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Abstract

Fruits play a fundamental role in human nutrition, serving as a key source of essential

vitamins and minerals. However, the global fruit industry is facing a significant challenge:

the shortage of labour for harvesting, which remains a predominantly manual task. Au-

tomated fruit-harvesting robots present a promising solution to address this labour gap

and maintain stable production. These robots can operate continuously without fatigue,

yet they struggle to accurately assess fruit ripeness, which is a critical factor influencing

harvest quality and timing. While numerous laboratory-based techniques for evaluating

ripeness have been developed, their application in field settings is limited due to the

complex and variable conditions of real-world orchards.

To address these challenges, this thesis explores deep learning for determining fruit

ripeness through vision models and high-quality fruit image datasets. Specifically, this

thesis introduces NinePeach, a large dataset of peach images, and PeachSOLO, a one-

stage model designed for peach instance segmentation. PeachSOLO achieves an average

precision (AP) of 72.12, surpassing Mask R-CNN (69.91 AP). This thesis then proposes

LightStraw, a lightweight model for strawberry instance segmentation. It requires con-

siderably fewer parameters (17.42M) and floating-point operations (78.3G) than Mask

R-CNN (35.08M/877.4G). This thesis also combines peach and strawberry images into a

single dataset and proposes a query-based segmentation model FruitQuery. FruitQuery

achieves the best AP of 67.02 with only 14.08M parameters, outperforming 13 other

models with 33 variants, including three series of YOLO. Finally, this thesis develops

AppleSSL, a self-supervised method for assessing in-field apple ripeness under occlusion.

Using less than 1% labelled images, AppleSSL reconstructs obscured parts and provides

ripeness scores from 0.0 to 1.0, surpassing 15 other self-supervised methods and one

supervised method.

Overall, this thesis demonstrates that deep learning can enable practical, accurate, and

efficient ripeness estimation in real-world environments, supporting robotic fruit picking

and contributing to smart, precision agriculture.
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Chapter 1

Introduction

1.1 Research Motivation

Fruits are an important part of the human diet. Fruit ripeness determination is a critical

task in modern agriculture, directly influencing harvest timing and overall fruit qual-

ity across both pre- and post-harvest stages. Accurate ripeness assessment not only

informs precise fertilisation schedules, crop health monitoring and yield estimation in

the pre-harvest phase, but also supports grading, storage, and transportation decisions

to minimise spoilage in the post-harvest phase [132]. Traditional ripeness determina-

tion methods, such as manual inspection or biochemical analysis, suffer from several

limitations, including subjectivity, labour intensity, and poor scalability for large-scale

production systems due to the need for specialised and expensive equipment. These chal-

lenges are further complicated by the need for non-destructive techniques that preserve

fruit integrity while delivering consistent and reliable assessments across different fruit

varieties and environmental conditions.

Deep learning, a subset of artificial intelligence (AI) characterised by its ability to au-

tomatically learn hierarchical feature representations from raw data, holds great promise

to overcome these constraints. By leveraging neural networks and other architectures,

deep learning can extract complex patterns directly from images, eliminating the need

for handcrafted features and reducing dependence on domain-specific expertise [118].

The motivation of this research is to explore deep learning as a practical, precise, and

scalable solution for fruit ripeness determination. Specifically, the solution should enable

instance-level fruit recognition under complex, real-world conditions, such as occlusions,

lighting variation, and different viewing angles, while maintaining high accuracy and

generalisability. Furthermore, it should be lightweight and efficient enough for deployment

on in-field platforms, such as picking robots. Finally, the solution should also reduce

reliance on manual annotations and provide end-users the flexibility to make decisions

based on their own ripeness criteria.

1
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1.2 Problem Statement

Although deep learning has significantly advanced computer vision and has been widely

adopted across various agricultural applications, its application to fruit ripeness determi-

nation remains limited, with several critical challenges yet to be addressed.

First, most existing studies focus on fruit classification or object detection tasks, which

can identify the presence and category of fruit but fail to provide precise instance-level

localisation or shape information. Only a few studies have applied segmentation methods

in fruit-related tasks, and even fewer have explored their use in ripeness estimation. This

presents a significant gap, as instance segmentation can capture more detailed spatial

information that is critical for assessing subtle ripeness differences.

Second, most datasets in prior studies are relatively small in scale, consisting of only

a few hundred images, and are often made private. This restricts reproducibility, com-

parative evaluation, and broader academic progress. In the rare cases where instance

segmentation masks are publicly available, ripeness labels are absent. Moreover, in the

limited studies where fruit ripeness is considered, the task is commonly simplified to a

binary classification (unripe vs. ripe), which fails to reflect the multi-stage fruit ripening

process. This indicates the need for publicly available, high-quality datasets that combine

instance-level annotations with multi-category ripeness labels.

Third, segmentation models typically demand more computational resources than

classification or detection models due to the higher complexity of the task. However,

the need for lightweight models that are suitable for deployment on resource-constrained

platforms, such as picking robots or embedded agricultural devices, is often ignored.

The development of efficient, lightweight instance segmentation models for fruit ripeness

determination, therefore, remains an under-explored area.

Fourth, existing ripeness prediction methods largely depend on manually defined la-

bels, which are based on fixed visual criteria determined by annotators. Although it is

an effective and widely-used solution, these labels may not align with the preferences

of different end-users across regions, markets, or supply chains. Consequently, models

trained on such labels may lack adaptability in wide applications. There is a clear need

to explore alternative approaches to reduce reliance on human annotations and allow for

a more flexible, user-oriented ripeness assessment.

1.3 Research Contributions

This thesis makes several contributions to the development of deep learning methods

for fruit ripeness determination. These contributions directly address the key challenges

identified in the problem statement and correspond to the research objectives outlined

earlier. They are summarised as follows:



Chapter 1. Introduction 3

1. Creation and enhancement of datasets for ripeness determination.

A high-quality peach dataset named NinePeach is created and made publicly avail-

able. It contains 4599 images of nine peach cultivars at various ripeness stages,

captured under natural field conditions. To the best of the author’s knowledge, it

is the largest and most diverse peach dataset with instance-level ripeness labels.

In addition, a public strawberry instance-level dataset (3100 images) is extended

with different ripeness labels to facilitate its application in maturity assessment.

These two datasets are further combined to support multi-class ripeness determi-

nation under real-world conditions. Together, they serve as valuable benchmarks

for future research.

2. Proposal of a one-stage CNN instance segmentation model to predict

peach ripeness.

A novel one-stage CNN model called PeachSOLO is proposed for peach instance

segmentation. Unlike traditional two-stage approaches, PeachSOLO does not need

bounding box proposals as prior knowledge. It directly identifies peach instances by

their centre locations and sizes, and then predicts their categories at the same time.

The model incorporates both channel and spatial attention to improve object de-

tection capabilities in key channels and spatial locations. PeachSOLO outperforms

the state-of-the-art Mask R-CNN with 2.21 higher average precision points.

3. Development of lightweight Transformer-based fruit segmentation mod-

els for embedded devices.

Two lightweight models are developed to address the computational demands of seg-

mentation tasks. The first, named LightStraw, is an efficient CNN-based model for

strawberry instance segmentation. It adopts efficient self-attention for a lightweight

backbone to extract semantic features. The CoordConv and Instance Activation

Maps are introduced to add position and instance-aware weighted maps to the

model. LightStraw demonstrate efficiency by requiring much fewer parameters

(17.42M) and floating-point operations (78.3G) compared to Mask R-CNN (35.08M

/ 877.4G), making them suitable for deployment on embedded devices. The sec-

ond, named FruitQuery, is a query-based end-to-end segmentation framework that

combines convolutional features with Transformer decoders. Trained on the com-

bined peach-strawberry dataset, it supports multi-stage ripeness classification while

maintaining a small model size. FruitQuery achieves the highest average precision of

67.02 with only 14.08M parameters, outperforming 13 state-of-the-art models with

33 variants. Both models achieve competitive accuracy with significantly reduced

parameters and computational cost, making them suitable for use on resource-

constrained or embedded devices in agricultural environments.
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4. Introduction of a self-supervised learning method to predict ripeness for

occluded apples with few labels.

A novel self-supervised framework, named AppleSSL, is introduced to estimate ap-

ple ripeness in scenarios where fruits are partially hidden by leaves or branches.

The method applies contrastive learning and image reconstruction tasks to learn

from a large number of unlabelled data, requiring only a small fraction of labelled

images. It generates a continuous ripeness score instead of discrete pre-defined cat-

egories, offering greater flexibility for end-users to make their decisions. AppleSSL

achieves the best Structural Similarity Index Measure of 0.75 and the second-best

Peak-Signal-to-Noise Ratio of 25.36 for reconstructing missing apple parts, whilst

using the fewest 86.3M parameters. It outperforms 15 other self-supervised meth-

ods and a supervised method in the ripeness score prediction, with the smallest

score 0.0127 for fully unripe and the highest score 0.8933 for fully ripe apples.

1.4 Publications

1. Zhao, Z., Hicks, Y., Sun, X., & Luo, C. (2023). Peach Ripeness Classification based

on a New One-stage Instance Segmentation Model. Computers and Electronics in

Agriculture, 214:108369. 10.1016/j.compag.2023.108369

• This work corresponds to Chapter 3.

• Contributions: Zhao, Z.: Methodology, Software, Validation, Visualization,

Writing, Data curation. Hicks, Y.: Methodology, Writing, Supervision. Sun,

X.: Methodology, Writing, Supervision. Luo, C.: Resources, Writing.

2. Zhao, Z., Hicks, Y., Sun, X. (2024). Faster Segmentation Models for Peach

Ripeness Determination. In Proceedings of the Cardiff University School of En-

gineering Research Conference 2024, pages 33–37. 10.18573/conf3.i

• This work corresponds to Chapters 3 and 4.

• Contributions: Zhao, Z.: Methodology, Software, Validation, Visualisation,

Writing, Data curation. Hicks, Y.: Methodology, Writing, Supervision. Sun,

X.: Methodology, Writing, Supervision.

3. Zhao, Z., Hicks, Y., Sun, X., McGuinness, B. J., & Lim, H. S. (2024). Lightweight

and Efficient Attention-based CNNModels for In-field Strawberry Instance Segmen-

tation. 2024 IEEE 20th International Conference on Automation Science and Engi-

neering (CASE), pages 3294–3299, ISSN:2161-8089. 10.1109/CASE59546.2024.10711802

• This work corresponds to Chapter 4.

https://doi.org/10.1016/j.compag.2023.108369
https://doi.org/10.18573/conf3.i
https://doi.org/10.1109/CASE59546.2024.10711802
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• Contributions: Zhao, Z.: Methodology, Software, Validation, Visualisation,

Writing, Data curation. Hicks, Y.: Methodology, Writing, Supervision. Sun,

X.: Methodology, Writing, Supervision. McGuinness, B. J.: Methodology,

Writing. Lim, H. S.: Methodology, Writing.

4. Zhao, Z., Hicks, Y., Sun, X., & Luo, C. (2025). FruitQuery: Lightweight Query-

based Instance Segmentation Models for In-field Fruit Ripeness Determination.

Smart Agricultural Technology, 12:101068. 10.1016/j.atech.2025.101068

• This work corresponds to Chapter 5.

• Contributions: Zhao, Z.: Methodology, Software, Validation, Visualisation,

Writing, Data curation. Hicks, Y.: Methodology, Writing, Supervision. Sun,

X.: Methodology, Writing, Supervision. Luo, C.: Resources, Writing.

5. Zhao, Z., Hicks, Y., Sun, X., McGuinness, B. J., & Lim, H. S. (2025). A Novel Self-

supervised Method for In-field Occluded Apple Ripeness Determination. Computers

and Electronics in Agriculture, 234:110246. 10.1016/j.compag.2025.110246

• This work corresponds to Chapter 6.

• Contributions: Zhao, Z.: Methodology, Software, Validation, Visualisation,

Writing, Data curation. Hicks, Y.: Methodology, Writing, Supervision. Sun,

X.: Methodology, Writing, Supervision. McGuinness, B. J.: Methodology,

Resources, Writing. Lim, H. S.: Methodology, Resources, Writing.

1.5 Thesis Outline

This thesis is divided into several chapters corresponding to the above main research

questions.

Chapter 1 – Introduction

This chapter introduces the background and motivation of the research, followed

by a problem statement. It outlines the research objectives, summarises the key

research contributions, lists relevant publications, and concludes with the structure

of the thesis.

Chapter 2 – Literature Review

This chapter reviews existing methods for fruit ripeness assessment. It begins with

the biological background of fruit ripening, followed by traditional approaches such

as colour inspection, spectral methods, and aroma analysis. It then discusses the

role of machine learning and deep learning, including self-supervised learning in

fruit ripeness determination, and highlights the current research gaps.

https://doi.org/10.1016/j.atech.2025.101068
https://doi.org/10.1016/j.compag.2025.110246
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Chapter 3 – PeachSOLO

The chapter introduces the NinePeach dataset, a large, high-quality collection cap-

turing real-world conditions like varying light, fruit adhesion, and occlusion. This

chapter also presents PeachSOLO, a one-stage instance segmentation model for

peach ripeness classification. It integrates channel attention and spatial attention

to enhance feature representation, enabling accurate detection under complex con-

texts.

Chapter 4 - LightStraw

This chapter proposes lightweight, efficient CNN models for strawberry instance

segmentation. The models integrate efficient self-attention and novel components

to enhance positional and instance-level understanding. Their accuracy and com-

putational efficiency are validated through extensive experiments.

Chapter 5 – FruitQuery

This chapter combines peach and strawberry datasets and introduces FruitQuery,

a lightweight, end-to-end query-based instance segmentation model for multi-stage

ripeness determination. The model combines convolutional features with Trans-

former decoders. Experimental comparisons show that the model outperforms 13

other models with 33 variants, highlighting its competitive accuracy and low com-

putational cost.

Chapter 6 - AppleSSL

This chapter presents a self-supervised framework, AppleSSL, with a reconstructor,

feature extractor, and predictor for in-field occluded apple ripeness. Trained on a

limited number of labelled data (<1%), it reconstructs missing parts and predicts

continuous ripeness scores, outperforming 15 self-supervised and one supervised

methods. It demonstrates good performance under occlusion and shows the ability

to cover different ripeness criteria from different users.

Chapter 7 - Conclusions and Future Work

The final chapter summarises the main findings and contributions of the thesis. It

also discusses the limitations of the current work and suggests potential directions

for future research.



Chapter 2

Literature Review

2.1 Background of Fruit Ripeness

2.1.1 Introduction

Fruits are an essential part of the human diet, providing vital nutrients such as vitamins,

minerals, and antioxidants that contribute to overall health and well-being. They play a

foundational role in supporting growth in children and sustaining physiological functions

across all ages [249]. Regular fruit consumption has been shown to help prevent various

forms of malnutrition, including under-nutrition and obesity, and reduce the risk of non-

communicable diseases [67]. Given their nutritional significance, ensuring that fruits reach

consumers in an optimal state is necessary for maximising health benefits and maintaining

market value.

Food waste remains a significant global challenge, especially in the context of a growing

global population. Food and Agriculture Organisation of the United Nations (FAO)

estimated that one-third of all global food production is lost or wasted, with fruits and

vegetables being among the most wasted food categories [31]. This not only causes severe

environmental damage but also exacerbates food insecurity.

Pre-harvest

• In-field
• Fertilisation
• Health monitoring
• Yield estimation
• Selective harvesting

Ripeness

Producer Consumer
• Off-field
• Grading
• Storage 
• Transportation
• Retail

Post-harvest

H
ar

ve
st

in
g

Figure 2.1: Ripeness is a key factor throughout the whole process of fruit production.
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A major factor contributing to this wastage is improper harvesting and storage prac-

tices, which result in substantial losses along the supply chain. World Wide Fund for

Nature UK (WWF-UK) reveals that up to 14% of total food production is lost post-

harvest based on total harvest weight, including at retail stages, with 8.3% wasted at or

around harvest and 7.0% during farm-stage post-harvest activities [290]. It is estimated

that the food lost on farms alone is enough to feed the world’s undernourished population

almost four times over [289].

Building on the issue of fruit waste, one of the key factors influencing losses is ripeness.

The ripeness of fruit plays a crucial role throughout its entire production lifecycle from

pre-harvest to post-harvest, directly affecting harvest timing and consumer satisfaction,

as shown in Fig. 2.1.

In the pre-harvest stage, fruit ripeness is considered by producers to schedule precise

fertilisation, monitor crop health and estimate the yield. It also helps the development

of selective harvesting, one practice of precision agriculture, ensuring that fruits are har-

vested only when grown with the desired flavour, texture, and nutritional profile [208].

In the post-harvest stage, ripeness continues to play a vital role before the fruits reach

consumers. Activities such as grading, storage and transportation have to take ripeness

into account, as overripe fruits are prone to spoilage during handling and moving, while

under-ripe fruits may fail to meet consumer expectations in terms of taste and appearance.

Effective ripeness management becomes critical to preserve product quality and maximise

value [132].

2.1.2 Biology of Fruit Ripening

Fruit ripening is a highly coordinated, genetically programmed, and irreversible natural

process involving a series of physiological, biochemical, and organoleptic changes. In

most cases, a green, hard and immature fruit becomes more colourful, softer, sweeter,

and aromatic [81]. For example, a green apple may turn red or yellow, while its flesh

softens and gains sweetness, making it ready to eat. These changes matter in farming

because they affect when fruits are picked and how good they taste for consumers.

The phenotypic changes during fruit ripening are complex and varied. Numerous

physical and chemical attributes can be quantified during ripening. These include size,

shape, texture, firmness, external colour, internal colour, the concentration of chloro-

phyll, starch, sugars, Soluble Solids Contents (SSC), Total Soluble Solids (TSS), oils,

and internal ethylene concentration [241]. Ethylene, for instance, acts like a signal to

start softening and colour shifts in fruits such as bananas or tomatoes. These traits help

farmers know the best time to harvest and ensure fruits meet market needs. The main

aspects of fruit ripening and relevant tools are summarised in Table 2.1.
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Table 2.1: Key aspects and tools for assessing fruit ripening characteristics.

Aspect Description Tools

Colour
[192]

Ripening fruits change colour due to the breakdown
of chlorophyll (green) and the synthesis of carotenoids
(yellow/orange) and anthocyanins (red/purple).

Imaging,
Spectroscopy

Volatiles
[295]

Ripening fruits produce aromas through the metabolic
process. Compounds such as esters, alcohols, and alde-
hydes are closely linked to the fruit’s flavour.

GC-MS1,
E-Nose2

Texture
(Firmness)

[268]

Enzymatic, such as pectin methylesterase breakdown
of cell wall components such as pectin, cellulose, and
hemicellulose, softening of the fruit flesh.

Fluorescence

Sugar
Content
[254]

Hydrolysis of starch into simpler sugars like glucose,
fructose, and sucrose. This process is driven by en-
zymes, which contribute to the increase in sweetness.

Spectroscopy

Acidity
[175]

Organic acids such as malic acid and citric acid are
metabolised through respiration or converted into sug-
ars, reducing the fruit’s sourness.

Titration, pH

1 GC-MS: Gas Chromatography-Mass Spectrometry
2 E-Nose: Electronic Noise

2.2 Sensing Methods for Ripeness Determination

Based on the biology of fruit ripening, extensive research has been conducted on develop-

ing methods to determine fruit ripeness over recent decades. Most sensing methods rely

on non-destructive techniques, such as colourimetry, spectral imaging and spectroscopy.

Some of these methods are shown in Fig. 2.2, and a comprehensive summary is provided

in Table 2.2.

2.2.1 Colour Inspection

Colourimeters are analytical instruments designed to quantify the colour of the fruit

by measuring its absorbance or reflectance of specific wavelengths of light. They are

more accurate than human visual assessment using CIELAB colour space. This method

has been applied to various fruits, including apples [69], bananas [193], mangoes [125],

tomatoes [64], and peaches [70].

Visible imaging, by contrast, refers to the use of digital cameras to capture a two-

dimensional image in RGB colour space. It employs technologies such as charge-coupled

devices (CCD) or complementary metal-oxide-semiconductor (CMOS) sensors to detect

red, green, and blue wavelengths. For example, an approach was proposed to assess fruit

ripeness by extracting mean RGB values from four directional images of a fruit [55].
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[188]

[204]

[150]

[181]

[194]

[85]

[23]

[236]

[225]

[184] [203]

Figure 2.2: Some sensing methods used for determining fruit ripeness.

However, colourimeters require controlled lighting conditions and calibration, making

them less feasible for rapid, in-field assessments. Similarly, visible imaging struggles

with inconsistent results due to variations in illumination and fruit orientation, often

demanding extensive manual processing.

2.2.2 Spectral Imaging

Hyperspectral imaging (HSI) and multispectral imaging (MSI) represent two widely

adopted methodologies within spectral imaging.

HSI generates a three-dimensional imaging cube with images at a range of narrow,

contiguous spectral bands. A single spectrum can be extracted from each pixel, rep-

resenting the absorption properties and the textural information of fruit samples. For

instance, [75] collected HSI data on strawberries at early ripe and ripe stages, covering

a wavelength range of 370 to 1015 nm, with specific wavelengths of 530 nm and 604 nm
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selected for field samples, and 528 nm and 715 nm for laboratory samples.

MSI is similar but different from HSI, as it acquires a limited number of predefined,

discrete spectral bands, rather than capturing hundreds of spectral bands as in HSI. These

bands are typically wider and non-contiguous, designed to target particular spectral fea-

tures of interest, making MSI more computationally efficient and suitable for in-field

applications. For instance, [181] employed MSI with five wavelengths to correlate scat-

tering profiles with the firmness and SSC of apples, achieving a high correlation for both

quality attributes.

However, HSI requires significant computational resources and sophisticated equip-

ment, often limiting its use to laboratory settings and reducing real-time applicability.

MSI sacrifices spectral resolution for efficiency, potentially missing subtle ripeness indi-

cators, and requires careful band selection, which may not generalise across fruit types.

2.2.3 Spectroscopy

Spectroscopy is a fundamental analytical technique that examines the interaction of elec-

tromagnetic radiation with matter, widely employed in fruit quality assessment to evalu-

ate physicochemical properties. The sensing principle involves illuminating a sample and

capturing its spectral response, which reflects its chemical composition and structural

characteristics. Unlike HSI, spectroscopy typically acquires spectral data from a single

point or a small area, without spatial information. Near-infrared spectroscopy stands out

as the most prevalent method in this domain, offering rapid and non-destructive analysis

of fruit samples. For example, [32] highlighted its extensive application in determining

fruit quality attributes, such as ripeness and composition. In a specific study, [109] devel-

oped an automated classification procedure for peaches, utilising multispectral imaging

to compute ratio images (red at 680 nm divided by infrared at 800 nm), effectively distin-

guishing ripeness stages. Similarly, [201] investigated visible-near-infrared (450–1040 nm)

hyperspectral reflectance imaging to assess the internal properties and sensory attributes

of two varieties of nectarines, demonstrating its efficacy in quality monitoring.

However, spectroscopy-based methods often require expensive equipment and careful

calibration, which can restrict their use to controlled laboratory environments. Further-

more, their accuracy may vary across different fruit species.

2.2.4 Fluorescence

Fluorescence is an optical technique that leverages the emission of light from a sample

following excitation by specific wavelengths, offering a non-invasive approach to assess

fruit ripeness and quality parameters. This method relies on the detection of fluorescence

signals, often linked to compounds such as chlorophyll, which diminish as fruits ripen.

For example, [21] developed a fluorescence imaging system that measured emissions at
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690–740 nm, excited by UV-blue and red light, achieving strong correlations between flu-

orescence signals and quality attributes such as firmness and SSC in fresh apples, despite

minimal changes in skin hue. However, the same study noted weaker correlations for

peaches and nectarines, suggesting variability across fruit types. Notably, their system

did not require dark adaptation of samples, though it was designed exclusively for labo-

ratory use, highlighting limitations in its practical application. These findings underscore

fluorescence as a promising tool for ripeness determination, with its efficacy dependent

on fruit species and experimental conditions.

However, fluorescence relies on specialised equipment that is often confined to lab-

oratory settings, making it less suitable for field use. The technique’s sensitivity to

fruit-specific responses and the need for controlled conditions further limit its scalability

and real-time applicability.

2.2.5 Aroma

Aroma analysis is a key method for evaluating fruit ripeness and quality by detecting

Volatile Organic Compounds (VOC) using techniques such as Gas Chromatography-Mass

Spectrometry (GC-MS) and Electronic Nose (E-Nose) systems. These methods provide

valuable insights into the aromatic profiles that define fruit ripeness. For instance, the E-

Nose has been applied to monitor mandarin ripeness across different harvest dates, linking

VOC to quality parameters such as firmness, SSC, and acidity [84]. Similarly, GC-MS has

been utilised to characterise the aroma of bananas, identifying and observing the evolution

of critical VOCs during ripening and drying processes, where some compounds diminish

while others remain stable under varying temperature conditions [22]. Additionally, in

kiwifruit, GC-MS analysis of bound volatiles revealed fluctuations in VOC across under-

ripe, ripe, and over-ripe stages, although these compounds showed limited influence on

the characteristic aroma of ripe fruit [76].

However, aroma-based methods often require costly, sophisticated equipment and con-

trolled laboratory environments, restricting their use outside specialised settings. More-

over, the complexity of interpreting VOC data and the variability in compound detection

across fruit species can reduce their consistency and practicality for large-scale applica-

tions.

2.2.6 Summary

The sensing methods mentioned above provide detailed insights for fruit ripeness deter-

mination but come with notable limitations. Many of these techniques rely on expensive,

specialised equipment that can be cost-prohibitive for widespread adoption. They often

require controlled laboratory conditions, making them impractical for on-site or field use.

Additionally, the complexity of data processing and the need for precise calibration can
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slow down analysis, while variability across fruit types reduces their general applicability.

These constraints, high costs, lack of portability, and challenges in efficient implementa-

tion limit their scalability and accessibility.

2.3 Machine Learning for Ripeness Determination

2.3.1 Introduction

To overcome the limitations of sensing ripeness determination methods, researchers have

turned to machine learning (ML) techniques as an alternative. Machine learning enables

automated, non-destructive ripeness prediction by learning patterns from data, often

using visual features extracted from fruit images or simple sensor data.

This chapter introduces the foundations of machine learning in the context of fruit

ripeness estimation, outlines common model structures and workflows, and reviews their

typical applications. ML methods utilise knowledge-based insights and pattern recogni-

tion capabilities to enhance the accuracy of fruit ripeness determination. Unlike sensing

methods that rely on biochemical measurements, these methods enable non-destructive

identification and classification of fruit ripeness stages, often taking fruit images as inputs.

2.3.2 Concepts and Algorithms

Machine learning is a data-driven approach that builds models capable of learning from

examples. These models use training data to identify patterns and relationships, which

are then used to make predictions or classifications on new, unseen data [118].

