
Received: 7 May 2025 Revised: 28 August 2025 Accepted: 1 September 2025

DOI: 10.1002/qj.70036

R E S E A R C H A R T I C L E

Evaluating seasonal forecast improvements over the past
two decades

Christopher H. O’Reilly1 David MacLeod2 Daniel Befort3

Theodore G. Shepherd1 Antje Weisheimer4,5

1Department of Meteorology, University
of Reading, Reading, UK
2School of Earth and Environmental
Sciences, Cardiff University, Cardiff, UK
3European Centre for Medium-Range
Weather Forecasts (ECMWF),
Bonn, Germany
4National Centre for Atmospheric
Science, Department of Physics,
University of Oxford, Oxford, UK
5European Centre for Medium-Range
Weather Forecasts (ECMWF),
Reading, UK

Correspondence
Christopher H. O’Reilly, Department of
Meteorology, University of Reading,
Reading, UK.
Email: c.h.oreilly@reading.ac.uk

Funding information
The Royal Society, Grant/Award Number:
URF⧵R1⧵201230

Abstract
Seasonal forecasting systems have been operational for over two decades. Here we
present a systematic analysis of the performance of operational seasonal forecast-
ing models since their inception. We analyse seasonal forecasting systems from
three major international operational centres that have produced and coordinated
continuously on operational seasonal forecasts over the past 20 years. Due to the
small sample size of available forecasts, it is difficult to draw meaningful conclu-
sions using historical operational forecasts alone, therefore we focus primarily on
available model hindcasts. Our analysis, which accounts for differences in ensemble
size and period across the forecasting systems, demonstrates that there have been
clear improvements in some regions through the different model eras. For both the
boreal winter and summer hindcasts, there have been significant improvements in
forecasting the tropical regions, which are concurrent with improvements in the
skill of tropical sea-surface temperature (SST) forecasts. These improvements in the
Tropics are associated with increased predictability of temperature and precipita-
tion across various continental regions on seasonal timescales. For the extratropics,
the picture is more mixed, with strong improvements only evident during the boreal
winter season over the North Pacific and North America. The sources of improve-
ment over the winter extratropics are found to be strongly related to improvements
in tropical SST skill and related improvements in the strength of the El Niño/South-
ern Oscillation (ENSO) teleconnection to the Pacific/North America pattern (PNA).
Improvements of seasonal forecast skill over the rest of the extratropics, such as over
Eurasia, are generally absent or patchy in individual models. The improvements that
are found are most pronounced in the newest era models and are broadly associ-
ated with improvements in atmospheric model resolution. These improvements in
skill are also evident in representative multi-model ensembles that represent more
closely how operational forecasts are used in practice.
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1 INTRODUCTION

Seasonal forecasting systems have now been used to issue
operational forecasts routinely for more than 20 years (e.g.,
Anderson, 2006; Barnston et al., 2003; Palmer et al., 2004).
These systems, similar to numerical weather prediction,
are based on initialising coupled ocean–atmosphere Gen-
eral Circulation models (GCMs) using the observed state
of the climate system and integrating forwards in time to
make predictions of the upcoming season, typically with
a lead time of 1–6 months. Over the past 20 years, it has
been demonstrated that the skill of operational numerical
weather prediction, for example, for seven-day forecasts,
has increased steadily at a rate of around one day per
decade, linked to improvements in the underlying mod-
elling and observing systems (Bauer et al., 2015). However,
since their inception, systematic improvements in the skill
of seasonal forecasting systems have been less clear, partic-
ularly in the extratropics, where observed skill levels have
typically been much lower (e.g., Smith et al., 2012).

Nevertheless, improvements in the performance of
seasonal forecasting systems have been demonstrated.
Some of the most notable progress has been made in
the forecasting capabilities of the Tropics. The impor-
tance of the El Niño/Southern Oscillation (ENSO: e.g.,
McPhaden et al., 2006) in controlling seasonal climate
variability prompted the earliest development of seasonal
ENSO forecasts, using intermediate-complexity coupled
models (e.g., Zebiak & Cane, 1987). Subsequent seasonal
forecasting systems have implemented fully coupled
ocean–atmosphere GCMs, and these operational fore-
casts, beginning around the year 2000, have demonstrated
substantial ENSO forecast skill (e.g., Barnston et al., 2012).
The developments in tropical forecasts have resulted in
improved utility of seasonal forecasts for various applica-
tions in tropical regions (e.g., Arsenault et al., 2020; Jain
et al., 2019; MacLeod et al., 2023).

Seasonal forecast skill in the extratropics has proven
to be more elusive. Some forecasting systems have
demonstrated significant skill for some large-scale extra-
tropical circulation indices. Substantial skill has been
demonstrated in seasonal hindcasts for the large-scale
circulation over the Pacific/North American sector (e.g.,
Johansson, 2007; Kim et al., 2012). Some specific forecast-
ing systems have also demonstrated hindcast skill for the
North Atlantic Oscillation and Arctic Oscillation indices
(e.g., Dunstone et al., 2016; Scaife et al., 2014; Stockdale
et al., 2015), though there appears to be substantial vari-
ation across different systems (e.g., Baker et al., 2018,
2024). The aim of the present study is to examine how skill
has improved systematically across operational forecast-
ing systems over the past two decades, with a particular

focus on the extratropical regions, which have historically
proved to be challenging.

In this study we evaluate the performance of oper-
ational dynamical seasonal forecasts produced by three
major WMO Global Producing Centres over the past
20 years. Our objective is to quantify systematically any
improvements in forecast skill over the operational period,
where these improvements are most substantial, and
which aspects remain challenging for operational systems.
We examine individual systems, but, in order to streamline
the analysis and provide a picture of the overall trajec-
tory of the forecast performance, we also compare groups
of systems from different “eras”. We extend this analysis
to evaluate the performance of representative multi-model
ensembles through this period, as this is the type of data
that is commonly used in practical applications. Finally,
we use the combined dataset of the forecast systems to
examine potential sources of improved seasonal forecast
skill.

