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Abstract As Deep Neural Networks (DNNs) are being increasingly employed to make important
simulations in rainfall‐runoff contexts, the demand for interpretability is increasing in the hydrology
community. Interpretability is not just a scientific question, but rather knowing where the models fall flat, how
to fix them, and how to explain their outcomes to scientific communities so that everyone understands how the
model arrives at specific simulations This paper addresses these challenges by deciphering interpretable
probabilistic DNNs utilizing the Deep Autoregressive Recurrent (DeepAR) and Temporal Fusion Transformer
(TFT) for daily streamflow simulation across the continental United States (CONUS). We benchmarked TFT
and DeepAR against conceptual to physics‐based hydrologic models. In this setting, catchment physical
attributes were incorporated into the training process to create physics‐guided TFT and DeepAR configurations.
Our proposed physics‐guided configurations are also designed to aggregate the patterns across the entire data
set, analyze the sensitivity of key catchment physical attributes and facilitate the interpretability of temporal
dynamics in rainfall‐runoff generation mechanisms. To assess the uncertainty, the modeling configurations
were coupled with a quantile regression by adding Gaussian noise N (0,σ) with increasing standard deviation to
the individual catchment attributes. Analysis suggested that the physics‐guided TFT was superior in predicting
daily streamflow compared to the original TFT and DeepAR as well as benchmark hydrologic models.
Predictive uncertainty intervals effectively bracketed most of the observational data by simultaneous simulation
of various percentiles (e.g., 10th, 50th, and 90th). Interpretable physics‐guided TFT proved to be a strong
candidate for CONUS daily streamflow simulations.

Plain Language Summary Explanations supporting the output of deep neural networks (DNNs) are
crucial in rainfall‐runoff modeling, where experts require far more information from the model than a simple
classical simulation to support modeling diagnosis. This research delves into exploring interpretable
probabilistic DNNs by developing Deep Autoregressive Recurrent (DeepAR) and Temporal Fusion
Transformer (TFT) models. These models were rigorously evaluated against traditional hydrologic methods,
both conceptual and physics‐based, emphasizing the integration of catchment physical attributes into the models
for daily streamflow simulations across the continental United States (CONUS). Leveraging quantile regression
to evaluate predictive uncertainty, the physics‐guided TFT model notably outperformed other models by
demonstrating superior predictive capabilities, particularly in managing high and low flow fluctuations.
Notably, this study showed that physics‐guided TFT model can effectively leverage its interpretable multi‐head
attention mechanism to weigh the importance of temporal flow dynamics based on the relationships between
forcing data, catchment physical attributes, and streamflow records. The findings of this study show promising
results of transformer rainfall‐runoff simulations, thereby highlighting its robustness in effectively utilizing
physical attributes and improving model interpretability.

1. Introduction
Deep neural networks (DNNs) have been widely used for enhancing sequential data modeling and building
structured data models (Y. Chen et al., 2018; Fischer & Krauss, 2018; Kratzert et al., 2018; Kratzert, Herrnegger,
et al., 2019; Tabas & Samadi, 2022). These models are particularly suitable for rainfall‐runoff simulation in the
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context of giving precise and timely processing of arbitrary sequences of input‐output data (Shen, 2018). Many
state‐of‐the‐art DNN approaches have recently been established based on Recurrent Neural Networks (RNNs),
such as Long Short‐Term Memory (LSTM), to simulate rainfall‐runoff processes in different settings. There are
cell states in the LSTM networks that represent long‐term memory, storing information across multiple time steps
that can be interpreted as a kind of “storage” to carry relevant information through the local sequence‐to‐sequence
processing. In LSTM, the updating of internal cell states is regulated through a number of gates: the first gate
regulates the flow of information in and out of the memory cell, and the second one controls which new infor-
mation from the current input should be added to the cell state, and the third gate decides what part of the cell's
memory should be outputted at a given time step.

The elaborate gated design of LSTM partly addresses the long‐term dependency problem in time series modeling
(Fang et al., 2020). However, LSTM's structure is inherently sequential, with data dependencies flowing left to
right (i.e., past to future), and it does not explicitly enforce causal masking. In applications such as rainfall‐runoff
modeling, where physical processes operate through strict cause‐effect relationships, preserving causality is
critical. Without explicit constraints, LSTMs may, in some configurations (e.g., bidirectional LSTMs or un-
constrained training setups), inadvertently violate physical causality. In contrast, transformer models, through
causal attention mechanisms, can explicitly model unidirectional relationships in time, allowing for a data‐driven
but causally consistent understanding of the interactions among hydrological variables (e.g., Berrevoets
et al., 2023). This makes transformers particularly suitable for rainfall‐runoff modeling tasks that require respect
for the inherent directionality of physical processes.

The unidirectional structures can connect two arbitrary positions in a time series process directly by using a self‐
attention module. This can strengthen the connection of two arbitrary positions in time series data, where each
data point in the sequence can “attend” to any other point in the sequence, not just the ones before or after it. In
addition, transformers have a longer memory than the LSTM, thus superior in quality while being more paral-
lelizable and requiring significantly less time for training (Vaswani et al., 2017). Transformer algorithms use self‐
attention and cross‐attention mechanisms to create an explicit interpretable model, which follows the trend of
Explainable Artificial Intelligence (XAI; see Wen et al., 2022). Using self‐attention and cross‐attention mech-
anisms, the input data (e.g., meteorological forcing, catchment attributes, and runoff observations) of a position is
related to those of all positions. Thus, their correlations or data similarities can be obtained. This is beneficial for
rainfall‐runoff simulations because the model can give more attention (or larger weights) to the positions that have
more correlations to the position needed for the runoff generation (i.e., cause‐effect relationships or rainfall‐
runoff relationships).

Unlike traditional hydrologic models, transformer‐based models do not inherently “know” the laws governing
hydrologic processes, such as mass conservation or the physical mechanisms controlling storage, infiltration,
evapotranspiration, and runoff generation within a drainage system. To gain confidence in transformer imple-
mentations beyond their use as “black box” models, it is essential to guide or constrain them using physically
meaningful information. Physical consistency can be encouraged through techniques such as adding regulari-
zation terms to the loss function, penalizing violations of conservation principles like mass, energy, or momentum
(e.g., Jia et al., 2019; Karpathy et al., 2015; Shen, 2018). Further advances include embedding physical laws
directly into the network design, as seen in physics‐informed architectures that explicitly encode conservation
constraints (e.g., Hoedt et al., 2021; Karniadakis et al., 2021) or enforce physically realistic outputs through
specialized training objectives (e.g., Daw et al., 2020). Another alternative to physics guidance is the incorpo-
ration of catchment physical attributes—such as soil properties, land cover, topography, and climate indices—
directly into the model inputs, enabling the transformer to condition its predictions on physical basin charac-
teristics during training rather than treating the transformer purely as a black‐box, allowing the model to better
capture physical variability across diverse basins. This strategy balances flexibility with physical realism,
improving both generalization and interpretability without fully sacrificing the transformer's data‐driven
strengths.

Transformer approaches (and indeedmostDNNalgorithms) viewdata‐driven processes as deterministic functions,
and as a result, direct optimization (without complexity control) of these algorithms may lead to unreliable results
due to uncertainty (Sadeghi Tabas, 2023). One reason for this is that the parameter (weight) estimation involves the
inversion of a nonlinear system (here, catchment system) from noisy data, which is typically ill‐posed (e.g.,
Casdagli, 1989; Haykin & Principe, 1998; Tabas and Samadi, 2022). In this situation, noises might exist within
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observation that are referred to as data uncertainties (also called aleatoric uncertainty, see Der Kiureghian &
Ditlevsen, 2009). In addition, there are many situations where uncertainties arise from the DNN structure choice
and parameters. This is referred to asmodel uncertainty or epistemic uncertainty. The standard approach to tackling
ill‐posed problems (both aleatoric and epistemic uncertainties) is by means of applying probabilistic approaches
such as the Gaussian process to modeling procedure (e.g., Moradkhani et al., 2005; Raftery et al., 2005; Samadi
et al., 2020).

The transformers, along with their improved versions (see Dai et al., 2019), have successfully been applied in
several simulation tasks recently (e.g., Q. Chen et al., 2019; Dai et al., 2019; Dosovitskiy et al., 2020; Gonzalez
et al., 2021; Rasmy et al., 2021; Vaswani et al., 2017; Zhou et al., 2021). To our knowledge, many state‐of‐the‐art
DNN approaches for rainfall‐runoff modeling are established based on LSTMs, and there are very few studies that
implemented simple transformer models (e.g., Pölz et al., 2024; Yin et al., 2022) as well as other probabilistic
DNNs such as deep auto‐regressive approaches, Bayesian deep learning and variational Bayesian inference
approaches (e.g., D. Li et al., 2021; Piazzi et al., 2021; Tabas & Samadi, 2022). Furthermore, incorporating
catchment physical attributes (or exogenous features/parameters) and understanding the uncertainty associated
with DNN modeling are rarely explored (Feng et al., 2020; Kratzert et al., 2021; Tabas & Samadi, 2022). The
vision of this study is thus to address these knowledge gaps by investigating the potential of probabilistic and
transformer algorithms for rainfall‐runoff modeling and uncertainty assessment. The novelty of this research lies
on several fronts notably (a) developing two advanced DNN approaches, that is, Deep Autoregressive Recurrent
Networks (DeepAR) and Temporal Fusion Transformer (TFT), for rainfall‐runoff modeling that can learn
catchment similarities directly from meteorological forcing data and ancillary data of multiple catchments across
the continental United States (CONUS), (b) demonstrating how climatic and catchment physical attributes control
spatiotemporal variability of rainfall‐runoff processes, and (c) quantifying uncertainty in rainfall‐runoff modeling
using quantile regression approach as the likelihood function (loss function) by adding Gaussian noise N (0,σ)
with increasing standard deviation to the individual attribute value.