A key feature of traditional ML methods is their reliance on feature engineering, which

is the manual extraction of meaningful attributes from raw data. These features, such as

colour histograms or texture descriptors, are often designed with domain expertise and

significantly influence model performance.

Common machine learning algorithms can be broadly divided into two categories:

supervised and unsupervised learning.

On the one hand, supervised learning algorithms are trained on labelled data, where

each input is paired with a known output. These models learn to map inputs to out-

puts and are widely used for classifying object categories or predicting scores. Typical

examples include Linear Regression [60], which models relationships between features,

and Support Vector Machines (SVM, 51), which are effective for binary or multi-class

classification problems. K-Nearest Neighbours (KNN, 52) predicts the output for a test

sample by identifying the K closest samples in the training data based on a distance met-

ric, while Artificial Neural Networks (ANN, 101) can capture more complex, non-linear

relationships, though they require more data and tuning. Näıve Bayes (NB, 282) is based
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on Bayes’ theorem, which assumes independence between features and is commonly used

for classification tasks.
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Figure 2.3: The example of using K-means to cluster fruits.

On the other hand, unsupervised learning methods work with unlabelled data, aiming

to uncover hidden structures or groupings. These are especially useful when labelled

training samples are unavailable. K-means clustering [186], for example, groups fruit

samples based on similarities in features like colour or texture, as shown in Fig. 2.3. It

is simple and widely used for preliminary data exploration. More advanced methods like

Gustafson–Kessel clustering [96] allow clusters to take on elliptical shapes, offering more

flexibility when object features are not evenly distributed.

Both types of algorithms provide different strengths depending on the availability of

data. However, their performance often relies on manually designed features, such as

colour histograms or texture descriptors, which may not fully capture the complex visual

patterns.

2.3.3 Applications

Machine learning has a wide range of applications, from email spam filtering and fraud

detection in finance to personalised recommendation systems, permeating many aspects

of daily life. For example, Logistic Regression was used to predict football match results

[222], and NB was applied to check whether social media contents express hatred for

people [136].

ML methods have also been applied to determine fruit ripeness, as summarised in

Table 2.3. Supervised learning algorithms such as SVM, KNN, NB, ANN, and various

regression models are the most frequently used. These methods are well-suited for clas-

sification and regression tasks where labelled data, such as predefined ripeness stages,

is available. They have been applied to fruits like avocado [44], blueberry [154], mango

[287], papaya [17], and tomato [64], often using features such as colour, texture, or spectral

signatures extracted from images or sensors.

Unsupervised techniques like K-means and Gustafson–Kessel clustering are commonly

used when label information is unavailable or difficult to obtain. These methods group

fruits based on similarities in visual or spectral features and have been employed for
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Table 2.3: Machine learning for fruit ripeness determination.

Fruit Machine Learning Methods References

Apple Random Frog 2020, [311]

Avocado SVM, KNN, Ridge Regression, Lasso Regression 2020, [44]

Banana K-means, Gustafson–Kessel 2012, [55]

Blueberries KNN, NB, Supervised K-means Clustering 2014, [154]

Grape KNN, SAE, Logistic Regression, Decision Tree 2018, [240]

Mango K-means, NB, SVM 2022, [287]

Oil palm fruit Fast Fuzzy C-means 2024, [228]

Papaya KNN, SVM, NB 2021, [17]

Peach ANN, LDA, Random Forest 2022, [173]

Pear SAE 2018, [303]

Tomato SVM, LDA 2015, [64]

Abbreviations: LDA (Linear Discriminant Analysis), KNN (K-Nearest Neighbours), NB (Näıve
Bayesian), SVM (Support Vector Machines), SAE (Stacked Auto-Encoders), ANN (Artificial Neural
Network)

bananas [55] and mangoes [287], among others. [311] also incorporates a hybrid ap-

proach that combines supervised classifiers with feature selection techniques, to reduce

dimensionality and predict apple ripeness.

Across all applications, these models demonstrate flexibility in handling different data

types and fruit species. However, they typically rely on manually designed features

and domain-specific knowledge, which may limit their scalability and performance when

applied to more complex or diverse datasets.

2.3.4 Summary

Machine learning offers a flexible and efficient alternative to sensing ripeness determi-

nation methods. Its ability to work with visual and sensor data makes it suitable for

real-time, non-destructive ripeness assessment in both laboratory and field conditions.

Though ML models are generally lighter and more interpretable, they rely more heav-

ily on manually engineered features and may struggle with complex, high-dimensional

data. These challenges have led to the growing use of deep learning methods (discussed

in the next section), which aim to automatically learn more robust features directly from

raw data.
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2.4 Deep Learning for Ripeness Determination

2.4.1 Introduction

Deep learning (DL) is a specialised subset of ML that focuses on building models using

artificial neural networks with multiple layers. While both are subfields of artificial in-

telligence (AI), deep learning distinguishes itself by its ability to automatically extract

features and learn hierarchical representations from raw data, often achieving superior

performance in complex tasks. The relation between DL, ML and AI is shown in Fig. 2.4.

1950 1960 1970 1980 1990 2000 2010 2020

Deep learning

Machine learning

Artificial Intelligence

Figure 2.4: The relation between deep learning, machine learning and artificial intelli-
gence.

Inspired by the structure and function of biological neural networks, deep learning

models focus on developing systems capable of simulating humans’ cognitive functions

like learning and decision-making. It is also called a deep neural network or deep neural

learning [118]. A biological neural network is illustrated in Fig. 2.5. This inspiration

has led to the development of DL, which is capable of solving problems in vision and

language.

orange

Figure 2.5: A biological neural network.

Deep learning distinguishes itself by automatically learning features from data through

multi-layer neural networks, eliminating the need for extensive manual feature engineer-

ing. The term “deep” is because the structure of artificial neural networks consists of

input, output, and multiple hidden layers [118].

Each layer contains units that transform the input data into features that the next

layer can use for a specific predictive task. Features extracted by each layer progress from
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Figure 2.6: A deep learning network for image classification.

simple to complex. For instance, in image processing tasks, initial layers may capture

edges and textures, intermediate layers learn structural patterns, and final layers grasp

semantic information [20]. Thanks to this structure, deep learning can automatically

extract features from raw data, learn hierarchical representations, and analyse complex

patterns. A simple example of deep learning is shown in Fig. 2.6.

Deep learning does well with large datasets and powerful computational resources, us-

ing backpropagation algorithms to optimise large model parameters for high-dimensional,

nonlinear data. It has been successful in various tasks, such as image recognition, natural

language processing, and speech recognition [118].

2.4.2 Deep Learning Structure

Fig. 2.7 shows a typical structure of a deep learning model. A deep learning model usually

consists of five essential components: a network (an input layer, hidden layers, and an

output layer), a loss function, regularisation, a learning rate scheduler and an optimiser

[118]. Each of them plays a distinct role in processing data and making predictions.

Network

A typical network comprises an input layer, hidden layers and an output layer. Layers

are the fundamental building blocks of deep learning models, determining how data is

processed and transformed as it moves through the network [118].

First, the input layer serves as the starting point of the model, which takes raw data

like images and processes it into vectors or tensors. Its structure is determined by the

number of features in the input data, such as pixel values. Second, the hidden layers form

the core part of the network. They consist of multiple layers that progressively transform
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Figure 2.7: The typical structure of a deep learning model.

and extract features from the input. These layers learn hierarchical representations, with

earlier layers capturing basic patterns (e.g., edges in images) and deeper layers identifying

more complex structures or semantics [102]. Third, the output layer generates the final

prediction based on the processed information. For example, in classification tasks, the

output is the probabilities for each class, while in regression tasks, the output is continuous

values.

Table 2.4 summarises some common deep learning networks for different tasks. This

thesis mainly focuses on computer vision tasks.

Activation Function

Activation functions are crucial components of deep learning models as they introduce

nonlinearity into the network, enabling it to learn and represent complex patterns in

data. Without activation functions, the entire model would behave like a linear function,

regardless of the number of layers, limiting its ability to solve non-linear problems [118].

Some common activation functions are shown in Table 2.5. For example, Rectified

Linear Unit (ReLU) is a popular activation function that helps address the vanishing

gradient problem.

Loss Function

The loss function measures the discrepancy between the predicted outputs and ground

truths, providing feedback for optimisation. This measurement is used to compute gra-
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Table 2.4: Common deep learning networks.

Network Description Task

CNN [146]
Uses convolutional layers to capture spatial hier-
archies in images.

Computer Vision

RNN [237]
Processes sequential data by maintaining a mem-
ory of previous time steps.

Time Series
Forecasting

Transformer
[271]

Uses attention mechanism to capture relation-
ships between input elements.

Natural Language
Processing

ViT
[59]

Applies transformer architecture to the image by
processing the image into patches and sequences.

Computer Vision

GAN
[87]

Generates realistic data by training two networks
in competition: a generator and a discriminator.

Generation

Autoencoder
[9]

Learns to compress data into a lower-dimensional
representation and then reconstruct it.

Compression

Abbreviations: CNN (Convolutional Neural Network), RNN (Recurrent Neural Network), ViT (Vi-
sion Transformer), GAN (Generative Adversarial Network)

Table 2.5: Common deep learning activation functions.

Sigmoid Swish Softmax ReLU Tanh
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dients through backpropagation, which quantifies how each model parameter contributes

to the error [118]. Effective loss functions not only reflect the problem’s requirements but

also impact the model’s convergence rate and overall performance. A well-chosen loss

function ensures that the optimisation process aligns with the intended goals, improving

the model’s ability to generalise [20].

Some common loss functions are listed in Table 2.6. For example, cross-entropy loss

is often used for classification, while mean squared error is suitable for regression tasks.

Optimiser

Optimisers are algorithms that are designed to adjust the network’s parameters to min-

imise the loss function. Optimisers calculate updates to model weights based on gradients
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Table 2.6: Common deep learning loss functions.

Loss Formula* Task

Mean Squared Error
(MSE) Loss [118]

1

N

N∑
i=1

(yi − ŷi)
2 Regression

Cross-Entropy (CE)
Loss [20]

− 1

N

N∑
i=1

C∑
c=1

yi,c log(ŷi,c) Classification

Dice Loss [256] 1− 2
∑

yiŷi∑
yi +

∑
ŷi

Segmentation

* N is the batch size, y is the label, ŷ is the prediction, C is the number of classes

computed via backpropagation, often incorporating techniques to accelerate convergence

and avoid local minima [118]. The choice of optimiser is important as it directly influences

model performance, convergence speed, and stability [230].

Some common optimisers are detailed in Table 2.7. For instance, the widely used

optimiser Stochastic Gradient Descent (SGD) provides a simple and effective update rule,

and the Adam optimiser can adjust learning rates based on momentum and variance of

gradients.

Table 2.7: Common deep learning optimisers.

Optimiser Description Update Rule*

SGD [227]
Updates weights using a small
batch of data.

θt+1 = θt − η∇θJ(θt)

Momentum
[219]

Builds on SGD by adding a
weighted average of past gradi-
ents.

θt+1 = θt − η∇θJ(θt) + βvt, where vt
is the accumulated gradient and β is
the momentum term.

Adam
[138]

Uses Momentum and variance of
gradients to adjust learning rates
for each parameter.

θt+1 = θt − η
m̂t√
v̂t + ϵ

, where m̂t =

mt

1−βt
1
and v̂t = vt

1−βt
2
are estimates of

the gradient’s first and second mo-
ments.

AdamW
[178]

An improved version of Adam
that decouples weight decay
from the gradient-based update.

θt+1 = θt−η

(
m̂t√
v̂t + ϵ

+ λθt

)
, where

λ is the weight decay coefficient, m̂t

and v̂t are defined as above.

* θ is the weight, t is the time step, η is the learning rate, J is the loss function, ∇ is the gradient
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Regularisation

Regularisation techniques are employed to prevent overfitting, ensuring that the model

generalises well to unseen data. Overfitting occurs when a model becomes excessively

complex and learns to memorise the training data rather than capture the underlying

patterns. Regularisation introduces penalties or constraints during training, discouraging

overly complex models that might overfit [118].

Some common regularisation methods are detailed in Table 2.7. For example, L1 and

L2 regularisation add penalties to the loss function based on the magnitude of the model’s

weights, thereby encouraging simpler models with smaller weights.

Table 2.8: Common deep learning regularisation methods.

Regularisation Description Type

L1 [100]
Regularisation

Adds a penalty of λ
∑

|θ| to the loss function,
where λ is a hyperparameter and θ is the weight.

Add penalty

L2 [100]
Regularisation

Adds a penalty of λ
∑

θ2 to the loss function,
also known as weight decay.

Add penalty

Batch [120]
Normalisation

Normalises the input to each layer to a mean of
0 and a standard deviation of 1.

Improves training
stability

Dropout [251]
Randomly sets a fraction of input units to zero
during training.

Deactivate part
of network units

Early Stopping
[20]

Stops training when the model’s validation per-
formance begins to degrade.

Training strategy

Table 2.9: Common deep learning rate schedulers.

Scheduler Description Expression

StepLR [118]
Decays the learning rate η every
fixed number of steps.

ηt = η0 · γ⌊t/step size⌋, where
γ is the decay factor.

ExponentialLR [118]
Decays the learning rate exponen-
tially over time.

ηt = η0 · e(−λt) , where λ is
the decay rate.

CosineAnnealingLR
[177]

Decays the learning rate according
to a cosine function.

ηt = ηmin + 1
2
(η0 −

ηmin)
(
1 + cos

(
t

Tmax
π
))

Learning Rate Scheduler

The learning rate is one of the most important deep learning parameters, as it controls

the step size of weight updates; too high a learning rate may cause the model to overshoot
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optimal solutions, while too low a learning rate can lead to slow or stagnated convergence

[118]. A learning rate scheduler modifies the learning rate dynamically based on the

training progress, typically reducing it over time to fine-tune the model in later stages of

training [230].

Some common learning rate schedulers are summarised in Table 2.9. For instance,

StepLR reduces the learning rate by a fixed factor every few epochs, while ExponentialLR

exponentially decreases it by a fixed rate at every epoch or step.

2.4.3 Computer Vision Tasks

Overview

Deep learning has emerged as a transformative tool across diverse domains, leveraging its

ability to model complex patterns and representations from large-scale data. In natural

language processing, it powers applications such as machine translation, chatbots, and

sentiment analysis, enabling systems to understand and generate human-like text [118].

In audio processing, deep learning drives advancements in speech recognition, music gen-

eration, and sound classification, effectively capturing temporal and spectral features

[110]. In computer vision, it supports tasks like image classification, object detection,

and facial recognition, revolutionising visual data interpretation [142]. In recommenda-

tion systems, deep learning uses neural collaborative filtering to personalise suggestions

in e-commerce and content platforms [107]. These successes stem from deep learning’s

hierarchical feature learning and adaptability across multimodal data.

Rapid developments in deep learning have made it a powerful tool, helping achieve the

goal of digital, precise, and smart farming. In particular, models proposed for computer

vision tasks have been applied to solve a wide range of agricultural problems. Fig. 2.8

illustrates some deep learning applications in agriculture, including plant disease recog-

nition, pest and weed recognition, tree branch recognition, and fruit recognition.

First, plant diseases can severely affect crop health, often beginning with subtle signs

like spots or wilting on leaves and stems that can spread rapidly if missed. Deep learning

supports early diagnosis by detecting these signs, helping farmers intervene before losses

grow [116, 242, 151, 89, 264].

Second, fields often face problems from insects and weeds that disrupt crop growth.

Insects like aphids damage crops directly and spread viruses, while weeds compete with

crops for nutrients, water, and sunlight, reducing yields. Deep learning enables the effec-

tive differentiation of these threats [74, 73].

Third, seed quality is vital for successful planting, particularly for crops like sunflow-

ers, where size, shape, and health influence germination and output. Poor seeds risk

uneven growth or crop failure. Deep learning helps automate seed counting, and quality

checks ensure only the best are chosen [94, 143].
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Figure 2.8: Some deep learning applications in agriculture.
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Fourth, understanding tree structures is useful in orchard management, where branch

patterns are handy for robotic pruning, health checks, or yield estimation. Manual in-

spection is slow and inconsistent. Deep learning insists on detecting tree branches with

high efficiency [308, 285].

Finally, fruit recognition is essential for managing orchards efficiently. Missing ripe

fruits or over-picking affects profits and planning. Deep learning enables accurate iden-

tification of fruits on trees, improving harvesting accuracy and field decisions [317, 229,

13, 265, 274, 275, 297]. These applications will be explored further in the next section.

In summary, deep learning is changing agriculture by making tasks easier and smarter

across different areas. It supports better crop monitoring, resource use, and reduced

waste, all at a lower cost. Its growing use is enhancing crop productivity and supporting

sustainable farming practices for the future. These improvements help address global

food security challenges by increasing food production to meet growing needs.

Categories Bounding boxes

Sematic masks Instance masks

Classification Object Detection

Sematic Segmentation Instance Segmentation

Panoptic masks

Panoptic Segmentation

Figure 2.9: The vision tasks of deep learning.

Fruit Recognition

This thesis focuses on its application within computer vision, a field where deep learning

is used to extract and interpret patterns from images. Specifically, various vision tasks are

explored, including image classification, object detection, and segmentation (both seman-

tic and instance), that are important to the automated determination of fruit ripeness.

The comparison of these vision tasks is illustrated in Fig. 2.9.
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Computer vision has been widely adopted for fruit detection, enabling accurate fruit

identification and localisation in images or videos. This capability is foundational in

fruit production, as it supports tasks such as tracking crop development and guiding

automated systems. Additionally, it has been extended to determining fruit ripeness,

which is a critical factor in optimising harvest timing and ensuring quality. Recent

studies on various fruit applications using deep learning are summarised in Table 2.10.

In terms of model structure, CNN and ViT are two main architectures for computer

vision over the past few years. CNN is good at capturing local spatial patterns through

convolutional layers, making it highly effective for tasks like image classification and ob-

ject detection. Its hierarchical structure reduces computational complexity, though it

may not capture global context as efficiently, and typically benefits from larger labelled

datasets. Meanwhile, ViT leverages self-attention mechanisms to capture long-range de-

pendencies across an entire image, offering excellent performance on tasks requiring global

understanding, particularly with ample data. It can be more computationally demand-

ing and often rely on pre-training, but its flexibility makes it highly adaptable. Both

architectures have significantly advanced computer vision, each with unique strengths

and manageable trade-offs.

Image Classification Image classification entails assigning a category to an entire

image based on its content. In the context of fruit ripeness determination, this task

involves training a model to distinguish between classes such as ripe or unripe fruit.

Several studies have developed CNN models to classify fruit ripeness, such as banana

[235], mangosteen [198], mulberry [197], grape [225], papaya [17], tomato [310], and

strawberry [75]. These models have proven effective in distinguishing ripe from unripe

fruit, showcasing the ability to replace the traditional hand-crafted methods with deep

learning models.

However, a key limitation of these studies is that most classification efforts have been

conducted in controlled, off-field environments, where fruit images are captured indoors

under consistent lighting and background conditions. This reliance on ideal settings

makes it challenging to adapt these models for uncontrolled, real-world scenarios.

Object Detection Building upon classification, object detection not only identifies the

presence of objects within an image but also localises them using bounding boxes. This

capability enables the precise identification and isolation of individual fruits in complex

scenes.

For example, these applications include the basic detection for fruit counting or yield

estimation, such as apple [257], tree inflorescences [291], citrus fruit [179], kiwifruit [71],

litchi [160, 130], mango [91, 281], passion fruit [152], pear [226], and strawberry [301, 61,

108]. These efforts demonstrate that deep learning is capable of handling different real
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scenarios, whether the fruit is in-field with lots of occlusions or at nighttime with limited

lighting.

The limitation of the above studies is that they do not consider fruit ripeness during

the detection process. There are some exceptions, such as apple [265, 292], strawberry

[321, 299], and tomato [141], which combine ripeness with locating fruits.

It is noted that most of the current fruit detection models are based on the You

Only Look Once (YOLO) series. For instance, [292] applied YOLOv8 to classify apple

ripeness into three stages. In addition. [108] proposed a real-time improved YOLOv5s

for robotic strawberry harvesting. [301] introduced Stolon-YOLO to detect strawberry

stolons in greenhouse environments. [35] combined fusion clustering with YOLOv5 to

tackle Camellia oleifera fruit detection under multiple occlusions. [323] further extended

this task by providing modified lightweight YOLO for C. oleifera fruit ripeness deter-

mination in orchards. [226] presented YOLO-RCS to detect the phenological period of

Yuluxiang pears. [185] adopted STRAW-YOLO for the identification of strawberries and

their key points.

However, detection models help find fruits but only give the boxes’ coordinates around

fruits, which does not provide more details about the fruit. This creates a gap in figuring

out fruit ripeness accurately with detection models only.

Segmentation Segmentation takes the detection even further by providing detailed,

pixel-level information about fruits, enabling a detailed spatial understanding of the im-

age. It contains three categories: semantic, instance and panoptic segmentation. As

panoptic segmentation also segments the background, which is usually unnecessary for

fruit ripeness studies, it is not discussed further.

Semantic segmentation labels all pixels belonging to a specific class without distin-

guishing between separate instances. For example, in an image of multiple apples, all

apple pixels would be labelled as “apple”, irrespective of whether they belong to distinct

objects. Some studies have been conducted on fruit semantic segmentation, which labels

all pixels of a fruit type as one category. Examples include apple [13, 158], cucumber [6],

grape [275], mango [135], and tomato [114].

Unlike semantic segmentation, instance segmentation differentiates between individual

objects of the same class, making it ideal for analysing clusters of fruits. For instance, it

can segment and identify each fruit in a bunch of apples, facilitating ripeness evaluation

on a per-fruit basis. Some studies have explored fruit instance segmentation, which gives

a unique label to each individual fruit. It provides more precise details for fruit ripeness

determination, therefore, it is the key focus of this thesis.

Fruit instance segmentation models can be grouped into two types: CNN-based and

Transformer-based.

On the one hand, CNN-based models have dominated vision architectures for a long
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time, of which Mask R-CNN [105] is the pioneer of instance segmentation. Lots of fruit

instance segmentation models are based on Mask R-CNN. For example, [233] showcased

that Mask R-CNN was effective in detecting, segmenting, and tracking grape clusters,

demonstrating its robust performance across significant variations in shape, colour, size,

and compactness. [127] improved Mask R-CNN by adopting ResNet and DenseNet as the

backbone to construct a picking robot vision detector, which improves the recognition

accuracy of apples in the environment of overlaps and occlusions. [202] introduced Mask

R-CNN to detect and segment individual blueberries of four cultivars and classify them

into two maturity stages. Similarly, Mask R-CNN and its modified version are adopted to

build strawberry fruit detectors with better universality and robustness than traditional

machine vision algorithms [304, 217].

Besides, only few CNN-based segmentation models are not based on Mask R-CNN. For

example, [128] constructed a fast segmentation model for green fruits FoveaMask, which

integrates a position attention module into the embedding mask branch to aggregate

valuable information. [133] proposed a one-stage detection model DaSNet-v2, which

combines an instance and a semantic segmentation branch, performing apple instance

segmentation and tree branches semantic segmentation. [246] designed an edge-guided

fruit segmentation model, which included modules specially designed to locate potential

target areas and sharpen the edges. [245] proposed a multi-scale adaptive YOLO for

grape pedicel instance segmentation.

On the other hand, Transformer-based models have gained more attention recently.

Based on the vanilla ViT, several Transformer-based models like DETR [26], MaskFormer

[40] and SegFormer [293], etc, have arisen.

Some studies combined Transformer models with CNN models to perform segmenta-

tion. For example, [275] proposed a parallel network structure DualSeg, which leverages

the advantages of CNN at local processing and Transformer at global interaction for

grape peduncle segmentation. [291] introduced a Transformer-based CNN model MTY-

OLOX, for the detection of full tree inflorescences in the uncontrolled orchard environ-

ment. [257] presented a focal bottleneck Transformer network FBoT-Net, to incorporate

global semantic information with local feature information through the focal bottleneck

Transformer module for small green apple detection.

It can be seen that Transformer-based models have not been widely applied in fruit

detection. Here are some other applications in relevant agricultural sectors. [206] pro-

posed a segmentation model HSI-TransUNet for crop mapping, which processes the spa-

tial and spectral information of HSI and UAV images simultaneously. [151] presented

an improved Transformer-based model to achieve fast recognition of multiple classes of

strawberry diseases.

However, most current work still relies on Mask R-CNN and YOLO models. The

potential of Transformer in fruit instance segmentation has not been well explored. In-
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stance segmentation is more complex than classification and detection, one of the reasons

is that pixel-level ripeness labels are tough to get. Therefore, there is a gap in applying

fruit instance segmentation for ripeness determination.

Integration with In-field Robots

In fruit production, robots bring deep learning models into the field for practical use.

Locating fruits quickly and accurately is the foundational prerequisite for building a

fruit-picking robot. These robots sense their surroundings and guide a mechanical arm

to pick the fruit. They can alleviate labour shortages by taking over repetitive tasks,

improving production efficiency.

Fig. 2.10 illustrates several typical in-field fruit-picking robots. Most agricultural

robots share a similar setup: an autonomous mobile platform, a light mechanical arm with

multiple joints, a force feedback system with a flexible end effector, a vision system with

many sensors, a drive control system, a decision-making system, and auxiliary software

and hardware [263]. Significant research efforts across the world have been devoted to

the development of fruit-harvesting robots in recent years. For example, [122] built a

multi-purpose gripper with vacuum suction and rotation, evaluated in both laboratory

and commercial orchard settings, achieving a 66.1% success rate for apple thinning and

showing promise for harvesting. Other examples include automatic picking systems for

apple [133], litchi [160], and radiata pine [190].

Before deep learning became common, researchers used basic vision tools to locate

fruits. For instance, [247] designed a cost-effective harvester that picked 84% of the

apples in a commercial orchard using a simple machine vision algorithm. Similarly, [34]

proposed vision algorithms for fruit-picking robots to move, locate themselves, and pick

fruits efficiently. However, these methods are specifically designed for a particular fruit,

limiting their generalisability to other fruit types.

The rise of deep learning has sped up the growth of in-field robot systems. It is now

widely used to build the vision system or software parts for fruit-picking robots. For

example, [24] evaluated an apple harvester with YOLOv4, finding that a “horizontal pull

with bending” motion outperformed a human-like one in success rate and speed while

avoiding stem-pulling and bruising. [205] used an improved YOLOv4 to search for sweet

peppers in dense fields, using the centre of each detection box as the picking target point.