2 DATASETS AND METHODS

2.1 Seasonal forecasting systems from
the past two decades

Since the inception of operational seasonal forecasts
over 20 years ago, there have been coordinated efforts
to produce forecasts across multiple research and fore-
casting centres, beginning with the DEMETER project
(Palmer et al., 2004). Since then, the European Centre for
Medium-range Weather Forecasts (ECMWF), along with
the UK Met Office (UKMO) and Meteo-France (MF), the
respective national weather centres of the UK and France,
have all developed systems consistently, which have been
included in various coordinated multi-model efforts. Other
international centres have also developed seasonal fore-
casting systems, but ECMWF, Meteo-France, and the UK
Met Office are the only centres that have contributed
continuously to multi-system products over the past two
decades, so we focus here on these centres to analyse the
development of seasonal forecast performance. We anal-
yse seasonal forecast datasets from each system from these
centres that have either been used operationally or have
contributed to coordinated multi-model project/frame-
works (all of which are archived in the MARS database
at ECMWF). An overview of the systems analysed in this
study, including details of the hindcast/operational period
and ensemble size of each system, is shown in Figure 1.

Following the initial DEMETER project, the Euro-
pean Union (EU) funded ENSEMBLES project focused
on developing coordinated initialised ensemble climate
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F I G U R E 1 Overview of seasonal forecasting systems from ECMWF, Meteo-France, and the UK Met Office. The numbers in parentheses
indicate the number of ensemble members in the hindcasts for each of the models. [Colour figure can be viewed at wileyonlinelibrary.com]

predictions further, as well as testing various approaches
to initialisation, ensemble generation, and implement-
ing model physics (van der Linden, 2009). From around
the mid-2000s, the three operational centres coordinated
their operational forecasts through the wider multi-system
EUROSIP project, which issued operational seasonal fore-
casts until around 2017. Since 2018, the three operational
centres have all contributed to the multi-system seasonal
forecasts issued through the EU’s Copernicus Climate
Change Service (C3S). To streamline some of the analy-
sis below, the seasonal forecast systems over this period
have been grouped into three different model “eras”, based
on which project they contributed to and the associated
hindcast period: referred to as “C3S”, “EUROSIP”, and
“DEM/ENS” hereafter. It should be noted that, for many
of the systems, there is not necessarily a clear separation
between subsequent versions of the systems (specific sys-
tem details, including model components and resolutions,
are provided in Table S1).

Whilst we will analyse briefly the operational fore-
casts made over the past 20 years, the bulk of our analysis
is of model hindcasts. We will focus our analysis on the
seasonal forecasts of the boreal winter (DJF) and boreal
summer (JJA) seasons. All of the hindcasts were run for
six months, initialised on or before November 1 (for the
DJF boreal winter forecast) and May 1 (for the JJA boreal
summer forecast). We focus on these initialisation dates,
as these are available for all of the forecasting systems.

2.2 Observational reference datasets

We analyse the forecast skill of geopotential height at
500 hPa (Z500) and sea-level pressure (SLP), as these are
useful indicators of the large-scale circulation skill; we also
analyse the skill for sea-surface temperature (SST), 2-m
temperature (T2m), and precipitation. For verification we
use the ECMWF Reanalysis v5 (ERA5) dataset (Hersbach
et al., 2020) as the observational reference for SLP, Z500,
and T2m. For SST, we use HadISST as the observational ref-
erence dataset (Rayner et al., 2003). For precipitation we
use the Global Precipitation Climatology Project (GPCP)
gridded dataset, which provide integrated monthly pre-
cipitation from a range of satellites over the ocean and
gauge-based data over the land (Adler et al., 2003). These
datasets all cover the full hindcast periods for all models,
with the exception of the GPCP precipitation, which is only
available from 1979 onwards due to the reliance on satel-
lite data. In the precipitation analysis below, we truncate
the hindcasts to use only periods where the GPCP data are
available.

2.3 Regional indices

In addition to the area-averaged and grid-point skill met-
rics outlined above, we also consider some common
regional circulation indices that have been shown to be

http://wileyonlinelibrary.com
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important in modulating seasonal climate in different
regions.

• Niño-3.4: a common index that measures the phase of
the ENSO phenomenon (e.g., Trenberth, 1997), defined
as the SST anomaly averaged over 170◦–120◦W, 5◦S–5◦N
in the Tropical Pacific.

• Pacific/North America pattern (PNA): a common index
that measures the strength of a dominant mode of
large-scale circulation variability over the eastern extra-
tropical North Pacific and North America during winter,
defined as

PNA = 0.25 × [Z′(20◦N, 160◦W) − Z′(45◦N, 165◦W)
+ Z′(55◦N, 115◦W) − Z′(30◦N, 85◦W)],

where Z′ is the normalised 500-hPa geopotential height
anomaly (following Wallace & Gutzler, 1981).

• North Atlantic Oscillation (NAO): a measure of the state
of the large-scale circulation over the Euro-Atlantic
sector during the boreal winter season that exhibits a
strong control over Eurasian seasonal climate variabil-
ity, defined as the normalised difference between the
SLP anomaly over Iceland and the Azores (e.g., Jones
et al., 2003).

These indices provide a useful shorthand for the
performance of forecasts during some key large-scale phe-
nomena. The results presented below are not sensitive to
the specific definitions of these indices, however, and the
conclusions drawn from these indices are consistent with
mapped distributions of relative skill improvements (as
will be shown below).

2.4 Skill metrics

We analyse and compare the skill of the systems by focus-
ing primarily on the ensemble mean signals. We focus on
the ensemble mean, because many of the systems have lim-
ited ensemble sizes and analysing the ensemble mean is
the most straightforward approach to comparing multiple
systems.

In this study we focus largely on temporal correlation
metrics, based on the Pearson correlation coefficient, r.
The explained variance, or r2, is defined as follows:

Exp. Var. (%) =

{
100 × r2 for r ≥ 0,
0 for r < 0.

(1)

This definition ensures that negative correlation skill is not
identified spuriously as skilful performance.

The correlation is also used to define a large-scale
metric of skill that we will analyse as the total explained
variance (TEV : e.g., O’Reilly et al., 2020), which is defined
here as

TEV(%) = 100 ×
∫∫A r2Z′2 dA

∫∫A Z′2 dA
. (2)

Here, r2 is the ensemble mean correlation skill squared
at each grid point (equal to zero where r < 0) and Z′2

is the observed interannual variance of variable Z at
each grid point, such that this is the area-averaged skill
weighted by the underlying observed variability (to avoid
over-weighting regions with relatively little variance). We
calculate this for extratropical (30◦–90◦N) and tropical
(30◦S–30◦N) regions for SST, SLP, and Z500. In addition,
we analyse grid-point comparisons of the ensemble mean
correlation skill between different models.