Both TFT and DeepAR were trained using static (time‐invariant/independent) and dynamic (time‐variant/
dependent) attributes to predict daily streamflow values across CONUS. In this setting, the algorithms learned
how to combine different parts of the network to simulate various types of rainfall‐runoff behaviors over time. In
principle, the approach explicitly allows for sharing some parts of the networks for similarly behaving catchments
while using different independent parts for those catchments with completely different rainfall‐runoff behaviors.
Furthermore, our proposed methodology provides a mapping function from catchment attribute space into a
learned, high‐dimensional space where catchments with similar rainfall–runoff behavior can be clustered
together. The results are then used to perform a catchment similarity analysis. Through sensitivity analysis and
hierarchical (clustering) temporal modeling, both algorithms offered a transparent view of short and long‐term
patterns within the daily streamflow time series data, facilitating a deeper understanding of the factors influ-
encing rainfall‐runoff generation mechanisms. The main novelty of this research lies in the use of a probabilistic
TFT for daily streamflow prediction at CONUS. While similar efforts such as Koya and Roy (2024) have recently
emerged, to the best of our knowledge, our work is among the first to demonstrate this approach using a prob-
abilistic framework at CONUS. The use of the probabilistic TFT allowed point predictions as well as full pre-
dictive distributions, which will be helpful in operational hydrologic forecasting. Moreover, the combined use of
both static and dynamic inputs reflects a physics‐aware design, which is likely to enhance the model's general-
ization capacity (e.g., Kratzert, Herrnegger, et al., 2019). Finally, it is worth noting that interpretability in this
work is achieved through TFT's built‐in attention and variable selection mechanisms, which allow the model to
identify the most relevant inputs across both temporal and feature dimensions. Our contribution lies in leveraging
these interpretability tools at scale—systematically analyzing variable importance across CONUS. This large‐
scale application provides novel insights into the spatial variability of hydrological simulations and deepens
understanding of the underlying physical processes.

The remainder of this paper is organized as follows. Section 2 discusses the study area and the data, followed by
the mathematical formulation of DeepAR and TFT and the workflow structures of proposed modeling ap-
proaches. Section 3 presents the results of the modeling implementations. This is followed by Section 4, which
provides discussion and future research.
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2. Methodology
2.1. Study Area and Data

Experimental data were gathered from the publicly available Catchment Attributes and Meteorology for Large‐
sample Studies (CAMELS) curated by the National Center for Atmospheric Research (NCAR; Newman
et al., 2015; Addor et al., 2017). CAMELS consists of 18 HUC2 (Hydrologic Unit Code 2) or zones containing
overall 671 catchments (HUC8) ranging in size from 4 to 25,000 km2 (Figure 1). These catchments were selected
based on having minimal human intervention and long‐term records of data (1980–2010) gathered from the
United States Geological Survey (USGS) gauge II data and the National Water Information System (NWIS). In
addition, CAMELS data sets include daily time series of hydrometeorological data such as Daymet (Thornton
et al., 2021), Maurer (Maurer et al., 2002), and the North American Land Data Assimilation System (NLDAS; Xia
et al., 2012) data sets. Daymet data set provides long‐term, continuous, gridded estimates of daily weather and
climatology variables, while the Maurer data set is a model‐derived data set of land surface states and fluxes, and
NLDAS is a quality‐controlled and spatially and temporally consistent, land‐surface model (LSM) data sets.
CAMELS also includes several catchment physical attributes related to soil, climate, vegetation, topography, and
geology (Addor et al., 2018). These catchment attributes were derived from maps, remote sensing products, and
climate data that are generally available over CONUS. For this project, we used 531 of the 671 CAMELS
catchments (those with an area of <2,000 km2); these 531 catchments are the same ones that were used for model
benchmarking by Newman et al. (2017). The CAMELS basins are shown with the HUC2 zones across CONUS
(see Figure 1).

Figure 1. Overview of the 18 CAMELS HUC2 basins (or zone) across CONUS.
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2.2. Catchment Static and Dynamic Attributes

The simulation of streamflow can be determined by the hydrological descriptors and catchment attributes that are
independent of one another (Addor et al., 2017). Herein, we divided meteorological forcing data as well as
catchment physical attributes into dynamic and static attributes, respectively. The continental‐scale classification
of dominant rainfall‐runoff generating processes can define the timing and variability between catchment static
and dynamic attributes and how their collective impact dominates the rainfall‐runoff generation mechanism
across CONUS. The dynamic attributes are defined as the catchments variables that are time‐varying, such as (a)
daily precipitation, (b) minimum daily air temperature, (c) maximum daily air temperature, (d) average short‐
wave radiation, and (e) vapor pressure (VP). On the other hand, catchment static attributes are those catch-
ment attributes that remain fixed over time (time‐independent variables), such as soil type, geological and to-
pological conditions, and subsurface permeability. To construct physics‐guided TFT and DeepAR, catchment
static and dynamic attributes were incorporated into the TFT and DeepAR; these variables were chosen as a subset
of characteristics explored by Addor et al. (2017) that are derivable from remote sensing and other data products
(see Table 1). Prior to model training, all features were standardized by subtracting the mean and dividing by the
standard deviation calculated over the training data set. This normalization was performed to stabilize training and
ensure comparability between features.

2.3. Probabilistic Modeling Architectures

We employed two probabilistic DNN methods, including an advanced RNN method (so‐called Amazon's
DeepAR) as well as a Google transformer model, TFT. The DeepAR and TFT models are explained briefly in the
following subsections.

2.3.1. DeepAR Architecture

DeepAR, proposed by Salinas et al. (2020), is an encoder‐decoder LSTM architecture for the probabilistic
simulation of multivariate time series. This approach creates a global model of a multivariate data set, containing
related time series instead of creating individual models for each time series. In this setting, the model can extract
interrelationships between the variables to provide special treatment for the case where the magnitudes of the time
series vary widely (Salinas et al., 2020). According to Salinas et al. (2020), the key advantages of DeepAR over
classical DNN approaches are that they (a) provide covariates to capture complex, group‐dependent behavior by
training on multiple time series simultaneously with minimal manual intervention because the model can learn
seasonal behaviors and dependencies on given covariates across time series, (b) make probabilistic simulations in
the form of Monte Carlo samples (Ghahramani, 2015; Salinas et al., 2020) that can be used to compute consistent
quantile estimates for all sub‐ranges in the simulation horizon, (c) provide simulations for the data that have little
or no history available, a case where traditional hydrologic models may fail to provide accurate simulation, and
(d) incorporate a wide range of likelihood functions, allowing the user to choose the one that is more appropriate
for the statistical properties of the data. The goal of DeepAR is to model the conditional distribution which is
presented as follows:

P(Zi,t0:T|Zi,1:t0 − 1,Xi,1:T) (1)

where Zi,t is the value of time series i at time t. Given the past series [Zi,1,Zi,2,…,Zi,t0 − 1], this model can be
employed to predict the future series [Zi,t0,Zi,t0 + 1,…,Zi,T], where t0 is the time point from which Zi,t needs to be
predicted. [1 : t0 − 1] and [t0 : T] represent the conditioning range and simulation range, respectively. The
DeepAR model predicts the value of the simulation range based on the value of the conditioning range. If co-
variate time series Xi is introduced in the model, the value of the Xi from time 1 to time T(Xi,1:T) can also be used
for simulation. However, the value of the covariate time series must be available during the entire time period.
DeepAR assumes that P(Zi,t0:T|Zi,1:t0 − 1,Xi,1:T) consists of likelihood factors. These likelihood factors are defined
in Equations 2 and 3.

P(Zi,t0 :T|Zi,1:t0 − 1,Xi,1:T) = ∏
T

t=t0
P(Zi,t0 :T|Zi,1:t0 − 1,Xi,1:T) = ∏

T

t=t0
P(Zi,t|∅(hi,t,∅)) (2)
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hi,t = h(hi,t− 1,Zi,t− 1,Xi,t,∅) (3)

where hi,t is the output of a multi‐layer RNN constructed by an LSTM cell which is parametrized by θ. Given a
time series as a conditioning range, we can obtain hi,t0 − 1 by Equation 3 as the initial state. For the simulation
range, we can sample Z̃i,t by P( .|∅ ( h̃i,t − 1,∅)) where h̃i,t = h(hi,t − 1, Z̃i,t,Xi,t − 1,∅). The samples achieved in this
way could be used to compute several statistics such as the mean and quantile.