[153] applied an improved YOLOv5s for a dragon fruit robot to work in day and night

environments and deployed it on a mobile device. [134] built an apple system with a light

detection network and PointNet, achieving an 80% success rate and a cycle time of 6.5

seconds in both laboratory and orchard tests. [195] introduced a spatio-temporal model

to detect in-field pineapples accurately for a picking robot. [144] developed a dual-arm

robotic apple-harvesting system with O2RNet detection model, achieving a 60% success
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[24] [34]

[309] [122]

[134] [258]

[133] [78]

[247]

Figure 2.10: Some fruit harvesting robots.
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Figure 2.10 (Continued): Some fruit harvesting robots.
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rate in field trials and demonstrating significant harvest time improvement. [212] used

Faster R-CNN for an asparagus-harvesting machine. For kiwifruit, [199] applied Faster

R-CNN to locate fruits in RGB images and extract their coordinates. [309] proposed

an apple harvester prototype that integrates a Mask R-CNN for segmentation, which

contains a three-joint arm and a vacuum gripper, showing good performance in field

tests.

It can be seen that detection models are the most common choice for robot vision

systems to find fruit in the field, which only gives the coordinates of the fruits’ bounding

boxes. Segmentation models, especially instance segmentation models, give detailed pixel-

level information about fruits, which helps robots not just locate fruits but also check

fruit ripeness in the field. Then robots can decide if the fruits are ready to be picked,

thus harvesting them selectively. This shows there is a gap between the segmentation

model with in-field robots. Developing fast and efficient segmentation models for robots

is necessary to improve fruit production efficiency.

orange
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Supervised Unsupervised

...

...

...

...

...

...

...

...

...

Self-supervised

“orange fruit”

Derives label from a co-occurring 
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Figure 2.11: The comparison of supervised, unsupervised, and self-supervised learning.

2.4.4 Self-Supervised Learning

The deep learning models discussed earlier, such as those for detection and segmentation,

are supervised models. These models usually need a lot of labelled data to achieve

satisfactory performance. However, collecting and labelling such data is expensive and

time-consuming. It often requires skilled people with expert knowledge to mark the data

correctly, which can slow down research and real-world applications.

Self-supervised learning (SSL) is one of the solutions to tackle these problems [93].

It helps models learn useful features from large amounts of unlabelled data, eliminating

the need for human labels. This makes it faster and cheaper to build models, especially
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when labelled data is hard to get. Fig. 2.11 shows the difference between supervised,

unsupervised and self-supervised learning, based on [58]. Unsupervised learning looks

for patterns in the input data without any guidance. SSL is a subset of unsupervised

learning, which aims to learn discriminative features from unlabelled data on its own.

A key concept in SSL is the pretext task, which is a carefully designed objective

that encourages the model to learn meaningful representations without requiring explicit

human annotations [93]. Specifically, “pretext” denotes that the task being solved is

not the primary objective but serves as a means to generate a robust pre-trained model.

Then, the acquired models can be fine-tuned with a small amount of labelled data for

downstream tasks such as detection and segmentation, saving time and effort.

There are some common pretext tasks, including context-based methods, contrastive

learning, generative algorithms and contrastive generative methods [93]. This thesis fo-

cuses on contrastive learning and generative algorithms, which are represented by masked

image modelling. Fig 2.12 illustrates the basic structures of contrastive generative and

masked image modelling, of which the actual details can be different depending on method

designs.

Encoder Encoder

Similarity/
Embedding

view 1 view 2

En
co
de
r

masked view

D
ec
od
er

reconstruction

...

Figure 2.12: Contrastive learning (top) and masked image modelling (bottom).

Contrastive Learning

Contrastive learning (CL) is built upon the foundation of simple instance discrimination

tasks. It trains models to distinguish between similar and dissimilar data points by

maximising the similarity between positive pairs (similar instances) and minimising the

similarity between negative pairs (dissimilar instances). CL usually has an encoder-only

structure.

Early CL methods were based on negative examples. For instance, MoCo [104] keeps a

memory of negative examples and updates it to compare with positive pairs. SimCLR [36]

takes a simple design by using lots of negative examples from the same batch, boosting
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feature quality with strong image augmentations like flipping or cropping. These methods

are built upon the foundation of simple instance discrimination tasks, for which negative

examples can be used as supervision.

Later, self-distillation-based CL came up to avoid the need for negative examples.

These models focus on matching two changed versions of the same image. BYOL [90]

uses one network to predict another’s output, learning features without negatives. SwAV

[28] adds clustering to group similar images, which aims to make two codes derived from

different views consistent. SimSiam [38] keeps it simple by matching two views of an

image directly, while FastSiam [221] speeds up the matching for quicker training. These

methods stop the model from giving the same answer for everything, a problem called

collapsing.

Another type, feature decorrelation-based CL, aims to make learned features stand

apart from each other. Barlow Twins [305] pushes features to be different while keeping

them tied to the image, using a trick to balance them. VICReg [11] adds rules to keep

features varied and stop them from shrinking or growing too much. These methods help

the model pick up clear, unique details from data, which can improve tasks like spotting

fruits in messy field images.

Masked Image Modelling

Masked image modelling (MIM) is another SSL method that trains models by covering

up parts of an image and asking them to predict what is hidden. By filling in the blanks,

the models learn how different parts of an image fit together, helping to figure out the

shape, texture, and details of objects. Different from CL methods, MIM leverages co-

occurrence relationships among image patches as supervision signals. MIM usually has

an encoder-decoder structure.

MIM has gained significant popularity and demonstrated good performance. MAE

[103] covers big chunks of an image, up to 75%, and trains the model to reconstruct them

using a simple encoder-decoder design. It is fast and works well as it forces the model

to focus on the big picture, not just small details. SimMIM [294] takes a lighter method,

using smaller masks and a direct prediction approach. It is simpler and quicker, making it

handy for real-time tasks. BEiT [10] adds a twist by turning image patches into tokens,

like words in a sentence, and predicts them using a transformer model. This teaches

the model deeper connections. Context Autoencoder [37] focuses on nearby patches to

guess the missing ones, helping the model learn local details, like object edges or colour

changes.

MIM offers a different way to learn from images compared to CL. It digs into the

details within a single image, using patch links to build strong features without labels.

MIM emphasises the importance of a robust representation that remains resilient to
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input noise. This fits well with tasks like segmentation for fruit ripeness, where every

pixel counts.

Applications

SSL has been explored in various agricultural studies to address different challenges. The

examples below demonstrate how SSL can perform well with little or no labelled data,

offering a practical tool for farming tasks.

For classification tasks, SSL helps identify plant conditions and features. [314] built a

CL method to find leaf diseases, adapting to new settings with few labels to quickly spot

health problems. Similarly, [167] developed a transformer-based approach that pre-trains

on unlabelled data with a masking step and then classifies pests and diseases, proving

SSL can tackle tough farm issues. [319] took SSL further by using drone data to estimate

soybean yield and check lodging, blending different data types with CL to follow growth

from flowering to maturity. Along the same lines, [72] created SSMDA, a cherry maturity

classification model that uses multi-feature CL to assess ripeness with minimal labelled

data, focusing on details like colour and shape.

For detection tasks, SSL helps find unusual patterns. [45] applied it to spot crop

anomalies by mixing up image channels, training the model to catch oddities like damage

or disease in crops. In a related effort, [171] paired an autoencoder with an SSL classifier

to detect strawberry anomalies using hyperspectral images, finding odd fruits without

needing many labels.

For segmentation tasks, SSL helps outline plant parts with precision. [80] used a

semi-self-supervised method for wheat head segmentation, adjusting deep learning to

new fields with just a few labelled images to mark wheat heads. Likewise, [157] designed

CoRE-Net, a two-step SSL approach for leaf vein segmentation, starting with a bit of

supervised training before switching to self-supervised learning to trace vein patterns like

branching with little labelled data. Another study, [46], introduced SSL-NBV for 3D

plant reconstruction by robots, predicting the best scanning angles from unlabelled data

to help robots map plants efficiently.

These studies highlight SSL’s promising ability in agriculture, covering tasks from

spotting diseases to mapping plants. Still, most efforts target disease detection, anomaly

finding, or yield tracking, with little work on fruit detection and ripeness determination.

This gap shows a clear need for SSL in fruit ripeness research, making it a key area for

this thesis to investigate, especially for improving in-field robot systems.
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2.5 Summary

This chapter reviewed the development of fruit ripeness determination methods, from

sensing techniques to machine learning and deep learning approaches.

Sensing methods, such as spectroscopy and fluorescence analysis, can provide detailed

internal insights but have major limitations. These include high equipment costs, the

need for controlled environments, complex calibration, and poor scalability, making them

unsuitable for practical in-field use.

Machine learning methods offer more flexible and cost-effective alternatives. They

can process visual and sensor data for non-destructive ripeness estimation. However,

many ML models depend on hand-crafted features and struggle with complex or high-

dimensional data, which limits their general use in varied field conditions.

Deep learning has emerged as a more powerful approach, capable of automatically

learning features from raw data. It has been widely applied in agriculture for tasks such as

fruit detection, classification, and segmentation, offering better accuracy and adaptability

than earlier methods. Among these tasks, instance segmentation is especially relevant

to ripeness evaluation, as it enables per-fruit analysis. CNN-based models like YOLO

and Mask R-CNN have shown good results, while Transformer-based models are being

explored for their ability to capture global features. However, challenges remain in dealing

with occlusions, variable lighting, and the need for large labelled datasets.

Integrating deep learning models with in-field robots enables selective harvesting,

which can help reduce labour demands. However, most current systems use object de-

tection rather than segmentation. To help develop in-field robots, lightweight instance

segmentation models are needed.

One of the main limitations of existing deep learning methods is their reliance on

large amounts of labelled data. To address this, self-supervised learning is a promising

solution. It allows models to learn from unlabelled data using methods like contrastive

learning and masked image modelling. Although self-supervised learning has been used

in other agricultural tasks, its use in ripeness estimation is still limited.

In conclusion, deep learning is a promising method for fruit ripeness determination.

However, its effectiveness is still limited by some challenges mentioned above. This thesis

explores instance segmentation, self-supervised learning models tailored for practical use

in real agricultural environments.



Chapter 3

PeachSOLO: A One-stage Instance

Segmentation Model for Peach

Ripeness Classification

3.1 Introduction

Despite the progress made in fruit instance segmentation and ripeness classification using

deep learning, the literature reveals several practical limitations that hinder real-world

deployment. Most existing datasets are limited in scale and diversity, especially in terms

of representing the full spectrum of ripeness stages under complex natural conditions such

as variable lighting, occlusion by leaves or stems, and multi-fruit overlap. In addition,

while two-stage models like Mask R-CNN offer strong performance, they are often compu-

tationally intensive and less suitable for resource-constrained applications in agricultural

settings.

This chapter addresses these challenges by introducing a new large-scale and high-

quality annotated dataset called NinePeach, which captures nine peach cultivars at var-

ious ripeness stages in real orchard environments. To effectively leverage this dataset,

this chapter proposes PeachSOLO, a novel one-stage, anchor-free instance segmentation

model that integrates both channel and spatial attention mechanisms to enhance feature

representation. Without relying on a region proposal network, PeachSOLO directly de-

tects peaches and classifies their ripeness with improved precision and efficiency. Empir-

ical evaluations demonstrate that PeachSOLO surpasses state-of-the-art models in both

accuracy and segmentation quality, while maintaining faster inference speeds, making it

well-suited for practical use.

The remainder of this chapter presents the dataset construction process, the architec-

ture of PeachSOLO, and detailed experimental analyses that validate its effectiveness in

challenging in-field scenarios.

43
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3.2 Dataset

3.2.1 Image Collection

Peach images were collected from an experimental orchard in Huazhong Agricultural

University, Wuhan, China. The collection was conducted between May and June 2022 and

included nine cultivars of peaches: Dahongpao, Qingfeng, Chunmei, Chunmi, Chunxue,

Songsen, Maotao, Youpantao, and XiahuiNo5. The image capture device used was a

smartphone whose specifications are detailed in Table 3.1.

Table 3.1: Specifications of the mobile device used.

Aspect Details

System OS Android 11

CPU
Octa-core (1×3.2 GHz Kryo 585 3×2.42 GHz

Kryo 585 4×1.80 GHz Kryo 585)

Main Camera Sony IMX598(1/2”)

Focal Length 4.7 mm

The camera was positioned at a distance of 30-50 cm from the peaches and captured

images from various angles. It is noted that all peach images were acquired under natural

lighting conditions and in real-world production settings, where the peaches exhibited di-

verse physical configurations. These configurations include but are not limited to isolated

peaches, peaches that are in close proximity to one another, peaches that are partially

obscured by leaves, stalks or other peaches, and peaches that are illuminated from the

opposite side. The images were originally captured and stored in JPEG format at a res-

olution of 4000×3000 pixels. Samples of images from each kind of peach are presented in

Fig. 3.1.

3.2.2 Image Preprocessing

A total of 3849 images were selected to form the dataset, representing nine cultivars of

peaches that have been classified into three distinct stages of ripeness: unripe, semi-

ripe, and ripe. Two annotators were independently in charge of carrying out the image

labelling process, and one reviewer would make decisions in case of disagreement. All

cultivars of peach were annotated individually.

Each image was manually labelled using Label Studio [266], generating ground-truth

labelled images containing individual segmentation masks of all peaches depicted in the

image. The labelling process adhered to a rigorous standard, which involved generating

a precise mask for each peach captured in the image, even in challenging scenarios where
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1.Dahongpao 2.Qingfeng 3.Chunmei

4.Chunmi 5.Chunxue 6.Songsen

7.Maotao 8.Youpantao 9.XiahuiNo5

Figure 3.1: The 9 cultivars of peach in NinePeach.

the peaches may have appeared nearly imperceptible due to distance, occlusions, or their

proximity to the image boundaries. The overview of Label Studio is shown in Fig. 3.2.

Figure 3.2: The overview of Label Studio.

The instance category distribution of 3849 peach images is presented in Fig. 3.3. Some

cultivars lack images of the ripe stage due to objective conditions. For example, there are

relatively fewer Chunmi and Songsen trees, and their ripe fruits are dropped by weather or

picked by animals, whilst Maotao takes a longer time to become ripe than other cultivars,

which exceeded the collection schedule. Therefore, the “long-tail” phenomenon exists in
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the dataset, which is discussed in Section 3.5.1.
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Figure 3.3: Instance category distribution of NinePeach.

To reduce the computational requirements of the models, the images were resized to

1024×768 pixels using the ‘mogrify’ library. For every cultivar of peach, the images were

randomly split with a ratio of 7:3 for training and validation sets, respectively. Then,

the individual training sets and validation sets were combined to form a total training

set of 2690 images and a total validation set of 1159 images. To alleviate the “long-tail”

problem, the number of semi-ripe and ripe instances was increased by oversampling 750

randomly selected images that did not contain unripe instances to make the category

distribution more balanced. The data augmentation methods used included random

angle rotation, random jitter, and random flipping. Thus, the balanced dataset called

NinePeach was created to contain 3240 images for training and 1359 images for validation.

The instance category distribution of the dataset is detailed in Table 3.2. A sample of

annotation is shown in Fig. 3.4.

Figure 3.4: Original image (left), individual masks (middle), and annotated image (right).
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3.2.3 Dataset Summary

The NinePeach dataset1 comprises 4599 images (1024×768) of nine peach cultivars, which

were taken under natural illumination and in real-world production settings, including

peaches with factors like different intensities of natural light, multi-fruit adhesion, and

occlusion caused by stems and leaves. This dataset is divided into training (3240 images)

and validation (1359 images) subsets, and each peach is categorised into three ripeness

stages: unripe, semiripe, and ripe.

Table 3.2: The instance category distribution of NinePeach dataset.

Category
Original Balanced

Training Validation Training Validation

unripe 3669 1717 3669 1717

semiripe 2768 1140 3312 1307

ripe 1403 589 1689 737

Total 7840 3446 8679 3761

A statistical overview of NinePeach is presented in Table 3.3. The distribution of peach

instances demonstrates a relatively balanced representation across different sizes, with a

higher proportion of large-sized instances in the training set. The number of instances per

image and the pixel ratio remain stable across all sets, indicating a consistent frequency

of occurrence and an overall average peach shape.

Table 3.3: Statistics of the NinePeach dataset.

Aspect Category Training Validation

Ratio of size

Small (area ≤ 322) 0.01 0.01

Medium (322 < area ≤ 962) 0.18 0.17

Large (area > 962) 0.81 0.82

Mean/standard
deviation

Number of peach instances 2.68/2.06 2.77/1.98

Ratio of peach pixels per image (%) 5.03/5.11 4.92/4.82

3.3 Method

3.3.1 Model Structure

The proposed model PeachSOLO is designed to simultaneously segment instance masks

and predict their categories using full instance mask annotations as supervision. Unlike

1The NinePeach dataset is made publicly available at ninepeach link.

https://drive.google.com/drive/folders/1vCSoqVGWhy4pvyEVlW-oLH8uN2S_nUKo?usp=share_link
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anchor-based segmentation models, which rely on predefined anchor boxes to propose

object regions, PeachSOLO is anchor-free. Anchor boxes are randomly generated rectan-

gles used to hypothesise object sizes and locations. Instead of using them, PeachSOLO

directly predicts object locations and boundaries.

The architecture of PeachSOLO is presented in Fig. 3.5. The model consists of three

parts: a backbone, a feature pyramid network, and a shared detection head following

the pipeline from SOLOv2 [277]. The details of these three parts are explained in the

following section.

P2

P3

P4

P5

Head

C4

C3

C2

CBAM

Kernel
Branch

Feature
Branch

Mask

ripe

ripe

‧‧‧‧‧
Classification

Image

Convolutional Block Attention Module (CBAM)

Channel
Attention
Module

Spatial
Attention
Module

Backbone FPN

Image Preprocess

C5

F: H×W×E

K: S×S×D

S=4

P

Figure 3.5: The architecture of the proposed PeachSOLO.

In contrast to Mask R-CNN, PeachSOLO does not rely on an RPN to generate pro-

posals, which would reduce much calculation and resource consumption. Specifically, it

directly identifies object instances by their centre locations and sizes. To determine object

locations, the input image would be divided into a uniform grid of size S × S, resulting

in S2 possible centre location classes. If the centre of an object falls within a grid cell,

that cell is responsible for predicting the object’s semantic category and segmenting its

instance. Later in the chapter, it is also demonstrated that PeachSOLO outperforms

the original baseline due to the embedding of the convolutional block attention, which

enables the model to focus on objects in key channels and spatial locations.

Feature Extractor

Image feature extraction is the process of identifying and extracting relevant information

or features from an image. PeachSOLO employs a feature extractor, which is made up

of two parts: a backbone and a Feature Pyramid Network (FPN, 162).
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The backbone extracts the low-level features, such as edges and angles, while the

high-level features are fed into a classifier to determine the object category. ResNet [106]

and Swin Transformer (SwinT, 172) are used as the backbone.

ResNet was proposed to solve the image classification task. It overcame the vanishing

gradient problem that can occur in very deep neural networks by introducing residual

blocks. The residual blocks allow information to flow directly from earlier layers to later

layers without being affected by intermediate layers.

SwinT is a recently proposed neural network for visual recognition tasks that has

shown strong performance. It uses a hierarchical architecture where image patches are

progressively downsampled to multiple scales. This enables it to capture both local

and global features in an image. Additionally, SwinT incorporates a shifted window

mechanism that improves the processing of spatially adjacent patches, further enhancing

its ability to capture fine-grained details. The output of the backbone is made of a set of

feature maps at four different resolutions (C2 to C5).

The FPN is introduced to extend the backbone network, which is especially effective

for the detection of targets at different scales. FPN works by taking the feature maps

produced by the backbone at different levels of the network, and building a feature pyra-

mid that includes high-level features with strong semantics, as well as low-level features

with strong spatial information. The final output of the FPN consists of a set of feature

maps at four resolutions.

Overall, the ResNet/SwinT with FPN are powerful architectures for image feature

extraction, as they leverage the strengths of both ResNet/SwinT and FPN to extract

high-level and low-level features from the input image and combine them to accurately

detect objects at different scales.

Detection Head

Given the output of the pyramid network, the detection head consists of two branches: a

kernel branch and a feature branch, accepting each pyramid feature as input. The output

of the feature pyramid is denoted as P .

In the kernel branch, P is resized into a shape of S × S × C, and then a series

of 4 convolution layers and a final 3 × 3 × D convolution layer are used to produce

the kernel K ∈ R(S×S×D). It should be noted that in the first of the four convolution

layers, two additional input channels are concatenated, which contain pixel coordinates

normalised to the range of [−1, 1] following CoordConv [169]. In each grid, the kernel

branch predicts D-dimensional outputs, which indicate the predicted convolution kernel

weights. The final stage of the kernel branch involves the use of two convolution layers

to generate predictions for the kernel and category; the last convolution layer used to

predict category is a Deformable Convolution Network (DCN, 56). The weights of the
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detection head are shared among different levels.

In the mask feature branch, P is first passed through Convolutional Block Attention

Module (CBAM, 286). CBAM introduced attention to design network architecture, which

consists of Channel Attention Module and Spatial Attention Module. These two mod-

ules use max pooling and average pooling to extract feature information from channels

and spatial locations. By connecting Channel Attention Module and Spatial Attention

Module, CBAM enables the model to increase its expressive ability, focus on important

features and suppress unimportant ones. CBAM does not change the shape of input

features, therefore the shape of the output of CBAM remains the same as P . Then,

feature pyramid fusion is applied to learn a unified and high-resolution mask feature

representation. This is achieved through multiple stages of convolution layers, group

normalisation, ReLU activation, and 2× bilinear upsampling, and the FPN features (P2

to P5) are scaled into 1/4 of the original image size. Similar to the use of CoordConv

in the kernel branch, normalised coordinates are also concatenated with the FPN feature

P5, enabling the model’s position sensitivity. A final 1×1 convolution layer is applied on

scaled features (P2 to P5) to generate mask feature F ∈ R(H×W×E).

Here, the D from the kernel branch is set equal to E, implying that the predicted

kernel is for a 1× 1 convolution. After the mask kernel Ki,j from the kernel branch and

mask feature F from the mask branch are obtained, a dynamic convolutional operation

is employed to generate the instance mask of S2 channels corresponding to S × S grids.

The operation can be written as:

Mi,j = Ki,j ∗ F (3.1)

where Ki,j ∈ R1×1×E is the convolution layer kernel predicted by the kernel branch,

and Mi,j ∈ R1×H×W is the mask prediction containing only one instance whose centre is

at grid cell (i, j). For example, if D and E are set equal to 4, the mask branch would

generate an output with a shape of H × W × 4. The kernel branch would generate an

output with a shape of S × S × 4, which can be viewed as S2 1 × 1 convolution kernels

whose depths are 4. The dynamic convolutional operation would use the two outputs

above to get the predicted mask. At last, the predicted mask would be post-processed to

get the peach instance segmentation results.

3.3.2 Model Training

Loss Function

In this chapter, the proposed model only generates the predictions of peach categories

and peach masks. To simultaneously consider the performance of both predictions, the

loss function is designed to consist of two major components: the classification loss Lclass
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and the mask loss Lmask, and λ is the weight factor of mask loss.

L = Lclass + λLmask (3.2)

where Lclass is the focal loss [163] for semantic category classification and Lmask is the

dice loss [256] for mask prediction. The focal loss Lclass is calculated as follows:

Lclass = −α(1− p)γlog(p) (3.3)

where α is set to 0.25 and γ is set to 2.0 in this study. p is the probability of the

predicted instance. A sigmoid operation is used to calculate p.

The dice loss Lmask is calculated as follows:

Lmask = 1−
2
∣∣Σx,y

(
px,y·qx,y

)∣∣
Σx,yp2x,y + Σx,yq2x,y

(3.4)

where px,y and qx,y refer to the value of pixel located at (x, y) in predicted mask p and

ground truth mask q.

Training Details

Res50, Res101 and SwinT are used as backbones. For Res50 and Res101 backbone, the

batch size is set to 16 with 27K iterations in all, and the initial learning rate is set to

0.005 and divided by 10 at iterations 18K and 24K. For SwinT backbone, the batch size

is set to 4 with 54K iterations in all.

The initial learning rate is set to 0.005 and divided by 10 at iterations 36K and 48K.

Additionally, PeachSOLO is also trained on nine individual peach datasets separately to

validate the generalisation ability of PeachSOLO. Res50 is used as the backbone network,

the batch size is set to 16 with 10K iterations, and the initial learning rate is set to 0.005

and divided by 10 at iterations 6K and 8K. An SGD optimiser is used with a weight

decay of 0.0001 and a momentum of 0.9. The learning rate is warmed up for the first

1000 iterations, then updated according to the StepLR method.

The backbone is initialised with pre-trained weights on ImageNet [142], and all con-

volution layers in the detection head are initialised with a normal distribution. The data

augmentation strategies used in training contain random horizontal flipping, resizing the

input images such that the shortest side is one of 640, 672, 704, 736, 768 or 800 pixels

while the longest is at most 1333. The number of grids for four feature map levels is (40,

36, 24,16).

The loss weights for Lclass are set as {unripe:1.0, semiripe:1.5, ripe:2.0} to pay more

attention to categories with fewer instances. The λ of the loss function L is set to 3

during training.
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3.3.3 Model Inference

Evaluation Metrics

• Average Precision (AP)

The average precision and average recall are frequently used to measure the perfor-

mance of segmentation models. The definitions of precision and recall are:

Precision =
TP

TP + FP
(3.5)

Recall =
TP

TP + FN
(3.6)

where TP is the number of true positive cases that the target is a fruit and is

correctly detected, FP is the number of false positive cases that the target is not a

fruit, but it is wrongly detected, and FN is the number of false negative cases that

the target is a fruit, but it is not detected.

AP is a standard measure for measuring the sensitivity of the network to a target

object and is an indicator that reflects the global performance of the network. The

higher the AP value, the better the detection accuracy of the proposed model.

Following the criterion of MS COCO [164], mean AP is used as the primary metric

to evaluate the model performance, which is calculated by averaging 10 Intersection

over Union (IoU) thresholds ranging from 0.50 to 0.95 across all categories. Three

different sizes of objects are defined based on the instance area: small area (≤ 322),

medium area (322 ∼ 962) and large area (> 962). AP values for IoU thresholds

of 0.50, 0.75, and three different object sizes, referred to as AP50, AP75, APsmall,

APmedium and APlarge are reported,.

• Learnable Parameters (Params)

The learnable parameters refer to the weights and biases within the model’s layers,

which are adjusted during the training process to optimise performance and make

accurate predictions. The total number of learnable parameters in a model is often

considered an indicator of its capacity and complexity.

• Floating-point Operations (FLOPs)

Floating-point operations is a measure of the computational complexity of a deep

learning model. It represents the number of arithmetic operations performed by the

model during the process of forward propagation, where input data passes through

the layers of the model to produce output predictions. FLOPs is typically quantified

in terms of the number of multiplications and additions performed by the model.
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• Frames per second (FPS)

Frames per second is a measure of the model inference speed, which indicates how

many input images the model can process per second. A higher FPS reflects faster

model execution, which is critical for real-time applications such as autonomous

driving or in-field analysis. It is influenced by factors such as model size, hardware

performance, and optimisation techniques.

Inferenece Details

The data augmentation strategy used in inference is only resizing the input images such

that the shortest side is 800 pixels while the longest is at most 1333 pixels.