Alongside the temporal correlation metrics, we also
use pattern correlation when examining the histor-
ical operational forecasts in Section 3.1. We use a
pattern-correlation skill (%) metric that is defined as 100 ×
r|r|, where here r is the Pearson correlation skill between
area-weighted grid-point anomalies over a given region/-
variable; this formulation allows for the identification of
particularly poor forecast years, which can be negative.

The focus on correlation metrics in this study is also
in part to account for the weak ensemble mean signals in
seasonal forecast models, most notably in the extratrop-
ics, which have been documented in several recent studies
(e.g., Hardiman et al., 2022; O’Reilly et al., 2019a; Scaife &
Smith, 2018; Weisheimer et al., 2024). Whilst these appar-
ent signal-to-noise errors are important and interesting in
their own right, here we focus on understanding the devel-
opment of skilful ensemble mean signals in the seasonal
forecasts. However, it is clear that relative improvements
in the statistical reliability of the forecasts (e.g., Jolliffe &
Stephenson, 2012; MacLeod et al., 2018) is also important
and is left as a topic for future investigation.

2.5 Model comparison and uncertainty
estimates

Comparison of the skill of the models is not straightfor-
ward, due to differences in ensemble size and hindcast
period (Figure 1). Specifically, this is because ensemble
mean skill tends to increase with increasing ensemble
size (e.g., Murphy, 1988; Scaife et al., 2014) and differ-
ent years and periods demonstrate substantial differences
in their inherent predictability (e.g., Baker et al., 2024;
O’Reilly et al., 2019b; Weisheimer et al., 2017). To compare
fairly across a pair of forecasting systems, we select the
longest common period that overlaps across the hindcasts
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and discard years that only exist for one of the sys-
tems. To account for different ensemble sizes, we ran-
domly subsample (without replacement) a fixed number
of members from each model, with that number being
equal to two-thirds of the size of the smaller ensemble
(where ensemble sizes are different); the minimum for
this is six members and the maximum is 37 members
(i.e., Figure 1). We tested the sensitivity to this sampling
method by repeating the analysis for a bootstrap resam-
pling with replacement and the results and conclusions
that follow are not qualitatively sensitive to this choice.
We can estimate the relative impact of different hindcast
periods or ensemble sizes by relaxing these constraints
individually—we include an example of this below—but
most of our analysis is based on equal ensemble sizes and
hindcast periods. The ensemble subsampling is repeated
10,000 times and the relevant skill measures are calculated
and compared for each of these subsamples.

In some of the analysis below, we report the median of
these sampled model difference distributions. The uncer-
tainty in the differences between each pair of models—and
thereby, evidence that one model is more skilful than
another—is estimated by calculating Bayes factors, which
provide a measure of the evidence that eschews some of
the common pitfalls of null-hypothesis significance testing
(e.g., Ambaum, 2010; Shepherd, 2021). The Bayes factor, B,
is defined here as

B =
p(D|Model A)
p(D|Model B)

, (3)

which is the ratio of the probabilities, p, that each of the
two models (i.e., Model A or Model B) is better, based
on the hindcast and observational data (i.e., D). These
probabilities are estimated from the 10,000 ensemble sub-
samples used to calculate each model pair. In the results,
below we present the Bayes factors as positive-definite
and indicate which model the evidence favours in
each case.

We use a similar bootstrap approach to calculate Bayes
factors in the meta-analysis in which we compare the dif-
ferences between model eras; in this case, the resampling
is performed 10,000 times with replacement over different
model pairs within the model eras.

3 RESULTS

3.1 Historical operational seasonal
forecasts

In previous studies, the improvement of numerical
weather prediction (NWP) has been demon-
strated by analysing historical operational forecasts

(e.g., Bauer et al., 2015). For seasonal forecasts, analysing
the historical operational forecasts in a meaningful way
is challenging, due to the small sample size and limited
common forecast period between the different operational
forecasts. For example, for NWP there are typically 365
initialised forecasts per year, whereas for seasonal fore-
casts seasonality is critical, such that we effectively have
a single forecast/observation pair per year. Nonetheless,
we will begin by briefly outlining attempts to estimate
improvements in the operational skill for seasonal fore-
casts, similar to the approach more commonly used to
analyse operational NWP forecasts.

The extratropical Z500 anomaly pattern correlation
from the multi-system operational seasonal forecasts for
boreal winter (DJF, initialised November 1) is shown in
Figure 2a. The year-to-year variability in the pattern cor-
relation is high and there is no clear increase over time,
unlike that seen for NWP, although there is a hint of
an upward trend. When comparing the first and second
decades more formally, there is some indication that the
Z500 pattern-correlation skill has increased in the most
recent decade (Figure 2b), but this is not clearly reflected
in the SLP pattern correlation or in measures of the total
explained variance (Figure 2b).

There are several major reasons to be cautious in draw-
ing conclusions from the operational forecasts in Figure 2.
Firstly, there are very few independent operational fore-
casts to analyse and the sample size is very small. Sec-
ondly, the Z500 pattern correlation is not commonly used
to analyse seasonal predictability, likely due to several
drawbacks. Firstly, there are limited spatial degrees of
freedom and the lower latitudes tend to dominate, even
though Z500 may be less relevant for surface anomalies
at these latitudes. Secondly, the anomalies are, necessar-
ily, based on an eight-year climatological hindcast period
(1993–2001) and further tests indicate that the pattern
correlation results exhibit a clear sensitivity to this short
period (not shown). Thirdly, the underlying predictability
is known to be non-stationary, varying from year to year as
well as exhibiting trends on multi-decadal timescales, even
in the same forecasting system (e.g., O’Reilly et al., 2017;
Weisheimer et al., 2017). Overall, we observe some appar-
ent improvements in correlation over the period (see
Figure 2b), which may reflect incremental improvements
in the ability of operational forecasts to represent key pro-
cesses driving variability. However, we cannot rule out
the possibility that this increase in correlation is due sim-
ply to underlying changes in the predictability of the cli-
mate system. Therefore, on its own, this does not provide
robust evidence of improved model skill. To assess this
more rigorously, we must analyse the impact of model
changes while controlling for potential shifts in underlying
predictability.
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F I G U R E 2 Skill of operational multi-model seasonal forecasts for boreal winter (DJF), forecast from November 1. (a) Pattern
correlation of the extratropical Z500 anomaly between the observations and the multi-model ensemble mean Z500 anomaly forecast. (b)
Decadal averages of the pattern correlation over the northern extratropics for 2004–2013 and 2014–2023 for both Z500 and SLP. (c) As in (b)
but for the total explained variance skill. The thick solid line and shading in (a) show the five-year running mean pattern correlation and ±1
standard error around this mean. The error bars in (b) and (c) show the 90% confidence interval of the relevant estimates based on a
bootstrap resampling over years performed 10,000 times. [Colour figure can be viewed at wileyonlinelibrary.com]