DeepAR's core architecture builds on the same concept as the encoder‐decoder structure. Instead of designing two
separate modules, a single module for both the encoder and decoder phases is designed with shared weight
matrices and parameters. In our modeling application, DeepAR is trained to output a one‐step‐ahead simulation at
each unfolding of the LSTM. During the encoding phase, the module receives the values in the conditioning
range, one at a time, of the previous time step zi,t − 1 and covariates at the current time step xk,t and outputs a one
step ahead simulation Ẑi,t. The model is autoregressive in that it uses past values as inputs to the next layer to
generate future values in the inference phase. DeepAR also incorporates a group‐dependent embedding vector,
which picks up group‐specific properties for each time series.

Figure 2 illustrates the workflow of the DeepAR model used in this study for a multi‐step sequential simulation.
The left section of the figure displays the training phase (encoder), where the network receives the covariates xk,t,
the previous target values zi,t, where t< t0 and outputs the hidden state ht,i which is used to compute the one‐step
simulation ẑi,t+ 1. During DeepAR training, the outputs Ẑi,t are used to compute the loss function and tune the
parameters Θ of the model. The right part of the figure displays the inference phase (decoder), t< t0 of the model.
DeepAR receives information of previous values through the encoded state, outputs the parameters of a distri-
bution, draws a sample Ẑi,t and passes that sample forward to the next LSTM layer until the end of the simulation
window is achieved. A pass of the above process is called a sample trace. By performing Monte‐Carlo sampling,
DeepAR can sample multiple traces to estimate a joint predictive distribution, which yields the target median,
confidence intervals, and quantiles of interest.

2.3.2. TFT Model

Google recently developed the TFT as an attention‐based DNN model for multi‐horizon prediction, which is the
prediction of variables of interest at multiple time steps. TFT is built to explicitly align the model with a broad
multi‐horizon forecasting task, resulting in greater accuracy and interpretability across a wide range of appli-
cations. Interpretability in this algorithm can be achieved by designing the internal structure of neural network
models more transparent, revealing the features and concepts it has learned. TFT architecture combines a
recurrent LSTM layer to capture local sequential dependencies with self‐attention mechanisms to model longer‐
term relationships across time steps in a parallelizable manner. In other words, TFT integrates both local pro-
cessing and global processing to handle temporal dependencies. The local dependencies are captured through the

Figure 2. The workflow of DeepAR developed in this study. hi,t is the output of a multi‐layer RNN constructed by an LSTM
cell which is parametrized by θ. Zi,t is the value of time series i at time t, while CN,t denotes the cell state of the LSTM cell.
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LSTM encoder, which processes short‐term correlations in the time series. In contrast, global dependencies are
captured through multi‐head attention, which enables the model to focus on long‐term relationships across all
time steps in the sequence. This hybrid approach enhances the model's ability to handle complex and varied
temporal patterns, making it particularly effective for streamflow prediction tasks. TFT supports three types of
features, including (a) temporal data with known inputs into the future, (b) temporal data known only up to the
present, and (c) catchment static attributes. These features support training on multiple time series, coming from
different distributions. To achieve this, the TFT architecture splits processing into two parts: (a) local processing,
which focuses on the characteristics of specific events, and (b) global processing, which captures the collective
characteristics of all‐time series data. By taking advantage of self‐attention, TFT presents a novel multi‐head
attention mechanism (see Figure 3) which provides extra insight into attribute importance. The major compo-
nents of TFT include.

Figure 3. The algorithmic workflow of the TFT developed in this study (partially adapted from Lim et al. (2021)).
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2.3.2.1. Gating Mechanisms

TFT uses a Gated Residual Network (GRN) to skip over any unneeded components, allowing for flexible depth
and network complexities to suit a wide range of data sets (Lim et al., 2021). GRN motivates TFT to apply non‐
linear processing only where needed (Lim et al., 2021). The GRN takes in a primary input a and an optional
context vector c and yields:

GRNω(a,c) = LayerNorm(a + GLUω (η1)) (4)

η1 = (W1,ωη2 + b1,ω) (5)

η2 = ELU(W2,ωa +W3,ωc + b2,ω) (6)

Where ELU is the Exponential Linear Unit activation function (Clevert et al., 2015), η1 and η2 are intermediate
layers, LayerNorm is the standard layer normalization function and ω is an index to denote weight sharing (see
Lim et al., 2021). Component gating layers were used based on Gated Linear Units (GLUs; Dauphin et al., 2017)
to provide the flexibility to suppress any parts of the architecture that are not required for a given data set.

2.3.2.2. Variable Selection Network (VSN)

At each time step, the VSN provides a selection of important input variables (see Equation 7). While traditional
DNNs may overfit irrelevant features, attention‐based variable selection can help enhance generalization by
pushing the model to focus the majority of its learning capacity on the most important feature (Lim et al., 2021).

vX,t = Softmax(GRNvX(Ξt,cs)) (7)

In Equation 7, Ξt presents transformed inputs at time step t, cs is a constant vector, GRN is the GRN, and softmax
denotes the transfer function.

2.3.2.3. Static Covariate Encoders

This approach incorporates static covariates to regulate the temporal dynamics in the TFT modeling (Lim
et al., 2021). The static covariate encoders learn context vectors from static metadata and inject them at different
locations of the TFT modeling network, through three mechanisms: (a) temporal variable selection, (b) local
processing of temporal representations in the Sequence‐to‐Sequence layer, and (c) static enrichment of temporal
representations. These mechanisms allow the conditioning of the temporal representation learning with static
information through encoding context vectors to condition temporal dynamics.

2.3.2.4. Temporal Processing

Temporal processing learns both long‐ and short‐term temporal associations by incorporating dynamic attributes
into the TFT algorithmic structure that are both observed and known. Local processing is handled by a Sequence‐
to‐Sequence layer, which benefits from its inductive bias for ordered information processing. On the other hand,
long‐term dependencies are handled by a unique interpretable multi‐head attention block mechanism (Equations 8
and 9). This mechanism can shorten the effective path length of information, as any previous step containing
relevant data can be targeted immediately (Lim et al., 2021).

InterpretableMultiHead(Q,K,V) = H̃Wh (8)

H̃ =
1
mH

∑

mH

h=1
Attention(QW(h)

Q ,KW(h)
K ,VWv) (9)

Where V is the attention mechanisms scale values, and K and Q denote related keys and queries, Wh linearly
combining outputs concatenated from all heads Hh. WQ, WK and WV denote head‐specific weights for keys,
queries, and values, respectively. mH is the number of heads.
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2.3.2.5. Temporal Fusion Decoder

The temporal fusion decoder uses a series of layers described below to learn temporal relationships presented in
the data set.
‐ Locality Enhancement with Sequence‐to‐Sequence Layer

In rainfall‐runoff data, meaningful points are often identified relative to their surroundings, such as anomalies,
change points, or cyclical patterns. Utilizing local context through feature construction, which incorporates
pattern information alongside individual values, can enhance the performance of attention‐based architectures.
For instance, D. Li et al. (2021) adopt a single convolutional layer for locality enhancement, extracting local
patterns using the same filter across all time. However, this might not be suitable for cases when observed inputs
exist, due to the differences in past and future inputs. As such, TFT uses a Sequence‐to‐Sequence layer to
naturally handle these differences.

‐ Static Enrichment Layer

TFT leverages a static enrichment layer to enhance temporal features with static metadata. For a given position
index n, static enrichment takes the form:

θ(t,n) = GRNθ (φ̃(t,n),ce) (10)

where the weights of GRNθ are shared across the entire layer, and ce is a context vector from a static covariate
encoder.

‐ Temporal Self‐Attention Layer

TFT leverages self‐attention layers for learning long‐term dependencies. In this algorithm, all static‐enriched
temporal features are first grouped into a single matrix Θ(t), and interpretable multi‐head attention is applied
at each simulation time (see D. Li et al., 2021):

B(t) = InterpretableMultiHead(Θ(t),Θ(t),Θ(t)) (11)

Decoder masking (D. Li et al., 2021; Vaswani et al., 2017) is also applied to the multi‐head attention layer to
ensure that each temporal dimension can only attend to the features preceding it. TFT inputs static metadata, time‐
varying past inputs, and time‐varying priori known future inputs. Variable selection is used for the judicious
selection of the most salient features based on the input. Gated information is added as a residual input, followed
by normalization. GRN blocks enable efficient information flow with skip connections and gating layers. Time‐
dependent processing is based on the LSTMs for local processing, and multi‐head attention for integrating in-
formation from any time step (see Lim et al., 2021).

2.3.2.6. TFT Training Procedure

Considering Figure 3, for a given timestep t, a lookback window k, and a τmax step ahead window, where
t ∈ [t − k,…, t + τmax], the model takes as input, (a) observed past inputs x in the time period [t − k..t], (b)
future known inputs x in the time period [t + 1..t + τmax], and (c) a set of static variables s. The target variable y
also spans the time window [t + 1..t + τmax]. TFT is composed of different components, including LSTM
blocks, GRN blocks, and VSNs. GRN has two dense layers, and two types of activation functions called ELU and
GLU (see Figure 3). Both of these activation functions help the network understand which input transformations
are simple or more complex. The final output passes through standard layer normalization. The GRN also
contains a residual connection, meaning that the network is able to learn or skip the input entirely. In some cases,
depending on where the GRN is situated, the network can also make use of static variables.

