native applications and can utilise the underlying Neural
Engine, which may provide performance gains in future hardware iterations.

Overall, the proposed FruitQuery models demonstrate efficient inference across di-
verse deployment scenarios. The results affirm the flexibility of the models and their
compatibility with multiple deployment backends and precision modes. Particularly, the
combination of lightweight architectures, TensorRT optimisation, and half-precision in-

ference enables real-time performance on both cloud GPUs and edge platforms.

5.5 Discussion

5.5.1 Comparison to PeachSOLO

As shown in Section 3.4.2, PeachSOLO with Swin-FPN achieves the highest 72.12 AP,
followed by PeachSOLO with Res50-FPN at 66.33 AP, occupying 46.17M parameters and
running at 11.11 FPS. In comparison, FruitQuery-s achieves a slightly lower AP of 59.76,
but with a much smaller model size of 14.08M parameters and a higher speed of 16.00
FPS.

This difference in segmentation accuracy is expected, as larger models provide greater
capacity to learn detailed and category-specific features. However, FruitQuery-s was
designed with lightweight deployment in mind. It provides a favourable trade-off between
model performance and efficiency, making it well-suited for real-time applications on
edge devices. Its ability to handle multiple fruit types and ripeness stages within a
single compact model further highlights its practical value for robotic harvesting systems

operating under computational constraints.

5.5.2 Limitations

First, FruitQuery still relies on a large quantity of manually annotated data, particularly
with instance-level and ripeness-specific labels. This requirement brings a significant bot-
tleneck in extending the model to new fruit types or orchard conditions, where annotation
can be time-consuming and labour-intensive.

Second, although FruitQuery is designed to be lightweight, its current inference speed
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does not yet meet the requirements of real-time operation on highly resource-constrained
edge devices. Achieving true real-time performance remains a challenge, particularly
when handling high-resolution inputs in dynamic field environments.

These limitations indicate promising directions for further work, including reducing
annotation costs and enhancing inference efficiency for deployment in practical agricul-

tural settings.

5.5.3 Future Work

First, FruitQuery will be further compressed and optimised using techniques such as
quantisation, pruning, and architecture refinement. The goal is to enable real-time in-
ference on embedded platforms, thereby facilitating in-field deployment for robotic fruit
harvesting with immediate ripeness feedback.

Second, future work will explore self-supervised or semi-supervised learning approaches
to to reduce reliance on manual annotations. The model can be more readily adapted to
diverse fruit types and conditions with improved data efficiency. In addition, expanding
the current dataset to include a broader spectrum of fruit varieties and ripeness stages

will enhance the model’s multi-fruit applicability.

5.6 Summary

In this chapter, two in-field fruit datasets of peaches and strawberries are combined,
which contain 3 ripeness stages for peaches and 4 ripeness stages for strawberries. Then,
a lightweight query-based instance segmentation model for fruit ripeness determination
called FruitQuery is introduced.

The combined dataset enables training the model to handle the ripeness determination
of two fruits at the same time, reducing the effort to replicate the training. FruitQuery
is composed of three main components: a backbone, a pixel decoder, and Transformer
decoders. The SRSA module is integrated into the backbone to reduce computational
overhead and introduces a PPM in the pixel decoder to improve multi-scale feature fusion.
Transformer decoders were employed to learn a fixed number of queries for instance masks,
eliminating the need for postprocessing like NMS.

By combining the advantages of convolution and Transformer, FruitQuery runs in
an end-to-end way and precisely attends to fruit regions, capturing subtle distinctions
in shape and ripeness. The design of FruitQuery leads to state-of-the-art performance,
achieving the highest AP of 67.02 with 14.08M parameters and surpassing 13 other CNN-
based and Transformed-based models. Notably, it outperforms three series of YOLO,
under challenging conditions such as occlusion and varying illumination. However, Fruit-

Query’s dependence on labelled data makes it challenging for swift adaptation to new
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fruit varieties. Additionally, latency issues may be a problem for FruitQuery when applied
on embedded platforms.

Moving forward, FruitQuery will be further optimised for in-field applications, explor-
ing strategies like quantisation for edge deployment. The combined dataset is planned
to be expanded with more fruit varieties, ultimately building a large-scale fruit instance
segmentation dataset with ripeness labels. Through these enhancements, FruitQuery is
expected to increase its utility in orchard automation, enabling more accurate and effi-

cient fruit ripeness determination and helping the development of precision agriculture.



Chapter 6

AppleSSL: A Novel Self-supervised
Method for In-field Occluded Apple

Ripeness Determination

6.1 Introduction

While the previous chapters have addressed fruit ripeness determination through clas-
sification and segmentation using either fully supervised or lightweight deep learning
models, they typically require a considerable number of labelled images and often as-
sume a clear view of the fruit surface. These assumptions limit their applicability in
real-world orchard environments, where the fruits are frequently occluded by leaves and
branches, and the process of annotating ripeness stages remains highly subjective and
labour-intensive. Furthermore, most prior models are constrained by the need to pre-
define discrete ripeness categories, which may not reflect the nuanced and individualised
decision-making processes of end-users in precision agriculture. To address these prac-
tical challenges and advance the existing body of work, this chapter introduces a novel
approach that incorporates self-supervised learning for in-field occluded apple ripeness
determination.

In the context of apple precision agriculture, variations in apple ripening times exist
both among trees within the same orchard and even among apples on the same tree, as
illustrated in Fig. 6.1. The differences in ripening times are influenced by a combination
of environmental conditions, biological traits, and human interventions. This lack of

selectivity can lead to reduced apple market value and the need for post-harvest sorting.

6.1.1 Ripeness labelling

Determining apple ripeness from images is usually a subjective and challenging task.

Fig. 6.2 shows that the definitions of “ripe” can be different among different users, ranging

102
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Figure 6.1: Apples with distinct ripeness difference can appear simultaneously.

from binary classifications to more granular multi-category classifications. Binary and
three-category classifications are the most commonly considered by previous research.
However, extending these models to finer classifications, such as five categories, requires
re-labelling the images and retraining the model, which introduces unnecessary effort. To

solve this, this chapter regards ripeness determination as a regression task rather than a

multi-category classification task.
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Figure 6.2: Different users have different criteria for apple ripeness.

It is noted that regardless of the number of ripeness stages defined by the users,
the fully unripe and fully ripe apples will always remain in the first and last categories,
respectively. Based on this, this chapter proposed a self-supervised method which takes
few images of fully unripe and fully ripe apples as labels, learns from a large number of

unlabelled images, and generates ripeness scores as output.
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6.1.2 In-field Occlusion

In-field occlusion is the second challenge in this work. Since most of these robots heavily
depend on visual perception for fruit identification and localisation, occlusion significantly
impacts their decision-making process. As shown in Fig. 6.1, apples are often easily
occluded by leaves. Moreover, occlusion can also result in recognition failures, requiring
manual leaf removal prior to picking [269].