3.2 Comparison of historical model
hindcasts

Given the limitations in analysing the historical opera-
tional seasonal forecasts, we instead focus on comparing
the performance of the hindcasts from the different mod-
els, which are available for some of the same years (i.e.,
Figure 1). A major challenge in comparing the different
forecasting systems is that the hindcasts cover a variety
of different periods, with only a limited six-year common
period, 1996–2001. An example plot of hindcast data for
this common period is shown in Figure 3 for the ensem-
ble mean Niño-3.4 index of the hindcasts (these are not
bias-corrected due to the very short common period). The
diversity in behaviour from model to model is evident even
over this short period. Qualitatively, it is clear that there
is skill in predicting ENSO at these lead times in all the
models; the errors of the raw hindcast output with respect
to the observational data seem to be much reduced in the
C3S systems compared with the systems in earlier eras.
In particular, the systematically cold predictions appar-
ent in these earlier eras seem to be much reduced in the
C3S models (perhaps with the exception of some of the
GloSea systems), though there is still some drift evident,
consistent with the behaviour highlighted in recent studies
(Beverley et al., 2023).

Whilst these initial comparisons may be interesting,
this short common period is inadequate to compare
the hindcasts of the different systems. However, when

comparing any two individual models, there are many
more hindcast years than the overall six-year overlap (i.e.,
Figure 1), such that we can make a more meaningful com-
parison between different pairs of models by utilising as
many years of hindcast data as possible. As well as con-
trolling for the hindcast period, we also subsample the
ensemble to control for ensemble size (since increased
ensemble sizes tend to increase ensemble mean forecast
skill).

3.2.1 Boreal winter seasonal hindcasts

A plot comparing all the different seasonal forecasting sys-
tems with one another, in terms of Z500 total explained
variance over the northern extratropics, is shown for the
boreal winter hindcasts in Figure 4. The plot shows the
median difference in total explained variance calculated
between each pair of models (following the sampling
method outlined in Section 2.5). Scanning from left to
right across the plot, for the C3S systems (towards the
bottom), it is clear that they generally show an improve-
ment over the systems from previous eras, with the largest
improvements seen in comparison with the EUROSIP era
hindcasts. However, there are also instances where there is
less improvement and even decreased skill. It is important
to highlight here that there is considerable uncertainty in
the differences between many of the pairs—indicated by
the size of the circles, which represent the Bayes factor of

http://wileyonlinelibrary.com
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F I G U R E 3 Ensemble mean monthly Niño-3.4 indices from all hindcasts over the common period, along with the HadISST
observational dataset (in black). [Colour figure can be viewed at wileyonlinelibrary.com]

the pair-wise comparisons. For many of the model pairs,
the Bayes factor (estimated from the ensemble subsam-
pling) is not much greater than one, indicating only mod-
est evidence to favour one model over another. However, in
other instances–primarily where the skill differences are
larger–the Bayes factors are 10 or larger, providing strong
evidence that one model is more skilful than another.
Overall, this plot indicates that there has been substan-
tial improvement for the wintertime seasonal forecasts of
Z500 anomalies in the northern extratropics in the C3S era
compared with older systems.

We can formalise the comparison between the differ-
ent model eras by plotting the pairwise difference between
the relevant models, which is shown in Figure 5. We
focus initially on the comparison for equal ensemble size
and hindcast period (highlighted in red text). When com-
paring across these eras, for the extratropical Z500 total
explained variance in the Northern Hemisphere winter,
we find strong evidence that the C3S era models are
more skilful overall than the EUROSIP and DEM/ENS era
models. Interestingly, there is relatively little difference
between the EUROSIP and DEM/ENS era models. There

http://wileyonlinelibrary.com
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F I G U R E 4 Example of inter-model skill comparisons, shown for extratropical Northern Hemisphere Z500 for boreal winter hindcasts
(DJF). The comparison between each pair of models was made whilst controlling for the same ensemble size and hindcast period (see
Methods, Section 2.3). The colour of the dot indicates the difference between the pair of medians, calculated from the subsampled
distributions. The size of the dots varies continuously and corresponds to the Bayes factor of the difference between each pair of models (a
legend showing some example sizes is shown in the lower right corner of the figure); the Bayes factor saturates at 10 for the largest dots,
though many pairs are substantially greater than 10. [Colour figure can be viewed at wileyonlinelibrary.com]

is not a clear step-change in model components/resolution
between all the EUROSIP and DEM/ENS era models (see
Table S1), which might explain why there is relatively little
difference between the models. We will explore some rea-
sons for differences in skill in a little more detail below, in
Section 3.4.

In addition to regularising the model comparison
by analysing equal ensemble size and periods, we also
relaxed these constraints to examine the sensitivity to
these constraints, and examples from the extratropical
Z500 hindcasts are shown in Figure 5. The biggest differ-
ences are found between the DEM/ENS era models and
the more recent models. The DEM/ENS era models typi-
cally have lower ensemble sizes in the hindcasts, but also
they were often run starting from the 1960s (i.e., Figure 1),

indicating from this analysis that this early period has
lower skill. The mid-century period has generally been
found to be less skilful for winter forecasts, at least partly
related to the lower ENSO amplitude during this period
(e.g., O’Reilly et al., 2017; Palmer et al., 2004; Weisheimer
et al., 2017, 2020). The analysis here emphasises the need
to use equal ensemble sizes and hindcast periods when
analysing the relative skill between different models.