The VSN network proposes a feature selection mechanism (see Figure 3). Since all input time series do not have a
complex pattern, the model is able to distinguish discerning features from noisy ones. In addition, TFT uses three
instances of the VSN for the three types of inputs discussed above. Each instance has different weights (marked
with different colors in Figure 3). Indeed, the VSN utilizes GRN under the hood for its filtering capabilities. At the
time t, the flattened vector of all past inputs (called Ξt) of the corresponding lookback period was fed through a
GRN unit and then a softmax function, producing a normalized vector of weights u. Moreover, each feature passes
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through its own GRN, which leads to the creation of a processed vector called ξt, one for every variable. Finally,
output is calculated as a linear combination of ξt and u. Note that each feature has its own GRN, but the GRN for
each feature is the same across all time steps during the same lookback period. The VSN for static variables does
not take into account the context vector c.

The input that is passed through VSN has properly encoded and weighed the features. However, since the input is
time‐series data, the model should also make sense of the time and sequential ordering. Consequently, the first
goal of the LSTM encoder‐decoder module is to produce context‐aware embeddings, which are denoted as ϕ. This
is similar to the positional encoding used in the classic transformer, where sine and cosine signals are added to
positional embeddings. In this setting, TFT, however, utilizes the LSTM encoder‐decoder instead as the model
should account for all types of input. The known past inputs are fed into the encoder, while the known future
inputs are fed into the decoder. For the static inputs, TFT applies the LSTM encoder‐decoder proposed by
Karpathy and Fei‐Fei (2015) to correctly condition the input based on exogenous data.

In the final step, TFT applies a well‐known self‐attention mechanism proposed by Vaswani et al. (2017), which
helps the model learn long‐term dependencies across different time steps. TFT proposes a novel interpretable
multi‐head attention mechanism, which, contrary to the standard implementation, provides feature interpret-
ability. Indeed, TFT's multi‐head attention adds a new matrix or grouping such that the different heads share some
weights which can be interpreted in terms of seasonal analysis. In this study, feature importance was measured by
analyzing the weights u of all VSN modules across the entire test set. This created an interpretable multi‐head
attention layer to calculate the persistent temporal patterns in data which determined the most important time
steps during the lookback period for the TFT training.

2.4. Experimental Design, Interpretability, and Uncertainty Quantification

When building a DNN‐driven rainfall‐runoff architecture, it is necessary to provide the network with information
on catchment characteristics which allow the model to discriminate different catchment settings. Ideally, the
network should be able to condition the processing of the dynamic inputs on a set of catchment static attributes. In
this process, the network learns a mapping function from meteorological forcing into streamflow values. The
mapping function depends on a set of catchment static attributes that can, in principle, be incorporated anywhere
in the modeling domain. To this end, we built probabilistic, physics‐guided DeepAR and TFT that learn catch-
ment similarities directly from meteorological forcing data and ancillary data of multiple basins. We evaluated
these modeling performances in a “gauged” setting, meaning that we never ask the network to predict rainfall‐
runoff process on unseen data. Because the model is trained using both static and dynamic attributes, it can
learn how to combine different parts of the network to simulate various rainfall–runoff behaviors. In principle,
this approach explicitly allows for sharing some parts of the networks for similar behaving basins while using
different independent parts for basins with completely different rainfall‐runoff behavior. Considering the large
spatial extent of the study area and the availability of a relatively small number of gauges, it was necessary to build
a physics‐guided model to simulate the all‐season hydrology of a large area with relatively small inputs. Our
methodology provides a mapping function from catchment attribute space into a learned, high‐dimensional space
in which catchments with similar rainfall–runoff behavior can be clustered together.

The static and dynamic attributes (see Table 1) were incorporated separately into the architecture to assign them a
particular task. This approach, so called physics‐guided DeepAR and TFT, explicitly differentiates between
similar types of dynamical behaviors (i.e., rainfall–runoff processes) that differ between individual entities in the
catchment. After training, the static input gate of the network contains a series of real values in a range of [0, 1]
that allows certain parts of the input gate to be active through the simulation of any individual catchment.

Model training was performed based on the water year starting from 1 October 1989 through 30 September 1999.
The models and benchmark validation were performed from 1 October 1999 through 30 September 2008. We
trained both DeepAR and TFT using calibration data from all basins and evaluated the results using validation
data. This structure implies that a single parameter set per model was trained to work across all basins. In this
study, four modeling configurations were performed and tested including (a) TFT with static attributes, hereafter
physics‐guided TFT, (b) TFT without catchment static attributes or original TFT, (c) DeepAR with static attri-
butes, hereafter physics‐guided DeepAR, and (d) DeepAR without catchment static attributes or original
DeepAR. To construct the original DeepAR and TFT, a single model of each network was trained on a combined
calibration data from all basins, using only the meteorological forcing data while physics‐guided DeepAR and
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TFT models were trained based on combined calibration data of all basins using meteorological forcing data as
well as static attributes. The catchment attributes were incorporated into the static input gate, while the meteo-
rological inputs were fed into the rest of the network structure.

Once the original and physics‐guided TFT and DeepAR configurations were prepared, we demonstrated how our
modeling design allowed for analysis of its individual components to interpret the rainfall‐runoff relationships it
has learned. This study demonstrated two interpretability cases: (a) examining the sensitivity of each catchment
attributes in simulation and (b) capturing persistent temporal patterns in observed and predicted daily streamflow
data. The interpretability of our proposed configurations focused on the ways to aggregate the patterns across the
entire data set—extracting generalizable insights about temporal dynamics in rainfall‐runoff records.

An objective function is required for training the network. For regression tasks such as rainfall‐runoff simulation,
the mean‐squared error (MSE) is commonly used. In addition, quantile regression, which is an extension of
standard linear regression, can be used to estimate the conditional median of the target variable when assumptions
of linear regression are not met. Apart from the median, quantile regression can also calculate the 0.025 and 0.975
quantiles so called 95% simulation uncertainty (95PPU), which means the model has the ability to output a
simulation interval around the actual simulation. All four configurations were calibrated using the quantile
regression likelihood function (or loss function; see Equation 12).

Given y and ŷ the actual value and the simulation, respectively, and q a value for the quantile between 0 and 1, the
quantile loss function is defined as:

QL(y, ŷ,q) = max[q(y − ŷ), (1 − q) (y − ŷ)] (12)

As the value of q increases, overestimation is penalized by a larger factor compared to underestimation. For
instance, for q equal to 0.75, overestimation will be penalized by a factor of 0.75, and underestimation by a factor
of 0.25. This is how simulation intervals are created to assess uncertainty. There are two main types of un-
certainties in modeling: epistemic (model uncertainty) and aleatoric (data uncertainty). In this study, we followed
the approach of Kendall and Gal (2017) to quantify uncertainties by modeling aleatoric uncertainty through input
perturbations, while simultaneously employing a quantile regression loss function to capture epistemic uncer-
tainty during model training (also see Gal & Ghahramani, 2016; Tabas & Samadi, 2022).

2.5. Benchmark Hydrologic Models

We used conceptual to physics‐based rainfall‐runoff models to benchmark DeepAR and TFT and borrowed a set
of existing hydrologic models gathered by Kratzert, Klotz, et al. (2019) that were configured and calibrated by
previous studies using CAMELS data. These models are (a) Sacramento Soil Moisture Accounting Model (SAC‐
SMA; Burnash & Ferral, 1973) coupled with the Snow‐17 snow routine (Anderson, 1973), (b) Variable Infil-
tration Capacity (VIC; Liang, 1994), (c) Framework for Understanding Structural Errors (FUSE) with three
different model structures of 900, 902, 904 (Clark et al., 2008; Henn et al., 2015), (d) Hydrologiska Byråns
Vattenbalansavdelning (HBV; Seibert and Vis, 2012), and (e) mesoscale Hydrologic Model (mHM; Kumar
et al., 2013; Samaniego et al., 2010).

Each set of simulations that we used for benchmarking is documented elsewhere in the literature (references
below). Each of these benchmark hydrologic models used Maurer forcing data, the same input data that we used to
set up DeepAR and TFT models. For a fair comparison, all models were calibrated and validated in the same time
period. These benchmark hydrologic models can be distinguished into two different groups. The first group is
those models that were calibrated for each basin individually. They are SAC‐SMA (Newman et al., 2017), VIC
(Newman et al., 2017), FUSE, mHM (Mizukami et al., 2019), and HBV (Seibert et al., 2018). The HBV model
supplied both lower and upper benchmarks, where the lower benchmark is an ensemble mean of 1000 uncali-
brated HBV models, whereas the upper benchmark is an ensemble of 100 calibrated HBV models. The second
group is those models that were regionally calibrated. These models share one parameter set for all basins in the
data set. The second group comprises VIC (Mizukami et al., 2017) and mHM (Rakovec et al., 2019) simulations.
Readers are referred to Newman et al. (2017), Mizukami et al. (2017, 2019), Seibert et al. (2018), and Rakovec
et al. (2019) for more information on these benchmark modeling simulations.
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2.6. Performance Assessment Metrics

This study used a variety of performance metrics for model benchmarking including the Nash‐Sutcliffe effi-
ciency (NSE; Nash & Sutcliffe, 1970; Equation 13 in Table 2), α− NSE decomposition (Equation 14 in Table 2,
Gupta et al., 2009) and β− NSE decomposition (Equation 15 in Table 2; Gupta et al., 2009). These metrics
focus specifically on assessing overall performance using a decomposition of the standard squared error
metrics that are less sensitive to bias (Gupta et al., 2009). In addition, three different signatures of the flow
duration curve (FDC) were used to evaluate the performance of specific ranges of discharge simulations.
Following Yilmaz et al. (2008), we partitioned the FDC into three different segments (a) high‐flow segment
(0–0.02 flow exceedance probabilities) characterizing watershed response to large precipitation events, (b) mid‐
flow segment (0.2–0.7 flow exceedance probabilities) that specifies by flows from moderate size precipitation
events and also related to the intermediate‐term primary and secondary base flow relaxation response of the
watershed system, and (c) low‐flow segment (0.7–1.0, flow exceedance probabilities), related to the long‐term
sustainability of flow and controlled by the interaction of baseflow with riparian evapotranspiration during
extended dry periods (see Equations 16–18 in Table 2).