Some of the previous research has considered the occlusion when training the de-
tection and segmentation models. [265] introduced a YOLO-based model specifically
designed for detecting apples at different growth stages in orchards and mitigated apple
overlap and occlusion to some extent. [316] proposed a CNN-based vision algorithm for
mango instance segmentation and picking point localisation, considering occlusion, over-
lap, and variations in object scale. [272] replaced the network’s complete-IoU regression
loss function with the weighted-IoU loss function to address tomato fruit and leaf oc-
clusion. [35] proposed a YOLO-based lightweight 4-class occlusion detection method for
Camellia oleifera fruit, introducing a clustering algorithm to select the target dataset.

Similarly, [61] proposed a detection model to locate ripe ground-planted strawberries of

4 different occlusion categories.

4

(a) Image (b) Modal Masks (¢) Amodal Masks

Figure 6.3: Example of modal and amodal masks [79].

Furthermore, some researchers proposed to estimate the shape of partially occluded
fruits by means of amodal instance segmentation, which aims to predict the shape of
each object of interest in an image [156]. [79] implemented an amodal segmentation
model with an end-to-end CNN for accurate Fiji apple detection and sizing, predicting
complete shapes (visible and occluded regions) and achieving robust diameter estima-
tion. The examples of modal and amodal masks are shown in Fig. 6.3. [137] employed
an amodal segmentation approach using a reconstruction network to perform cucumber
occlusion recovery, achieving high accuracy and speed. Besides, some research introduced
mathematical methods to estimate the shape of the target fruit. [258] proposed an active
deep sensing method to handle occlusions in clustered and single fruit scenarios, utilising
a deep network to predict optimal observation positions, and guiding robots to avoid

the occlusion. [161] mitigated the challenge of fruit occlusion in complex environments
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by leveraging approximately spherical fruit shape priors for improved segmentation and
localisation, enabling effective occlusion-aware solutions without reliance on additional
data or equipment.

However, all of the above research limits the addressed problem to either classifying
the occlusion categories or estimating the shape of the occluded fruit. Taking a step
forward, this chapter proposes a self-supervised method to reconstruct the details of the

occluded parts of the fruits.

6.1.3 Contributions

To address the occlusion and ripeness-labelling challenges, this chapter proposes App-
1eSSL, a self-supervised method that leverages a small number of labelled examples (less
than 1%) and a large pool of unlabelled apple images collected in natural orchard con-
ditions. The method comprises three key components: a reconstructor trained to infer
missing apple details in occluded images; a feature extractor designed to learn ripeness-
relevant representations from unlabelled data; and a predictor that outputs a continuous
ripeness score without requiring rigid classification boundaries.

This chapter presents the most novel contribution of the thesis, offering a flexible,
data-efficient, and occlusion-aware solution for apple ripeness estimation in the field. By
combining reconstruction, feature learning, and regression-based prediction within a uni-
fied self-supervised framework, AppleSSL bridges the gap between the highly controlled
assumptions of earlier models and the complex visual challenges encountered in real or-
chard settings. Its design supports downstream deployment in robotic harvesting systems
and large-scale orchard monitoring, thereby contributing to the broader goals of smart

and precision agriculture.
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Figure 6.4: The apple orchard in New Zealand (left) and samples of apple images (right).
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6.2 Dataset

6.2.1 Image Collection

A number of 2530 apple images (4032x3024 pixels) were captured with a mobile phone
in a large Jazz apple orchard located near Hawke’s Bay, New Zealand. The overview of
the orchard and samples of the apple images are presented in Fig. 6.4. The collection
took several weeks from February to March in 2024, and encompassed the complete apple
ripening process from fully unripe to fully ripe.

There were no specific requirements for the image collection. All apple images were
taken under natural illumination and in real-world production settings, taken from various
angles to simulate every possible scenario for the in-field operation of robots. As a result,
the apples exhibited variations such as being isolated, in close proximity to each other,

and partially obscured by leaves or stalks.
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Figure 6.5: The workflow of image preprocessing.

6.2.2 Image Preprocessing

YOLO-World [41] is applied to detect the bounding boxes of apples, and then the boxes
are used as the input of Segment Anything Model (SAM, 139) to perform the apple
instance segmentation. The workflow of the process is shown in Fig. 6.5. The dataset
consists of 2530 images, from which 7191 apple instances were detected and segmented
following the workflow. From these images, 20 fully unripe and 20 fully ripe apples under
diverse conditions were manually selected, using them as labelled instances, as illustrated
in Fig. 6.6, while the remaining 7151 apple instances are unlabelled.

The foreground ratio Fr of all uniformly resized apple instances is computed using
Eq. (6.1), where Ngype represents the number of pixels corresponding to apples, and

Nimg is the total number of pixels in the image.

N, apple

Fr —
' Nimg

(6.1)
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Figure 6.6: The selected 20 fully unripe and 20 fully ripe apples.

The distribution of Fr is presented in Fig. 6.7. Here, apples with Fr > 0.6 are defined as
“complete” apples, as they contain sufficient visual information for analysis. In contrast,
apples with Fr < 0.6 are categorised as “incomplete” apples, as substantial portions of

the apple are occluded, resulting in limited details.
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Figure 6.7: The Fr distribution of the dataset.

6.2.3 Image Augmentation

Image augmentation involves applying various transformations to images to artificially
increase the size of a dataset and simulate real-world conditions.

For some of the self-supervised learning methods, image augmentation is a cornerstone
of training strategies. It serves as a key mechanism to manipulate input data, ensuring
that the model learns meaningful representations from a large number of unlabelled data.

Based on the collected apple images, it is assumed that some in-field conditions ob-

served in apples, such as variations in brightness, shadows, viewing angles, and occlusions
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caused by leaves, branches, or other fruits, can be regarded as forms of 'natural augmen-
tation’. These natural augmentations do not influence the ripeness of the apples, as

ripeness is an intrinsic quality independent of external conditions.
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Figure 6.8: The original image (left) and examples generated via augmentation (right).

In this work, a variety of artificial augmentation methods are incorporated, includ-
ing random cropping, random scaling, random flipping, brightness adjustment, colour
jittering and Gaussian blur to simulate natural augmentations. For instance, random
cropping and flipping mimic the perspectives of images captured from different angles,
while Gaussian blur replicates the effect of images taken when the camera is out of focus
on the apples. It is noted that gray-scale conversion is not used in this study, as it results
in the loss of colour information. The illustration of augmentations is provided in Fig. 6.8.

By setting different probabilities to each method, a diverse set of variations is gener-
ated, enabling the model to robustly learn meaningful features associated with ripeness

across different scenarios.

6.3 Method

6.3.1 Overview

The overall architecture of this study is shown in Fig. 6.9. The collected images first
undergo a preprocessing stage, including object detection and instance segmentation.
Following this, the apple instances are partitioned based on two criteria: (1) whether
they are labelled and (2) whether they are complete or incomplete. Complete apples
are utilised for feature extraction and reconstruction, and incomplete apples are used for
reconstruction. Finally, labelled apples serve as boundaries for projecting the features
onto the final ripeness prediction.

The architecture of the proposed AppleSSL is illustrated in Fig. 6.10. It contains three

parts: a missing-part reconstructor, a feature extractor, and a ripeness score predictor.
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Figure 6.9: The overall architecture of this study.