During the inference, the preprocessed input image would be passed through the

backbone network, the feature pyramid network, and the detection head to generate two

predictions. The first prediction from the kernel branch includes the predicted category

scores and predicted mask kernels, while the second prediction from the feature branch

includes predicted mask features.

Then, the predicted mask kernels are utilised to perform a convolution operation

on the predicted mask feature to generate predicted soft masks, followed by a sigmoid

operation, with the value range being [0,1]. A threshold of 0.5 is used to convert predicted

soft masks to binary masks. It is noted that the final category scores are calculated by

pixel-wise multiplication of the predicted category scores with binary masks, followed by

division by the count of binary masks. Then, the top 500 predictions are kept, and the

redundant predicted masks are removed via Non-Maximum Suppression (NMS).

Finally, the predicted masks are reshaped and interpolated to the original image size.

3.4 Experiments and Results

3.4.1 Experiments

In this chapter, the experiments are based on Detectron2 [288] and have been carried out

using Python 3.9.13 and PyTorch 1.13 on a computer with the specifications shown in

Table 3.4.

It is demonstrated that the proposed PeachSOLO achieves competitive results com-

pared to Mask R-CNN on the NinePeach dataset. A detailed ablation study of the de-

tection head and class loss weights is also provided. To check how well the model adapts,

the model is trained separately on individual peach datasets. Lastly, the segmentation

results are visually shown, and the computational details are calculated.
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Table 3.4: The computer specifications.

Aspect Details

System OS Cent OS 7

CPU Inter Xeon Gold 6152 @2.1 GHz

GPU 2 × Nvidia Tesla V100

Memory 32.0 GB

3.4.2 Main Results

PeachSOLO and state-of-the-art Mask R-CNN are trained using the NinePeach dataset,

and their instance segmentation performance is then compared. Fig. 3.6 illustrates the

training loss and periodic evaluation (14 checkpoints for Res50/101 and 6 checkpoints for

SwinT) results of the proposed model with different backbones, with the losses converged

and evaluation results stabilised at the end of the training. The results are presented in

Table 3.5.

Figure 3.6: The training loss (solid line, left ordinate) and evaluation AP (dash line,
right ordinate) of the proposed PeachSOLO.

PeachSOLO with a SwinT backbone achieves the highest AP of 72.12 in all experi-

ments. Besides, PeachSOLO outperforms Mask R-CNN on overall AP when using the

same backbone.

First, with increasing backbone complexity and capacity, performance gains are pro-

gressively enhanced. For example, PeachSOLO increases about 1.66 and 5.79 AP when

changing Res50 to Res101 and SwinT. This observation means the FPN and the detection
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head need more representative features generated by a stronger backbone as a condition

for segmentation.

Second, PeachSOLO has a lower AP75 and a higher AP50 than Mask R-CNN, which

indicates that PeachSOLO is stricter when outputting predictions. This suggests a slight

confidence reduction of PeachSOLO, which is caused by the pixel-wise calculation on

predicted category scores with binary masks in the inference phase. Mask R-CNN first

proposes a bounding box and then generates a high-quality mask within that box, might

allow for finer mask refinement and thus better performance at stricter IoU thresholds.

Table 3.5: Instance segmentation results on the NinePeach validation set.

Model Backbone AP AP50 AP75 APsmall APmedium APlarge APunripe APsemiripe APripe

M
as
k
R
-C

N
N Res50-FPN 65.02 75.53 70.93 17.47 36.10 77.31 63.98 59.65 71.43

Res101-FPN 66.02 75.91 71.76 13.01 33.93 78.29 64.92 60.25 72.99

Swin-FPN 69.91 83.11 76.26 24.26 45.81 76.47 64.57 64.09 76.08

P
ea
ch
S
O
L
O Res50-FPN 66.33 78.59 68.95 13.92 32.03 76.57 65.21 61.93 71.86

Res101-FPN 67.99 77.73 70.84 11.21 32.41 78.75 65.76 62.39 75.84

SwinT-FPN 72.12 83.76 75.49 11.52 40.25 82.19 68.24 69.26 78.87

Third, compared to Mask R-CNN which has relatively higher APsmall and APmedium,

PeachSOLO tends to have better performance in predicting large peach instances, which

is similar to related work [304]. Large object detection of PeachSOLO benefits from the

mask feature fusion in the mask feature branch, which fuses features of different scales

to get a unified and high-resolution feature representation. Mask R-CNN employs a

RPN that generates numerous anchor boxes at different scales and aspect ratios. This

systematic generation and refinement of proposals can be effective at localising smaller

and medium objects.

Finally, PeachSOLO outperforms Mask R-CNN on every ripeness AP, which demon-

strates that it has better segmentation performance. Notably, both models are relatively

good at predicting ripe peach instances. It is suggested that the complexity of segment-

ing ripe instances is reduced because the ripe peach not only has a conspicuous colour

to distinguish, but also appears alone usually as a result of naturally falling fruit and

artificial fruit thinning.

3.4.3 Ablation Results

A series of ablations is conducted to investigate the impact of different components in

the detection head and different loss weights in the loss function on segmentation perfor-

mance.
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Detection Head

The detection head plays a critical role in the proposed model. Table 3.6 shows the abla-

tion results of the components of the detection head. Compared to the vanilla baseline,

adding coordinates and replacing the last convolution with a deformable convolution at-

tains 2.11 and 2.47 AP gains. Besides, adding the CBAM for stronger spatial perception

ability gives a significant 4.55 AP improvement. The proposed model leverages the above

three components and improves the baseline by 5.66 AP.

Table 3.6: Ablation on different components of the detection head.

Model AP AP75 AP50 APunripe APsemiripe APripe

Vanilla 59.81 77.00 62.48 53.52 58.03 67.88

+Coord 61.92 76.22 64.54 57.63 58.57 69.57

+DCN 62.28 74.56 63.83 60.39 57.42 69.04

+CBAM 64.36 76.57 66.60 61.91 61.32 69.84

=PeachSOLO 65.47 77.29 68.13 63.42 62.31 70.67

Class Loss Weights

As the category distribution of the dataset is imbalanced, different weights for different

categories are needed to reduce the imbalance. Table 3.7 shows some ablation results

on different loss weights set for three categories. The loss weight settings {unripe:1.00,
semiripe:1.50, ripe:2.00} demonstrated the best performance, emphasising the importance

of specific losses and thereby enhancing model performance. However, overly imbalanced

weight setting {1.00 : 2.00 : 3.00}, which pays much more attention to semiripe and ripe

instances, deteriorates model performance.

Table 3.7: Ablation on different weights for class loss.

Weights AP AP75 AP50 APunripe APsemiripe APripe

1.00 : 1.00 : 1.00 65.02 77.86 67.53 63.94 59.97 71.18

1.00 : 1.25 : 1.75 63.59 75.79 65.70 61.64 59.47 69.66

1.00 : 1.50 : 2.00 66.33 78.59 68.95 65.21 61.93 71.85

1.00 : 1.75 : 2.25 65.33 77.64 67.71 63.89 60.49 71.62

1.00 : 2.00 : 3.00 63.06 74.14 65.60 60.75 58.10 70.34
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3.4.4 Combined and Separate Training

The segmentation performance of training PeachSOLO with Res50-FPN on separate (t/o

separate) and combined (t/o combined) NinePeach dataset are compared. The results

are shown in Table 3.8. The evaluation results of the model trained using NinePeach

perform better compared to those of models trained using individual peach datasets.

The average AP improvement stands at 21.05, with Songsen showing the most significant

enhancement at 36.61. It is suggested that after merging the datasets, not only does

the distribution of peach categories become more balanced, but the model also has more

data samples for learning the characteristics and patterns of peaches in different ripeness

stages, thus improving the generalisation ability.

Table 3.8: The comparison of training on separate and combined NinePeach dataset.

t/o separate t/o combined

Peach AP AP75 AP50 AP AP75 AP50

1.Dahongpao 39.52 57.74 38.44 57.48 69.92 59.69

2.Qingfeng 48.96 66.73 48.66 76.77 84.30 79.84

3.Chunmei 37.92 56.41 38.19 72.78 82.70 77.12

4.Chunmi 46.55 59.38 45.74 49.38 56.64 51.07

5.Chunxue 50.81 68.38 52.68 73.87 82.98 79.30

6.Songsen 32.60 59.77 31.54 69.21 76.17 74.75

7.Maotao 46.06 62.08 46.65 53.90 61.13 55.69

8.Youpantao 38.34 57.47 37.13 61.71 73.62 64.84

9.XiahuiNo5 54.59 70.33 55.32 69.76 78.52 72.02

Average 43.93 62.03 43.82 64.98 74.00 68.26

3.4.5 Visualisation

The peach segmentation performance of PeachSOLO is visualised in Fig.3.7. As shown

in Fig. 3.7 (left), besides the easy cases when the peaches are fully visible and can

be segmented accurately, PeachSOLO is capable of detecting peaches in more complex

cases. Specifically, when the peaches overlap with each other or are partially obscured

by tree branches or leaves, PeachSOLO still performs well in identifying them accurately.

The good segmentation performance shows the feasibility of the dynamic convolution

operation in the detection head, of which two operators are mask features and mask

kernels that are both learned from the output of the feature pyramid network.

It is worth noting that PeachSOLO not only detects multiple peaches of varying sizes
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within a single image accurately, but also generates almost as smooth boundaries as the

ground truths, benefitting from fused and high-resolution mask feature representation

after CBAM operation. Fusing features of different scales that merge the information

of peaches of varied sizes to a unified feature enables the model to make predictions of

varying sizes at the same time. The high-resolution mask feature brings larger predicted

masks, which means negligible loss when reshaping them back to their original sizes.

Wrong prediction

Missing prediction

Figure 3.7: Segmentation visualisations of PeachSOLO, with accurate (left) and non-
accurate (right) examples.

However, there are a few cases where called wrong prediction and missing prediction

output by PeachSOLO as shown in Fig. 3.7 (right). Wrong prediction means that two

or more objects are wrongly predicted to be one object, or a part of the background is

wrongly predicted as a peach. It is assumed that a wrong prediction occurs when some

parts in the image have similar features to each other or with known category features,

which makes the model regard them as the same object or target objects. On the other

hand, if peaches are too obscured to be discovered or look like the background because

of misleading light conditions, the model tends to ignore them or treat them as the

background, resulting in the problem of missing prediction in these scenarios.

Furthermore, the peach segmentation performance between PeachSOLO and Mask

R-CNN is compared in Fig. 3.8. The red and blue boxes are used to emphasise the

difference. In the case Fig. 3.8 (left), Mask R-CNN ambiguously predicts the leaf as a

part of the peach, while PeachSOLO can segment the peach without the leaf clearly. It can

be observed that PeachSOLO produces more precise and smoother boundary predictions

than Mask R-CNN. Fig. 3.8 (middle) shows a challenging case where a peach is occluded

by leaves and stalks at the same time. PeachSOLO segments the peach almost perfectly;

it accurately detects the peach in most of the regions, especially those along the tricky

boundaries, while Mask R-CNN cannot clearly segment the boundaries between the peach

and leaves and stalks, producing much more inaccurate and incomplete predictions. In
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Figure 3.8: The segmentation comparison of Mask R-CNN (top) and the proposed Peach-
SOLO (below).

Fig. 3.8 (right), Mask R-CNN predicts one peach separated by a leaf as two individual

peaches, whilst PeachSOLO predicts the separated parts as one object.

3.4.6 Model Complexity

The number of learnable parameters, FLOPs, FPS and maximum GPU memory usage

during training between PeachSOLO and Mask R-CNN using the same backbone Res50-

FPN are compared. The results are shown in Table 3.9.

Table 3.9: The complexity comparison of PeachSOLO and Mask R-CNN.

Model
Params
(M)

FLOPs
(G)

FPS
Max Mem.

(M)

Mask R-CNN 43.93 174.9±1.0 8.33 11135

PeachSOLO 46.17 213.4±0.2 11.11 8542

PeachSOLO has 2.24M more parameters than Mask R-CNN, most of which are intro-

duced by convolution layers. This means that PeachSOLO is more complex and requires

more data for training. PeachSOLO has more 38.5G FLOPs than Mask R-CNN, show-

ing that PeachSOLO has higher computational complexity. PeachSOLO runs 25% faster

than Mask R-CNN during inference, which indicates that PeachSOLO is relatively faster

to execute. PeachSOLO saves 2593M GPU memory than Mask R-CNN, which makes it

hardware-friendly to be trained on different devices.

Although PeachSOLO has more parameters and FLOPs than Mask R-CNN, it ben-

efits from a one-stage design, which avoids the region proposal step and reduces overall
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processing time. Moreover, PeachSOLO shares its detection head across feature levels,

enabling more efficient multi-scale processing. Operations such as DCN are also well

supported by the underlying framework and can be accelerated through GPU parallel

computing. These design and implementation choices contribute to the faster inference

speed compared to Mask R-CNN.

In summary, Mask R-CNN has fewer parameters and FLOPs but longer inference

time and more GPU memory usage as a result of the abundant anchors generated during

training and inference. Despite having more Params and FLOPs, PeachSOLO manages

to keep inference time and GPU usage relatively low. It maintains better accuracy and

precision than Mask R-CNN while delivering results faster. PeachSOLO is able to per-

form a larger number of FLOPs quickly, striking a fine trade-off between performance and

complexity. This efficiency can be attributed to the detection head that is anchor-free and

shared between different feature map levels, which allows PeachSOLO to maximise com-

putational power while minimising memory requirements and enables it to be potentially

deployed on GPUs with limited memory capacities.

3.5 Discussion

3.5.1 The Details of NinePeach

According to the current state of the literature, there is no official standard for classify-

ing the ripeness of peaches on trees. With the cooperation of a botanist specialising in

peaches, the peach ripeness is determined into three stages subjectively. The only crite-

rion is that annotators must choose their first judgment when meeting ambiguous cases.

Similar to other large datasets, the NinePeach dataset also has a long-tail phenomenon,

which refers to a situation where few categories have a high frequency of occurrence, while

most categories have relatively few instances, forming a “long tail” in the distribution

curve. The images were additionally oversampled to increase the number of instances of

fewer categories and set different weights for different categories to alleviate this problem.

The improved dataset has a balanced category distribution, facilitating the training of a

large and well-performing peach instance segmentation model.

3.5.2 Limitations

PeachSOLO demonstrates accurate peach detection capabilities, even when peaches are

obstructed by tree branches or leaves. However, in a few cases where certain regions within

the image exhibit similar features to each other or with known category features, it may

generate false predictions, or missing predictions occurring when peaches are too obscured

or look like the background due to lighting conditions. These unreliable predictions were
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attributed to the larger receptive field of PeachSOLO and the misleading illumination

conditions of the image.

The incorporation of CBAM has led to a noteworthy 4.55 point increase in AP, but

it has also augmented the complexity of the model, with the extensive use of convolu-

tion operations resulting in an elevation of both learnable parameters and floating-point

operations. The potential improvement direction of PeachSOLO is to reduce unreliable

predictions and to reduce computational complexity.

3.6 Summary

Precise identification of the peach ripeness stage plays a crucial role in developing au-

tomated harvesting systems for large peach orchards, as it enhances picking efficiency

and reduces production costs. Motivated by this, a high-quality peach dataset called

NinePeach and a one-stage peach instance segmentation model were constructed in this

chapter.

The NinePeach dataset comprises a total of 4599 peach images, categorised into three

distinct stages of ripeness: unripe, semiripe, and ripe. This dataset aims to reproduce the

natural field conditions, including images with factors like different intensities of natural

light, multi-fruit adhesion, and occlusion caused by stems and leaves.

The proposed one-stage peach instance segmentation model does not require an RPN

to generate bounding box proposals. The prediction of masks is obtained through dy-

namic convolution operations on the mask feature and kernel feature output from two

branches. Channel attention and spatial attention are considered to enhance the ability

to detect objects in key channels and spatial locations, which brings a significant positive

impact on model performance. Benefitting from the anchor-free and memory-friendly

design, the proposed model achieves a delicate balance between model performance and

complexity, manifested by the fact that it utilises fewer GPU resources while delivering

faster and better predictions compared to Mask R-CNN.

At present, the released large peach dataset provides a foundation for further peach-

related studies and reduces their workload. The proposed model can accurately detect

peaches and generate their smooth boundaries, even in some cases where peaches are

occluded, which establishes a robust basis for further work, like peach picking point

estimation and peach disease monitoring. These advances create opportunities for offering

practical solutions for farmers, applying this technology to other fruits or crops and

considering the ever-evolving nature of agriculture.



Chapter 4

LightStraw: Lightweight CNN-based

Strawberry Instance Segmentation

Models

4.1 Introduction

Building upon the instance segmentation framework introduced in the previous chapter,

which focused on accurate peach ripeness identification, this chapter explores the devel-

opment of lightweight CNN models for strawberry instance segmentation. Unlike the

previous chapter, the emphasis here is not on fruit maturity classification but on design-

ing segmentation models that are both accurate and computationally efficient, aiming to

support real-time deployment in resource-constrained agricultural environments.

Strawberries are a high-value fruit crop that often requires labour-intensive cultiva-

tion and harvesting. Automating the segmentation of individual strawberry instances can

significantly enhance harvesting efficiency and enable precise yield estimation. However,

many state-of-the-art instance segmentation models, such as Mask R-CNN, require ex-

tensive computational resources, limiting their practicality in real-world field conditions.

To address this challenge, this chapter introduces a series of CNN-based instance

segmentation models, collectively referred to as LightStraw. These models integrate a

self-attention-based backbone for enhanced semantic feature extraction, a feature pyramid

network for multi-scale representation, and a decoder that incorporates both coordinate-

aware features and instance activation maps. A bipartite matching algorithm is used

during candidate selection, allowing for efficient instance assignment without the need

for sorting or Non-Maximum Suppression.

Experimental results show that the proposed models achieve substantial improvements

over original and simplified Mask R-CNN baselines, both in terms of accuracy and effi-

ciency. Specifically, they reduce the number of parameters and floating-point operations

62
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while maintaining high segmentation performance, making them suitable for deployment

on edge devices in practical agricultural scenarios.

4.2 Dataset

4.2.1 StrawDI Db1 Overview

The StrawDI Db1 dataset [217] comprises 3100 images captured in strawberry plantations

at various times throughout a complete picking campaign. These images were taken using

a mobile phone, featuring a resolution of 4032 × 3024 pixels, 8 bits per colour channel,

and stored in JPEG format. Then, the images have been rescaled to 1008 × 756 pixels

in PNG format. These images are organised into training (2800 images), validation (100

images), and testing (200 images) subsets, respectively.

A statistical overview of the dataset is presented in Table 4.1. The distribution of

strawberry instances demonstrates a relatively balanced representation across different

sizes, with a slightly higher proportion of medium-sized instances in the training set. The

number of instances per image and the pixel ratio remain stable across all sets, indicating

a consistent frequency of occurrence and an overall average fruit shape. The StrawDI Db1

dataset offers instance-level annotations for all sets. Example annotations are illustrated

in Fig. 4.1.

Table 4.1: Statistics of the StrawDI Db1 dataset.

Aspect Category Train Val Test

Ratio of size

Small (area ≤ 322) 0.21 0.22 0.22

Medium (322 < area ≤ 962) 0.48 0.44 0.48

Large (area > 962) 0.31 0.34 0.30

Mean/standard
deviation

Number of strawberry instances 5.8/2.9 5.7/2.7 5.7/2.8

Ratio of strawberry pixels per image (%) 5.6/2.7 5.7/2.4 5.4/2.5

4.3 Method

4.3.1 Model Structure

The proposed model is designed to be lightweight and efficient in performing strawberry

instance segmentation, of which the architecture is shown in Fig. 4.2. It is constructed

by two main parts: an encoder and a decoder. The encoder consists of a backbone and an

FPN, which extracts contextual information from images and builds multi-scale features
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Figure 4.1: Sample images and annotations of StrawDI Db1.

for later prediction. The decoder is anchor-free and does not require an RPN to generate

anchors; it mainly contains two branches and predicts class and masks directly based on

features extracted by the encoder.
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Figure 4.2: The architecture of the proposed LightStraw.

4.3.2 Encoder

Backbone

Modelling in computer vision has been dominated by CNNs for a long time. On the

other hand, the tremendous success of Transformer in the language domain inspired the

emergence of Vision Transformer (ViT). Compared with CNNs, ViT offers a powerful

approach to capturing global dependencies and contextual understanding in images. The

attention mechanism plays a crucial role in capturing relationships between different parts

of an image in ViT, enabling ViT to attend to and aggregate information from all image
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patches simultaneously. Therefore, instead of directly using CNNs like ResNet as the

backbone in the previous chapter, an efficient attention-based backbone is proposed to

extract features from input images.

The vanilla self-attention is calculated by Eq. (4.1). Firstly, the input embedding,

including positional encoding, is linearly transformed into three sets of vectors: query Q,

keyK and value V . Then, the attention scores are computed using the scaled dot-product

attention mechanism. For each token, its attention to other tokens is determined by the

dot product of its query vector with the key vectors of other tokens. Next, the result

is scaled by the square root of the dimension of the key
√
dk. The attention scores are

normalised using the Softmax function to obtain attention weights. Finally, the value V

are multiplied by the attention weights, and the resulting weighted vectors are summed

to produce the attention output.

Attention = Softmax(
QKT

√
dk

)V (4.1)

The vanilla self-attention in ViT undergoes a sequence of steps that contribute to its

progressive and effective modelling of relationships between different parts of an input

image. However, the vanilla self-attention has a quadratic time and space complexity

with respect to the sequence length, which makes it computationally expensive.

• Efficient Multi-head Self-Attention (EMSA) To alleviate the problem, the

Efficient Multi-head Self-Attention [312] is adopted as the basic block of the back-

bone. The detail is shown in Fig. 4.3. Firstly, a set of linear layers is adopted on

2D input token [n, dm] to obtain query Q. Then, the input token is reshaped to 3D

one [n, h, w] and performs a depth-wise convolution operation to reduce its dimen-

sions to [n, h/s, w/s] by a factor s. Next, similar to the vanilla self-attention, the

attention scores are computed using the scaled dot-product attention mechanism.

Before the softmax operation, PWConv is used to model the interactions among

different heads, which is a 1×1 pixel-wise convolutional layer, as shown in Eq. (4.2).

In the end, the resultant values from each head are concatenated and subjected to

a linear projection to create the final output.

EMSA = Softmax(PWConv(
QKT

√
dk

))V (4.2)

Self-attention does not inherently understand the order or position of tokens in a

sequence. Positional encoding is used to provide this important information. Here,

a simple module is used to encode positions in Eq. (4.3). Specifically, a 3×3 depth-

wise convolution layer is applied to generate pixel-wise weight and then scaled by

a sigmoid function σ(·).
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Figure 4.3: The backbone of the proposed LightStraw.

PE(x) = x× σ(DWConv(x)) (4.3)

• Patch Embedding Attention was originally designed for processing sequences of

data, to apply it to images, it is necessary to convert the spatial information of the

3D image into a 2D sequence. Here, a stack of three 3 × 3 convolutional layers is

used, which is with stride=3/1/2, padding=1/1/1, as shown in Eq. (4.3). Batch

Normalisation and ReLU activation are applied sequentially for the first two lay-

ers. The first two convolutional layers downsample and adjust channel dimensions,

while the third further reduces spatial dimensions and increases output channels.

Positional encoding is applied after the third convolutional layer, making it suitable

for integration into the attention-based backbone.

To facilitate different scenarios, three different backbone variants (Tiny, Small and

Base) are designed. The pipeline of the backbone is shown in Fig. 4.3, and the specifica-

tion of backbone variants is shown in Table 4.2, of which N is the number of blocks, C



Chapter 4. LightStraw: Lightweight CNN-based Strawberry Instance Segmentation
Models 67

is the number of embedded dimensions and H is the number of self-attention heads.

Table 4.2: LightStraw backbone architecture variants.

Stage Stride Backbone-T Backbone-S Backbone-B

S0 4 C0=64 C0=64 C0=96

S1 4 N1/C1/H1=2/64/1 N1/C1/H1=2/64/1 N1/C1/H1=2/96/1

S2 8 N2/C2/H2=2/128/2 N2/C2/H2=2/128/2 N2/C2/H2=2/192/2

S3 16 N3/C3/H3=2/256/4 N3/C3/H3=6/256/4 N3/C3/H3=4/384/4

S4 32 N4/C4/H4=2/512/8 N4/C4/H4=2/512/8 N4/C4/H4=2/768/8

Feature Pyramid Network (FPN)

The FPN introduces a top-down architecture where higher-resolution feature maps from

earlier stages of the backbone are combined with lower-resolution feature maps from

later stages. This is achieved through lateral connections, which involve upsampling the

higher-level features and element-wise addition with the lower-level features. The pyramid

typically consists of feature maps at different resolutions, different levels represent features

at different scales. These scales correspond to different receptive fields and are crucial for

handling objects of various sizes. Here, a convolutional layer is applied to aggregate the

features of three levels into one at last.

4.3.3 Decoder

The simple decoder of SparseInst [42] is adopted to decode the features to predictions,

which mainly consists of two branches. Before entering any branch, the feature generated

by the encoder passes the CoordConv Module Fcoord.

The CoordConv Module

The Fcoord is implemented as a simple extension of standard convolution [169]. The details

of Fcoord are shown in Fig. 4.2. Given an input feature [C,H,W ], two coordinate channels

i and j with the size of [1, H,W ] are created. Specifically, within i, the first row is filled

with 0, the second row is filled with 1, the third row is filled with 2, etc. The j channel

is similar but with columns filled in with constant values instead of rows. Then, both i

and j coordinate values are linearly scaled to fall in the range [−1, 1]. Finally, channels i

and j are concatenated with the input feature, resulting in an output [C + 2, H,W ]. For

convolution over two dimensions, two coordinates (i, j) are sufficient to specify an input

pixel.
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This module can be regarded as a type of position embedding, which provides addi-

tional location information for later decoding operations. It is noted that two channels

are generated by coordinates, thus no extra parameters are introduced, which is friendly

to building a lightweight model.

Instance Branch

This branch consists of an Instance Activation Map (IAM) and three prediction heads.

The Instance Activation Map is inspired by Class Activation Map (CAM, 318), which

suggests that objects can probably be found in informative regions. The features ex-

tracted from the highlighted areas are rich in semantic information and exhibit instance

awareness, aiding in the recognition and differentiation of strawberries.

The details of Fiam are shown in Fig. 4.2. The Fiam is a 3 × 3 convolutional layer

with 4 groups to aggregate instance features by concatenating features from a group.

Given an input feature [C,H,W ], the output computed by the Fiam is with the shape

[C ′, H,W ], in which C ′ is the pre-set number of instance activation maps. Then, the

sparse instance features can be calculated by multiplying the output (normalised to 1)

and the transposed input. Finally, the sparse instance-aware features are forwarded to

three prediction heads to predict score, class and kernel.