To quantify the goodness of uncertainty estimation, two indices were used, that is, P‐factor which is the per-
centage of data bracketed by a 95PPU (Abbaspour et al., 2007; Equation 19 in Table 2), and R‐factor, which is the
average width of the uncertainty band divided by the standard deviation of the corresponding measured variable
(the minimum value is zero; Abbaspour et al., 2007; Equation 20 in Table 2). Ideally, a P‐factor of 0.95 indicates
that 95% of observations fall within the predictive interval, aligning with the confidence level, while an R‐factor
close to or below 1.0 indicates a tight uncertainty band. Although previous studies suggested that P > 0.7 and
R < 1.5 are acceptable thresholds, we emphasize that such broad ranges may limit the practical interpretability of
models. Therefore, in this study, we treat P‐factors near 0.95 and R‐factors near or below 1.25 as an indicative of
high‐quality uncertainty quantification. The total uncertainty index (TUI) is also calculated based on the P‐factor
and R‐factor for each model (Equation 21 in Table 2). In addition, a probability plot in a continuous fashion
suggested by Laio and Tamea (2007) was used to illustrate the uncertainty quantification (see Figure 4). A de-
viation from the 1:1 line shows the expected calibration error and the sum of which is referred to as the mis-
calibration area (e.g., Naeini et al., 2015; Tabas and Samadi, 2022).

Table 2
Overview of the Evaluation Metrics Used in This Study

Eq. Number Equation

Performance Evaluation Metrics (13) NSE = 1 − ∑
n

i=1
(Qsi − Qoi)2

∑
n

i=1(Qoi − Qo)
2

(14)
α − NSE = σs/σo

(15) β − NSE = (µs − µo)/σo
(16)

%BiasFHV =
∑

H

h=1
(Qsh − Qoh)

∑
H

h=1
Qoh

× 100

(17)
%BiasFMS = [log(Qsm1) − log(Qsm2)] − [log(Qom1) − log(Qom2)]

[log(Qom1) − log(Qom2)]
× 100

(18)
%BiasFLV = − 1 ·∑

L

l=1
[log(Qsl) − log(QsL)] − ∑

L

l=1
[log(Qol) − log(QoL)]

∑
L

l=1
[log(Qol) − log(QoL)]

× 100

Uncertainty Assessment Metrics
(19) P − Factor = Observations bracketed by 95PPU

Number of observations × 100

(20)
R − Factor =

1
k∑

k

i=1
(XU − XL)
σx

(21) TUI = PFactor
RFactor

Note. The notation of the original publications is kept.

Water Resources Research 10.1029/2025WR040173

SADEGHI TABAS ET AL. 14 of 30



3. Results and Discussion
3.1. Hyperparameter Tuning

The probabilistic nature of DeepAR and TFT accounts for stochasticity in the
network initialization and optimization procedures. Common hyper-
parameters that need to be optimized by tuning include learning rate, batch
size, dropout rate, or even network parameters like the number of layers in a
network or the pooling strategy. In this study, hyperparameter optimization is
conducted using searching over a pre‐defined search space with the same
number of iterations across all modeling configurations for a given data set.
We used the Optuna model (Akiba et al., 2019) to find optimal values for the
networks' structure as well as hyperparameters. Optuna is an automatic
hyperparameter optimization algorithm, particularly designed to dynamically
construct the search spaces for hyperparameter optimization. Optuna enables
efficient hyperparameter optimization by adopting state‐of‐the‐art algorithms
for sampling hyperparameters and pruning efficiently unpromising trials.
Hyperparameter optimization was conducted via Optuna search, using 100
epochs for TFT and DeepAR. Dropout was applied in TFT before the gating
layer and layer normalization while zoneout regularization or layer normal-
ization was applied in DeepAR to regulate the network dropout value.
Zoneout is a regularization method that stochastically forces some hidden
units to maintain their previous values. This technique improves training,
while balances robustness to batch size variations by randomly preserving
hidden activations during training and improving generalization. Like
dropout, zoneout uses random noise to train a pseudo‐ensemble and improve

network regulation. This was performed for the DeepAR configurations by preserving instead of dropping hidden
units, gradient information, and state information that was more readily propagated through time, as in feed-
forward stochastic depth networks.

We selected the maximum number of epochs and the number of trials equal to 100 and 200 for each modeling
configuration. The number of hidden layers ranged from 10 to 100 layers, dropout ranged from 0.1 to 0.3, and the
learning rate ranged from 0.0001 to 0.3. Considering Optuna results, we assumed similar values for the number of
hidden layers (50 layers) and the dropout rate equal to 0.2, for all modeling configurations. In the case of the
learning rate, we considered different values derived from Optuna test results for each modeling setup (see
Figure 5). Optuna automatic tuning searches the hyperparameters space that resulted in minimizing the loss
function.

There were other hyperparameters whose optimal values were adjusted manually or by trial‐ error due to
computational cost. For example, the size of the attention head and the number of continuous hidden layers of the
TFT model were selected as 1 and 8, respectively. Also, two LSTM layers in the DeepAR configurations pre-
sented the best performance. In addition, distribution functions were programmed as the likelihood (or loss)
function in the DeepAR model. In this study, the quantile regression loss function named multivariate quantile
distribution loss (MQF2DistributionLoss; Kan et al., 2022) was programmed into the DeepAR algorithmic
structure to improve the accuracy of simulation.

3.2. TFT and DeepAR Simulations

This section presents a comparison between four modeling configurations. The results of benchmark hydrologic
models are also presented to make a comparison with the performances of the probabilistic DeepAR and TFT
models. The key results of DeepAR and TFT approaches are illustrated in Figure 6, with the cumulative density
functions (CDFs) of NSE values for all four modeling configurations and conceptual to distributed hydrologic
models across catchment scale and CONUS.

As expected, incorporating catchment static and dynamic attributes into the algorithmic structures improved the
overall modeling performance of TFT and DeepAR models compared to the original configurations. It is
important to note that some of the errors in the DeepAR and TFT models are due to randomness in the training

Figure 4. The probability plot for the evaluation of predictive distributions.
The x‐axis shows the estimated cumulative distribution over all time steps by
a given model, and the y‐axis shows the actual observed cumulative
probability distribution. A conditional probability distribution was produced
by each model for each time step in each basin. A hypothetically perfect
model will have a probability plot that falls on the 1:1 line.
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procedure. Although, the probabilistic nature of the models and the use of the Optuna algorithm for hyper-
parameter tuning significantly mitigated this error. As shown in Figure 6, there is a slight difference between
physics‐guided DeepAR and TFT models and the original configurations. The overall mean NSE value across
catchment scales improved significantly compared with the original configurations by approximately 0.04 in both
TFT and DeepAR models (see Table 3). Overall, the physics‐guided TFT model performed (NSE = 0.741) as
good as the Entity‐Aware LSTM (EA‐LSTM) ensemble (NSE = 0.742) of Kratzert, Klotz, et al. (2019). The
original TFT (NSE= 0.704) also demonstrated a relatively close performance to the LSTM ensemble (0.758). On
the other hand, the physics‐guided DeepAR (NSE = 0.689) and the original DeepAR (NSE = 0.648) performed
somewhat weaker than the LSTM‐based models. Similar trends were observed for the FDC metrics, indicating
that the models exhibited consistent performance with the findings of Kratzert, Klotz, et al. (2019).

Figure 5. Optimal learning rate values (red dot) driven from Optuna test for the TFT and DeepAR algorithms.

Figure 6. CDFs of the specific NSE values for all four configurations as well as calibrated conceptual to physics‐based
hydrologic models at catchment scale and across CONUS.
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The overall model performance due to the inclusion of catchment attributes implies that these attributes contain
information that can provide additional learning features to distinguish different catchment‐specific rainfall–
runoff behaviors. A significant performance improvement was observed when catchment static and dynamic
attributes were incorporated into the models compared to the original configurations due to a significant increase
in the number of tunable parameters in the network. Both TFT and DeepAR results showed that physical attributes
slightly improved (NSE increased by ∼0.04) the simulation performances. Both networks used different algo-
rithmic conceptualizations to encourage the models to learn physically relevant representations of the rainfall‐
runoff mechanisms. For example, DeepAR learned group‐level time series patterns through a categorical
grouping feature that was embedded into the network to learn group‐level time series patterns. Indeed, the model
learned an embedding vector of size, “embedding_dimension”, for each group, allowing the network to capture
the common rainfall‐runoff behaviors of catchments. In TFT, the GRN blocks were able to weed out the un-
important and unused inputs, which decreased the tunable model parameters and helped the model recognize
important catchment physical attributes. This is important because the TFT decoder enables the interpretability of
results, including static and dynamic attributes, which helps to understand which attributes have strong control
over rainfall‐runoff generation mechanisms.