¢ Reconstructor
The reconstructor is a self-supervised component designed for incomplete apples,

which aims to reconstruct missing parts of apples to provide more details.

e Extractor
The extractor also operates within a self-supervised paradigm to learn representa-
tions related to ripeness from images. Specifically, it is expected to find a feature
space in which every apple is separated by its ripeness, and unripe apples are as far

as possible from ripe apples.

e Predictor
The predictor is a simple Multi-Layer Perceptron (MLP), which takes features from

the extractor as input and predicts ripeness scores.

6.3.2 Reconstructor

The reconstructor is based on ‘masked image modelling’, which learns by masking por-
tions of the input image and predicting the missing parts. In this context, occlusions
caused by leaves or trunks are considered a kind of natural mask, and the task is to
reconstruct these occluded apples.

Specifically, the reconstructor employs the SImMIM [294], which consists of an encoder
that maps the normalised image to a latent representation and a prediction head that
reconstructs the reconstructed image from the latent representation. The illustration is
presented in Fig. 6.10.

Given an input image, it is divided into regular and non-overlapping patches. A subset
of patches is selected, while the remaining ones are masked. The encoder embeds the
visible patches using a linear projection with added positional embeddings and processes
them through a series of Transformer blocks. It is noted that the encoder operates
exclusively on visible, unmasked patches, as masked patches are removed, and no mask
tokens are used. The encoder extracts a latent feature representation of the masked

image, which is utilised to predict the original signals in the masked regions. For the
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Figure 6.10: The architecture of the proposed AppleSSL.

Reconstructor

encoder, two common vision Transformer architectures, Vision Transformer (ViT) and
Swin Transformer (SwinT), are considered.

The prediction head processes the latent feature representation to generate a form
of the original signals for the masked regions. While the prediction head can have an
arbitrary form and capacity, a single 1 x 1 convolutional layer is employed to maintain
a small model size. Each output element from the prediction head is a vector of pixel
values corresponding to a patch. The final layer of the decoder is a linear projection with
the number of output channels equal to the pixel count in a patch. The output of the
prediction head is then reshaped to reconstruct the image.

The Mask Autoencoder (MAE, 103) is another state-of-the-art model of masked image
modelling, which takes a complete ViT architecture for both the encoder and prediction
head. MAE demonstrates that random sampling with a high masking ratio significantly
reduces redundancy, creating a task that cannot be easily solved by extrapolation from
visible neighbouring patches. Accordingly, the reconstructor adopts a strategy of random
masking with a 75% masking ratio, meaning 75% of the input image patches are masked,

leaving only 25% visible for the model.

Training Details

During training, the pre-trained models are fine-tuned on complete apple instances to
save training time.

The loss function calculates the Mean Squared Error (MSE) loss between the recon-
structed and original images by measuring the average squared difference between their

pixel values. It is defined as in Eq. (6.2).

MSE(x,y) = lyar —xarll3 (6.2)

Q(xwm)
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where x,y € are the original RGB values and the predicted values, respectively;

M indicates the set of masked pixels; €(+) is the number of elements.

Evaluation Details

During the evaluation, another two metrics are introduced to evaluate the reconstruction

quality in de-normalised colour values.

e Peak-Signal-to-Noise Ratio (PSNR)
PSNR [113] is a widely used metric for evaluating the quality of image reconstruc-
tion in computer vision. It measures the similarity between the original and re-
constructed images by comparing the ratio of peak signal to noise on a logarithmic
scale. PSNR is defined as in Eq. (6.3), where 255 is the maximum pixel value for
8-bit images. A higher PSNR indicates that the reconstructed image is closer to
the original, indicating better quality. Conversely, a lower PSNR indicates greater

numerical differences between the images, reflecting poorer quality.

2552

(6.3)
e Structural Similarity Index Measure (SSIM)
SSIM [280] is another well-known metric used to measure the structural similarity
between the original and reconstructed images. It focuses on comparing structural
information in images, including luminance, contrast, and texture, which aligns
more closely with human visual perception. The definition of SSIM is given in
Eq. (6.4).

(2pxpty + C1)(20xy + Co)
(12 +p2 + Cr)(02 + 02 + ()

SSIM(x,y) = (6.4)
where iy, pty and o2, af, are the average luminance and variance of the original and
reconstructed images. oxy is the covariance between two images. C) and C, are
small constants to avoid a zero denominator. The SSIM value ranges from [—1, 1],

and a higher value represents a more accurate replication of the original image.

6.3.3 Extractor

The feature extractor is implemented in a self-supervised learning framework, using the
online-clustering method SwAV [28]. This method employs two parallel branches to
facilitate feature learning. Specifically, the feature extractor is designed to identify rep-
resentations associated with apple ripeness. The goal is to find a feature space in which

fully unripe apples are positioned farthest from fully ripe apples, while ensuring that
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a random given apple image and its augmented variants are mapped to closely aligned
locations. An overview of this process is presented in Fig. 6.10.

The input image is transformed into multiple augmented views x,; (e.g., 1 and z5)
using transformations ¢ sampled from a set T of image augmentation techniques.

These augmented views x,; are then passed through an encoder fy, which consists
of two standard convolutional layers, to generate non-linear feature representations z,,
(e.g., z1 and z). Then, the feature representations are normalised using ¢ normalisation
and projected onto the unit sphere.

Next, a code q,; (e.g., ¢1 and go) is computed by mapping the feature z,; to a set
of prototypes C. The prototype C consists a set of K trainable vectors, denoted as
{c1,...,ck}. In this work, C is represented as a matrix whose columns correspond to
the prototype vectors cq, ..., cx. These prototypes are treated as model parameters and
are updated iteratively during the training process.

In detail, a code is computed for one augmented version of an image and predicted
from other augmented versions of the same image. Given two feature vectors, z; and zg,
derived from different augmentations of the same image, their corresponding codes q; and
qs are obtained by matching these features to a set of K prototype vectors, {ci,...,cx}.
The computation involves multiplying the feature vector z,; with the prototype matrix C,
followed by applying the Sinkhorn-Knopp algorithm to normalise the result and produce
the code q.

The prototype vectors represent the clustering centres of the apple images. As this
method is an online method, the codes are updated only based on the image features
within the current batch, distinguishing this method from offline clustering approaches
that require the entire dataset to compute the codes. The loss function is defined in

Eq. (6.5).

L(Zt7zs) = £<Zt7qs> +£(Zsaqt> (65)

where the function ¢(z,q) quantifies the alignment between features z and a code
q. Conceptually, the method evaluates the similarity between the features z; and z,
using the intermediate codes q; and q,. In other words, if these two features are from
augmentations of the same input image, and they encode the same or similar information,
then it should be feasible to predict the code from the other feature.