Comparisons of the total explained variance skill
between different model eras for boreal winter hindcasts
(as in Figure 5) are shown in Figure 6a for SLP and SST,
for both the Tropics and extratropics. For SLP, on aver-
age, there have been improvements through the different
model eras in both the Tropics and extratropics, with the
clearest improvements coming in the C3S era. For SSTs,

http://wileyonlinelibrary.com
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F I G U R E 5 Model-era skill comparison for extratropical
Northern Hemisphere Z500 anomalies for boreal winter hindcasts
(DJF). The comparisons are shown for the full ensembles, as well as
when controlling for equal ensemble size, equal hindcast period,
and both. Each dot shows the difference between one pair of models
from the different eras. The colours are shaded to show the
percentile of the whole distribution and the horizontal lines show
the 25th, 50th, and 75th percentiles. Also shown are the Bayes
factors calculated for the median of the equal ensemble size and
hindcast period distributions, which were estimated by repeated
subsampling (see Section 2). [Colour figure can be viewed at
wileyonlinelibrary.com]

the picture is more mixed. Whilst the C3S era models
are generally better than older models, there are no clear
improvements compared with the oldest DEM/ENS era
models. This lack of improvement is perhaps counterin-
tuitive, though there are a few potential reasons. The first
is that there are generally a small number of years and
ensemble members in the comparisons of the C3S and
DEM/ENS era models, with only 13 years and nine mem-
bers to be subsampled in most instances (i.e., Figure 1),
so individual years and members carry substantially more
weight in these. With this caveat in mind, another poten-
tial reason for this degradation in SST skill is that the
initialisation of ocean models has changed substantially
over the different eras, with an increase in resolution to
0.25◦ × 0.25◦ in the ocean model components of almost all
of the C3S models (i.e., Table S1). This increase in reso-
lution has lead to initialisation problems in some regions
affecting the ocean forecast skill (Johnson et al., 2019).

In addition to the integrated measures of forecast skill,
it is also of interest to analyse the skill of some important

ocean and regional circulation indices. Figure 5b shows
comparisons of the difference in skill between different
model eras for the Niño-3.4, PNA, and NAO indices for
the boreal winter seasonal hindcasts. The C3S era models
demonstrate a small but robust increase in hindcast corre-
lation skill for the Niño-3.4 SST index compared with the
older era models. The small increase is perhaps not sur-
prising, given the Niño-3.4 correlation skill is very high
across all models. The improved correlation skill is also
associated with a general improvement in the evolution of
ENSO events, evident in the lower model drifts and lower
absolute errors seen in the Niño-3.4 plumes for all mod-
els during the common period, 1996–2001 (Figure 3). For
the PNA index, there has been a very strong and consis-
tent increase between the different model eras. The NAO
index, however, shows only a very modest, albeit robust,
increase in the C3S era compared with EUROSIP, though
the skill levels remain low in most models; the exception
is GloSea5-GC2-LI, which exhibits higher levels of skill
compared with most models (as demonstrated in Scaife
et al., 2014). It is remarkable, however, that the model
skill for the NAO is not substantially better than in the
DEM/ENS era when controlling for ensemble size and
hindcast period. It is important to note that the relatively
low skill of the NAO overall makes the comparisons in skill
particularly uncertain, especially when considering the
small number of crossover hindcast years between some of
the C3S and DEM/ENS era models.

To explore the geographical distributions of model per-
formance, we now examine the differences in ensemble
mean correlation skill at a grid-point level between the dif-
ferent model eras; these are shown for the boreal winter
hindcasts of Z500 and SST in Figure 7. For Z500, there is
an increase in skill between C3S and the older eras over
most of the Tropics and northern extratropics. The largest
increases in skill are seen over the extratropical Pacific
and North American continental region. This is consis-
tent with the large increase in PNA skill seen in the C3S
era models compared with the older era models seen in
Figure 6b and demonstrates that this is not sensitive to
the precise definition of the index. There are also mod-
est increases in Z500 skill over the extratropical North
Atlantic in C3S era models compared with the EUROSIP
era. However, the C3S era models on average actually have
lower skill over the extratropical North Atlantic compared
with the older DEM/ENS era models, though the same
caveats regarding the small number of ensemble members
and common hindcast years apply. There are also some
notable improvements in the Southern Hemisphere for the
Z500 DJF seasonal forecasts, such as parts of Australasia,
South America, and Sub-Saharan Africa. For the hindcasts
of DJF SST, the C3S era models show most improvement
over the tropical oceans, especially compared with the
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F I G U R E 6 As Figure 5, but for (a) different variables/regions and (b) some key regional indices for boreal winter hindcasts (DJF).
[Colour figure can be viewed at wileyonlinelibrary.com]

(a) (b)

(c) (d)

(e) (f)

F I G U R E 7 Maps of model-era skill comparison for Z500 and SST for boreal winter hindcasts (DJF). At each grid point, the colour
shows the median difference in explained variance of the ensemble mean hindcast correlation skill (i.e., Δr2) over the distribution of model
era comparisons (similar to the approach in Figures 5 and 6). These were calculated, as before, after controlling for the same forecast period
and ensemble size. The hatching indicates grid points where the Bayes factor is less than 100, when comparing between model eras. As
before, the Bayes factors were calculated for the median of the distributions by repeated subsampling (see Section 2). [Colour figure can be
viewed at wileyonlinelibrary.com]
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(a) (b)

(c) (d)

(e) (f)

F I G U R E 8 As Figure 7, but for T2m and precipitation for boreal winter hindcasts (DJF). [Colour figure can be viewed at
wileyonlinelibrary.com]

EUROSIP era models. A particularly notable region of
improvement in the C3S models is the Tropical Atlantic,
but there are also some modest improvements in correla-
tion skill over the Tropical Pacific and Indian Ocean. From
the SST maps, however, it is evident that the improvements
in SST hindcast skill have not been very consistent through
the model eras, and certainly less consistent than those
seen for Z500. Some of this may be due to the relatively
good underlying skill in the older models, such that there
is less scope for SST correlation skill to improve on 2–4
month lead times. Nonetheless, it is still notable that there
is lower skill over much of the extratropical North Atlantic
in the C3S era models, which is likely related to the afore-
mentioned initialisation issues in higher resolution ocean
models (e.g., Johnson et al., 2019).