Mask Branch

As validated by similar work SOLOv2 [277], it is feasible to use trained parameters as

the kernel to perform mask prediction. Given the feature generated by FPN and the

instance-aware mask kernels generated by the instance branch, the segmentation mask

for each instance can be produced by mi = wi ·M , where mi is the i-th predicted mask

and corresponding kernel wi, and M is the features. The final segmentation masks adopt

bilinear interpolation to upsample to the original resolution.

…

A large number of proposals 

Pre-defined number of proposals 
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Figure 4.4: Non-maximum suppression and bipartite matching.
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4.3.4 Loss Function

Different from anchor-based segmentation models that generate a large number of an-

chors, the proposed model employs the Transformer decoder to treat fruit detection as

an end-to-end dictionary lookup task. Specifically, the decoder generates a fixed number

of N predictions by decoding the N learnable query embeddings layer by layer. There-

fore, the necessity for manual processes like NMS is eliminated. Instead, the Hungarian

matching is adopted, which is a kind of bipartite matching method, to find the best

matching between predictions and ground truths for loss computation.

The difference between NMS and bipartite matching is illustrated in Fig. 4.4. NMS

generates a large number of proposals and applies heuristic filtering based on over-

lap scores to remove redundant detections. This introduces a non-differentiable post-

processing step. In contrast, bipartite matching employs a pre-defined fixed number of

proposals and assigns each proposal to a specific ground truth or a ”no object” class

based on a cost matrix. By integrating this matching process directly into the optimi-

sation framework, the proposed model enables a fully end-to-end differentiable pipeline

where predictions and assignments are jointly optimised.

This model follows DETR [26], which treats the label assignment problem as a bi-

partite matching problem. Firstly, a pairwise dice-based matching score C(i, k) for the

i-th prediction and the k-th ground-truth object is introduced in Eq. (4.4), which is

determined by classification scores and dice coefficients of segmentation masks.

C(i, k) = p1−α
i,ck

·Dice(mi, tk)
α (4.4)

where α is a weight for two predictions {segmentation=0.8, classification=0.2}, ck is

the category label for the k-th ground-truth target and pi,ck is the probability for the

category ck of i-th prediction. The Dice loss is defined in Eq. (3.4).

First, all of the predictions, including class predictions, mask predictions and class

targets, mask targets, are used to calculate a cost matrix for prediction selection, whereX

indicates the number of instances in a batch. The class cost and mask cost are calculated

by cross-entropy loss and Dice loss, respectively, as shown in Eq. (4.6) and Eq. (3.4).

Second, the Hungarian algorithm is used to search for the best bipartite matching by

solving the cost matrix, resulting in a matching score C(i, k) for the i-th prediction and

the k-th ground truth object. Therefore, the number of predictions is decreased from N

to match that of the targets.

The training loss is defined in Eq. (4.5):

L = λs · Ls + λc · Lcls + Lmask (4.5)

λ indicates the different loss weights. λc and λs are loss weights for classification and
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score.

Ls = −Σiyi · log(pi) (4.6)

Ls is the binary cross-entropy loss for score, as defined in Eq. (4.6), where yi represents

the ground truth probability and pi represents the predicted probability.

Lcls is focal loss for classification, as defined in Eq. (3.3).

Lmask is the dice loss for mask, as defined in Eq. (3.4).

The evaluation metrics include AP, Params, FLOPs and FPS, as defined in Sec-

tion 3.3.3.

4.4 Experiments and Results

4.4.1 Experiments

Implementation Details

The experiments are conducted on Detectron2 using Python 3.9.13 and PyTorch 1.13 on

a computer with the specifications shown in Table 3.4.

During training, the batch size is set to 16 with 27K iterations in all, an AdamW

optimiser is used, and the initial learning rate is set to 0.005 and divided by 10 at iterations

18K and 24K. No pre-trained weights are used, and the parameters of the backbone are

initialised by a normal distribution. The training data augmentation strategy contains

random horizontal flips, resizing the input images such that the short edge is one of 416,

448, 480, 512, 544, 576, 608 or 640 pixels while the longest is at most 853.

During inference, batch normalisation uses the running averages of mean and standard

deviation computed during training, and dropout layers are deactivated during evalua-

tion, so all layers in the model are used. The data augmentation strategy is only the

resizing of input images such that the shortest edge is 640 pixels while the longest is at

most 853.

4.4.2 Results

Main Results

Mask R-CNN is a state-of-the-art instance segmentation model that has been applied

to strawberry images. An original [304] and a simplified version [217] of Mask R-CNN

have been used to perform strawberry instance segmentation. Additionally, a fully con-

volutional neural network (FCN, 216) has been proposed to solve the same task more

efficiently.
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Table 4.3: Instance segmentation results on the StrawDI Db1 testing set.

Model Backbone AP AP50 AP75 APs APm APl

Mask R-CNN [304] Res50 45.36 76.57 47.09 07.35 50.03 78.03

Mask R-CNN’ [217] Res50 43.85 74.24 45.13 07.54 51.77 75.90

FCNN [216] Res50 52.61 69.24 57.84 16.96 65.26 53.31

LightStraw

Tiny 66.82 85.99 71.78 28.53 70.25 87.67

Small 69.39 87.32 73.96 30.04 71.85 92.15

Base 70.22 87.70 76.05 31.44 73.63 90.29

s: small (area ≤ 322); m: medium (322 < area ≤ 962); l: large (area > 962).

Table 4.3 summarises the results of other models and LightStraw on the StrawDI Db1

testing set. As shown, LightStraw with a Base backbone achieves the highest AP of 70.22.

First, all of LightStraw demonstrates significant improvement over previous work;

even the lowest performer with a Tiny backbone has an AP 21.46, 22.97, and 14.21

higher than the original, simplified Mask R-CNN and FCNN, respectively.

Second, model performance gains are progressively enhanced as backbone complexity

and capacity increase. For example, LightStraw with Small and Base backbones deliver

2.57 and 3.4 points higher AP than the Tiny backbone. It is assumed that more features

can be provided by more layers and bigger embedded dimensions, which helps locate the

targets.

Third, the AP50 of LightStraw is larger than AP75, and of which gaps between AP50

and AP75 are narrower than the original and simplified Mask R-CNNs, indicating that

LightStraw usually output high-accurate results regardless of different IoU criteria. Fi-

nally, LightStraw demonstrates better performance when dealing with medium and large

strawberries than small strawberries. It is suggested that the reasons for this could be

that small strawberries have a similar colour to leaves and are normally covered, and they

can be lost when resizing the input images to smaller ones.

Table 4.4: Params and FLOPs of the models.

Model Backbone Params (M) FLOPs (G)

Mask R-CNN [288] Res50 35.08 877.4

LightStraw

Tiny 17.42 78.3

Small 20.58 86.9

Base 33.54 111.7
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Model Complexity

To measure the model size and complexity, the number of learnable parameters and the

number of floating-point operations during training are computed. Previous work [304,

217, 216] did not provide information about their model size and complexity, therefore,

the complexity between Mask R-CNN with Res50 from Detectron2 and the proposed

model is compared. The results are shown in the Table 4.4.

All of LightStraw have fewer parameters compared to Mask R-CNN, among which

the Tiny backbone has less than half the number of parameters compared to Mask R-

CNN. This indicates that the design of LightStraw is lightweight and efficient, making

the models suitable for resource-constrained environments.

LightStraw generally requires significantly fewer FLOPs for each image during infer-

ence compared to Mask R-CNN. This suggests that the proposed models are computa-

tionally efficient.

In summary, LightStraw not only has fewer parameters and requires fewer floating-

point operations during inference compared to the Mask R-CNN but also demonstrates

a trade-off between model complexity and computational efficiency, which offers options

for scenarios with strict resource constraints. The models with Tiny and Small back-

bones offer lightweight options for scenarios with strict resource constraints, while the

Base backbone provides a higher-capacity variant for tasks that demand more accurate

strawberry segmentation.

Figure 4.5: The segmentation visualisation of the proposed LightStraw.
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4.4.3 Visualisation

The performance of LightStraw is visualised in Fig. 4.5. The model can segment straw-

berries under various conditions. There are some difficult cases in which strawberries are

located at the side of the image or are partially covered, however, the proposed LightStraw

can segment them accurately.

Table 4.5: The model FPS across different devices.

Device Format LightStraw (Tiny) Mask R-CNN

NVIDIA Tesla V100 .pth 12.29 8.00

NVIDIA
Jetson Orin Nano

.pth 3.26 2.92

.onnx 0.06 /*

.trt 1.40 /*

Apple M1 .onnx 1.21 /*

* Currently Mask R-CNN from Detectron2 is not supported in ONNX.

Figure 4.6: NVIDIA Jetson Orin Nano.

4.4.4 Deployment

The inference performance of the proposed Tiny LightStraw was compared with Mask R-

CNN on heterogeneous hardware platforms, including a high-performance GPU (NVIDIA

Tesla V100), an edge computing device (NVIDIA Jetson Orin Nano, as shown in Fig. 4.6),

and a general-purpose CPU (Apple M1). Table 4.5 summarises the inference time per

image using three model formats: PyTorch checkpoint (.pth), Open Neural Network

Exchange (.onnx), and TensorRT engine (.trt).

Each model format serves distinct deployment needs. The .pth format is native to the

PyTorch framework and commonly used during model development and training. The

ONNX format enables interoperability across platforms and inference engines, allowing
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deployment beyond the original training framework [49]. TensorRT is a platform-specific

optimisation for NVIDIA hardware, offering accelerated inference through kernel fusion,

precision calibration, and runtime tuning [50].

Due to current limitations, Mask R-CNN implemented with Detectron2 cannot be

exported to ONNX, and hence its inference is reported only for the .pth format on

supported devices.

Experimental results show that Tiny LightStraw consistently achieves lower inference

latency compared to Mask R-CNN under the same conditions. On the Tesla V100 GPU,

LightStraw reaches a 12.29 FPS, substantially faster than Mask R-CNN’s 8 FPS. On the

Jetson Orin Nano, LightStraw demonstrates flexible deployment performance: 1.40 FPS

using TensorRT, 0.06 FPS with ONNX, and 3.26 FPS with the PyTorch model. These

results confirm its suitability for low-power and edge scenarios.

On the Apple M1, LightStraw (onnx format) achieves a 1.21 FPS. Although slower

than optimised deployment on the Jetson platform, this result highlights the model’s

functional portability across non-specialised hardware.

In summary, the proposed model exhibits strong deployment versatility and compu-

tational efficiency. It supports multiple formats and achieves real-time or near real-time

inference across a range of devices, from data centre GPUs to edge and consumer-grade

processors, making it well-suited for practical applications.

4.5 Discussion

4.5.1 Limitations

While LightStraw shows good efficiency and accuracy in strawberry instance segmenta-

tion, its main drawbacks come from its specific focus on segmenting one type of fruit

without judging its ripeness. Ripeness information should be considered for selective

harvesting. The models, being mainly CNN-based, may not fully leverage the global

contextual understanding that Transformers might offer for more complex multi-fruit

scenarios. Also, its performance is shown using a specific strawberry dataset, and this

chapter does not cover how well it can be directly used for other fruits with different

features or in different orchard conditions.

4.5.2 Future Work

The limitations found in the LightStraw suggest directions for future research, mainly

focused on making the models capable of more complete fruit analysis. An important next

step is to include multi-stage ripeness classification and to make the model able to handle

multiple fruit types. This would make it more useful in practical farming situations.
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At the same time, exploring Transformer-based or combined CNN-Transformer model

designs is necessary to potentially improve performance on these more challenging tasks

by better understanding the entire image. Continuing to improve lightweight designs will

also remain important to make sure these models can be widely used on edge devices

with limited processing power.

4.6 Summary

Accurately detecting and segmenting each strawberry within real-world production envi-

ronments is pivotal for the development of automatic strawberry-harvesting robots. This

precision enables precise calculation of the number and size of strawberries, providing

accurate yield information crucial for agricultural planning and resource optimisation.

In this chapter, lightweight attention-based CNN models for strawberry instance seg-

mentation are presented, named LightStraw. The simple models consist of an encoder

(a backbone and an FPN) and a decoder. The proposed backbone is based on efficient

self-attention, which introduces several depth-wise and pixel-wise convolutional layers to

reduce the computation of vanilla self-attention. The last three of the four feature levels

extracted by the backbone are used in the FPN to save memory usage and model size.

The decoder mainly contains two branches: an instance branch and a mask branch. A

Fcoord module is applied before any branch, which provides coordinate information to the

features. A Fiam module is added to the instance branch to produce instance activation

maps, which aim to highlight the informative regions for each strawberry. The bipartite

matching is used in LightStraw to avoid NMS in post-processing.

LightStraw outperforms the original and simplified Mask R-CNN with significant

21.46 and 22.97 AP improvements, respectively, among which the one with Base achieves

the highest AP of 70.22. Besides, LightStraw requires many fewer parameters and FLOPs

compared to Mask R-CNN. In summary, this study introduces lightweight, efficient, and

effective models for strawberry instance segmentation. These models hold promise for

deployment on embedded devices with limited computational resources in the future.



Chapter 5

FruitQuery: Lightweight

Query-based Segmentation Models

for In-field Fruit Ripeness

Determination

5.1 Introduction

Based on the previous chapter focused on improving segmentation efficiency through

lightweight convolutional networks for strawberries, this chapter further advances in-

stance segmentation by introducing a Transformer-based architecture capable of handling

both fruit type recognition and multi-stage ripeness determination. The objective is to

achieve fine-grained segmentation of fruits at different ripeness stages under complex in-

field conditions, while maintaining a compact and efficient model design suitable for edge

deployment.

Most existing methods in agricultural vision rely on convolutional structures, and al-

though Transformer-based models have shown promise in general computer vision, their

application to fruit instance segmentation, particularly for ripeness determination, re-

mains largely unexplored. In addition, datasets that jointly provide instance-level seg-

mentation masks and ripeness labels for multiple fruit types are extremely limited, hin-

dering progress in multi-fruit and multi-stage learning.

To address these limitations, this chapter introduces FruitQuery, a lightweight, query-

based instance segmentation model that combines convolutional and Transformer compo-

nents within an end-to-end framework. FruitQuery leverages a unified fruit dataset com-

bining peaches and strawberries with detailed ripeness annotations, and applies efficient

self-attention modules and multi-scale feature fusion to improve segmentation accuracy

and generalisation. Unlike many traditional models, it avoids post-processing steps such

76
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as non-maximum suppression by directly decoding instance queries into segmentation

masks.

Quantitative evaluations show that FruitQuery surpasses a wide range of state-of-the-

art models in both accuracy and model compactness, including several advanced YOLO

and Transformer variants. These results demonstrate that query-based instance segmen-

tation provides a promising direction for in-field fruit ripeness assessment, especially when

lightweight deployment is required.

5.2 Dataset

5.2.1 Overview

In this chapter, two public fruit datasets, the NinePeach dataset [315] and the StrawDI Db1

dataset [217], are combined to form a unified benchmark for fruit instance segmentation.

The sample images are shown in Fig.3.1 and Fig. 4.1. Both datasets provide pixel-wise

individual annotation masks for every single fruit shown in the image.

NinePeach dataset. This dataset is divided into training (3240 images) and vali-

dation (1359 images) subsets, and each peach is categorised into three ripeness stages:

unripe, semiripe, and ripe. More details are in Section 3.2.3.

StrawDI Db1 dataset. This dataset is divided into training (2800 images), vali-

dation (100 images) and testing (200 images) subsets. The training and testing sets are

used in this chapter. More details are in Section 4.2.1. Unfortunately, the StrawDI Db1

dataset only offers class-agnostic annotations for strawberries, with no information pro-

vided on ripeness. Therefore, a solution to this problem is presented in the following

section.

By merging a tree-fruit (peach) and a berry-fruit (strawberry), the dataset spans

diverse canopy structures, occlusion patterns, and background textures. This variety

offers a more challenging and comprehensive setting for segmentation models, as they

must adapt to different orchard conditions and fruit morphologies.

5.2.2 StrawDI Db1 Ripeness Annotation

Based on the previous work [15, 260], four ripeness stages are selected to distinguish the

strawberries from the StrawDI Db1 dataset, with the criterion described in Table 5.1.

To achieve this classification, a simple but effective method is adopted for dividing

strawberries into four stages, as illustrated in Fig. 5.1.

First, the strawberry instances are cropped from the original images, and background

pixels are filtered, as the contextual information from the background was assumed to

introduce noise rather than contribute to the classification accuracy. All strawberry
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Table 5.1: Four ripeness stages of strawberry.

Category Description

rs1 (Green) Dark green, with relatively small sizes.

rs2 (White) Expanding, with white colour.

rs3 (Turning) Below 90% red and not ready to be harvested.

rs4 (Red) Over 90% red, edible and ready to be harvested.
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Figure 5.1: The process of strawberry mask classification.

instances are resized to 280× 280 pixels.

Second, some machine learning methods, like Histogram of Oriented Gradients, and

deep learning methods like pre-trained CNN models are employed to extract features of

the resized strawberry instances. Then, the cosine similarity is adopted to calculate the

distance between features, resulting in similarity matrices.

Third, K-means clustering is applied to solve the similarity matrices, partitioning

them into four clusters. The clustering method with the best performance was chosen to

give the predictions.

Lastly, the clustering results were manually reviewed and corrected to ensure align-

ment with the predefined ripeness criteria. This refinement ensured that the final clus-

tering outcomes adhered to the anticipated standards.

5.2.3 Dataset Summary

In summary, this study leverages two large fruit datasets, and both of them have indi-

vidual mask annotations and ripeness stage labels. By integrating these two datasets,

it can comprehensively cover scenarios involving both tree fruit (peaches) and berries

(strawberries).

The combined dataset contains 7 different classes, with 3 classes corresponding to

peaches and 4 classes to strawberries. This detailed dataset structure ensures a compre-

hensive representation of fruit development stages, facilitating more accurate and gener-

alizable insights in subsequent analyses. Examples of images and their associated annota-
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Figure 5.2: Examples of fruit instance annotation for the StrawDI Db1.

tions are presented in Fig. 5.2, and the distribution of instance categories is summarised

in Table 5.2.

It is noted that the quantity of fruit instances decreases progressively over time as

ripeness advances, revealing a real pattern that aligns with the natural growth and ripen-

ing process of fruit. By training on a combined dataset, the model is expected to handle

these complexities across different object types, which enhances its robustness. Addi-

tionally, the inclusion of varied fruit types in a unified dataset can improve the model’s

ability to distinguish between different objects, making it more adaptable to real-world

applications where multiple fruit categories are often present simultaneously.

5.3 Method

5.3.1 Model Structure

For fruit ripeness determination, an instance segmentation model called FruitQuery is

proposed, following the design of Mask2Former [39], which consists of a backbone, a

pixel decoder and Transformer decoders. The architecture is illustrated in Fig. 5.4.
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Table 5.2: The category distribution of the combined dataset.

NinePeach StrawDI Db1

Category Training Validation Category Training Validation

unripe 3669 1717 rs1 6693 453

semiripe 3312 1307 rs2 4014 319

ripe 1698 737 rs3 3010 212

/ / / rs4 2517 148

Instance 8679 3761 Instance 16234 1132

Image 3240 1359 Image 2800 100

Backbone

It is well-known that the convolutional layer has inductive biases of locality and spatial

invariance, which are capable of extracting low-level, small local features. The self-

attention layer has a global receptive field and allows capturing global context information

within an image. Therefore, these two types of layers are considered to build the backbone

for multi-level feature extraction. The proposed backbone is illustrated in Fig. 5.3.

By combining convolutional layers with stronger generalisation performance and self-

attention layers with higher model capacity and stronger learning ability, it is assumed

that the backbone can achieve better generalisation performance and learning ability.

Given an input image, the backbone can generate 4 levels of features, which provide

high-resolution coarse features and low-resolution fine-grained features that usually boost

the performance of fruit segmentation. It is noted that ConvBlock is removed in the last

block in order to reduce the model parameters.

Patch Embedding. The input image is divided into a grid of non-overlapping

patches, and each patch normally covers a square region of the image and is transformed

into a fixed-dimensional embedding vector. According to different patch sizes and em-

bedding dimensions, 4 different patch embedding blocks are attached in front of each

block. As patch embedding does not inherently preserve positional information within

each patch, it is required to add positional encoding to the subsequent two blocks.

ConvBlock. The ConvBlock is made of several convolutional layers with two residual

connections. In the first residual connection, two 1 × 1 point-wise convolutional layers

(PWConv) are respectively placed before and after a 5 × 5 convolutional layer. The

5 × 5 convolutional layer has a larger receptive field to consider larger local regions

and is expected to capture large-scale features like fruit edges and textures in images.

In the second residual connection, two 1 × 1 point-wise convolutional layers are used

to perform MLP-like behaviour: increase the dimension to 4 times and then decrease

it to the desired output dimension. This operation is designed to increase nonlinear
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Figure 5.3: The proposed backbone of FruitQuery.

representation capacity and learn richer feature representations, thereby enhancing the

model’s performance and generalisation ability. The 1×1 point-wise convolutional layers

only involve a single pixel and have fewer parameters to learn, therefore it is suitable for

dimension expansion and compression. It is noted that ConvBlock is removed in the last

stage to reduce the overall number of learnable parameters, which contributes to a more

compact model size.

Spatial Reduction Self-Attention (SRSA). For each head of the multi-head self-

attention, the query Q, key K and value V are obtained by applying three linear pro-

jections to the input embedding, including positional encoding. Q, K and V have the

same dimensions N × C, where N = H ×W . Then, attention scores are calculated by

the scaled dot-product attention. The scores are normalised using the Softmax function

to obtain attention weights, which are used to compute a weighted sum of the V vectors

of all tokens, as defined in Eq. (4.1), where dk refers to the dimensionality of the key.

Tokens with higher scores contribute more to the output of the self-attention mechanism.

The main bottleneck of the self-attention layer lies in its computation cost of O(N2),

which scales quadratically with spatial dimension based on the input embedding. To

alleviate this problem, the Spatial Reduction Self-Attention is introduced, which is based
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Figure 5.4: The architecture of FruitQuery.

on the spatial reduction method proposed in PVT [276]. The main idea of it is to reduce

the length of the sequence with a reduction ratio R. For reducing computations, an input

sequence with shape (C,H ·W ) is reshaped to the K̂ with shape (C ·R2, H ·W/R2) based

on Eq. (5.1). Here, a convolutional layer with kernel size = R and stride = R is used to

perform the reshape operation. Eq. (5.2) refers to a linear layer taking K̂ as input and

generating a new K ′ with shape (C,H ·W/R2) as output.

K̂ = Reshape(K,R) (5.1)

K ′ = Linear(C ·R2, C)(K̂) (5.2)

As a result, the complexity of the efficient self-attention mechanism is reduced from

O(N2) to O(N2/R2). It is noted that a residual MLP layer is appended at the end of

SRSA to increase the model capacity and avoid overfitting.

To cater to diverse scenarios, two different settings for the backbone (s and xs) are

proposed. The specifications are presented in Table 5.3, where C represents the number

of embedded dimensions, and B denotes the number of blocks.
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Table 5.3: The specification of the proposed backbones.

Stage Size Layer xs s

S1 H
4
× W

4

Patch Embed Patch Size = 4, C = C1

SRSA

C1 = 36 C1 = 48

B1 = 1 B1 = 1

R1 = 4 R1 = 4

S2 H
8
× W

8

Patch Embed Patch Size = 2, C = C2

SRSA

C2 = 72 C2 = 96

B2 = 1 B2 = 1

R2 = 2 R2 = 2

S3 H
16

× W
16

Patch Embed Patch Size = 2, C = C3

SRSA

C3 = 144 C3 = 240

B3 = 3 B3 = 3

R3 = 2 R3 = 2

S4 H
32

× W
32

Patch Embed Patch Size = 2, C = C4

SRSA

C4 = 288 C4 = 384

B4 = 1 B4 = 2

R4 = 1 R4 = 1

Pixel Decoder

Multi-level contextual features play a crucial role in image segmentation, but employing

a complex multi-scale feature pyramid network escalates the computational workload.

For instance, multi-scale deformable attention used in Mask2Former demonstrates good

performance, but it also brings a large number of parameters. To build a lightweight

but effective model, the FPN is selected as the pixel decoder, which occupies less than

half the size of the multi-scale deformable attention. FPN works by taking the features

produced by the backbone at different levels (S1, S2, S3 and S4), and building a feature

pyramid from top to down (P1, P2 and P3) through lateral connections (S4-P1, S3-P2,

S2-P3).

A Pyramid Pooling Module (PPM, 313) is added to the top layer P1 to enlarge

the receptive field and fuses the multi-scale features, of which the detail is shown in

Fig 5.5. The input feature is divided into multiple regions of different sizes, using four

different adaptive average pooling methods to capture information at different receptive

field sizes. Then the pooled features are resized to the same size as the input, and

concatenated with the input feature, resulting in a feature of shape (C + 4N,H,W ).
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Finally, a simple convolutional layer is used to transform the shape of (C + 4N,H,W )

back to (C,H,W ) and fuse all information. Since the pooling operation does not introduce

any new parameters, the introduction of PPM enhances the model’s performance without

significantly increasing its computational complexity.

Pooling1 Conv1

Pooling2 Conv2

Pooling3 Conv3

Pooling4 Conv4

C
on
v

(𝐶, 𝐻,𝑊) (𝐶 + 4𝑁,𝐻,𝑊) (𝐶, 𝐻,𝑊)

Figure 5.5: The illustration of the Pyramid Pooling Module.

The final output of the pixel decoder comprises features at three resolutions, incor-

porating both high-level features rich in semantics and low-level features rich in spatial

information.

Transformer Decoder

The Transformer decoder plays a crucial role in the model, which takes the learned fea-

tures from the pixel decoder and processes them to produce the final output predictions.

As shown in Fig 5.4, the decoder follows the paradigm of the standard architecture of the

original Transformer, transforming N embeddings of objects into output embeddings.

It is a stack of decoder layers, each of which consists of a masked attention layer, a

self-attention layer and a Feed-Forward Network (FFN). Each Transformer decoder layer

generates predictions for mask and class, but only the prediction of the last layer is used

as the final prediction. The prior layer predictions can be used for auxiliary predictions

optionally. The number of the Transformer decoder layers is set to 3 to achieve a better

trade-off between accuracy and model size, and the feature P3 from the pixel decoder is

used as pixel features.

Query Features Initialisation. The query features are important in the Trans-

former model, as they guide the decoder to attend to the most significant parts of the

input embedding. Previous research indicates that query features can be initialised from

zero [26], or can be updated by local features [39]. Although these two strategies are

effective in generating query features, they require more decoders and longer training it-

erations to refine. Inspired by Deformable DETR, which selects a set of query bounding

boxes from pyramidal features to perform object detection, and SparseInst [42], which

introduces a simple convolutional module Fiam to highlight informative regions for each

foreground object.