The loss function in Eq. (6.5) consists of two terms that define the “swapped” pre-
diction task: predicting the code q; from the feature z,, and vice versa, predicting q,
from z;. Each term corresponds to the cross-entropy loss between the predicted code and
the probability distribution obtained by applying softmax function to the dot products
of z; and all prototypes in C. The loss formulation is detailed in Eq. (6.6), where 7 is a

temperature parameter that controls the sharpness of the softmax distribution.
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1,7
Uz q.) = - qPlogp®, p® = exp (12, cx)
(21, 9s) ; gp Py Sowexp (fz] cp)

In contrast to previous self-supervised learning methods, which directly compare the

(6.6)

similarity of feature vectors z,,. Comparing high-dimensional features (e.g. 2048) usually
takes a lot of time and computational overhead. Instead, this study focuses on compar-
ing the codes q,; derived from different views, aiming to make them consistent. This
strategy allows the model to capture more details of the input. In this work, the code is
chosen as the output of the feature extractor, as it provides a more efficient and effective

representation for comparison.

Unlabeled apple

@ Ripe apple

—— — —————

U
’,

Figure 6.11: The proposed distances for model performance evaluation.

Inspired by SMoG [209], the similarity comparison can happen at the instance-level,
and also at the group-level. Building on this idea, two distances are conceptualised as
metrics to make the extractor more suitable for the apple ripeness determination task.

The considered distances are illustrated in Fig. 6.11.

D=4 3~ ||fz|| ||fg||2> (6.7)

=1 5>k

The definition of the distance is given in Eq. (6.7), where f is the extracted feature
and || f]|2 is the Euclidean norm of f, A is a constant. k is a variable and N denotes an
ordered set. Specifically, Ng is defined as the set of labelled fully unripe apples and Ng
as the set of labelled fully ripe apples. The sizes of N and Ng are 20 in this chapter.

e Intra-distance
For a random unlabelled apple, it is expected that the distance between the image
and its augmentations should be as small as possible. This ensures that the image

and its augmentations occupy a stable position between unripe and ripe items in
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the feature space. This intra-distance, denoted as Dy, is implicitly considered by

the loss Eq. (6.6).

For the set of labelled apples, it is assumed that unripe items should be closest
to other unripe items, and ripe items should be closest to other ripe items in the

feature space. To quantify this, it is defined as:

— The average distance between labelled unripe apples as D = Dy , where ¢, j €

2
Ng, A= Jk =1.
|Na| (|Ng| +1)
— The average distance between labelled ripe apples as D = D,,,., where i,j €
2
Ng, A= k=1
o |Ng| (|Ng| +1)

e Inter-distance
For labelled unripe and ripe apple images, unripe items should be as distant as
possible from ripe items in the feature space. To quantify this separation, the
average group-level distance between labelled unripe and labelled ripe apples is

computed, denoted as: D = D,q,, where i € Ng,j € Ng, A k=1.

= Vel el

Intra-distances evaluate the clustering consistency within each apple and its variants
in the feature space. Inter-distance measures the degree of separation between the two
labelled groups, while also providing insight into the depth of the feature space. The com-
putation of these two distances serves as a complement to the “swapped” prediction loss,
offering additional metrics for assessing the effectiveness of the learned representations.
This combination is also particularly useful for comparing the performance of different

self-supervised learning methods.

Training Details

In this chapter, the two views consist of a global view (high-resolution, 224x224 pixels)
and a local view (low-resolution, 112x112 pixels) augmentation. The extractors are
trained from scratch on a set of complete apples. The backbone of the extractor is
Res18 [106] to save the model size. The dimension of the output feature is set to 256, the
number of prototypes is 512, the temperature 7 is set to 0.1, and the number of Sinkhorn-
Knopp iterations is set to 3. No pre-trained weights are used, and the parameters of all

convolution layers are initialised by a normal distribution.

Evaluation Details

During the evaluation, the D,9,, Dy, and D,o, are reported, each bounded within the
range [0, 2|. Ideally, lower values of D, and Dy, indicate promising performance, as

they reflect the extractor’s ability to effectively process the labelled images under various
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augmentations. Besides, D,9, is expected to be significantly greater than Do, and Dy,
indicating that unripe apples from ripe apples are successfully separated in the feature
space. To help better compare the results, a simple distance difference is computed,
defined as (D,oq — Dya, — Dyg,), where higher values indicate better overall separation.
These three distances serve as metrics to evaluate how closely the extractor aligns with
the proposed aim outlined in 6.3.1. Specifically, extractors generate high-dimensional
features instead of final outputs. If the extractor has lower D,q,, Dy, values and a
higher D,9, value, then it is promising but does not promise to produce better final
results. Because high-dimensional features are then processed by the predictor for final

results, the design of the predictor is also a big factor that influences final results.

6.3.4 Predictor

A simple 3-layer MLP predictor is employed to predict the ripeness score from the ex-
tracted features. The network consists of three fully connected layers, with dimensions
set to [IV, 128, 100, 1], where N represents the feature dimension from the extractor.
Each layer, except the final one, is followed by a ReLU activation function. The final
layer is a fully connected output layer with a single neuron, which produces the ripeness
score R. This score is then normalised to fall within the range [0.0, 1.0]. This architec-
ture effectively reduces the dimensionality from input space to a single scalar value while
leveraging ReLLU non-linearity to capture complex relationships between the features,

ensuring robust and accurate predictions. The illustration is shown in Fig. 6.10.

Training Details

During training, the weights of the feature extractors are frozen, and only the weights of
the predictor are updated. The predictor is trained from scratch using the labelled images
only. The loss function calculates the MSE between the one-hot encoded predictions and

the ground truths from labelled images.

Evaluation Details

The mean values Zgyeen, and T,eq, along with the variances sf]reen and sfed of labelled fully
unripe and fully ripe apples are selected as evaluation metrics. Ideally, the model is
expected to predict a score of 0.0 for fully unripe apples and 1.0 for fully ripe apples.
These metrics align with human sense, where higher values correspond to riper apples.
The range of prediction values indicates that the apple ripeness prediction is treated
as a regression task rather than a multi-class classification task. As a result, the App-
1eSSL generates continuous predictions instead of discrete ones. It avoids the inherent
discontinuities of discrete classification and allows for a smooth representation of the

apple ripeness distribution, providing a more nuanced understanding of ripeness levels.
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Additionally and importantly, the distribution of ripeness score predictions is plot-
ted along with dense apple images, and these predictions on the extracted features are

visualised for better interpretation.

6.4 Experiments and Results

6.4.1 Experiments

In this chapter, experiments are conducted based on PyTorch Lightning 2.0.0 [66] and
have been carried out using Python 3.9.13 and PyTorch 1.13 on a computer with the
specifications shown in Table 3.4..

An SGD optimiser was employed with a weight decay of 5 x 107° and a momentum
of 0.9. Different initial learning rates, ranging from 0.0001 to 0.06 were explored across
different models to identify the optimal value for achieving the best performance.

The default patience setting for the reconstructor and extractor is set to 30 epochs to
optimise training time, meaning the model will terminate training if no improvement in
metrics is observed after 30 epochs. In contrast, the patience for the predictor is set to 3

epochs to minimise the risk of overfitting.

Table 6.1: The results of reconstruction.

Image/Mask PSNR? Params

Model Size (dB) SSIM? (M)
224/16 25.14 0.73

ViT-B 111
2 224/32 22.00 0.67
= 224/16 25.71  0.74

ViT-L 329
224/32 21.24 0.67
1927/16 24.40 0.74

=  SwinT 89.9
= 1927/32 21.47 0.72

S ViT-B 224/16 25.36 075

(AppleSSL) 224/32 2127 0.69 '

t follows the pre-trained SwinT setting with a window size of 6.