In addition to Z500 and SST, we have also examined
the grid-point level correlation skill of T2m and precipita-
tion, shown in Figure 8. Over the ocean, the T2m maps are
quite similar to the SST maps (i.e., Figure 7), as one might
expect. Over land, there are substantial improvements in
T2m hindcast skill in the C3S era models compared with the
older eras, particularly over parts of North America, South

America, and Africa. Over North America, the areas of
improvement are likely related to the strong improvements
in ensemble mean skill seen in the large-scale circulation,
evident in terms of both the PNA index (Figure 6) and Z500
anomalies (Figure 7). Some of the improvements have
been reasonably consistent through the model eras, with
the EUROSIP era models also demonstrating improve-
ments over the earlier DEM/ENS era models, though not
as large as the improvements seen for the C3S era.

There are also some notable improvements in the pre-
cipitation skill through the model eras (Figure 8). In the
Tropics, there have been consistent improvements in the
Maritime continent region, the Tropical Pacific, and over
East Africa. These may be related to the relatively skil-
ful ENSO teleconnection to these regions that has been
demonstrated in C3S era models (e.g., Macleod, 2019;
Macleod et al., 2021). In the northern extratropics, how-
ever, there are very small differences between the model
eras, with no clear improvements in most regions. The
exception is perhaps North America, where there have
been some very modest improvements in precipitation
skill through the different model eras, likely due to the
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F I G U R E 9 As Figure 6a, but for regions/variables in the boreal summer hindcasts (JJA). [Colour figure can be viewed at
wileyonlinelibrary.com]

improvements in the large-scale circulation skill over this
region. The absence of stronger improvement in precip-
itation skill over North America, despite the large-scale
circulation skill, may be linked to the signal-to-noise errors
seen over the North Pacific for the more skilful C3S models
(Williams et al., 2023). These signal-to-noise issues imply
that greater skill improvements are possible for climate
impact variables, such as T2m and precipitation, if this
problem can be understood better and eradicated; this is
an area of active ongoing research (e.g., O’Reilly, 2025;
Weisheimer et al., 2024).

3.2.2 Boreal summer seasonal hindcasts

We now move to the equivalent analysis of improvements
in the boreal summer seasonal hindcasts. Comparisons of
the total explained variance skill between different model
eras for boreal summer hindcasts (similar to Figures 5
and 6) are shown in Figure 9 for SLP, Z500, and SST, for
both the Tropics and extratropics. In the Tropics, there
have been improvements in SLP and Z500 in the C3S era

compared with the EUROSIP era models, but compared
with the older ENS/DEM era models there are no evident
improvements. Some of the modest improvement seen
in the Tropics may be related to the strong improvement
in tropical SST skill seen in the C3S era models over the
EUROSIP era models, and there is also a clear improve-
ment over the DEM/ENS era models. There are no consis-
tent improvements in Z500 and SLP over the extratropics
in the boreal summer hindcasts; the absence of appreciable
improvement in the extratropical large-scale circulation
is also evident in the maps of grid-point level correlation
skill of Z500 (Figure S1). One reason for the lack of obvi-
ous improvement in the extratropics in the boreal summer
hindcasts is that the overall levels of seasonal hindcast
skill are typically much lower. An example of this is the
systematically lower levels of total explained variance in
Z500 in the boreal summer hindcasts, shown for the sys-
tems in this study in Figure S1. These lower levels of skill
are due, at least in part, to the lower amount of tropically
forced circulation variability during boreal summer (e.g.,
ENSO amplitude peaks during DJF), and the fact that
models generally struggle to capture these extratropical
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(a) (b)

(c) (d)

(e) (f)

F I G U R E 10 As Figure 8, but for the boreal summer hindcasts (JJA). [Colour figure can be viewed at wileyonlinelibrary.com]

teleconnections from tropical forcing (e.g., Beverley
et al., 2021; Knight & Scaife, 2024; O’Reilly et al., 2018).

Maps of the grid-point level correlation skill of some
important climate impact variables, T2m and precipitation,
are shown for the boreal summer hindcasts in Figure 10.
There are some clear improvements through the model
eras over the tropical ocean regions, reflecting improve-
ments in SST hindcast skill (i.e., Figures 9 and S1). Over
land, relatively strong improvements are seen in some
tropical regions, notably over the Maritime Continent,
Central/South America, and Central/East Africa. These
improvements are isolated to the C3S era of models, poten-
tially linked to the improvements in tropical SST and,
specifically, ENSO prediction. In the extratropics, there
are only modest improvements in most regions and even
deterioration in others. The area of largest improvement
in the C3S era models is in the northwestern region
of China, where there are also clear improvements in
Z500 (Figure S1), suggesting that this may be dynami-
cally driven. For precipitation, the largest improvements
in model skill are found for C3S in the Tropical Pacific
and the Maritime continent. There are also some modest
but potentially important improvements in precipitation

skill over parts of the Indian subcontinent, consistent
with other studies demonstrating improved forecasts of
the Asian summer monsoon in the C3S seasonal hindcast
models (Jain et al., 2019; Takaya et al., 2023).

3.3 Examining multi-model ensemble
improvements across model eras

To this point, we have focused on comparing different
pairs of the models and using the accumulated statis-
tics to examine model improvements. However, in many
practical applications, users of operational seasonal fore-
casting projects make use of multi-model ensembles, so it
is of interest to analyse the performance of representative
ensembles across model eras. We focus our analysis of
multi-model ensembles on hindcasts of the boreal winter
season, as this is where we found the strongest and most
robust improvements in both the Tropics and extratrop-
ics in the previous section (Figures 5–7). To examine the
performance of multi-model ensembles, we use hindcasts
from a short 13-year period, 1993–2005, where most mod-
els are available (Figure 1). We randomly subsampled
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F I G U R E 11 (a–c) Multi-model ensemble era comparison and (d–f) ECMWF-only era comparison. The box and whiskers show the
5th, 25th, 50th, 75th, and 95th percentiles of the distribution of subsampled ensembles. Bayes factors measuring the strength of the
differences between the eras are shown for each of these metrics in Tables S2 and S3. [Colour figure can be viewed at wileyonlinelibrary.com]

seven members from each forecasting centre and each
year, from all the models available over this period, to
produce 21-member ensembles. These were then com-
bined into a multi-model ensemble mean (after removing
the respective model climatologies) and the process
was repeated to produce 10,000 randomly subsampled

21-member ensembles. Measures of the total explained
variance skill in the resulting ensembles are shown in
Figure 11a–c.