Therefore, these two advantages are combined in FruitQuery. A Fiam-like convolu-
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tional module is added to efficiently initialise the query features in FruitQuery, which

directly picks the queries with high semantics from underlying multi-scale feature maps.

The simple module only consists of two convolutional layers. The first convolutional layer

is a typical 3× 3 convolution layer with the same input and output dimensions. The sec-

ond convolutional layer is a 1×1 convolution layer to reduce the number of dimensions to

the number of classes +1, where the extra one means “no object ϕ”. Specifically, feature

P2 from the pixel decoder is selected to generate N pixel embeddings with the highest

foreground probabilities as the query features.

Masked Attention. The cross-attention in the original Transformer decoder is re-

placed with masked attention. The standard cross-attention is computed by Eq. (5.3).

l is the layer index, Xl indicates the query features with the shape N × C at the l-th

layer. Ql = fq(Xl−1) is calculated by applying a linear transformation fq on the query

features of previous layer. Kl and Vl are the pixel features from pixel decoder after linear

transformations fk and fv.

Xl = Softmax(QlK
t
l )Vl +Xl−1 (5.3)

Based on cross-attention, masked attention adds an attention mask Ml−1, as calcu-

lated in Eq. (5.4).

Xl = Softmax(Ml−1 +QlK
t
l )Vl +Xl−1 (5.4)

The attention mask Ml−1 at feature location (x, y) is calculated in Eq. (5.5), where

ml−1(x, y) is the binary output of the resized mask prediction of the previous (l-1) decoder

layer. m0 is the binary mask prediction obtained from X0.

Ml−1 =

0 if ml−1(x, y) = 1

−∞ otherwise
(5.5)

5.3.2 Loss Function

The total training loss for FruitQuery is defined in Eq. (5.6):

L = λcl · Lclass + λm · Lmask + λco · Lconv + λa · Laux (5.6)

λ indicates the different loss weights.

Lclass is the cross-entropy loss between the selected class predictions and class targets,

as defined in Eq. (4.6).

Lmask is the dice loss between the selected mask predictions and mask targets, as

defined in Eq. (3.4).



86 5.4. Experiments and Results

Lconv is the cross-entropy loss between the output of Fiam-like convolutional module

and ground truth, as defined in Eq. (4.6).

As each Transformer decoder layer generates class prediction and mask prediction,

the prior predictions are used to calculate auxiliary loss Laux, as shown in Eq. (5.7),

Laux =
D∑
i=0

(Li
class + Li

mask) (5.7)

where D indicates the number of Transformer decoders. L′
class and L′

mask use the

same loss functions as Lclass and Lmask.

Based on PointRend [140], which demonstrated that a segmentation model can be

effectively trained by calculating its mask loss on a subset of randomly K sampled points

instead of the entire mask, this strategy is incorporated into FruitQuery. Consequently,

the mask loss is computed using sampled points both in the matching process and the

final loss calculation.

The evaluation metrics include AP, Params, FLOPs and FPS, as defined in Sec-

tion 3.3.3.

5.4 Experiments and Results

5.4.1 Experiments

Configuration

In this chapter, experiments are conducted based on Detectron2 and have been carried

out using Python 3.9.13 and PyTorch 1.13 on a computer with the specifications shown

in Table 3.4.

Training Details

No pre-trained weights are utilised in this work, and the parameters of all convolution

layers are initialised by a standard normal distribution. The training process incorporates

diverse data augmentation strategies to improve the model’s robustness and generalisa-

tion. These strategies contain random horizontal flips, resizing the input images such

that the shortest side is one of 416, 448, 480, 512, 544, 576, 608 or 640 pixels while the

longest is at most 768. This not only controls memory usage but also aligns with the

original resolution of the dataset images, encouraging the model to adapt to objects of

different scales.

Following the original Mask2Former design, the number of mask sampling points K

is set to 12544, corresponding to a grid resolution of 112 × 112. The loss weights are set

to {λcl:2.0, λm:5.0, λco:20.0, λa:1.0}. In contrast, the maximum prediction per image N
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is set to 100, and The depth of decoder layers D is set to 6, determined through ablation

experiments in Section 5.4.3.

An AdamW optimiser is used with a step learning rate schedule, of which the initial

rate is 0.0001, and the weight decay is 0.05. A learning rate multiplier of 0.1 is applied

to the backbone, and the learning rate is decayed by 10 at fractions 0.9 and 0.95 of the

total number of training iterations. All models are trained for 54k iterations with a batch

size of 8.

Inference Details

The data augmentation strategy used in inference is only resizing the input images such

that the shortest side is 640 pixels while the longest is at most 768 pixels. Auxiliary

predictions are not used during inference. The top 100 candidates with the highest

confidence are selected as final predictions.

During inference, the data augmentation strategy is simplified to resizing the input

images. Specifically, each image is resized such that the shortest side is scaled to 640

pixels while ensuring the longest side does not exceed 768 pixels, preserving the aspect

ratio. Auxiliary predictions, like outputs from intermediate layers or heads used during

training, are not used during inference to streamline the process and focus solely on the

final model predictions. After the model generates predictions, the top 100 candidate

predictions with the highest confidence scores are selected as the final predictions.

5.4.2 Main Results

A comprehensive segmentation comparison of different state-of-the-art backbones on the

combined fruit dataset is conducted, using FruitQuery’s architecture shown in Fig. 5.4,

and the results are summarised in Table 5.4.

Overall Performance

FruitQuery with SRSA-s (FruitQuery-s) achieves the highest overall AP of 67.02, AP50

of 79.17, and AP75 of 70.83, significantly outperforming 13 other models with a total of

33 variants. FruitQuery with SRSA-xs (FruitQuery-xs) also delivers a competitive AP of

66.46. This illustrates the superior performance of FruitQuery in fruit segmentation.

Among CNN-based models, the widely used ResNet series shows solid results, with

ResNet-50 reaching an AP of 63.92. The recent FasterNet-l also achieves a competitive

AP of 65.25. Turning to the YOLO series, YOLOv9-c attains the highest AP of 60.41

among its variants, indicating that the YOLO series has limited performance on fruit

segmentation. In comparison, all YOLO variants fall short of FruitQuery.

On the Transformer-based side, models demonstrate more different designs and pa-

rameter counts. The variants of NextViT, GroupMixFormer, and PoolFormer generate
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similar results of AP, ranging from 62.37 to 63.50. Two CMT variants reach APs of 66.00

and 66.46, coming closest to FruitQuery’s performance. These Transformer-based models

reflect the trend toward attention-driven backbones, with noticeable performance gains

over many CNN counterparts.

However, they still fall short of FruitQuery in AP, AP50 and AP75, suggesting that the

proposed query-based design leverages features more effectively for precise fruit instance

segmentation.

Individual Performance

For the NinePeach dataset, YOLOv9-s achieves the highest APunripe of 56.60 , while Res50

delivers the highest APripe of 69.57. However, FruitQuery attains the best performance

on semiripe peaches with an APsemiipe of 58.68, underscoring its ability to capture the

more subtle visual cues present in intermediate ripeness for peaches.

For the StrawDI Db1 dataset, CNN-based FasterNet obtains the highest APrs1 of

50.14 and APrs2 of 77.73, while FruitQuery-s outperforms all counterparts in half of the

strawberry ripeness stages, with the highest APrs3 of 82.16 and APrs4 of 83.74. These

gains indicate that FruitQuery can effectively handle the appearance variations in later

strawberry growth, where colour, texture, and shape have significant changes compared

to earlier stages.

Overall, within seven ripeness stages of the combined dataset, FruitQuery delivers

the best AP for three of them, indicating that FruitQuery, with the query-based design,

is capable of capturing fine-grained features within different fruit ripeness levels and

generating comparable results.

Model Complexity

The broad range of model sizes is generally related to performance: larger models typically

have more parameters, which allows them to capture more complex patterns and relations.

On the CNN-based models, FasterNet-l is the largest CNN-based model with param-

eters of 97.70M and FLOPs of 189G, and it achieves a competitive AP of 65.25. Notably,

the YOLO series is well-known for its lightweight design, with YOLOv9-s having 8.64M

parameters and 82.26G FLOPs, and YOLOv10-s having 7.27M parameters and 44.10G

FLOPs, but their AP of 59.91 and 58.17 are lower than many other models.

On the Transformer-based models, MobileViT-xxs exhibits the smallest parameter

count of 7.27M and FLOPs of 17.27G, while it comes with the lowest AP of 46.34.

NextViT-b is the most complex Transformer-based model with 51.02M parameters and

128G FLOPs, delivering an AP of 62.47.

FruitQuery shows a highly cost-efficient design. Specifically, the FruitQuery-xs only

utilises 10.94M parameters and 61.56G FLOPs to achieve an AP of 66.46, and FruitQuery-
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s attains the highest AP of 67.02 with 14.08M parameters and 69.33G FLOPs.

In contrast, models with similar APs to FruitQuery-xs (66.46), such as CMT-ti

(66.00), CMT-xs (66.46) and FasterNet-l (65.25), require larger parameters and FLOPs

(14.57M/67.55G, 20.21M/78.27G and 97.70M/189.00G) than FruitQuery-xs (10.94M/

61.56G). On the other hand, models that match FruitQuery-xs in parameters and FLOPs

(10.94M /61.56G), such as YOLOv8-s (11.79M/46.12G), MobileViT-s (11.36M/26.99G)

and SegFormer -s24 (10.19M/57.06G), deliver poorer APs (57.33, 52.90 and 58.48).

Inference Speed

CNN-based models exhibit higher inference speeds compared to Transformer-based mod-

els, consistent with the established efficiency advantages of convolutional architectures.

Among all evaluated models, YOLOv8-t achieves the highest FPS at 44.22, followed by

YOLOv8-m (41.58) and YOLOv8-l (34.36), highlighting the real-time capabilities.

The proposed FruitQuery achieves relatively high inference speeds (16.5 and 16 FPS),

demonstrating competitive inference performance. They outperform all YOLOv9 vari-

ants, suggesting improved speed efficiency relative to this recent Transformer-based series.

In addition, FruitQuery surpasses a number of widely used Transformer-based backbones

such as LightViT-t (14.36), CMT-ti (14.06), and NextViT-s (15.06), which are specifically

designed for efficiency.

While slightly slower than MobileViT-xxs (19.74) and MobileViT-xs (19.56), Fruit-

Query is notably faster than recent models like TransXNet-s (8.22) and GroupMixFormer-

s (9.02), positioning them among the faster Transformer-based designs. These results

indicate that FruitQuery strikes a favourable balance between inference speed and model

complexity.

In summary, the results demonstrate that FruitQuery not only exhibits comparable

or even superior results to other segmentation models but also maintains a lightweight

model size and higher efficiency.

Table 5.5: Ablation on the pixel decoder.

Module AP AP50 AP75

FPN 64.97 78.41 68.88

PPM-FPN 66.57 78.98 70.22
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5.4.3 Ablation Experiments

Type of Pixel Decoder

Table 5.5 compares two different pixel decoders of FPN and PPM-FPN, in terms of model

performance. The baseline FPN achieves an AP of 64.97, AP50 of 78.41, and AP75 of

68.88. In contrast, the PPM-FPN variant leads to a consistent performance boost across

all metrics, improving AP by 1.6 points from 64.97 to 66.57, AP50 by 0.57 points from

78.41 to 78.98, and AP75 by 1.34 points from 68.88 to 70.22. These results indicate that

incorporating PPM into the FPN enhances the overall segmentation performance.

Table 5.6: Results of ablation experiments based on FruitQuery-xs.

(a) Ablation on the number of attention head.

Head AP AP50 AP75

2 62.36 75.30 65.80

4 64.46 77.09 68.61

8 64.36 76.98 67.88

(b) Ablation on the number of queries.

Query AP AP50 AP75

80 64.54 77.74 68.39

90 64.45 77.38 68.15

100 66.52 78.84 70.19

110 65.91 78.56 69.48

120 65.48 78.34 69.11

(c) Ablation on the pixel decoder.

Layer AP AP50 AP75

1 62.85 75.78 66.59

2 63.98 76.93 67.72

3 63.91 76.69 67.86

4 66.41 78.98 70.20

5 66.68 79.31 70.40

6 66.80 78.95 70.85

7 65.94 78.49 69.36

8 65.78 78.07 69.26

Number of Decoder Attention Head

Table 5.6a compares the effect of different numbers of attention heads on model per-

formance. With just 2 heads, the model attains an AP of 62.36, AP50 of 75.30, and

AP75 of 65.80, indicating limited representational capacity. Increasing to 4 heads yields

the highest AP of 64.46, AP50 to 77.09 and AP75 of 68.61. Although further increasing

the number of heads to 8 slightly boosts AP to 64.46 and AP75 to 67.88 compared to

2 heads, it still lags behind the 4-head configuration. These results suggest that 4 at-

tention heads provide an optimal balance, offering richer feature representations without

incurring diminishing returns.
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Number of Query

Table 5.6b shows the effect of different numbers of queries on model performance. When

the number of queries is set to 100, the model achieves its highest overall AP of 66.52,

AP50 of 78.84, and AP75 of 70.19. Reducing the number of queries below 100 (e.g., 80 or

90) results in poorer performance across all metrics. Conversely, increasing the number

of queries beyond 100 (e.g., 110 or 120) does not lead to any additional benefits. These

results imply that 100 queries is an optimal balance for capturing sufficient object-level

features without excessive costs.

Number of Decoder Layers

Table 5.6c illustrates the effect of different numbers of decoder layers on model perfor-

mance. With only 1 to 3 layers, AP stays between 62.85 and 63.98, indicating limited

representational depth. As more layers are added, accuracy steadily improves, peaking at

6 layers with an AP of 66.80, AP50 of 78.95, and AP75 of 70.85. Beyond 6 layers, model

performance begins to decline, suggesting that excessive stacking of decoder blocks may

introduce redundancy or complicate training. These findings highlight an optimal spot

at 6 decoder layers.

Table 5.7: The AP comparison of training on separate and combined datasets.

Dataset Category t/o separate t/o combined

N
in
eP

ea
ch unripe 43.72 51.27

semiripe 49.07 53.93

ripe 62.05 66.94

S
tr
aw

D
I
D
b
1 rs1 45.57 42.29

rs2 72.55 76.73

rs3 79.87 78.40

rs4 77.99 79.64

Average 61.08 64.63

5.4.4 Combined and Separate Training

The performance difference of FruitQuery-xs trained on combined (t/o combined) and

separate (t/o separate) datasets is compared, and the results are shown in Table 5.7.

For NinePeach, the combined training strategy produces notable improvements across all

ripeness levels, with APunripe increases of 7.55 points from 43.72 to 51.27, 4.86 points for

APsemiripe from 49.07 to 53.93, and 4.89 points for APripe from 62.05 to 66.94.
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In contrast, results on StrawDI Db1 are mixed: APrs2 has a significant gain of 4.18

points from 72.55 to 76.73, and APrs4 also increases 1.65 points from 77.99 to 79.64.

However, the other two categories APrs1 drops from 45.57 to 42.29 and APrs3 drops from

79.87 to 78.40.

Overall, training on the combined dataset boosts the model’s overall AP from 61.08 to

64.63, indicating that learning from a broader, integrated fruit distribution can enhance

generalisation for the majority of fruit ripeness stages despite limited category-specific

trade-offs.

Table 5.8: The parameters comparison of YOLOv9 and FruitQuery.

Aspect YOLOv9 FruitQuery

Type s m c xs s

Backbone (M) 5.72 15.52 19.95 4.07 7.15

Neck (M) / / / 2.70 2.76

Head (M) 2.92 6.74 7.89 4.18 4.18

Total (M) 8.64 22.26 27.84 10.94 14.08

AP 59.91 60.04 60.41 66.46 67.02

5.4.5 Model Parameter Distribution

The parameter distribution of YOLO and FrutiQuery is summarised in Table 5.8. Based

on previous results in Table 5.4, YOLOv9 is the best-performing version of the three

YOLO series, therefore, it is selected to compare with FruitQuery and also in later com-

parisons.

YOLOv9-s has the least number of parameters of 8.64M, with a head of 2.92M, but

produces the lowest AP of 59.91. When changing the model from YOLOv9-s to YOLOv9-

m, the total parameters increase to 22.26M, with a bigger backbone and head, but bring

a tiny AP gain from 59.91 to 60.04. YOLOv9-c performs better than YOLOv9-m with

the AP of 60.41, but occupies a backbone of 19.95M and a head of 7.89M.

On the other hand, FruitQuery demonstrates its ability to outperform YOLOv9 with

fewer parameter counts. Specifically, FruitQuery-xs and FruitQuery-s have an identical

head of 4.18M, which is smaller than YOLOv9-m and YOLOv9-c. The main difference

between the two variants of FruitQuery lies in the backbone. FruitQuery-s has a more

complex backbone and delivers a better AP of 67.02.

These results not only demonstrate that FruitQuery achieves a significantly better

balance between the segmentation performance and model size compared to YOLO but

also highlight its lightweight design, which enhances the potential for in-field applications.
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Figure 5.6: Segmentation visualisations of FruitQuery on NinePeach (top) and
StrawDI Db1 (bottom).

5.4.6 Visualisation

The segmentation performance of FruitQuery is visualised in Fig. 5.6. First, FruitQuery

is capable of simultaneously segmenting peaches and strawberries without requiring sepa-

rate training for each fruit type. Second, FruitQuery demonstrates strong generalisation

ability on fruit size due to effective multi-scale feature fusion. Specifically, the size of
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peaches is relatively large compared to that of strawberries, and FruitQuery can accu-

rately segment both large and small fruit. Third, FruitQuery maintains high robustness

in complex in-field conditions, such as occlusions from tree trunks and leaves, delivering

precise fruit segmentation. These indicate that FruitQuery can accurately predict fruit

locations for downstream applications.

YOLOv9-cImage

(1)

(2)

(3)

(4)

FruitQuery-xs

Figure 5.7: The segmentation comparison of YOLOv9 and FruitQuery.

The visualisation of FruitQuery and YOLO is also compared, as shown in Fig. 5.7. In

case (1), although YOLOv9-c is not an anchor-based model, it still gives an inaccurate

anchor-like prediction on the strawberry, while FruitQuery provides a more precise delin-

eation of the strawberry’s shape. In case (2), YOLO-v9c’s segmentation boundary tends

to follow the rectangular outline of the bounding box, while FruitQuery closely tracks

the actual peach boundary. Additionally, YOLO-v9c ignores the small peach behind,

while FruitQuery correctly detects it. In case (3), YOLO-v9c fails to detect an evidently

visible strawberry, while FruitQuery successfully identifies and segments it. In case (4),

YOLO-v9c is unable to recognise a peach partially hidden in the background, whereas

FruitQuery correctly distinguishes the peach despite the limited visible part.
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5.4.7 Class Activation Map Analysis

Class Activation Maps (CAM, 318) is a popular visualisation technique that highlights

the regions in an image most influential to a model’s prediction. By projecting learned

feature weights back onto the original input, CAM reveals where the model allocates its

attention and provides an interpretable window into the decision-making process. The

CAM comparison of YOLO and FruitQuery is illustrated in Fig. 5.8.

YOLOv9-cImage

(1)

(2)

(3)

(4)
FruitQuery-xs

Figure 5.8: The CAM comparison of YOLOv9 and FruitQuery.

In the CAM visualisations, YOLOv9-c exhibits relatively diffuse and occasionally

misaligned attention, focusing on broader or less discriminative regions. For example,

in cases (1) and (2), YOLOv9-c has uncertain attention on the fruit and is affected by

the surrounding leaves. By contrast, FruitQuery maintains a more localised and precise

concentration of high-intensity activation around the fruit. This difference is particularly

evident in cases (3) and (4). YOLOv9-c looks at a large blur region around fruit and gives

attention to the irrelevant background, while FruitQuery accurately distinguishes between

fruit and background context, capturing finer textural cues on peaches and strawberries

and generating tightly focused activation zones.
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Consequently, the visualisations demonstrate the enhanced ability of FruitQuery to

learn the discriminative features of peaches and strawberries, such as shape, colour tran-

sition, and edge boundaries, eventually resulting in interpretable and improved segmen-

tation performance.

5.4.8 Deployment

The inference speed of the FruitQuery was evaluated on three types of hardware plat-

forms, as introduced in Section 4.4.4. For each FruitQuery variant, inference was con-

ducted under two numerical precision settings, FP32 and FP16, and across multiple de-

ployment formats, including PyTorch (.pth), ONNX (.onnx), TensorRT (.trt), and Core

ML (.mlmodel). The results are summarised in Table 5.9.

Table 5.9: The FPS of FruitQuery across different devices.

Device Format
FruitQuery-xs FruitQuery-s

FP32 FP16 FP32 FP16

NVIDIA
Tesla V100

.pth 16.18 18.38 16.00 16.81

.onnx 3.76 3.93 3.74 3.90

.trt* 39.53 51.02 39.37 50.51

NVIDIA
Jetson Orin Nano

.pth 3.02 4.45 2.92 4.44

.onnx 2.86 3.17 2.80 3.08

.trt* 8.56 12.63 8.22 11.68

Apple M1
.onnx 0.87 0.71 0.58 0.60

.mlmodel 0.40 0.43 0.37 0.40

* Due to hardware limitations, V100 is using TensorRT 8.6.1 while Orin Nano is using TensorRT
10.3.0.

The model formats .pth, .onnx, and .trt have been described in Section 4.4.4. In

addition to these, deployment on Apple M1 is extended to include Core ML (.mlmodel),

which is a model format specifically optimised for Apple’s ecosystem. It allows models

to be executed using the Core ML framework, which internally utilises the Apple Neural

Engine to accelerate inference on iOS and macOS devices.

Two numerical precision modes are compared: FP32 (single-precision floating point)

and FP16 (half-precision floating point). FP16 reduces memory usage and computa-

tion cost by representing floating-point numbers with 16 bits instead of 32, which can

accelerate inference on compatible hardware while maintaining adequate accuracy.

Inference results demonstrate that TensorRT achieves the fastest inference across all

tested hardware for both precision modes. On the Tesla V100, FruitQuery-xs has a 51.02

FPS using FP16 and TensorRT, which is more than 2.5 times faster than the PyTorch
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baseline under FP32. Jetson Orin Nano also benefits significantly from TensorRT accel-

eration, achieving a 12.63 FPS for FruitQuery-xs in FP16. This highlights the suitability

of TensorRT for edge deployment when latency is critical.

Compared to the V100 and Jetson platforms, the Apple M1 incurs higher inference

latency. The ONNX-based deployment shows low FPS for both model variants. More-

over, Core ML deployment with .mlmodel results in even longer running time, with

FruitQuery-s requiring a 0.40 FPS under FP16. Despite this, the Core ML format en-

ables compatibility with Apple-native applications and can utilise the underlying Neural

Engine, which may provide performance gains in future hardware iterations.

Overall, the proposed FruitQuery models demonstrate efficient inference across di-

verse deployment scenarios. The results affirm the flexibility of the models and their

compatibility with multiple deployment backends and precision modes. Particularly, the

combination of lightweight architectures, TensorRT optimisation, and half-precision in-

ference enables real-time performance on both cloud GPUs and edge platforms.

5.5 Discussion

5.5.1 Comparison to PeachSOLO

As shown in Section 3.4.2, PeachSOLO with Swin-FPN achieves the highest 72.12 AP,

followed by PeachSOLO with Res50-FPN at 66.33 AP, occupying 46.17M parameters and

running at 11.11 FPS. In comparison, FruitQuery-s achieves a slightly lower AP of 59.76,

but with a much smaller model size of 14.08M parameters and a higher speed of 16.00

FPS.

This difference in segmentation accuracy is expected, as larger models provide greater

capacity to learn detailed and category-specific features. However, FruitQuery-s was

designed with lightweight deployment in mind. It provides a favourable trade-off between

model performance and efficiency, making it well-suited for real-time applications on

edge devices. Its ability to handle multiple fruit types and ripeness stages within a

single compact model further highlights its practical value for robotic harvesting systems

operating under computational constraints.

5.5.2 Limitations

First, FruitQuery still relies on a large quantity of manually annotated data, particularly

with instance-level and ripeness-specific labels. This requirement brings a significant bot-

tleneck in extending the model to new fruit types or orchard conditions, where annotation

can be time-consuming and labour-intensive.

Second, although FruitQuery is designed to be lightweight, its current inference speed
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does not yet meet the requirements of real-time operation on highly resource-constrained

edge devices. Achieving true real-time performance remains a challenge, particularly

when handling high-resolution inputs in dynamic field environments.

These limitations indicate promising directions for further work, including reducing

annotation costs and enhancing inference efficiency for deployment in practical agricul-

tural settings.

5.5.3 Future Work

First, FruitQuery will be further compressed and optimised using techniques such as

quantisation, pruning, and architecture refinement. The goal is to enable real-time in-

ference on embedded platforms, thereby facilitating in-field deployment for robotic fruit

harvesting with immediate ripeness feedback.

Second, future work will explore self-supervised or semi-supervised learning approaches

to to reduce reliance on manual annotations. The model can be more readily adapted to

diverse fruit types and conditions with improved data efficiency. In addition, expanding

the current dataset to include a broader spectrum of fruit varieties and ripeness stages

will enhance the model’s multi-fruit applicability.

5.6 Summary

In this chapter, two in-field fruit datasets of peaches and strawberries are combined,

which contain 3 ripeness stages for peaches and 4 ripeness stages for strawberries. Then,

a lightweight query-based instance segmentation model for fruit ripeness determination

called FruitQuery is introduced.

The combined dataset enables training the model to handle the ripeness determination

of two fruits at the same time, reducing the effort to replicate the training. FruitQuery

is composed of three main components: a backbone, a pixel decoder, and Transformer

decoders. The SRSA module is integrated into the backbone to reduce computational

overhead and introduces a PPM in the pixel decoder to improve multi-scale feature fusion.

Transformer decoders were employed to learn a fixed number of queries for instance masks,

eliminating the need for postprocessing like NMS.

By combining the advantages of convolution and Transformer, FruitQuery runs in

an end-to-end way and precisely attends to fruit regions, capturing subtle distinctions

in shape and ripeness. The design of FruitQuery leads to state-of-the-art performance,

achieving the highest AP of 67.02 with 14.08M parameters and surpassing 13 other CNN-

based and Transformed-based models. Notably, it outperforms three series of YOLO,

under challenging conditions such as occlusion and varying illumination. However, Fruit-

Query’s dependence on labelled data makes it challenging for swift adaptation to new
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fruit varieties. Additionally, latency issues may be a problem for FruitQuery when applied

on embedded platforms.

Moving forward, FruitQuery will be further optimised for in-field applications, explor-

ing strategies like quantisation for edge deployment. The combined dataset is planned

to be expanded with more fruit varieties, ultimately building a large-scale fruit instance

segmentation dataset with ripeness labels. Through these enhancements, FruitQuery is

expected to increase its utility in orchard automation, enabling more accurate and effi-

cient fruit ripeness determination and helping the development of precision agriculture.