6.4.2 Reconstructor
Comparison

The proposed reconstructor is compared with MAE. The numerical results and visual

comparison are shown in Table 6.1 and Fig. 6.12.
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For MAE models, ViT-Base (ViT-B) with a mask size of 16 achieves a PSNR of
25.14 and an SSIM of 0.73. When the model size increases to ViT-Large (ViT-L), the
performance improves, with ViT-L achieving the highest PSNR of 25.71 and an SSIM
of 0.74. However, this improvement comes at the cost of significantly larger parameters,
increasing from 111M to 329M.

For SimMIM models, the proposed reconstructor with ViT-B achieves the highest
SSIM of 0.75 and the second-highest PSNR of 25.36, while utilising only 86.3M param-

eters. Notably, the proposed reconstructor has the smallest parameter count, requiring

less than one-third of the parameters of MAE with ViT-L, but delivering very comparable
performance.

From the visual comparison, it is observed that with the same input image and mask-
ing strategy, ViT-L produces the best reconstructions, while ViT-B delivers similar but
reasonable results.

It is well-known that larger models deliver better performance, as they can learn
and store more information. However, the small performance difference observed here is
acceptable when considering the significant disparity in model size. Increasing the model
size excessively for tiny marginal performance gains is not a practical choice for this study.

Compared to the standard ViT, using SwinT as the backbone yields inferior perfor-
mance in this study. It is hypothesised that this is due to the hierarchical structure of
the SwinT, which processes image patches locally using smaller patches and gradually
expands the receptive field. This local processing may disrupt the consistency of infor-
mation within the expanded receptive field, as illustrated in the first row of Fig. 6.12.

The results highlight the significant impact of mask size on performance, with larger
mask sizes consistently leading to degradation across all models. The original SimMIM
identifies a mask size of 32 as optimal, but based on the experiments, the performance
drops substantially with a mask size of 32 compared to 16. A mask size of 16 proves to
be the most suitable for reconstructing missing apple parts. It is suggested that a mask
size of 32 lacks flexibility, as it is too large to effectively cover the missing patches and
introduces excessive noise into the visible patches.

Overall, the proposed reconstructor achieves a favourable balance between perfor-

mance and efficiency, providing valuable information for subsequent ripeness prediction.

Visualisation

Then, the reconstructor is tested with incomplete apple images under different settings.
The visualisation is shown in Fig. 6.13. The ground truths of these input images are
unknown, but the detailed progress for each reconstruction is shown in the visualisations.

The various cases show diverse environmental and lighting conditions affecting the

visibility and appearance of apples:
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SwinT
192/16

SwinT
192/32

ViT
224/16

ViT
224/32

masked image SimMIM Base MAE Base MAE Large
(Ours)

Figure 6.12: The reconstruction comparison using different models and mask sizes.

Very limited visibility
In cases (a) and (c), the majority of the apples are obscured, resulting in visible
rates of less than 30%.

Different occlusion sources
In case (g), the apple is hidden by the trunk, while apples in other cases are covered

by leaves.

Lighting conditions
In cases (a), (c), (i), and (j), the apples are shaded from direct sunlight, while in
cases (d), (e), (k), and (1), they are exposed to direct sunlight.

Shadows and light patterns
In cases (e), (g), (h), and (k), direct shadows, light-stripes or light-spots are ob-

served on the apples, creating complex light patterns.

High contrast conditions

In cases (e), (k), and (1), the apples exhibit strong contrasts between light and
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shadow, presenting challenging illumination scenarios.

e Backlighting effects
In cases (b) and (g), the apples are positioned against the light source, resulting in

unique lighting angles and potential silhouette effects.

e Uniform colour

In cases (a), (c), (d), and (f), the apples are predominantly of a single colour.

e Gradual colour transitions
In cases (b), (e), and (h), the apples showcase significant continuous colour varia-

tions, introducing additional complexity in visual features.

The proposed reconstructor demonstrates its reliable ability to effectively predict oc-
cluded apple parts under various conditions, including different illumination levels, oc-
clusions, and ripeness stages in the above cases.

It is suggested that the model trained on a diverse set of apple images in various
settings is able to accurately predict the occluded parts of incomplete apples. This
enables the use of the trained model to reconstruct missing parts without the need for

manually designed fruit shapes or handcrafted features.

6.4.3 Extractor

The extractor serves as a critical component of the proposed method, acting as a bridge
between the input images and the predictor. To evaluate the performance, the pro-
posed extractor is compared against 15 other self-supervised methods and a supervised
binary classification model. For the binary classification model, MSE loss is employed
as the loss function, while the self-supervised methods utilise their respective original
loss functions, including negative cosine similarity loss, normalised temperature-scaled
cross-entropy loss (NT-Xent loss), and other customised loss functions. The comparative
results are presented in Table 6.2.

Res18 is selected as the backbone for most of the self-supervised methods, as it is more
lightweight compared to the commonly used Resb0. For MSN and PMSN, ViT-Small is
used, following their respective model designs. The output dimensions for each method
are kept consistent with their original configurations.

The results demonstrate that supervised binary classification and several self-supervised
methods demonstrate strong performance in separating fully unripe and fully ripe apples
within the feature space. However, certain self-supervised methods, such as DCL, DCLW,
MSN, PMSN, and VICRegL, fail to meet expectations for this task. Their D,o, values
are smaller than D,9, and Dy, indicating an insufficient separation between unripe and

ripe apples, thus they are excluded from being incorporated with the predictor.



121

"K}LIRTIUIIS OUIS0D OATYRTON ‘SON 4
"IoAR] pojoounod AN 0U3 910§9( IoAe[ 9U} WO PIJOBIIXS SOINJedJ SUISL ‘[opout pestatodns AJuo 93 SI uUoIyedyIsse[o Areurq

LTT 019270 7¥88°0 SIPZ'0 9TSE'0 96T SSO[ AYMS 81s9Y  (T18Serddy) AVmg
L0 800" 21090 TP99°0 8G90 S sso[ TSNIDIA SIS [21] TSoUDIA
791 10L1°0- 6VST'0  ¢TlI'0  STST0 41e sso[ 80YDIA TS0y [11] 89UDIA
66T 6730 98650  9£8€°0 66770 96z SS0[ ODLL, 1soY [cze] 0oL
LT €000°0- 10000  €000°0 T000°0 78E ssol NSINd S-LIA [¥] NSINd
8L 769L°0- 8L60'T  GLOT'T L6690 96T $S0[ NSIN S-LIA ] NSIN
L'€T 1T€€°0 9FOT'T 68920  9F0S0 S ssol ONIA 180y [62] ONIA
Q11 L9LGT- 0888°0  FIOF'T  Z€O0'T (41 sso] poyySom IO §TSOY [00g] WTOA
Q11 6LIT'T- L0ZL°0  €6T0°T  T6TR0 4xe sso] DA 150y loog] TOa
¢TI STYT°0 €869°0 99620  69LT0 41e SO X -TN 8150y l9¢] y1OUmS
611 €911 0- 980T'T TLE8°0 6LSE0 8z1 SSOT JUOX-T.N SIEEH| [29] WIONN
¢TIl 9r9F°0- 8996'0  TELS'0  €85C0 41e SSOT YUY -T.N SIEE | [70T] 0DOIN
L€T 9T 0 6969°0 GE0Z'0  SSFT0 S SSOT YUY -T.N 81soY [82¢] TDdsue(g
¢el €LES°0 780L°0  F6ST0  STI00 96z sS0[ SON 180y [8¢] wrergung
Q1T €€80°0 0LET0  TEO00  F0S00 8z1 sSO[ SON 180y [Tgg] wreigisey
i 1000°0- 8€00°0 9000 20000 96z SS0[ ;SON 8150y [06] TOAL
AN €620°0 1662°0 60900 SSYT0 218 ssol SN 8180y ; Areurgy
mamwmw gt (*a-*=a-""a) |"™a 1°%a 1*'q |uosuswiqg SsO] suoqpeg 1030RIIX