The C3S era multi-model ensembles demonstrate an
improvement in extratropical skill in the boreal winter
hindcasts over the earlier eras, despite the relatively high
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uncertainty. The most robust differences are seen between
the C3S era models and the earliest DEM/ENS era mod-
els for SLP and Z500 in the extratropics and for tropical
SSTs. Given the very short common hindcast period and
small ensemble sizes considered here, there is substan-
tial uncertainty across the different ensemble subsamples,
and some of the Bayes factors are fairly modest (these can
be inferred from Figure 11 and are provided in Table S2).
Nonetheless, it is useful to be able to illustrate that the
overall model improvement seen when analysing the dif-
ferent pairs of models is also found when analysing the
types of multi-model ensemble that are most frequently
used to communicate operational seasonal forecasts (e.g.,
by C3S).

In Figure 11a–c, we have also included a measure
of the equivalent skill measures calculated for successive
increases in ensemble size, in an attempt to approximate
the typical increases in hindcast ensemble size over the
model eras (Figure 1). There is an evident increase in skill
associated with the increase in ensemble size compared
with the fixed ensemble size calculations. Whilst this is
expected, it serves as a useful demonstration that some
of the increases in skill that have been reported in the
literature, based on hindcasts of more modern seasonal
forecasting systems, are due at least in part to the larger
ensemble sizes, in addition to underlying model and/or
initialisation improvements.

For one of the operational centres, ECMWF, there are
hindcasts with larger ensemble sizes and longer periods
from all three eras (Figure 1). This provides the oppor-
tunity to test whether the improvements seen for the
representative multi-model ensemble (Figure 11a–c) are
replicated for the ECMWF systems over these different
eras. The equivalent results for the ECMWF systems over
the common 1981–2005 hindcast period, with 35 subsam-
pled ensemble members, are shown in Figure 11e–f. There
is a clear improvement in total explained variance in the
extratropical SLP and Z500, as well as for tropical SSTs.
The longer hindcast period and increased ensemble size
reduces the uncertainty (Table S3) compared with the
representative multi-model ensemble in Figure 11a–c.

The overall characteristics of the improvements seen
across the ECWMF systems resemble those broadly seen
in the multi-model ensemble, with the C3S era hindcasts
showing more substantial improvements in the extrat-
ropics with respect to the earlier model eras, whereas
the differences between EUROSIP and DEM/ENS era
hindcasts are slightly weaker and associated with lower
Bayes factors (Table S3). The equivalent changes in skill
of the NAO and PNA indices across the eras are con-
sistent with the findings in the previous section, with
notable increases for the PNA through to the C3S era,
whereas the NAO shows no clear improvements in the

multi-model ensembles (Figure S2). In summary, the anal-
ysis in this section demonstrates that an overall improve-
ment in hindcast skill between model eras is evident in
the type of multi-model ensembles often used to commu-
nicate operational seasonal forecasts, and indicates that
the multi-model ensembles of the current operational sea-
sonal forecasts can be considered more skilful than those
of previous model eras.

3.4 Exploring sources of improved
seasonal forecast skill

Finally, we analyse briefly some possible sources of the
improved seasonal forecast skill that we have seen through
the different model eras. Given the overall improve-
ments in skill in both tropical SSTs and the extratropical
large-scale circulation (i.e., Z500) in the boreal winter
hindcasts, it is of interest to compare these across the full
set of models we have analysed. Figure 12a shows a scatter
plot comparing the difference in total explained variance
skill in extratropical Z500 and tropical SST across all the
different model pairs. There is a clear and robust rela-
tionship between the increase in extratropical Z500 skill
and the increased tropical SST skill (the linear correlation
across these points is r = 0.56). This alone does not prove
a causal link; however, tropical SSTs are widely considered
as the dominant source of skill in extratropical seasonal
forecasts, and this result provides evidence that improve-
ments in tropical SST predictions have been a source of the
improvement in skill in the extratropics.

The analysis in Section 3.2 showed that the clearest
improvements in extratropical large-scale circulation in
boreal winter hindcasts were found over the extratropical
North Pacific and North America (Figures 6b and 7). The
circulation in this area is strongly influenced by ENSO on
interannual timescales, so it is of interest to examine how
the improvements in the PNA hindcast skill are linked
to the strength of the ENSO teleconnection to the PNA
region in the different model ensembles—this is shown in
Figure 12b. Across the model pairs, the models with bet-
ter PNA hindcast skill tend to be those that have a stronger
ENSO–PNA teleconnection, indicating that the improve-
ment in the teleconnection is a robust source of this
improvement (the linear correlation across these points is
r = 0.44). There is still room for improvement in the mod-
elled teleconnection pathway, however. In general, most of
the models exhibit a weak wintertime ENSO–PNA telecon-
nection compared with reanalysis (Figure 12c) and, whilst
this seems to have improved in the C3S era of models,
the teleconnection remains broadly too weak. The weak
ENSO teleconnection has been demonstrated in various
C3S era models from other modelling centres and is a
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F I G U R E 12 (a) Scatter plot of the median difference in extratropical Z500 total explained variance against the median difference in
tropical SST total explained variance for each of the different model pairs. (b) Scatter plot of the median difference in PNA hindcast
correlation skill (measured as explained variance difference, Δr2) against the median difference in the strength of the ENSO–PNA
teleconnections for each of the different model pairs. The ENSO–PNA teleconnection strength is defined as the correlation between Niño-3.4
and PNA indices (see Section 2.3) measured across all individual ensemble members, and expressed here as explained variance difference,
Δr2 (controlling for equal ensemble size and hindcast period in each model pair). (c) ENSO–PNA teleconnection in each model, defined as
the r2 between the Niño-3.4 SST index and the PNA index, across all ensemble members. The equivalent calculation from observational
datasets (ERA-5 for the PNA, HadISST for Nino-3.4) is shown in grey. The box and whiskers show the 5th, 25th, 50th, 75th, and 95th
percentiles, based on a bootstrap resampling across years. Note that the ERA5 estimate is plotted for each model separately and is calculated
using the corresponding hindcast period, which differs across models. [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 13 Link between model resolution and extratropical Z500 hindcast skill (DJF). (a) Horizontal atmospheric resolution, (b)
horizontal ocean resolution, and (c) vertical atmospheric levels. The resolutions are given in Table S1. The analysis has been performed
whilst controlling for equal ensemble size and hindcast period in each model pair. [Colour figure can be viewed at wileyonlinelibrary.com]

cause of signal-to-noise errors in seasonal hindcasts over
the extratropical North Pacific (Williams et al., 2023).