Overall, analysis suggests that the physics‐guided TFT model outperformed DeepAR in both physics‐guided and
the original configurations (see Table 3). This is because TFT used two different mechanisms for long and short‐
term pattern recognitions in rainfall‐runoff simulation. First a Sequence‐to‐Sequence encoder/decoder and the
LSTM blocks which summarized shorter rainfall‐runoff patterns in data weighed the importance of each input
feature. Second, a temporal self‐attention decoder that learned how long‐term dependencies present within the
data set (i.e., seasonality) can prioritize the most relevant patterns. The use of these specialized mechanisms also
facilitated interpretability of the results such as identifying the importance and sensitivity of exogenous variables
(or catchment physical attributes) for the simulation problem and persistent temporal patterns that are discussed in
Section 3.4.

3.3. Conceptual to Physics‐Based Hydrologic Simulations

The DeepAR and TFT models were first compared with the VIC and mHM models that were regionally cali-
brated. Specifically, each model was calibrated using a single set of transfer functions that mapped out catchment
static attributes to model parameters. The procedure for parameterizing these models for regional simulations is
described in detail by Mizukami et al. (2017) and Rakovec et al. (2019). Figure 6 shows both TFT and DeepAR
results which outperformed regionally calibrated conceptual to physics‐based hydrologic models by a large

Table 3
A Comparison of the Original and Physics‐Guided TFT and DeepAR Performance Versus Benchmark Hydrologic Simulation Results

Model Calibration type NSE (median) α‐NSE (median) β‐NSE (median) FHV (median) FMS (median) FLV (median)

Physics‐guided TFT CONUS 0.741 0.81 − 0.02 − 15.24 − 8.46 25.37

Original TFT CONUS 0.704 0.81 − 0.02 − 17.55 − 14.38 30.39

Physics‐guided DeepAR CONUS 0.689 0.80 − 0.02 − 18.01 − 19.18 67.65

Original DeepAR CONUS 0.648 0.80 − 0.04 − 18.95 − 20.56 70.45

SAC‐SMA Catchment Scale 0.603 0.78 − 0.07 − 20.40 − 14.30 37.30

VIC Catchment Scale 0.551 0.72 − 0.02 − 28.10 − 6.60 − 70.00

VIC CONUS 0.307 0.46 − 0.07 − 56.50 − 28.00 17.40

mHM Catchment Scale 0.666 0.81 − 0.04 − 18.60 − 7.20 11.40

mHM CONUS 0.527 0.59 − 0.04 − 40.20 − 30.40 36.40

HBV (lower) Catchment Scale 0.416 0.58 − 0.02 − 41.90 − 15.90 23.90

HBV (upper) Catchment Scale 0.676 0.79 − 0.01 − 18.50 − 24.90 18.30

FUSE (900) Catchment Scale 0.639 0.80 − 0.03 − 18.90 − 5.10 − 11.40

FUSE (902) Catchment Scale 0.65 0.80 − 0.05 − 19.40 9.60 − 33.20

FUSE (904) Catchment Scale 0.622 0.78 − 0.07 − 21.40 15.50 − 66.70
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margin. Even the original DeepAR and TFT that are trained without catchment physical attributes consistently
outperformed regionally calibrated hydrologic models. The median NSE score across the catchments for the
physics‐guided TFT model was 0.74. In contrast, VIC showed a median NSE of 0.31 while the mHM presented a
median NSE of 0.53 which can be categorized as unsatisfactory performance.

Figure 6 compares CDFs of the catchment scale NSE values for all benchmark models across CONUS. Table 3
contains the performance metrics for benchmark hydrologic models as well as the TFT and DeepAR models.
Analysis suggested that the TFT model significantly outperformed all hydrologic models even without the
catchment's physical attribute incorporation. The two best‐performing hydrologic models were the ensemble
(n = 100) of catchment‐calibrated HBV models with a median NSE score equal to 0.67, and a single catchment‐
calibrated mHM model with a median NSE score equal to 0.66. In addition, the physics‐guided DeepAR model
outperformed both HBV and mHM models while the performance of the original DeepAR with a median NSE of
0.65 was comparable with the hydrologic modeling simulations.

Overall, physics‐guided TFT outperformed both conceptual and physics‐based hydrologic models, although TFT
performance was not very skillful in calibrating intermediate and low flow values. This is because TFT has no
exponential outflow function, and thus the simulation value can be easily dropped to minuscule numbers. In
traditional hydrologic models, the flow dynamics—especially for low flows—are often governed by exponential
outflow functions that mimic the gradual depletion of water storage in natural systems, such as aquifers and
reservoirs. TFT, being a data‐driven model, lacks this type of built‐in physical mechanism, making it prone to
dropping predicted streamflow values to extremely small (minuscule) numbers during low‐flow conditions. This
can lead to unrealistic underestimations of FLVs. When the predicted streamflow approaches near‐zero or
minuscule values, it can distort downstream metrics like FDCs, negatively affect hydrological performance as-
sessments, and reduce the model's reliability during simulation. To overcome the limitations, we incorporated a
programmatic adjustment inspired by Tabas and Samadi (2022). This adjustment involves introducing an
additional parameter to constrain the simulated streamflow during low‐flow conditions. Specifically, a parameter
was introduced to enforce a lower bound on the simulated streamflow values. This lower bound was defined as the
minimum observed flow in the data set for each basin or catchment (meaning that the model won't generate
streamflow values lower than the minimum defined baseflow for that specific catchment). This ensures that the
simulated flow does not drop below physically realistic levels, which aligns the model's simulations more closely
with catchment hydrological behavior.

During post‐processing or directly within the TFT model's output, any predicted daily streamflow value greater
than zero but below the minimum observed flow was adjusted upward to match the minimum observed flow. This
adjustment acts as a safeguard to prevent unphysical underestimation during low‐flow periods. By imposing this
constraint, the TFT model achieved better performance in calibrating intermediate and low‐flow values. The
adjustment further improved the FDC representation, particularly in the lower quantiles and reduced errors in key
metrics such as FLV for low‐flow conditions. Please note that, while the adjustment improved calibration, it did
not fundamentally alter the TFT architecture to incorporate physical processes explicitly. Future work could
explore integrating exponential outflow functions or storage‐discharge relationships directly into the model's
structure to make it inherently more hydrologically consistent. Figure 7 presents the spectrum of NSE values for
all 531 catchments across CONUS per each modeling configuration.

As illustrated in Figure 7, in a few modeling configurations, there were several catchments with very low NSE
values, particularly in the Great Plains, although, incorporating static and dynamic attributes into the modeling
architectures enhanced modeling performance and reduced the number of poor‐performing catchments in this
region. In TFT, the components responsible for capturing temporal relationships in daily streamflow time series
data, local processing, and self‐attention layers, have the largest impact on performance by increasing or
decreasing loss functions. While local processing is critical in the rainfall‐runoff generation mechanism, the
higher performance of TFT configurations compared to DeepAR indicates the fact that this algorithm can be
advantageous in daily streamflow simulations due to its self‐attention layer that plays a more vital role in
simulation. A possible explanation for poor performance in the Great Plains catchments is related to persistent
variability and seasonality of streamflow records that might dominate other temporal patterns in the data sets.
However, the diversity across CAMELS daily streamflow time series data sets can also have a significant effect
on the respective temporal variability. Another reason for poor performance in some catchments is related to error
and uncertainty associated with simulation which is discussed in Section 3.5.
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3.4. Interpretability of Simulations

We demonstrated interpretability to audit the simulation and enforce fairness and descriptive accuracy in the
simulation process. We defined interpretability as the process of extracting relevant knowledge from rainfall‐
runoff relationships that allow the model to learn the data patterns during training. It should be noted that
interpretability was assessed for the TFT results only since the DeepAR model was unable to provide inter-
pretability results due to its recurrent structure. We demonstrated two interpretability analyses: (a) examining the
sensitivity of each static and dynamic attributes in simulations; and (b) capturing persistent temporal patterns in
observation and simulations. Our interpretability analysis focused on examining the sensitivity of catchment
attributes and defining proper mechanisms to aggregate the patterns across the entire data set to understand how
attention‐based architecture can provide insights into temporal rainfall‐runoff dynamics. TFT's multi‐head
attention adds a new matrix/grouping such that the different heads share some weights, which then can be
interpreted in terms of sensitivity analysis. To preserve interpretability, we embraced a single interpretable multi‐
head attention layer only.

Figures 8–11 present the sensitivity of catchment static attributes during the TFT validation period across
CONUS. These analyses were derived by normalizing the sensitivity measures per catchment to a range of [0,
100] considering all 27 catchment static attributes explained in Table 1. As illustrated, the most sensitive
catchment static attributes across CONUS are (a) geological attributes including subsurface permeability (log10),
soil depth, and the fraction of the catchment area characterized as “carbonate sedimentary rocks,” (b) climate
indices such as mean precipitation, the average frequency of dry days and seasonality and timing of precipitation
and (c) land cover attributes such as forest fraction and maximum monthly mean of the green vegetation fraction.
Sensitivity analysis further revealed that mean daily precipitation (p‐mean) and mean daily potential evapo-
transpiration (petmean) are more sensitive in coastal catchments across CONUS. As shown, aridity (PET/P; a
ratio of mean PET ) seems to control rainfall‐runoff behaviors in those catchments with less than average pre-
cipitation compared to the coastal regions (see Figure 8). Interestingly, our results qualitatively agree with much
of the analysis presented by Addor et al. (2018).