Chapter 6. AppleSSL: A Novel Self-supervised Method for In-field Occluded Apple

Ripeness Determination

"SI0)ORIIXO JUOIOHIP JO SINSOI 9dURISIP O, g9 ORI,



122 6.4. Experiments and Results

The binary classification model achieves the D,q, (0.2391) greater than both D,
(0.1488) and Dgo, (0.0609). These results suggest that unripe apples are distributed
more densely than ripe apples. The proposed method achieves the D,y  of 0.8844, which is
significantly greater than D, (0.3816) and D,, (0.2418), demonstrating a better balance
between the clustering of ripe and unripe apples compared to binary classification.

While PMSN achieves the smallest Dy, and D,o,, its D9, equals D,o,, indicating
that it does not effectively separate unripe and ripe apples in the feature space. NNCLR
achieves the highest D,, of 1.1086, but the margin relative to its D,s, and Dy, is
insufficient to ensure a clear separation.

SimSiam achieves the highest distance difference of 0.5373, with a remarkably low
D, of 0.0118. It is noted that DINO also demonstrates a balanced distribution be-
tween unripe and ripe apples, reflecting its ability to achieve meaningful separation. In
contrast, the binary classification method yields a distance difference of only 0.0293 due
to imbalanced Dgo, and D,,. The proposed extractor achieves a distance difference of
0.2610, significantly outperforming the binary classification approach by a large margin.
It also surpasses several other self-supervised methods, showcasing robust performance
in separating unripe and ripe apples.

Regarding model size, introducing complex backbones, such as ViT-Small (ViT-S)
with 27.8M parameters, does not bring noticeable improvements. It is suggested that this
is because the task of this study is relatively simple, making heavy backbones prone to
over-fitting. Additionally, the binary classification model only occupies 11.2M parameters
as a result of no extra modules being introduced. The proposed method is with 11.7M
parameters, incorporating additional parameters for the extra branch and prototypes C.
Despite this, the proposed model remains more compact than many other self-supervised

methods while delivering superior performance.

6.4.4 Predictor

Comparison

The 12 extractors with D,9y > Do, and D,9y > Dgo, were selected to extract image
features for the predictor. The performance of the predictor is summarised in Table 6.3.
The proposed method demonstrates the best overall performance, achieving the lowest
Zgreen 0of 0.0127 and szreen of 0.0001, along with the highest Z,.q of 0.8933 and the second-
highest sfed of 0.0094. In contrast, the binary classification model yields a Zgycer, of 0.2460
and a Z,.q of 0.7258, indicating its comparatively weaker capability in predicting ripeness
scores.

The results further highlight that some self-supervised methods outperform the binary
classification model. For example, TiCO achieves competitive results with the lowest s2_,

of 0.0034 and the second-lowest Zg,cen, of 0.0127. DINO delivers a Zgpeen, of 0.1798 and a
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Table 6.3: The results of predictor using features from extractors.

Extractor Tgreen 4 ngen b Zrea ™ S3,1
Binary 0.2460 0.0037  0.7258  0.0098
BYOL 0.0636  0.0017 0.6383 0.0414

FastSiam 0.5336  0.0014 0.8011  0.0052
SimSiam 0.2375 0.0011  0.7302  0.0047
DenseCL 0.3329 0.0031 0.7440 0.0185
MoCo 0.1964 0.0055 0.6536  0.0145
NNCLR 0.1194 0.0012 0.7821 0.0162
SimCLR 0.0607  0.0012 0.7548 0.0169
DINO 0.1798  0.0037 0.8208 0.0161
TiCo 0.0444 0.0005 0.7606 0.0034
VICReg 0.0893 0.0011 0.7121  0.0070

SwAV(AppleSSL) 0.0127 0.0001 0.8933 0.0094

Zreqg Of 0.8208. Similarly, VICReg and SimCLR produce relatively low Z g ec, values and

high Z,.q values.

Visualisation

To present the results more clearly, the ripeness score predictions are visualised in Fig. 6.14.

The analysis of these predictions is conducted from the following three perspectives:

e Prediction continuity
The dataset contains apples at various ripeness stages, with 40 labelled fully unripe
and fully ripe apples used for training. Consequently, the predictions are expected
to span the entire range of scores, from 0.0 (unripe) to 1.0 (ripe), reflecting a

continuous progression.

Among the evaluated methods, the proposed approach uniquely achieves seamless
and continuous predictions across the entire score range, accurately representing
all ripeness stages. Other methods, including NNCLR, DINO, SimCLR, VICReg,
and the binary classification model, also approximate full-score predictions but
exhibit gaps, with certain score intervals missing in their outputs. This discontinuity

indicates limitations in capturing the smooth progression of ripeness.

e Prediction distribution
Like many large image datasets, including the previous NinePeach dataset, the

apple dataset should exhibit a “long-tail” distribution. This reflects the natural
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Figure 6.14: Ripeness score R predictions for complete apple instances, with intervals of
0.1 and at most 40 items displayed per score.

tendency for unripe apples to outnumber ripe ones due to factors such as natural

fruit-falling and artificial fruit-thinning.

Several methods, including binary classification, FastSiam, SimSiam, DenseCL,

MoCo, and DINO, produce predictions with a Gaussian-like distribution. These
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methods do not generate sufficient predictions for unripe apples. Most predictions
fall in the semi-ripe range, indicating poor separation between unripe and ripe
apples. In contrast, the proposed method, along with BYOL, NNCLR, SimCLR,
TiCO, and VICReg, predicts ripeness scores following the expected “long-tail” dis-
tribution. The predicted number of apples gradually decreases from unripe to ripe,

effectively reflecting the natural progression of apple ripening.

e Colour gradient
A smooth colour gradient from unripe to ripe is an essential indicator of the accuracy
of ripeness predictions. Ideally, the gradient should transition smoothly from green

for unripe apples to red for fully ripe ones.