An area of focus over the past two decades of opera-
tional seasonal forecasting has been to improve the resolu-
tion of models; this has resulted in increases in horizontal
and vertical resolution of the atmosphere and ocean com-
ponents of the models (Table S1). To explore the impact
of changes in model resolution on the improved extra-
tropical hindcast skill seen in the boreal winter hind-
casts, we compare the change in extratropical Z500 total
explained variance skill with the ratio of model resolu-
tions between the different model pairs. This is shown in
Figure 13. Increased horizontal resolution in the atmo-
sphere is broadly associated with increases in extratropical
Z500 skill (r = 0.29; Figure 13a); a similar relationship is
found between improved skill in the extratropics and hor-
izontal resolution in the ocean, though the relationship is
substantially weaker and less robust (r = 0.19; Figure 13b).
Interestingly, there also seems to be a relatively robust
relationship between increases in vertical resolution, in
terms of the number of atmospheric levels, and increases
in extratropical Z500 skill (r = 0.30; Figure 13c). Compar-
ing the different model resolutions (shown in Table S1), it
is obvious that the increases in resolution are not wholly
independent, such that models with higher resolution in
one component tend also to have higher resolutions in
other model components. Nonetheless, it is interesting
that increases in the model resolution in the atmosphere
seem to stand out as more impactful for seasonal forecasts
of extratropical Z500 compared with the ocean resolution,
which, as noted earlier, may be related to the difficulties in
initialising higher resolution ocean models.

In addition to resolution, it is important to high-
light that there are numerous other model developments
that have been made during this period, such as

parameterisation schemes, land-surface models, and
sea-ice models, all of which likely contribute to the model
performance. In addition, there have been significant
developments in the methods—and analysis/reanalysis
datasets—used to initialise both the operational forecasts
and the hindcasts. These are each expected to have a sig-
nificant influence on the model performance. However,
attributing the specific improvements that have been
gained through these model changes is not straightfor-
ward using the skill-based metrics we have used here. A
process-based analysis that focuses on more straightfor-
ward model biases/errors and associated model dynamics
may be a fruitful approach in this respect (e.g., Hermanson
et al., 2018; O’Reilly, 2025).

4 SUMMARY AND CONCLUDING
REMARKS

Seasonal forecasts have been operational for over two
decades. However, the impact of continuous advances in
modelling on seasonal forecast skill is not easily demon-
strated, as comparisons are challenged by small opera-
tional forecast samples, large variations in ensemble sizes
between models, and inconsistent hindcast periods. In this
study, through a careful and systematic comparison of
models from different eras, we present clear evidence of
improved seasonal forecast performance.

Our analysis, which accounts for differences in ensem-
ble size and period across the forecasting systems, demon-
strates that there have been clear improvements in some
regions through the different model eras. For both the
boreal winter and summer hindcasts, there have been sig-
nificant improvements in forecasting in tropical regions,
which are concurrent with improvements in the skill of
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tropical SSTs. These improvements in the Tropics are asso-
ciated with increased predictability of temperature and
precipitation across various continental regions on sea-
sonal timescales. For the extratropics, the picture is more
mixed, with strong improvements only evident during the
boreal winter season over the North Pacific and North
America. The sources of improvement over the winter
extratropics are found to be strongly related to improve-
ments in tropical SST skill and related improvements in
the strength of the ENSO teleconnection to the PNA.
Improvements of seasonal forecast skill over the rest of
the extratropics, such as over Eurasia, are generally absent
or patchy in individual models. The improvements that
are found are most pronounced in the newest C3S era
models, and these improvements in skill are also evident
in representative multi-model ensembles (Figure 11) that
represent more closely how operational forecasts are used
in practice.

One likely source of improvement in seasonal forecasts
over the past 20 years is increases in model resolution
(Table S2). Here, we find that models with higher atmo-
spheric resolution in both the horizontal and the vertical
are associated with improvements in hindcast skill in the
extratropics during boreal winter. Increases in horizon-
tal atmospheric resolution have been linked to improved
fidelity of simulation of synoptic atmospheric variability
and the associated feedback onto the large-scale circula-
tion; however, it is clear that models at present operational
resolutions (i.e., ≈ 30 km; Table S1) still exhibit clear defi-
ciencies (e.g., O’Reilly, 2025; Scaife et al., 2019). Increases
in vertical resolution have been linked to improved sim-
ulations of stratospheric processes (Butler et al., 2016),
which have been linked to improvements in predictabil-
ity in the extratropics on seasonal timescales (e.g., Scaife
et al., 2022), broadly consistent with the improved skill
found here.

Whilst the analysis here has highlighted some clear
improvements through the different model eras, we found
large uncertainty and variability across the individual
model pairs (Figure 4). Much of this uncertainty is caused
by the smaller ensemble sizes in the earlier era of models.
Another source of this uncertainty is the short hindcast
periods that have been used by most modelling centres
from the EUROSIP era onwards (e.g., Figure 1). Whilst
we have been able to measure some improvements here
(though careful subsampling based on hindcast period
and ensemble size), the levels of uncertainty associated
with the short hindcast sizes make more detailed stud-
ies of the sources of model improvement very challenging.
With modern reanalyses now routinely being extended
to the mid-20th century, the ability to perform hindcasts
using coupled prediction systems is evident—for example,
the CMIP6 models contributing to the Decadal Climate

Prediction Project produce hindcasts from 1960 onwards.
However, the hindcast periods for the operational C3S
multi-model forecasts cover only 24 years (1993–2016),
some of which only have 10 ensemble members. These
put strong contraints on the levels of robust, process-based
understanding that can be achieved through analysis of
the performance of forecast systems. A stronger focus on
performing longer hindcasts with large ensemble sizes
is crucial to understanding the performance and any
potential improvements in future operational seasonal
forecasts.
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