Figure 7. The NSE values for all 531 catchments across CONUS per each modeling configuration. As illustrated TFT and
somewhat DeepAR provided better simulation results for the east and west coast catchments while their performance
degraded in central US particularly in Midwest.
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In the case of dynamic attributes, the sensitivity results were driven by the decoder part of the physics‐guided TFT
model. This analysis provided the sensitivity (%) for each dynamic attribute per catchment across CONUS,
illustrated in Figure 12. We observed that among multiple dynamic attributes, VP, precipitation, and minimum
temperature showed high sensitivity while the time index showed low sensitivity. Specifically, precipitation was
more sensitive in the majority of catchments across CONUS while it was moderately sensitive in the west coast
and the Rocky Mountains regions. The sensitivity of VP refers to changes in atmosphere conditions in response to
variations in temperature and humidity. VP is considered a key factor in understanding the impacts of drought and
water deficit on streamflow variability.

Figure 8. The spatial variability and degree of sensitivity (%) of catchment static attributes across CONUS including aridity,
seasonality and timing of precipitation (p_seasonality), frequency of high precipitation, the fraction of precipitation falling as
snow, mean precipitation, mean daily PET, geological permeability, and the fraction of the catchment area characterized as
“carbonate sedimentary rocks.”
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Overall, sensitivity analysis indicated that the rainfall‐runoff process in most catchments is dominated by climate
attributes such as mean daily precipitation, seasonality and timing of precipitation (p‐seasonality). Meteorological
patterns such as mean precipitation showed less sensitivity when moving away from the Appalachians toward the
Great Plains. This is likely because elevation and slope begin to play less of a role in precipitation generation.
However, the frequency of dry days (low‐prec‐freq) attributed more sensitivity to runoff generation in the Great
Plains. In the Rocky Mountains, most catchments were sensitive to the fraction of the catchment area charac-
terized as “carbonate sedimentary rocks” and forest fraction (frac‐forest), with moderate sensitivity to the fre-
quency of dry days (low‐prec‐freq) in the New Mexico region. Similar to the east coast, the sensitivity of

Figure 9. The spatial variability and degree of sensitivity (%) of catchment static attributes across CONUS including average
duration of high precipitation events, frequency of dry days, forest fraction, average duration of dry periods, maximum
monthly mean of the leaf area index, difference between the maximum and minimum monthly mean of the leaf area index,
maximum monthly mean of the green vegetation fraction, and mean of the green vegetation fraction.
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catchment static attributes on the west coast was dominated by climatic attributes such as mean daily precipitation
and seasonality as well as the timing of precipitation (p‐seasonality). Figure 13 illustrates the most sensitive static
and dynamic attributes per catchment.

In addition, the sensitivity of dynamic attributes in most catchments in the Appalachian Mountains and the eastern
US were generally dominated by the amount of precipitation (prcp) and minimum daily temperature (tmin)
values. Precipitation showed low sensitivity to rainfall‐runoff processes as we moved away from the Appala-
chians toward the Great Plains. Again, this is because elevation and slope begin to play less of a role, and
minimum daily temperature attributed more weights to rainfall‐runoff generation mechanism. In the Rocky
Mountains, VPwas the most dominant dynamic attribute in most of the catchments. While on the west coast, solar

Figure 10. The spatial variability and degree of sensitivity (%) of catchment static attributes across CONUS including
catchment mean elevation, catchment mean slope, catchment area, soil depth, soil volumetric porosity, saturated hydraulic
conductivity, and maximum water content.
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radiation (srad) and maximum temperature (tmax) were the most important dynamic attributes. In the south, the
minimum daily temperature was sensitive and contributed more weight to rainfall‐runoff simulations. A highly
sensitive VP reflects the fact that small changes in maximum temperature and humidity can lead to significant
shifts in drought conditions and water availability in the region.

3.5. Uncertainty Assessment

We evaluated the robustness of the trained TFT model to the noises arising from catchment attributes by adding
Gaussian perturbations (0, σ) to the standardized attribute values across a range of σ ∈ [0, 1]. This analysis does
not aim to quantify aleatoric uncertainty directly, but rather to assess the model's sensitivity to noisy or imperfect
input features. Aleatoric uncertainty is instead captured by the model's built‐in probabilistic forecasting frame-
work, which outputs prediction intervals based on learned distributions. We added Gaussian noise N (0,σ) with
increasing standard deviation (σ) to the individual attribute values and assessed the resulting changes in modeling
performance for each noise level. Concretely, additive noises were drawn from normal distribution with various
selected standard deviations in a range of [0, 1]. Next, static and dynamic attributes were standardized with zero
mean and unit variance before training; thereby these perturbations were independent from the units or relative
magnitudes of the individual catchment attributes. As expected, the model performance degraded with increasing
noise in the catchment static attributes. However, the degradation did not occur abruptly, but smoothly with
increasing level of noise, which is an indication that the model is not overfitted when the static and dynamic
attributes were incorporated into the algorithmic structure. This also indicates that the model did not remember
each basin status with its set of attributes precisely but rather learned a smooth mapping function between the
attributes and model output. It is interesting to note that, the perturbation noise was always relative to the overall
standard deviation of the static and dynamic attributes across all catchments, which was always σ = 1 (i.e., all
input features were normalized prior to training). When noise with a small standard deviation was added
(σ < 0.2) to the features, the mean and median NSE were relatively stable. However, the median NSE decreased
from 0.79 without noise to 0.65 with an added noise equal to the total variance of the input features (σ = 1).
Similar results were also obtained by Kratzert, Klotz, et al. (2019) when they applied a noise with σ = 1 to the
attributes. In addition, Tabas and Samadi, (2022) calibrated the magnitude of the noise through an advanced
procedure of obtaining the noise standard deviation magnitude from the loss function for the recurrent models.
Similarly, they found an optimal range of [0, 0.2] for noise standard deviation. As a result, a Gaussian noise of

Figure 11. The spatial variability and degree of sensitivity (%) of catchment static attributes across CONUS including sand
fraction, silt fraction, and clay fraction.
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Figure 12. The spatial variability and degree of sensitivity (%) of dynamic attributes across CONUS, including time index,
precipitation, solar radiation, maximum temperature, minimum temperature, and VP.

Figure 13. The most sensitive static and dynamic attributes of each catchment driven from physics‐guided TFT simulations.
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N (0,0.15) was added to the individual attribute value and assessed the resulting changes in modeling perfor-
mance over time.

To quantify aleatoric uncertainty, we used quantile regression to estimate the conditional median of the target
variable (Tagasovska and Lopez‐Paz, 2019) in the physics‐guided TFT model, which can be used when as-
sumptions of linear regression are not met. The ideal procedure to perform quantile regression is to use a special
loss function, namely quantile loss. The quantile loss takes a parameter, α, which indicates which quantile should
be targeted by the model. In the case of α = 0.5, this is equivalent to asking the model to predict the median value
of the target, and not the most likely value, which would be the mean. A well‐defined strategy would be to produce
a confidence interval for each simulation. Indeed, if the lower and upper quantiles of the target are predicted, then
a “trust region” to which the true daily streamflow value is likely to belong can be obtained. We selected 0.025
and 0.975 quantiles, the so‐called 95PPU, which means the model has the ability to output a 95% confidence
interval around the actual simulation. The quantile loss function was selected as the likelihood function of the
physics‐guided TFT model, trained by minimizing the quantile loss summed across q ∈ [0.025, 0.0975]. To
present uncertainty results, we selected 18 catchments among 531 CAMELS catchments across CONUS (one per
each HUC2 zone) to assess the data uncertainty associated with the physics‐guided TFT simulation. The un-
certainty assessment results are presented in Table 4.

Overall, uncertainty results revealed that including a Gaussian noise N (0, σ) with increasing standard deviation to
the individual attribute was beneficial in reducing errors in TFT simulations. Considering all the catchments,
uncertainty metrics (median over CONUS) revealed that the 95PPU interval of physics‐guided TFT bracketed
most of the observed streamflow data (>95%). Accordingly, quantile regression was efficient in quantifying the
average width of the uncertainty band (R‐Factor = 1.51) for each streamflow gauging station.