Some methods, including BYOL, FastSiam, MoCo, and VICReg, exhibit obvious
inconsistencies, as some green apples are incorrectly assigned scores over 0.5, sug-
gesting outliers in prediction. SimCLR and TiCO also face challenges, with semi-
ripe and ripe apples often mixed, making it difficult to tell. Notably, the proposed
method delivers a smooth and consistent colour gradient. The predictions start with
green on the left and gradually transition to red on the right, accurately reflecting
the natural ripening process. This demonstrates the robustness and precision of

AppleSSL in ripeness estimation.

3D Principal Component Analysis (PCA) is used to reduce the dimensionality of the

extracted features to three dimensions, with the visualisation presented in Fig. 6.15.

Among all of the visualisations, the proposed predictor stands out by generating a
smooth manifold where apple ripeness increases progressively. In the space, the labelled
unripe and ripe apples are distinctly separated, indicating high explainability for the

ripeness score predictions.

Since ripeness score prediction is a subjective topic, several volunteers including apple-
picking robot professionals and normal apple consumers, were invited to help evaluate the
performance. They were required to independently choose the best prediction from their
perspectives. The test was conducted anonymously, and ground truths were not disclosed
before test. All of the participants agreed that the proposed predictor and TiCO are the
top-performing methods. However, compared to the proposed predictor, although TiCO
shows a good colour gradient, it is unconfident with accurate predictions for ripe apples,
as a result of Z,.q of 0.7606.

The results further highlight that self-supervised methods can outperform supervised
binary classification. This underscores the ability of self-supervised models to learn latent
ripeness-related features from a large number of unlabelled images, significantly reducing

the need for manual labelling.
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6.5 Discussion

6.5.1 Transfer to Other Fruits

The proposed framework is not specific to apples and can be generalised to other fruits.
It is likely to transfer more easily to round fruits such as oranges or apricots, as the
reconstructor in this work is based on round shape estimation. Additional adaptation
may be needed when applying to non-round fruits like mangoes or strawberries, which
have more varied shapes. In such cases, it is necessary to design shape-estimating methods
to draw the possible shape of occluded fruits.

Examples of “fully unripe” and “fully ripe” fruits are also required to be specified. If
annotations at different ripeness levels (e.g., 25%, 50%, and 75%) are available, they can
be added to provide reference milestones. The proposed distance metrics can be easily
adjusted to incorporate these levels.

Overall, the framework is designed to minimise reliance on annotations, making it

feasible to transfer, particularly for round fruits with clear colour change during ripening.

6.5.2 Limitations

The apple images in this study were collected from a single Jazz apple orchard, which
may not represent the different varieties of apples. Despite extensive searches, no public
datasets that met the research requirements were found. This constraint has led to

reliance solely on the collected dataset.

(a) Peduncle and Calyx Prediction Deficiency. (b) Excessive-Occlusion Prediction Deficiency.

Figure 6.16: Two prediction deficiencies in the proposed reconstructor.

In terms of reconstruction, there are two prediction deficiencies, as shown in Fig. 6.16.
The first is peduncle and calyx prediction deficiency, the model cannot predict the apple
peduncle and calyx as expected. The second deficiency appears when excessive occlusion
occurs, with very limited visible information, the reconstructor can not perform well and

generate reasonable results.
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AppleSSL is designed for in-field apples that have significant colour changes during
their ripening process. Therefore, it is not suitable for certain apple cultivars like Granny
Smith, which remain green throughout all ripening stages. Additionally, it cannot be
applied to fruits that ripen after harvesting like bananas, or to those evaluated based on

softness like avocados.

6.5.3 Future Work

To improve the applicability of AppleSSL, the dataset is expected to be expanded by
including a more diverse range of apple varieties, capturing a broader representation
across different types.

AppleSSL demonstrates that it is feasible to use a single-view image to predict apple
ripeness. The next work is proposed to focus on extending this method to work with
multi-view images, which would allow more accurate ripeness estimation. This method
has the potential to be extended to other fruits that exhibit significant colour changes

during the ripening process, such as peaches.

Figure 6.17: The digital simulation of a large orchard, with apple locations and ripeness
monitored.

Besides, the proposed method is promising for deployment on in-field robots to capture
both the ripeness and spatial information of apples, making it possible to monitor the
ripeness distribution across a large orchard. This information can facilitate data-driven
decision-making for orchard management and then be used to guide autonomous picking
robots to selectively harvest ripe apples. Fig. 6.17 simulates such an apple orchard in a

3D digital environment.
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6.6 Summary

Developing apple-harvesting robots capable of identifying the ripeness stage of apples
is a challenging task, particularly because in-field apples are often obscured by leaves,
branches, or trunks. Determining apple ripeness is also challenging as it is subjective to
define the number of ripeness stages. Under this context, a novel self-supervised method
called AppleSSL is proposed, utilising 40 labelled and 7151 unlabelled apple images for
two problems: ripeness determination and in-field occlusion.

AppleSSL consists of three key parts: a reconstructor, a feature extractor, and a
predictor. The reconstructor is trained to restore the missing details of occluded apples,
enabling more complete visual representations. The feature extractor leverages a vast
number of unlabelled images to learn ripeness-related features effectively, reducing the
reliance on labelled images. Finally, the predictor uses the extracted features to generate
flexible ripeness scores between 0.0 and 1.0, eliminating the need for subjectively pre-
defined ripeness stages. This flexibility allows end-users to make customised decisions
according to their specific needs and criteria.

Experimental results highlight that AppleSSL achieves the highest SSIM of 0.75 and
the second-highest PSNR of 25.36 for reconstructing incomplete apples, with the fewest
86.3M parameters. Besides, AppleSSL outperforms 15 other self-supervised methods and
even a supervised method in ripeness score prediction, achieving the lowest score of 0.0127
for fully unripe apples and the highest score of 0.8933 for fully ripe apples.

AppleSSL is promising for integration into in-field robotic systems, enabling them to
determine ripeness effectively and selectively harvest only ripe fruits. Furthermore, it can
be used to monitor overall ripeness trends across large orchards, helping managers make
informed decisions about harvest timing and orchard management. AppleSSL contributes

to the goals of smart precision agriculture.



Chapter 7

Conclusions and Future Work

7.1 Research Summary

Precision agriculture is undergoing rapid development with the help of deep learning and
automation. This thesis sets out to explore how deep neural networks can be used to
estimate fruit ripeness based on images, aiming to create accurate and efficient models
that work directly in the field. Through the development of novel models designed for
peaches, strawberries, and apples, this research addresses practical challenges such as
heavy occlusion, limited labelled data, and the computational constraints of edge devices.

Looking back at the original objectives, designing high-performance, lightweight mod-
els for fruit classification and ripeness grading, this work has largely met its goals. The
proposed models demonstrate strong performance across species and conditions, and the
focus on efficiency supports future integration into mobile or robotic systems. However,
no approach is without its limitations. The reliance on fruit-specific datasets and the
need for detailed labels can restrict how easily the proposed models transfer to new fruits
or orchard settings. Moreover, while occlusion handling improved considerably, certain
edge cases remain challenging, such as peduncle and calyx prediction deficiency.

These reflections suggest areas for future improvement. Making models more general,
reducing the need for manual labelling, and improving performance on edge devices will
help move this work closer to everyday use in agriculture. With further development,
these tools can support growers in making better harvest decisions while saving time and
resources.