Chapter 6

AppleSSL: A Novel Self-supervised

Method for In-field Occluded Apple

Ripeness Determination

6.1 Introduction

While the previous chapters have addressed fruit ripeness determination through clas-

sification and segmentation using either fully supervised or lightweight deep learning

models, they typically require a considerable number of labelled images and often as-

sume a clear view of the fruit surface. These assumptions limit their applicability in

real-world orchard environments, where the fruits are frequently occluded by leaves and

branches, and the process of annotating ripeness stages remains highly subjective and

labour-intensive. Furthermore, most prior models are constrained by the need to pre-

define discrete ripeness categories, which may not reflect the nuanced and individualised

decision-making processes of end-users in precision agriculture. To address these prac-

tical challenges and advance the existing body of work, this chapter introduces a novel

approach that incorporates self-supervised learning for in-field occluded apple ripeness

determination.

In the context of apple precision agriculture, variations in apple ripening times exist

both among trees within the same orchard and even among apples on the same tree, as

illustrated in Fig. 6.1. The differences in ripening times are influenced by a combination

of environmental conditions, biological traits, and human interventions. This lack of

selectivity can lead to reduced apple market value and the need for post-harvest sorting.

6.1.1 Ripeness labelling

Determining apple ripeness from images is usually a subjective and challenging task.

Fig. 6.2 shows that the definitions of “ripe” can be different among different users, ranging

102
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Figure 6.1: Apples with distinct ripeness difference can appear simultaneously.

from binary classifications to more granular multi-category classifications. Binary and

three-category classifications are the most commonly considered by previous research.

However, extending these models to finer classifications, such as five categories, requires

re-labelling the images and retraining the model, which introduces unnecessary effort. To

solve this, this chapter regards ripeness determination as a regression task rather than a

multi-category classification task.
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Figure 6.2: Different users have different criteria for apple ripeness.

It is noted that regardless of the number of ripeness stages defined by the users,

the fully unripe and fully ripe apples will always remain in the first and last categories,

respectively. Based on this, this chapter proposed a self-supervised method which takes

few images of fully unripe and fully ripe apples as labels, learns from a large number of

unlabelled images, and generates ripeness scores as output.



104 6.1. Introduction

6.1.2 In-field Occlusion

In-field occlusion is the second challenge in this work. Since most of these robots heavily

depend on visual perception for fruit identification and localisation, occlusion significantly

impacts their decision-making process. As shown in Fig. 6.1, apples are often easily

occluded by leaves. Moreover, occlusion can also result in recognition failures, requiring

manual leaf removal prior to picking [269].

Some of the previous research has considered the occlusion when training the de-

tection and segmentation models. [265] introduced a YOLO-based model specifically

designed for detecting apples at different growth stages in orchards and mitigated apple

overlap and occlusion to some extent. [316] proposed a CNN-based vision algorithm for

mango instance segmentation and picking point localisation, considering occlusion, over-

lap, and variations in object scale. [272] replaced the network’s complete-IoU regression

loss function with the weighted-IoU loss function to address tomato fruit and leaf oc-

clusion. [35] proposed a YOLO-based lightweight 4-class occlusion detection method for

Camellia oleifera fruit, introducing a clustering algorithm to select the target dataset.

Similarly, [61] proposed a detection model to locate ripe ground-planted strawberries of

4 different occlusion categories.

(a) Image (b) Modal Masks (c) Amodal Masks

Figure 6.3: Example of modal and amodal masks [79].

Furthermore, some researchers proposed to estimate the shape of partially occluded

fruits by means of amodal instance segmentation, which aims to predict the shape of

each object of interest in an image [156]. [79] implemented an amodal segmentation

model with an end-to-end CNN for accurate Fiji apple detection and sizing, predicting

complete shapes (visible and occluded regions) and achieving robust diameter estima-

tion. The examples of modal and amodal masks are shown in Fig. 6.3. [137] employed

an amodal segmentation approach using a reconstruction network to perform cucumber

occlusion recovery, achieving high accuracy and speed. Besides, some research introduced

mathematical methods to estimate the shape of the target fruit. [258] proposed an active

deep sensing method to handle occlusions in clustered and single fruit scenarios, utilising

a deep network to predict optimal observation positions, and guiding robots to avoid

the occlusion. [161] mitigated the challenge of fruit occlusion in complex environments
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by leveraging approximately spherical fruit shape priors for improved segmentation and

localisation, enabling effective occlusion-aware solutions without reliance on additional

data or equipment.

However, all of the above research limits the addressed problem to either classifying

the occlusion categories or estimating the shape of the occluded fruit. Taking a step

forward, this chapter proposes a self-supervised method to reconstruct the details of the

occluded parts of the fruits.

6.1.3 Contributions

To address the occlusion and ripeness-labelling challenges, this chapter proposes App-

leSSL, a self-supervised method that leverages a small number of labelled examples (less

than 1%) and a large pool of unlabelled apple images collected in natural orchard con-

ditions. The method comprises three key components: a reconstructor trained to infer

missing apple details in occluded images; a feature extractor designed to learn ripeness-

relevant representations from unlabelled data; and a predictor that outputs a continuous

ripeness score without requiring rigid classification boundaries.

This chapter presents the most novel contribution of the thesis, offering a flexible,

data-efficient, and occlusion-aware solution for apple ripeness estimation in the field. By

combining reconstruction, feature learning, and regression-based prediction within a uni-

fied self-supervised framework, AppleSSL bridges the gap between the highly controlled

assumptions of earlier models and the complex visual challenges encountered in real or-

chard settings. Its design supports downstream deployment in robotic harvesting systems

and large-scale orchard monitoring, thereby contributing to the broader goals of smart

and precision agriculture.

Figure 6.4: The apple orchard in New Zealand (left) and samples of apple images (right).
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6.2 Dataset

6.2.1 Image Collection

A number of 2530 apple images (4032×3024 pixels) were captured with a mobile phone

in a large Jazz apple orchard located near Hawke’s Bay, New Zealand. The overview of

the orchard and samples of the apple images are presented in Fig. 6.4. The collection

took several weeks from February to March in 2024, and encompassed the complete apple

ripening process from fully unripe to fully ripe.

There were no specific requirements for the image collection. All apple images were

taken under natural illumination and in real-world production settings, taken from various

angles to simulate every possible scenario for the in-field operation of robots. As a result,

the apples exhibited variations such as being isolated, in close proximity to each other,

and partially obscured by leaves or stalks.
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Figure 6.5: The workflow of image preprocessing.

6.2.2 Image Preprocessing

YOLO-World [41] is applied to detect the bounding boxes of apples, and then the boxes

are used as the input of Segment Anything Model (SAM, 139) to perform the apple

instance segmentation. The workflow of the process is shown in Fig. 6.5. The dataset

consists of 2530 images, from which 7191 apple instances were detected and segmented

following the workflow. From these images, 20 fully unripe and 20 fully ripe apples under

diverse conditions were manually selected, using them as labelled instances, as illustrated

in Fig. 6.6, while the remaining 7151 apple instances are unlabelled.

The foreground ratio Fr of all uniformly resized apple instances is computed using

Eq. (6.1), where Napple represents the number of pixels corresponding to apples, and

Nimg is the total number of pixels in the image.

Fr =
Napple

Nimg

(6.1)
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Figure 6.6: The selected 20 fully unripe and 20 fully ripe apples.

The distribution of Fr is presented in Fig. 6.7. Here, apples with Fr ≥ 0.6 are defined as

“complete” apples, as they contain sufficient visual information for analysis. In contrast,

apples with Fr < 0.6 are categorised as “incomplete” apples, as substantial portions of

the apple are occluded, resulting in limited details.
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Figure 6.7: The Fr distribution of the dataset.

6.2.3 Image Augmentation

Image augmentation involves applying various transformations to images to artificially

increase the size of a dataset and simulate real-world conditions.

For some of the self-supervised learning methods, image augmentation is a cornerstone

of training strategies. It serves as a key mechanism to manipulate input data, ensuring

that the model learns meaningful representations from a large number of unlabelled data.

Based on the collected apple images, it is assumed that some in-field conditions ob-

served in apples, such as variations in brightness, shadows, viewing angles, and occlusions
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caused by leaves, branches, or other fruits, can be regarded as forms of ’natural augmen-

tation’. These natural augmentations do not influence the ripeness of the apples, as

ripeness is an intrinsic quality independent of external conditions.

Figure 6.8: The original image (left) and examples generated via augmentation (right).

In this work, a variety of artificial augmentation methods are incorporated, includ-

ing random cropping, random scaling, random flipping, brightness adjustment, colour

jittering and Gaussian blur to simulate natural augmentations. For instance, random

cropping and flipping mimic the perspectives of images captured from different angles,

while Gaussian blur replicates the effect of images taken when the camera is out of focus

on the apples. It is noted that gray-scale conversion is not used in this study, as it results

in the loss of colour information. The illustration of augmentations is provided in Fig. 6.8.

By setting different probabilities to each method, a diverse set of variations is gener-

ated, enabling the model to robustly learn meaningful features associated with ripeness

across different scenarios.

6.3 Method

6.3.1 Overview

The overall architecture of this study is shown in Fig. 6.9. The collected images first

undergo a preprocessing stage, including object detection and instance segmentation.

Following this, the apple instances are partitioned based on two criteria: (1) whether

they are labelled and (2) whether they are complete or incomplete. Complete apples

are utilised for feature extraction and reconstruction, and incomplete apples are used for

reconstruction. Finally, labelled apples serve as boundaries for projecting the features

onto the final ripeness prediction.

The architecture of the proposed AppleSSL is illustrated in Fig. 6.10. It contains three

parts: a missing-part reconstructor, a feature extractor, and a ripeness score predictor.
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Figure 6.9: The overall architecture of this study.

• Reconstructor

The reconstructor is a self-supervised component designed for incomplete apples,

which aims to reconstruct missing parts of apples to provide more details.

• Extractor

The extractor also operates within a self-supervised paradigm to learn representa-

tions related to ripeness from images. Specifically, it is expected to find a feature

space in which every apple is separated by its ripeness, and unripe apples are as far

as possible from ripe apples.

• Predictor

The predictor is a simple Multi-Layer Perceptron (MLP), which takes features from

the extractor as input and predicts ripeness scores.

6.3.2 Reconstructor

The reconstructor is based on ‘masked image modelling’, which learns by masking por-

tions of the input image and predicting the missing parts. In this context, occlusions

caused by leaves or trunks are considered a kind of natural mask, and the task is to

reconstruct these occluded apples.

Specifically, the reconstructor employs the SimMIM [294], which consists of an encoder

that maps the normalised image to a latent representation and a prediction head that

reconstructs the reconstructed image from the latent representation. The illustration is

presented in Fig. 6.10.

Given an input image, it is divided into regular and non-overlapping patches. A subset

of patches is selected, while the remaining ones are masked. The encoder embeds the

visible patches using a linear projection with added positional embeddings and processes

them through a series of Transformer blocks. It is noted that the encoder operates

exclusively on visible, unmasked patches, as masked patches are removed, and no mask

tokens are used. The encoder extracts a latent feature representation of the masked

image, which is utilised to predict the original signals in the masked regions. For the
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Figure 6.10: The architecture of the proposed AppleSSL.

encoder, two common vision Transformer architectures, Vision Transformer (ViT) and

Swin Transformer (SwinT), are considered.

The prediction head processes the latent feature representation to generate a form

of the original signals for the masked regions. While the prediction head can have an

arbitrary form and capacity, a single 1 × 1 convolutional layer is employed to maintain

a small model size. Each output element from the prediction head is a vector of pixel

values corresponding to a patch. The final layer of the decoder is a linear projection with

the number of output channels equal to the pixel count in a patch. The output of the

prediction head is then reshaped to reconstruct the image.

The Mask Autoencoder (MAE, 103) is another state-of-the-art model of masked image

modelling, which takes a complete ViT architecture for both the encoder and prediction

head. MAE demonstrates that random sampling with a high masking ratio significantly

reduces redundancy, creating a task that cannot be easily solved by extrapolation from

visible neighbouring patches. Accordingly, the reconstructor adopts a strategy of random

masking with a 75% masking ratio, meaning 75% of the input image patches are masked,

leaving only 25% visible for the model.

Training Details

During training, the pre-trained models are fine-tuned on complete apple instances to

save training time.

The loss function calculates the Mean Squared Error (MSE) loss between the recon-

structed and original images by measuring the average squared difference between their

pixel values. It is defined as in Eq. (6.2).

MSE(x,y) =
1

Ω(xM)
∥yM − xM∥22 (6.2)



Chapter 6. AppleSSL: A Novel Self-supervised Method for In-field Occluded Apple
Ripeness Determination 111

where x,y ∈ R3×H×W are the original RGB values and the predicted values, respectively;

M indicates the set of masked pixels; Ω(·) is the number of elements.

Evaluation Details

During the evaluation, another two metrics are introduced to evaluate the reconstruction

quality in de-normalised colour values.

• Peak-Signal-to-Noise Ratio (PSNR)

PSNR [113] is a widely used metric for evaluating the quality of image reconstruc-

tion in computer vision. It measures the similarity between the original and re-

constructed images by comparing the ratio of peak signal to noise on a logarithmic

scale. PSNR is defined as in Eq. (6.3), where 255 is the maximum pixel value for

8-bit images. A higher PSNR indicates that the reconstructed image is closer to

the original, indicating better quality. Conversely, a lower PSNR indicates greater

numerical differences between the images, reflecting poorer quality.

PSNR(x,y) = 10 · log10(
2552

MSE(x,y)
) (6.3)

• Structural Similarity Index Measure (SSIM)

SSIM [280] is another well-known metric used to measure the structural similarity

between the original and reconstructed images. It focuses on comparing structural

information in images, including luminance, contrast, and texture, which aligns

more closely with human visual perception. The definition of SSIM is given in

Eq. (6.4).

SSIM(x,y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(6.4)

where µx, µy and σ2
x, σ

2
y are the average luminance and variance of the original and

reconstructed images. σxy is the covariance between two images. C1 and C2 are

small constants to avoid a zero denominator. The SSIM value ranges from [−1, 1],

and a higher value represents a more accurate replication of the original image.

6.3.3 Extractor

The feature extractor is implemented in a self-supervised learning framework, using the

online-clustering method SwAV [28]. This method employs two parallel branches to

facilitate feature learning. Specifically, the feature extractor is designed to identify rep-

resentations associated with apple ripeness. The goal is to find a feature space in which

fully unripe apples are positioned farthest from fully ripe apples, while ensuring that
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a random given apple image and its augmented variants are mapped to closely aligned

locations. An overview of this process is presented in Fig. 6.10.

The input image is transformed into multiple augmented views xnt (e.g., x1 and x2)

using transformations t sampled from a set T of image augmentation techniques.

These augmented views xnt are then passed through an encoder fθ, which consists

of two standard convolutional layers, to generate non-linear feature representations znt

(e.g., z1 and z2). Then, the feature representations are normalised using ℓ2 normalisation

and projected onto the unit sphere.

Next, a code qnt (e.g., q1 and q2) is computed by mapping the feature znt to a set

of prototypes C. The prototype C consists a set of K trainable vectors, denoted as

{c1, . . . , cK}. In this work, C is represented as a matrix whose columns correspond to

the prototype vectors c1, . . . , cK . These prototypes are treated as model parameters and

are updated iteratively during the training process.

In detail, a code is computed for one augmented version of an image and predicted

from other augmented versions of the same image. Given two feature vectors, zt and zs,

derived from different augmentations of the same image, their corresponding codes qt and

qs are obtained by matching these features to a set of K prototype vectors, {c1, . . . , cK}.
The computation involves multiplying the feature vector znt with the prototype matrixC,

followed by applying the Sinkhorn-Knopp algorithm to normalise the result and produce

the code qnt.

The prototype vectors represent the clustering centres of the apple images. As this

method is an online method, the codes are updated only based on the image features

within the current batch, distinguishing this method from offline clustering approaches

that require the entire dataset to compute the codes. The loss function is defined in

Eq. (6.5).

L(zt, zs) = ℓ(zt,qs) + ℓ(zs,qt) (6.5)

where the function ℓ(z,q) quantifies the alignment between features z and a code

q. Conceptually, the method evaluates the similarity between the features zt and zs

using the intermediate codes qt and qs. In other words, if these two features are from

augmentations of the same input image, and they encode the same or similar information,

then it should be feasible to predict the code from the other feature.

The loss function in Eq. (6.5) consists of two terms that define the “swapped” pre-

diction task: predicting the code qt from the feature zs, and vice versa, predicting qs

from zt. Each term corresponds to the cross-entropy loss between the predicted code and

the probability distribution obtained by applying softmax function to the dot products

of zi and all prototypes in C. The loss formulation is detailed in Eq. (6.6), where τ is a

temperature parameter that controls the sharpness of the softmax distribution.
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ℓ(zt,qs) = −
∑
k

q(k)
s logp

(k)
t , p

(k)
t =

exp
(
1
τ
z⊤t ck

)∑
k′ exp

(
1
τ
z⊤t ck′

) (6.6)

In contrast to previous self-supervised learning methods, which directly compare the

similarity of feature vectors znt. Comparing high-dimensional features (e.g. 2048) usually

takes a lot of time and computational overhead. Instead, this study focuses on compar-

ing the codes qnt derived from different views, aiming to make them consistent. This

strategy allows the model to capture more details of the input. In this work, the code is

chosen as the output of the feature extractor, as it provides a more efficient and effective

representation for comparison.

r2g r2rg2g

...
augmentations

i2a

Unripe apple

Unlabeled apple

Ripe apple

Figure 6.11: The proposed distances for model performance evaluation.

Inspired by SMoG [209], the similarity comparison can happen at the instance-level,

and also at the group-level. Building on this idea, two distances are conceptualised as

metrics to make the extractor more suitable for the apple ripeness determination task.

The considered distances are illustrated in Fig. 6.11.

D = A

NG∑
i=1

NE∑
j≥k

(1− fi · fj
∥fi∥2∥fj∥2

) (6.7)

The definition of the distance is given in Eq. (6.7), where f is the extracted feature

and ∥f∥2 is the Euclidean norm of f , A is a constant. k is a variable and N denotes an

ordered set. Specifically, NG is defined as the set of labelled fully unripe apples and NE

as the set of labelled fully ripe apples. The sizes of NG and NE are 20 in this chapter.

• Intra-distance

For a random unlabelled apple, it is expected that the distance between the image

and its augmentations should be as small as possible. This ensures that the image

and its augmentations occupy a stable position between unripe and ripe items in
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the feature space. This intra-distance, denoted as Di2a, is implicitly considered by

the loss Eq. (6.6).

For the set of labelled apples, it is assumed that unripe items should be closest

to other unripe items, and ripe items should be closest to other ripe items in the

feature space. To quantify this, it is defined as:

– The average distance between labelled unripe apples as D = Dg2g,where i, j ∈
NG, A =

2

|NG| (|NG|+ 1)
, k = i.

– The average distance between labelled ripe apples as D = Dr2r,where i, j ∈
NE, A =

2

|NE| (|NE|+ 1)
, k = i.

• Inter-distance

For labelled unripe and ripe apple images, unripe items should be as distant as

possible from ripe items in the feature space. To quantify this separation, the

average group-level distance between labelled unripe and labelled ripe apples is

computed, denoted as: D = Dr2g, where i ∈ NG, j ∈ NE, A =
1

|NG| |NE|
, k = 1.

Intra-distances evaluate the clustering consistency within each apple and its variants

in the feature space. Inter-distance measures the degree of separation between the two

labelled groups, while also providing insight into the depth of the feature space. The com-

putation of these two distances serves as a complement to the “swapped” prediction loss,

offering additional metrics for assessing the effectiveness of the learned representations.

This combination is also particularly useful for comparing the performance of different

self-supervised learning methods.

Training Details

In this chapter, the two views consist of a global view (high-resolution, 224×224 pixels)

and a local view (low-resolution, 112×112 pixels) augmentation. The extractors are

trained from scratch on a set of complete apples. The backbone of the extractor is

Res18 [106] to save the model size. The dimension of the output feature is set to 256, the

number of prototypes is 512, the temperature τ is set to 0.1, and the number of Sinkhorn-

Knopp iterations is set to 3. No pre-trained weights are used, and the parameters of all

convolution layers are initialised by a normal distribution.

Evaluation Details

During the evaluation, the Dr2r, Dg2g and Dr2g are reported, each bounded within the

range [0, 2]. Ideally, lower values of Dr2r and Dg2g indicate promising performance, as

they reflect the extractor’s ability to effectively process the labelled images under various
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augmentations. Besides, Dr2g is expected to be significantly greater than Dr2r and Dg2g,

indicating that unripe apples from ripe apples are successfully separated in the feature

space. To help better compare the results, a simple distance difference is computed,

defined as (Dr2g −Dr2r −Dg2g), where higher values indicate better overall separation.

These three distances serve as metrics to evaluate how closely the extractor aligns with

the proposed aim outlined in 6.3.1. Specifically, extractors generate high-dimensional

features instead of final outputs. If the extractor has lower Dr2r, Dg2g values and a

higher Dr2g value, then it is promising but does not promise to produce better final

results. Because high-dimensional features are then processed by the predictor for final

results, the design of the predictor is also a big factor that influences final results.

6.3.4 Predictor

A simple 3-layer MLP predictor is employed to predict the ripeness score from the ex-

tracted features. The network consists of three fully connected layers, with dimensions

set to [N , 128, 100, 1], where N represents the feature dimension from the extractor.

Each layer, except the final one, is followed by a ReLU activation function. The final

layer is a fully connected output layer with a single neuron, which produces the ripeness

score R. This score is then normalised to fall within the range [0.0, 1.0]. This architec-

ture effectively reduces the dimensionality from input space to a single scalar value while

leveraging ReLU non-linearity to capture complex relationships between the features,

ensuring robust and accurate predictions. The illustration is shown in Fig. 6.10.

Training Details

During training, the weights of the feature extractors are frozen, and only the weights of

the predictor are updated. The predictor is trained from scratch using the labelled images

only. The loss function calculates the MSE between the one-hot encoded predictions and

the ground truths from labelled images.

Evaluation Details

The mean values x̄green and x̄red, along with the variances s2green and s2red of labelled fully

unripe and fully ripe apples are selected as evaluation metrics. Ideally, the model is

expected to predict a score of 0.0 for fully unripe apples and 1.0 for fully ripe apples.

These metrics align with human sense, where higher values correspond to riper apples.

The range of prediction values indicates that the apple ripeness prediction is treated

as a regression task rather than a multi-class classification task. As a result, the App-

leSSL generates continuous predictions instead of discrete ones. It avoids the inherent

discontinuities of discrete classification and allows for a smooth representation of the

apple ripeness distribution, providing a more nuanced understanding of ripeness levels.
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Additionally and importantly, the distribution of ripeness score predictions is plot-

ted along with dense apple images, and these predictions on the extracted features are

visualised for better interpretation.

6.4 Experiments and Results

6.4.1 Experiments

In this chapter, experiments are conducted based on PyTorch Lightning 2.0.0 [66] and

have been carried out using Python 3.9.13 and PyTorch 1.13 on a computer with the

specifications shown in Table 3.4..

An SGD optimiser was employed with a weight decay of 5 × 10−5 and a momentum

of 0.9. Different initial learning rates, ranging from 0.0001 to 0.06 were explored across

different models to identify the optimal value for achieving the best performance.

The default patience setting for the reconstructor and extractor is set to 30 epochs to

optimise training time, meaning the model will terminate training if no improvement in

metrics is observed after 30 epochs. In contrast, the patience for the predictor is set to 3

epochs to minimise the risk of overfitting.

Table 6.1: The results of reconstruction.

Model
Image/Mask

Size
PSNR↑
(dB)

SSIM↑ Params
(M)

M
A
E

ViT-B
224/16 25.14 0.73

111
224/32 22.00 0.67

ViT-L
224/16 25.71 0.74

329
224/32 21.24 0.67

S
im

M
IM

SwinT
192†/16 24.40 0.74

89.9
192†/32 21.47 0.72

ViT-B
(AppleSSL)

224/16 25.36 0.75
86.3

224/32 21.27 0.69

† follows the pre-trained SwinT setting with a window size of 6.

6.4.2 Reconstructor

Comparison

The proposed reconstructor is compared with MAE. The numerical results and visual

comparison are shown in Table 6.1 and Fig. 6.12.
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For MAE models, ViT-Base (ViT-B) with a mask size of 16 achieves a PSNR of

25.14 and an SSIM of 0.73. When the model size increases to ViT-Large (ViT-L), the

performance improves, with ViT-L achieving the highest PSNR of 25.71 and an SSIM

of 0.74. However, this improvement comes at the cost of significantly larger parameters,

increasing from 111M to 329M.

For SimMIM models, the proposed reconstructor with ViT-B achieves the highest

SSIM of 0.75 and the second-highest PSNR of 25.36, while utilising only 86.3M param-

eters. Notably, the proposed reconstructor has the smallest parameter count, requiring

less than one-third of the parameters of MAE with ViT-L, but delivering very comparable

performance.

From the visual comparison, it is observed that with the same input image and mask-

ing strategy, ViT-L produces the best reconstructions, while ViT-B delivers similar but

reasonable results.

It is well-known that larger models deliver better performance, as they can learn

and store more information. However, the small performance difference observed here is

acceptable when considering the significant disparity in model size. Increasing the model

size excessively for tiny marginal performance gains is not a practical choice for this study.

Compared to the standard ViT, using SwinT as the backbone yields inferior perfor-

mance in this study. It is hypothesised that this is due to the hierarchical structure of

the SwinT, which processes image patches locally using smaller patches and gradually

expands the receptive field. This local processing may disrupt the consistency of infor-

mation within the expanded receptive field, as illustrated in the first row of Fig. 6.12.

The results highlight the significant impact of mask size on performance, with larger

mask sizes consistently leading to degradation across all models. The original SimMIM

identifies a mask size of 32 as optimal, but based on the experiments, the performance

drops substantially with a mask size of 32 compared to 16. A mask size of 16 proves to

be the most suitable for reconstructing missing apple parts. It is suggested that a mask

size of 32 lacks flexibility, as it is too large to effectively cover the missing patches and

introduces excessive noise into the visible patches.

Overall, the proposed reconstructor achieves a favourable balance between perfor-

mance and efficiency, providing valuable information for subsequent ripeness prediction.

Visualisation

Then, the reconstructor is tested with incomplete apple images under different settings.

The visualisation is shown in Fig. 6.13. The ground truths of these input images are

unknown, but the detailed progress for each reconstruction is shown in the visualisations.

The various cases show diverse environmental and lighting conditions affecting the

visibility and appearance of apples:
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MAE Base

ViT
224/16

ViT
224/32

MAE LargeSimMIM Base
(Ours)

SwinT
192/16

SwinT
192/32

SimMIM

masked image

masked image

original image

Figure 6.12: The reconstruction comparison using different models and mask sizes.