Table 4
The Performance of the Physics‐Guided TFTModel and Uncertainty Assessment for 18 Selected Catchments Across CONUS

Performance assessment Uncertainty assessment

Zone # Basin ID NSE α‐NSE β‐NSE FHV FMS FLV P‐factor R‐factor TUI

1 01031500 0.924 1.00 0.01 1.99 −11.58 1.43 99.73 1.11 0.90

2 02018000 0.860 0.81 − 0.04 − 19.25 − 1.89 41.83 98.77 0.88 1.13

3 02177000 0.917 0.95 0.02 −2.82 −6.42 44.59 99.59 1.24 0.81

4 04027000 0.920 0.95 − 0.01 − 7.35 − 8.89 62.36 96.58 1.16 0.83

5 03241500 0.895 0.93 0.00 − 5.79 − 16.47 55.40 99.45 1.21 0.83

6 03500000 0.901 0.90 0.05 − 9.42 − 18.57 55.51 97.26 1.19 0.82

7 05362000 0.831 0.72 − 0.04 − 30.55 − 8.55 68.78 99.66 1.06 0.94

8 08014500 0.795 0.89 0.04 − 14.27 − 1.43 12.54 96.99 0.79 1.23

9 05057200 0.515 0.42 − 0.16 − 60.42 − 47.24 70.85 95.48 1.2 0.8

10 06623800 0.922 0.90 −0.01 −9.82 8.26 −79.52 99.59 1.07 0.93

11 06919500 0.857 0.75 − 0.02 − 28.06 − 42.18 80.44 98.97 0.88 1.12

12 08066200 0.852 0.84 − 0.01 − 16.18 − 37.73 97.10 98.49 0.75 1.32

13 08271000 0.857 0.99 0.10 − 9.66 2.37 51.93 95.25 0.75 1.26

14 09066200 0.935 0.96 0.07 − 5.03 − 17.41 72.46 95.62 1.16 0.82

15 09494000 0.696 0.55 − 0.12 − 45.44 − 43.82 97.76 96.03 1.39 0.69

16 10336645 0.857 0.97 0.07 − 11.82 − 4.46 74.77 97.12 1.14 0.85

17 13011900 0.960 0.95 0.04 − 7.26 − 6.17 77.44 88.42 1.07 0.83

18 11532500 0.896 0.91 0.02 −12.67 −11.33 10.83 89.79 0.79 1.14

CONUS (Median) – 0.773 0.86 − 0.01 − 15.24 − 8.46 51.37 96.64 0.97 0.94

Note. The high TUI index indicates the most efficient uncertainty assessment. The uncertainty simulation results of bolded
catchments (best performances) are shown in Figure 14.
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Figure 14 showed observed, simulated and 95PPU bands along with probability plots for four selected USGS
gauging stations, that is, USGS01031500 (Piscataquis River near Dover‐Foxcroft, ME), USGS02177000 (Chat-
tooga River Near Clayton, GE), USGS06623800 (Encampment River above Hog Park Center, Near Encampment,
WY), and USGS11532500 (Smith River Near Crescent City, CA). Overall, uncertainty analysis revealed that the
95PPU of the physics‐guided TFT successfully bracketed 99% of observations with P‐factor of >99.50 in these
gauging stations. The average width of the uncertainty band was as small as∼1.2 (R‐factor < 1.25) with very good
calibration performance (NSE ∼ 0.92). This indicates the fact that physics‐guided TFT provided reliable simu-
lations particularly for those catchments with unique and complex rainfall‐runoff processes. In the case of
USGS11532500, physics‐guided TFT bracketed more than 89% of observations (P‐factor= 89.79). However, the

Figure 14. Observed, simulated and 95PPU along with probability plots for the four selected USGS gauging stations.
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average width of the uncertainty band was as small as 0.79 (R‐factor = 0.79) which resulted in overconfident
simulations (probability plot miscalibration area = 0.09). The quantile regression overestimated uncertainty in
USGS01031500 and USGS06623800 while the error was underestimated across USGS11532500. As shown, the
physics‐guided TFT model provided the best uncertainty assessment for USGS02177000 located in Chattooga
River Near Clayton, GA with a hypothetically probability plot that falls on the 1:1 line.

4. Conclusions and Future Works
This study implemented TFT and DeepAR algorithms for interpretable daily rainfall‐runoff simulation across
CONUS. The novelty of this study lies in multiple fronts. First, we employed TFT for daily streamflow simulation
at a continental scale, which to our knowledge has not been extensively explored in prior hydrology literature.
Probabilistic framing enables not just point predictions but full predictive distributions, which are critical for
operational hydrologic forecasting and risk management. Second, our approach is physics‐guided; we incorpo-
rated static physical features (e.g., basin characteristics such as area, slope, soil types) that encode important
hydrologic properties, along with dynamic meteorological drivers (e.g., precipitation, temperature) into the
models, thus grounding the learning process in known physical principles. This physics‐aware design enhances
model generalization across highly diverse catchments and hydrologic regimes. Third, we provide variable an-
alyses on the relative importance of variables, offering physical insights into the dominant mechanisms con-
trolling streamflow prediction in different regions and seasons. This interpretability moved beyond black box
forecasting and contributed toward understanding hydrologic processes from the learned models. Finally, our
work extends TFT into a physics‐guided, probabilistic, and interpretable framework for large‐scale hydrologic
simulation, representing an important methodological and practical contribution to the field of hydrologic
modeling.

To construct physics‐guided, probabilistic, and interpretable framework, catchment static and dynamic attributes
were incorporated into the algorithmic structure. The physics‐guided configurations were compared with the
original models as well as with benchmark hydrologic simulation models. On a wide range of CAMELS data sets,
our research demonstrated significant performance improvements of physics‐guided TFT over DeepAR as well as
benchmark hydrologic models. The physics‐guided TFT model showed superior simulation capability capturing
both short‐ and long‐terms dependencies in rainfall‐runoff records across CONUS. Physics‐guided TFT was not
only a reliable candidate for both local and regional daily streamflow simulations but also revealed potential
deficiencies in current conceptual to physics‐based hydrologic modeling structures. For example, in the case of
mesoscale models such as VIC and mHM, soil moisture dynamics and variability in infiltration and surface runoff
can dominate the simulation results while a lack of soil moisture dynamics to calculate infiltration‐excess
overland flow in the FUSE model can challenge surface runoff computation, especially in arid climate zones.
Incorporating several key catchment attributes such as saturated hydraulic conductivity, soil maximum water
content, and mean daily PET into the TFT and DeepAR networks reduced the sensitivity and improved the
descriptions of the model. This indicates the fact that these attributes that control loss, water dynamics through a
vertical soil profile and storage have a strong control on rainfall‐runoff generation mechanisms in many HUC2
zones across CONUS. These attributes determine catchment wetness conditions and soil water transport process,
thereby overestimation or underestimation of them may cause abrupt shift in rainfall‐runoff magnitude when the
catchment's initial abstraction threshold is exceeded.

Hyperparameters, such as embedding dimension and the number of heads/layers showed a large effect on the
performance of models. Automated configuration of these hyperparameters using the Optuna algorithm was
computationally efficient and resulted in optimal performance. Additionally, adopting a single interpretable
multi‐head attention layer in the TFT structure enhanced the interpretability of daily streamflow simulations. By
applying interpretable multi‐head attention at each simulation time, TFT learned the persistent sensitivity patterns
of static and dynamic attributes providing insightful explanations about rainfall‐runoff dynamics. In this process,
TFT alleviated the importance of catchment attributes by using a separate encoder‐decoder attention at each time
step on top of the self‐attention to determine the contribution of time‐dependent and time‐independent catchment
physical attributes in rainfall‐runoff generation. For daily streamflow data with varying magnitudes and long‐term
dependencies, such a capability is expected to be practically useful in discovering which catchment attributes are
important and equally which ones can be ignored and removed from the simulation process.
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We believe physics‐guided TFT will continue to gain popularity and may remain comparable to existing data‐
driven models such as LSTM as well as traditional hydrologic models. However, more benchmarking on
localized streamflow data sets and new methods to render interpretability are needed to fully capture its appli-
cability in hydrologic simulation settings. For example, recent progress in the field of mechanistic interpretability
(e.g., activation patching and intrinsic methods) can be adapted for hydrologic time series simulation. Activation
patching (Olah et al., 2017) and intrinsic methods (Swamy et al., 2024) are new techniques that can be adapted for
mechanistic interpretability to identify causal relationships and pinpoint important model components. Mecha-
nistic interpretability seeks to reverse engineer transformers, similar to how one might reverse engineer a
compiled binary computer program.

Although this study successfully addressed interpretability, it is crucial to acknowledge potential limitations. A
key limitation is that interpretability often relies on approximations, which may not reflect the complex structure
of DNN models (e.g., X. Li et al., 2022). Moreover, the internal structure and parameters of the networks such as
weights and biases are not easily understandable and interpretable (Räuker et al., 2023). This lack of transparency
may cause significant barriers to understanding DNN's decisions. Our perception about the future of interpret-
ability agrees with the compelling need for a proper understanding of the potential and caveats opened by
interpretability techniques discussed herein. It is our vision that model interpretability must be addressed jointly
with requirements and constraints related to aleatoric and epistemic uncertainties. An interpretable transformer
rainfall‐runoff simulation can be only guaranteed if all these principles are studied jointly. This will help water
resources managers and stakeholders understand how a data‐driven model arrives at specific simulation, fostering
transparency, confidence, and trust in the results. Gaining trust in transformer time series simulation is an
important step forward for the hydrologic modeling community facing the challenges and opportunities asso-
ciated with the growing availability of big data and the desire for fair and interpretable data‐driven decision‐
making.

Data Availability Statement
The Data used in this study are from CAMELS (https://ral.ucar.edu/solutions/products/camels), geospatial data
from USDA (https://datagateway.nrcs.usda.gov/). The codes can be obtained after publication from the corre-
sponding author upon request.
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