The comprehensive overview of this research is presented in Table. 7.1.

7.2 Key Contributions

This research delivers some contributions to deep learning for precision agriculture, of-

fering practical and efficient solutions for in-field fruit ripeness estimation, as outlined
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below:

e PeachSOLO: Developed a fast, lightweight instance segmentation model for peach
ripeness detection under natural occlusion and field complexity. It introduces the
NinePeach dataset (4599 images) and uses CBAM attention to achieve a 4.55% AP
gain over the baseline, enabling accurate pick-point estimation with lower resource

demands than Mask R-CNN.

e LightStraw: Proposed a compact CNN for strawberry segmentation on edge de-
vices, combining efficient self-attention and bipartite matching. It achieves an AP
of 70.22, over 21 points higher than Mask R-CNN, while significantly reducing

parameters and computation, supporting real-time robotic harvesting.

e FruitQuery: Designed a unified, lightweight Transformer-based model for ripeness
segmentation across peaches and strawberries. With 14.08 M parameters, it achieves
67.02 AP and outperforms 13 existing CNN and Transformer models, especially
under occlusion and variable lighting. The shared training approach reduces re-

dundancy and supports cross-species generalisation.

e AppleSSL: Introduced a self-supervised framework using minimal labels to esti-
mate continuous apple ripeness scores (0.0-1.0) under occlusion. With 86.3M pa-
rameters, it achieves 0.75 SSIM and 25.36 PSNR, outperforming 15 self-supervised

methods and enabling scalable orchard monitoring and harvest planning.

Together, these contributions provide a flexible and efficient toolkit for real-world fruit

analysis, advancing sustainable and automated agriculture through deep learning.

7.3 Limitations

While this research presents significant advancements in deep learning for fruit ripeness

determination, several limitations remain:

e Dataset Dependency and Generalisation: The models in this thesis rely on
well-annotated datasets, such as the NinePeach and apple datasets, which limit their
ability to generalise seamlessly to new fruit varieties or varying orchard conditions.

This necessitates further annotation efforts for every new scenario or fruit type.

e Computational Complexity: Some of the proposed models, particularly those
involving transformer-based architectures or self-supervised learning frameworks,
exhibit considerable computational overhead. This may limit their real-time ap-
plicability on edge devices or agricultural robots, where both inference speed and

resource efficiency are crucial.
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e Occlusion Handling: Despite improvements from attention mechanisms and self-
supervised techniques, occlusion remains a challenge, especially when parts of the
fruit, like the peduncle or calyx, are obstructed by environmental factors such as
branches or poor lighting. The models currently struggle to reliably detect and

segment occluded regions.

e Fruit Variety Limitation: The models are designed primarily for fruits with clear
visual cues for ripeness, such as peaches and apples. This restricts their applicability
to fruits that rely on internal characteristics (e.g., bananas or avocados) or those

that do not undergo significant colour change during ripening (e.g., Granny Smith

apples).

7.4 Future Work

To address these limitations and further improve fruit ripeness determination in real-

world applications, the following directions for future research are suggested:

e Multi-fruit Generalisation: Extending the proposed models to additional fruit
types and incorporating multi-modal data, such as hyperspectral or thermal imag-
ing, would enhance robustness and improve generalisation. This would make the
models more adaptable to diverse fruit species and varying orchard conditions,

which are common in practical agriculture.

¢ Real-time Deployment with In-field Robots: Optimising inference speed and
reducing the model size will be key to deploying these models on edge devices and
robots. Future work could integrate deep learning models with in-field robots for
selective harvesting. These robots need to operate under resource constraints and

require fast, reliable predictions to support selective harvesting.

e Active and Semi-supervised Learning: To reduce annotation requirements, fu-
ture work could explore active learning or semi-supervised learning methods. These
approaches could help reduce the need for extensive labelled datasets, enabling the
models to generalise better to new fruit types or orchard conditions without requir-

ing as much manual annotation.

e Advanced Occlusion Recovery: Although current attention mechanisms and
self-supervised techniques have shown promise, more advanced generative models,
such as diffusion models or neural radiance fields (NeRF), could be explored to
further enhance occlusion recovery. These methods have the potential to better
reconstruct occluded fruit regions and improve segmentation accuracy under chal-

lenging field conditions.
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e Integration with Foundation Models: Foundation models pre-trained on large-
scale datasets could be explored as backbones for feature extraction or reconstruc-
tion. These models may provide strong general-purpose representations that trans-
fer well to different fruit types or orchard environments, further reducing the need

for task-specific data collection and training from scratch.

By addressing these limitations, future research can enhance the scalability, efficiency,
and applicability of fruit ripeness estimation models, driving more sustainable practices

in precision agriculture.
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Appendix

This appendix includes several technical points raised during the viva examination.

LightStraw

e Question: Your architecture borrows a lot from VTs, is MRCNN a fair comparison
benchmark?
Answer: Although Mask R-CNN was proposed in 2017, it is still a widely used in-
stance segmentation model in various applications. On the other hand, similar work on
StrawDI_Db1 was based on Mask R-CNN, which makes it a suitable baseline for compar-

ison. Therefore, Mask R-CNN is a fair comparison benchmark.

AppleSSL

e Question: What is the occlusion ratio that can be confidently dealt with and makes
practical sense?
Answer: It is assumed that there was no clear boundary between confident and uncon-
fident occlusion ratios, as it depended on the specific occasion. As a result, in general, a

ratio of less than 60% was considered workable for most occluded applications.

e Question: How robust are the proposed distance metrics (e.g. have they been used in
other applications), and are there any alternatives?
Answer: The proposed distance metrics were based on cosine similarity, which was robust
and effective in self-supervised learning. As the distance metrics were custom-designed
for apple ripeness estimation with limited labelled data, they have not been applied to
other tasks. Alternatives include Mahalanobis distance and Silhouette score, but they do

not align well with this task.

e Question: There was some attempt at involving experts in the ripeness analysis, but it
was not very clear what the purpose of that exercise was. This should be described in
more detail and with clear outcomes/results.

Answer: There were some volunteers, including professionals and normal consumers,
involved in the ripeness analysis. The purpose of this exercise was to collect subjective
opinions on apple ripeness, which were then used to validate the proposed self-supervised

learning framework. As this test was simple and causal, the results were not included.
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e Question: There was a lack of comparisons to annotated instances corresponding to

different ripeness levels. At least some commentary on that would provide additional
insights.

Answer: In this work, only 20 fully unripe and 20 fully ripe apples were annotated.
It was very subjective to annotate different ripeness levels (e.g. 50%), which was the
problem this work aimed to solve. This work focused more on the global overview instead
of the local individual comparison. Therefore, there were no comparisons to annotated

instances at different ripeness levels.

Question: Is 1% a good figure to cite? Is 1% not dependent on the length of the dataset?
Answer: Yes, 1% is a valid and impactful figure to cite. It indicated that the manual
annotation can be reduced to 1% of the original dataset size, which was a significant
reduction. 1% was also dependent on the dataset, as it only made sense when paired with

the dataset size.
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