• Very limited visibility

In cases (a) and (c), the majority of the apples are obscured, resulting in visible

rates of less than 30%.

• Different occlusion sources

In case (g), the apple is hidden by the trunk, while apples in other cases are covered

by leaves.

• Lighting conditions

In cases (a), (c), (i), and (j), the apples are shaded from direct sunlight, while in

cases (d), (e), (k), and (l), they are exposed to direct sunlight.

• Shadows and light patterns

In cases (e), (g), (h), and (k), direct shadows, light-stripes or light-spots are ob-

served on the apples, creating complex light patterns.

• High contrast conditions

In cases (e), (k), and (l), the apples exhibit strong contrasts between light and



Chapter 6. AppleSSL: A Novel Self-supervised Method for In-field Occluded Apple
Ripeness Determination 119

36
%

50
%

28
%

51
%

or
ig

in
al

 im
ag

e
m

od
el

 in
pu

t
re

co
ns

tru
ct

io
n

ou
tp

ut
m

as
ke

d 
in

pu
t

25
%

48
%

50
%

39
%

53
%

42
%

44
%

52
%

or
ig

in
al

 im
ag

e
m

od
el

 in
pu

t
re

co
ns

tru
ct

io
n

ou
tp

ut
m

as
ke

d 
in

pu
t

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

(i)
(j)

(k
)

(l)

F
ig
u
re

6.
13
:
T
h
e
v
is
u
al
is
at
io
n
of

re
co
n
st
ru
ct
io
n
,
th
e
n
u
m
b
er
s
in

m
as
ke
d
in
p
u
t
in
d
ic
at
e
v
is
ib
le

ra
te
s
fo
r
th
e
m
o
d
el
.
D
et
ai
le
d
an

al
y
si
s
of

(a
)∼

(l
)
ar
e
in

6.
4.
2.



120 6.4. Experiments and Results

shadow, presenting challenging illumination scenarios.

• Backlighting effects

In cases (b) and (g), the apples are positioned against the light source, resulting in

unique lighting angles and potential silhouette effects.

• Uniform colour

In cases (a), (c), (d), and (f), the apples are predominantly of a single colour.

• Gradual colour transitions

In cases (b), (e), and (h), the apples showcase significant continuous colour varia-

tions, introducing additional complexity in visual features.

The proposed reconstructor demonstrates its reliable ability to effectively predict oc-

cluded apple parts under various conditions, including different illumination levels, oc-

clusions, and ripeness stages in the above cases.

It is suggested that the model trained on a diverse set of apple images in various

settings is able to accurately predict the occluded parts of incomplete apples. This

enables the use of the trained model to reconstruct missing parts without the need for

manually designed fruit shapes or handcrafted features.

6.4.3 Extractor

The extractor serves as a critical component of the proposed method, acting as a bridge

between the input images and the predictor. To evaluate the performance, the pro-

posed extractor is compared against 15 other self-supervised methods and a supervised

binary classification model. For the binary classification model, MSE loss is employed

as the loss function, while the self-supervised methods utilise their respective original

loss functions, including negative cosine similarity loss, normalised temperature-scaled

cross-entropy loss (NT-Xent loss), and other customised loss functions. The comparative

results are presented in Table 6.2.

Res18 is selected as the backbone for most of the self-supervised methods, as it is more

lightweight compared to the commonly used Res50. For MSN and PMSN, ViT-Small is

used, following their respective model designs. The output dimensions for each method

are kept consistent with their original configurations.

The results demonstrate that supervised binary classification and several self-supervised

methods demonstrate strong performance in separating fully unripe and fully ripe apples

within the feature space. However, certain self-supervised methods, such as DCL, DCLW,

MSN, PMSN, and VICRegL, fail to meet expectations for this task. Their Dr2g values

are smaller than Dr2r and Dg2g, indicating an insufficient separation between unripe and

ripe apples, thus they are excluded from being incorporated with the predictor.
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The binary classification model achieves the Dr2g (0.2391) greater than both Dr2r

(0.1488) and Dg2g (0.0609). These results suggest that unripe apples are distributed

more densely than ripe apples. The proposed method achieves theDr2g of 0.8844, which is

significantly greater thanDg2g (0.3816) andDr2r (0.2418), demonstrating a better balance

between the clustering of ripe and unripe apples compared to binary classification.

While PMSN achieves the smallest Dg2g and Dr2r, its Dr2g equals Dr2r, indicating

that it does not effectively separate unripe and ripe apples in the feature space. NNCLR

achieves the highest Dr2g of 1.1086, but the margin relative to its Dr2r and Dg2g is

insufficient to ensure a clear separation.

SimSiam achieves the highest distance difference of 0.5373, with a remarkably low

Dr2r of 0.0118. It is noted that DINO also demonstrates a balanced distribution be-

tween unripe and ripe apples, reflecting its ability to achieve meaningful separation. In

contrast, the binary classification method yields a distance difference of only 0.0293 due

to imbalanced Dg2g and Dr2r. The proposed extractor achieves a distance difference of

0.2610, significantly outperforming the binary classification approach by a large margin.

It also surpasses several other self-supervised methods, showcasing robust performance

in separating unripe and ripe apples.

Regarding model size, introducing complex backbones, such as ViT-Small (ViT-S)

with 27.8M parameters, does not bring noticeable improvements. It is suggested that this

is because the task of this study is relatively simple, making heavy backbones prone to

over-fitting. Additionally, the binary classification model only occupies 11.2M parameters

as a result of no extra modules being introduced. The proposed method is with 11.7M

parameters, incorporating additional parameters for the extra branch and prototypes C.

Despite this, the proposed model remains more compact than many other self-supervised

methods while delivering superior performance.

6.4.4 Predictor

Comparison

The 12 extractors with Dr2g > Dr2r and Dr2g > Dg2g were selected to extract image

features for the predictor. The performance of the predictor is summarised in Table 6.3.

The proposed method demonstrates the best overall performance, achieving the lowest

x̄green of 0.0127 and s2green of 0.0001, along with the highest x̄red of 0.8933 and the second-

highest s2red of 0.0094. In contrast, the binary classification model yields a x̄green of 0.2460

and a x̄red of 0.7258, indicating its comparatively weaker capability in predicting ripeness

scores.

The results further highlight that some self-supervised methods outperform the binary

classification model. For example, TiCO achieves competitive results with the lowest s2red
of 0.0034 and the second-lowest x̄green of 0.0127. DINO delivers a x̄green of 0.1798 and a
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Table 6.3: The results of predictor using features from extractors.

Extractor x̄green ↓ s2green ↓ x̄red ↑ s2red ↓

Binary 0.2460 0.0037 0.7258 0.0098

BYOL 0.0636 0.0017 0.6383 0.0414

FastSiam 0.5336 0.0014 0.8011 0.0052

SimSiam 0.2375 0.0011 0.7302 0.0047

DenseCL 0.3329 0.0031 0.7440 0.0185

MoCo 0.1964 0.0055 0.6536 0.0145

NNCLR 0.1194 0.0012 0.7821 0.0162

SimCLR 0.0607 0.0012 0.7548 0.0169

DINO 0.1798 0.0037 0.8208 0.0161

TiCo 0.0444 0.0005 0.7606 0.0034

VICReg 0.0893 0.0011 0.7121 0.0070

SwAV(AppleSSL) 0.0127 0.0001 0.8933 0.0094

xred of 0.8208. Similarly, VICReg and SimCLR produce relatively low x̄green values and

high x̄red values.

Visualisation

To present the results more clearly, the ripeness score predictions are visualised in Fig. 6.14.

The analysis of these predictions is conducted from the following three perspectives:

• Prediction continuity

The dataset contains apples at various ripeness stages, with 40 labelled fully unripe

and fully ripe apples used for training. Consequently, the predictions are expected

to span the entire range of scores, from 0.0 (unripe) to 1.0 (ripe), reflecting a

continuous progression.

Among the evaluated methods, the proposed approach uniquely achieves seamless

and continuous predictions across the entire score range, accurately representing

all ripeness stages. Other methods, including NNCLR, DINO, SimCLR, VICReg,

and the binary classification model, also approximate full-score predictions but

exhibit gaps, with certain score intervals missing in their outputs. This discontinuity

indicates limitations in capturing the smooth progression of ripeness.

• Prediction distribution

Like many large image datasets, including the previous NinePeach dataset, the

apple dataset should exhibit a “long-tail” distribution. This reflects the natural
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Figure 6.14: Ripeness score R predictions for complete apple instances, with intervals of
0.1 and at most 40 items displayed per score.

tendency for unripe apples to outnumber ripe ones due to factors such as natural

fruit-falling and artificial fruit-thinning.

Several methods, including binary classification, FastSiam, SimSiam, DenseCL,

MoCo, and DINO, produce predictions with a Gaussian-like distribution. These
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methods do not generate sufficient predictions for unripe apples. Most predictions

fall in the semi-ripe range, indicating poor separation between unripe and ripe

apples. In contrast, the proposed method, along with BYOL, NNCLR, SimCLR,

TiCO, and VICReg, predicts ripeness scores following the expected “long-tail” dis-

tribution. The predicted number of apples gradually decreases from unripe to ripe,

effectively reflecting the natural progression of apple ripening.

• Colour gradient

A smooth colour gradient from unripe to ripe is an essential indicator of the accuracy

of ripeness predictions. Ideally, the gradient should transition smoothly from green

for unripe apples to red for fully ripe ones.

Some methods, including BYOL, FastSiam, MoCo, and VICReg, exhibit obvious

inconsistencies, as some green apples are incorrectly assigned scores over 0.5, sug-

gesting outliers in prediction. SimCLR and TiCO also face challenges, with semi-

ripe and ripe apples often mixed, making it difficult to tell. Notably, the proposed

method delivers a smooth and consistent colour gradient. The predictions start with

green on the left and gradually transition to red on the right, accurately reflecting

the natural ripening process. This demonstrates the robustness and precision of

AppleSSL in ripeness estimation.

3D Principal Component Analysis (PCA) is used to reduce the dimensionality of the

extracted features to three dimensions, with the visualisation presented in Fig. 6.15.

Among all of the visualisations, the proposed predictor stands out by generating a

smooth manifold where apple ripeness increases progressively. In the space, the labelled

unripe and ripe apples are distinctly separated, indicating high explainability for the

ripeness score predictions.

Since ripeness score prediction is a subjective topic, several volunteers including apple-

picking robot professionals and normal apple consumers, were invited to help evaluate the

performance. They were required to independently choose the best prediction from their

perspectives. The test was conducted anonymously, and ground truths were not disclosed

before test. All of the participants agreed that the proposed predictor and TiCO are the

top-performing methods. However, compared to the proposed predictor, although TiCO

shows a good colour gradient, it is unconfident with accurate predictions for ripe apples,

as a result of x̄red of 0.7606.

The results further highlight that self-supervised methods can outperform supervised

binary classification. This underscores the ability of self-supervised models to learn latent

ripeness-related features from a large number of unlabelled images, significantly reducing

the need for manual labelling.
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Figure 6.15: 3D PCA visualisations of ripeness scores on extracted features.
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6.5 Discussion

6.5.1 Transfer to Other Fruits

The proposed framework is not specific to apples and can be generalised to other fruits.

It is likely to transfer more easily to round fruits such as oranges or apricots, as the

reconstructor in this work is based on round shape estimation. Additional adaptation

may be needed when applying to non-round fruits like mangoes or strawberries, which

have more varied shapes. In such cases, it is necessary to design shape-estimating methods

to draw the possible shape of occluded fruits.

Examples of “fully unripe” and “fully ripe” fruits are also required to be specified. If

annotations at different ripeness levels (e.g., 25%, 50%, and 75%) are available, they can

be added to provide reference milestones. The proposed distance metrics can be easily

adjusted to incorporate these levels.

Overall, the framework is designed to minimise reliance on annotations, making it

feasible to transfer, particularly for round fruits with clear colour change during ripening.

6.5.2 Limitations

The apple images in this study were collected from a single Jazz apple orchard, which

may not represent the different varieties of apples. Despite extensive searches, no public

datasets that met the research requirements were found. This constraint has led to

reliance solely on the collected dataset.

(a) Peduncle and Calyx Prediction Deficiency. (b) Excessive-Occlusion Prediction Deficiency.

Figure 6.16: Two prediction deficiencies in the proposed reconstructor.

In terms of reconstruction, there are two prediction deficiencies, as shown in Fig. 6.16.

The first is peduncle and calyx prediction deficiency, the model cannot predict the apple

peduncle and calyx as expected. The second deficiency appears when excessive occlusion

occurs, with very limited visible information, the reconstructor can not perform well and

generate reasonable results.
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AppleSSL is designed for in-field apples that have significant colour changes during

their ripening process. Therefore, it is not suitable for certain apple cultivars like Granny

Smith, which remain green throughout all ripening stages. Additionally, it cannot be

applied to fruits that ripen after harvesting like bananas, or to those evaluated based on

softness like avocados.

6.5.3 Future Work

To improve the applicability of AppleSSL, the dataset is expected to be expanded by

including a more diverse range of apple varieties, capturing a broader representation

across different types.

AppleSSL demonstrates that it is feasible to use a single-view image to predict apple

ripeness. The next work is proposed to focus on extending this method to work with

multi-view images, which would allow more accurate ripeness estimation. This method

has the potential to be extended to other fruits that exhibit significant colour changes

during the ripening process, such as peaches.

Figure 6.17: The digital simulation of a large orchard, with apple locations and ripeness
monitored.

Besides, the proposed method is promising for deployment on in-field robots to capture

both the ripeness and spatial information of apples, making it possible to monitor the

ripeness distribution across a large orchard. This information can facilitate data-driven

decision-making for orchard management and then be used to guide autonomous picking

robots to selectively harvest ripe apples. Fig. 6.17 simulates such an apple orchard in a

3D digital environment.
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6.6 Summary

Developing apple-harvesting robots capable of identifying the ripeness stage of apples

is a challenging task, particularly because in-field apples are often obscured by leaves,

branches, or trunks. Determining apple ripeness is also challenging as it is subjective to

define the number of ripeness stages. Under this context, a novel self-supervised method

called AppleSSL is proposed, utilising 40 labelled and 7151 unlabelled apple images for

two problems: ripeness determination and in-field occlusion.

AppleSSL consists of three key parts: a reconstructor, a feature extractor, and a

predictor. The reconstructor is trained to restore the missing details of occluded apples,

enabling more complete visual representations. The feature extractor leverages a vast

number of unlabelled images to learn ripeness-related features effectively, reducing the

reliance on labelled images. Finally, the predictor uses the extracted features to generate

flexible ripeness scores between 0.0 and 1.0, eliminating the need for subjectively pre-

defined ripeness stages. This flexibility allows end-users to make customised decisions

according to their specific needs and criteria.

Experimental results highlight that AppleSSL achieves the highest SSIM of 0.75 and

the second-highest PSNR of 25.36 for reconstructing incomplete apples, with the fewest

86.3M parameters. Besides, AppleSSL outperforms 15 other self-supervised methods and

even a supervised method in ripeness score prediction, achieving the lowest score of 0.0127

for fully unripe apples and the highest score of 0.8933 for fully ripe apples.

AppleSSL is promising for integration into in-field robotic systems, enabling them to

determine ripeness effectively and selectively harvest only ripe fruits. Furthermore, it can

be used to monitor overall ripeness trends across large orchards, helping managers make

informed decisions about harvest timing and orchard management. AppleSSL contributes

to the goals of smart precision agriculture.



Chapter 7

Conclusions and Future Work

7.1 Research Summary

Precision agriculture is undergoing rapid development with the help of deep learning and

automation. This thesis sets out to explore how deep neural networks can be used to

estimate fruit ripeness based on images, aiming to create accurate and efficient models

that work directly in the field. Through the development of novel models designed for

peaches, strawberries, and apples, this research addresses practical challenges such as

heavy occlusion, limited labelled data, and the computational constraints of edge devices.

Looking back at the original objectives, designing high-performance, lightweight mod-

els for fruit classification and ripeness grading, this work has largely met its goals. The

proposed models demonstrate strong performance across species and conditions, and the

focus on efficiency supports future integration into mobile or robotic systems. However,

no approach is without its limitations. The reliance on fruit-specific datasets and the

need for detailed labels can restrict how easily the proposed models transfer to new fruits

or orchard settings. Moreover, while occlusion handling improved considerably, certain

edge cases remain challenging, such as peduncle and calyx prediction deficiency.

These reflections suggest areas for future improvement. Making models more general,

reducing the need for manual labelling, and improving performance on edge devices will

help move this work closer to everyday use in agriculture. With further development,

these tools can support growers in making better harvest decisions while saving time and

resources.

The comprehensive overview of this research is presented in Table. 7.1.

7.2 Key Contributions

This research delivers some contributions to deep learning for precision agriculture, of-

fering practical and efficient solutions for in-field fruit ripeness estimation, as outlined

130
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below:

• PeachSOLO: Developed a fast, lightweight instance segmentation model for peach

ripeness detection under natural occlusion and field complexity. It introduces the

NinePeach dataset (4599 images) and uses CBAM attention to achieve a 4.55% AP

gain over the baseline, enabling accurate pick-point estimation with lower resource

demands than Mask R-CNN.

• LightStraw: Proposed a compact CNN for strawberry segmentation on edge de-

vices, combining efficient self-attention and bipartite matching. It achieves an AP

of 70.22, over 21 points higher than Mask R-CNN, while significantly reducing

parameters and computation, supporting real-time robotic harvesting.

• FruitQuery: Designed a unified, lightweight Transformer-based model for ripeness

segmentation across peaches and strawberries. With 14.08M parameters, it achieves

67.02 AP and outperforms 13 existing CNN and Transformer models, especially

under occlusion and variable lighting. The shared training approach reduces re-

dundancy and supports cross-species generalisation.

• AppleSSL: Introduced a self-supervised framework using minimal labels to esti-

mate continuous apple ripeness scores (0.0–1.0) under occlusion. With 86.3M pa-

rameters, it achieves 0.75 SSIM and 25.36 PSNR, outperforming 15 self-supervised

methods and enabling scalable orchard monitoring and harvest planning.

Together, these contributions provide a flexible and efficient toolkit for real-world fruit

analysis, advancing sustainable and automated agriculture through deep learning.

7.3 Limitations

While this research presents significant advancements in deep learning for fruit ripeness

determination, several limitations remain:

• Dataset Dependency and Generalisation: The models in this thesis rely on

well-annotated datasets, such as the NinePeach and apple datasets, which limit their

ability to generalise seamlessly to new fruit varieties or varying orchard conditions.

This necessitates further annotation efforts for every new scenario or fruit type.

• Computational Complexity: Some of the proposed models, particularly those

involving transformer-based architectures or self-supervised learning frameworks,

exhibit considerable computational overhead. This may limit their real-time ap-

plicability on edge devices or agricultural robots, where both inference speed and

resource efficiency are crucial.
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• Occlusion Handling: Despite improvements from attention mechanisms and self-

supervised techniques, occlusion remains a challenge, especially when parts of the

fruit, like the peduncle or calyx, are obstructed by environmental factors such as

branches or poor lighting. The models currently struggle to reliably detect and

segment occluded regions.

• Fruit Variety Limitation: The models are designed primarily for fruits with clear

visual cues for ripeness, such as peaches and apples. This restricts their applicability

to fruits that rely on internal characteristics (e.g., bananas or avocados) or those

that do not undergo significant colour change during ripening (e.g., Granny Smith

apples).

7.4 Future Work

To address these limitations and further improve fruit ripeness determination in real-

world applications, the following directions for future research are suggested:

• Multi-fruit Generalisation: Extending the proposed models to additional fruit

types and incorporating multi-modal data, such as hyperspectral or thermal imag-

ing, would enhance robustness and improve generalisation. This would make the

models more adaptable to diverse fruit species and varying orchard conditions,

which are common in practical agriculture.

• Real-time Deployment with In-field Robots: Optimising inference speed and

reducing the model size will be key to deploying these models on edge devices and

robots. Future work could integrate deep learning models with in-field robots for

selective harvesting. These robots need to operate under resource constraints and

require fast, reliable predictions to support selective harvesting.

• Active and Semi-supervised Learning: To reduce annotation requirements, fu-

ture work could explore active learning or semi-supervised learning methods. These

approaches could help reduce the need for extensive labelled datasets, enabling the

models to generalise better to new fruit types or orchard conditions without requir-

ing as much manual annotation.

• Advanced Occlusion Recovery: Although current attention mechanisms and

self-supervised techniques have shown promise, more advanced generative models,

such as diffusion models or neural radiance fields (NeRF), could be explored to

further enhance occlusion recovery. These methods have the potential to better

reconstruct occluded fruit regions and improve segmentation accuracy under chal-

lenging field conditions.
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• Integration with Foundation Models: Foundation models pre-trained on large-

scale datasets could be explored as backbones for feature extraction or reconstruc-

tion. These models may provide strong general-purpose representations that trans-

fer well to different fruit types or orchard environments, further reducing the need

for task-specific data collection and training from scratch.

By addressing these limitations, future research can enhance the scalability, efficiency,

and applicability of fruit ripeness estimation models, driving more sustainable practices

in precision agriculture.
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[211] P. Paz, M.-T. Sanchez, D. Perez-Maŕın, J.-E. Guerrero, and A. Garrido-Varo. Nonde-

structive Determination of Total Soluble Solid Content and Firmness in Plums Using

Near-Infrared Reflectance Spectroscopy. Journal of Agricultural and Food Chemistry,

56(8):2565–2570, Apr. 2008.

[212] M. Peebles, S. H. Lim, M. Duke, and B. McGuinness. Investigation of Optimal Network

Architecture for Asparagus Spear Detection in Robotic Harvesting. IFAC-PapersOnLine,

52(30):283–287, Jan. 2019.

[213] A. Peirs, N. Scheerlinck, and B. M. Nicolai. Temperature compensation for near infrared

reflectance measurement of apple fruit soluble solids contents. Postharvest Biology and

Technology, 30(3):233–248, Dec. 2003.

[214] Y. Peng and R. Lu. Prediction of apple fruit firmness and soluble solids content using

characteristics of multispectral scattering images. Journal of Food Engineering, 82(2):142–

152, Sept. 2007.

[215] Y. Peng and R. Lu. Analysis of spatially resolved hyperspectral scattering images for

assessing apple fruit firmness and soluble solids content. Postharvest Biology and Tech-

nology, 48(1):52–62, Apr. 2008.



References 153

[216] I. Perez-Borrero, D. Marin-Santos, M. J. Vasallo-Vazquez, and M. E. Gegundez-Arias.

A new deep-learning strawberry instance segmentation methodology based on a fully

convolutional neural network. Neural Computing and Applications, 33(22):15059–15071,

Nov. 2021.
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Detecting Maturity Parameters of Mango Using Hyperspectral Imaging Technique. In

2006 Portland, Oregon, July 9-12, 2006. American Society of Agricultural and Biological

Engineers, 2006.

[253] J. Steinbrener, K. Posch, and R. Leitner. Hyperspectral fruit and vegetable classification

using convolutional neural networks. Computers and Electronics in Agriculture, 162:364–

372, July 2019.

[254] P. Subedi and K. Walsh. Assessment of sugar and starch in intact banana and mango

fruit by SWNIR spectroscopy. Postharvest Biology and Technology, 62(3):238–245, Dec.

2011.

[255] P. Subedi, K. Walsh, and P. Purdy. Determination of optimum maturity stages of mangoes

using fruit spectral signatures. Acta Horticulturae, 992:521–527, May 2013.

[256] C. H. Sudre, W. Li, T. Vercauteren, S. Ourselin, and M. Jorge Cardoso. Generalised

Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations. In

Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision

Support, pages 240–248, Cham, 2017. Springer International Publishing.

[257] M. Sun, R. Zhao, X. Yin, L. Xu, C. Ruan, and W. Jia. FBoT-Net: Focal bottleneck trans-

former network for small green apple detection. Computers and Electronics in Agriculture,

205:107609, Feb. 2023.

[258] T. Sun, W. Zhang, X. Gao, W. Zhang, N. Li, and Z. Miao. Efficient occlusion avoid-

ance based on active deep sensing for harvesting robots. Computers and Electronics in

Agriculture, 225:109360, Oct. 2024.

[259] M.-T. Sánchez, M. J. De La Haba, M. Benitez-Lopez, J. Fernandez-Novales, A. Garrido-

Varo, and D. Perez-Marin. Non-destructive characterization and quality control of intact

strawberries based on NIR spectral data. Journal of Food Engineering, 110(1):102–108,

May 2012.

[260] J. F. Sánchez-Sevilla, J. G. Vallarino, S. Osorio, A. Bombarely, D. Posé, C. Merchante,
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Appendix

This appendix includes several technical points raised during the viva examination.

LightStraw

• Question: Your architecture borrows a lot from VTs, is MRCNN a fair comparison

benchmark?

Answer: Although Mask R-CNN was proposed in 2017, it is still a widely used in-

stance segmentation model in various applications. On the other hand, similar work on

StrawDI Db1 was based on Mask R-CNN, which makes it a suitable baseline for compar-

ison. Therefore, Mask R-CNN is a fair comparison benchmark.

AppleSSL

• Question: What is the occlusion ratio that can be confidently dealt with and makes

practical sense?

Answer: It is assumed that there was no clear boundary between confident and uncon-

fident occlusion ratios, as it depended on the specific occasion. As a result, in general, a

ratio of less than 60% was considered workable for most occluded applications.

• Question: How robust are the proposed distance metrics (e.g. have they been used in

other applications), and are there any alternatives?

Answer: The proposed distance metrics were based on cosine similarity, which was robust

and effective in self-supervised learning. As the distance metrics were custom-designed

for apple ripeness estimation with limited labelled data, they have not been applied to

other tasks. Alternatives include Mahalanobis distance and Silhouette score, but they do

not align well with this task.

• Question: There was some attempt at involving experts in the ripeness analysis, but it

was not very clear what the purpose of that exercise was. This should be described in

more detail and with clear outcomes/results.

Answer: There were some volunteers, including professionals and normal consumers,

involved in the ripeness analysis. The purpose of this exercise was to collect subjective

opinions on apple ripeness, which were then used to validate the proposed self-supervised

learning framework. As this test was simple and causal, the results were not included.
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• Question: There was a lack of comparisons to annotated instances corresponding to

different ripeness levels. At least some commentary on that would provide additional

insights.

Answer: In this work, only 20 fully unripe and 20 fully ripe apples were annotated.

It was very subjective to annotate different ripeness levels (e.g. 50%), which was the

problem this work aimed to solve. This work focused more on the global overview instead

of the local individual comparison. Therefore, there were no comparisons to annotated

instances at different ripeness levels.

• Question: Is 1% a good figure to cite? Is 1% not dependent on the length of the dataset?

Answer: Yes, 1% is a valid and impactful figure to cite. It indicated that the manual

annotation can be reduced to 1% of the original dataset size, which was a significant

reduction. 1% was also dependent on the dataset, as it only made sense when paired with

the dataset size.
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