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The thermoelastic responses of the sandwich truncated conical shells with graphene platelets 

(GPLs) reinforced composite face sheets and GPLs reinforced composite porous core subjected to 

ring-shape moving thermo-mechanical loading are studied. In order to capture the influences of the 

finite heat wave speed and the thermo-mechanical coupling, the Lord-Shulman thermoelasticity 

theory, which has no kinematical assumption such as those used in the two-dimensional theories, 

is employed to accurately estimate the thermoelastic behaviors of the sandwich shells. A layerwise 

hybrid numerical technique composed of the differential quadrature method and multi-step based 

NURBS method is applied to discretize the strong form of the equations in the spatial and temporal 

domains, respectively. Also, the boundary and compatibility conditions at the interfaces of the layer 

are exactly implemented at the corresponding grid points. After validating the proposed approach, 

parametric studies are conducted and discussed to explore the impacts of the porosity amount and 

distribution, GPLs weight fractions, thermo-mechanical load velocity, edge boundary conditions 

and some other parameters on the thermoelastic behaviors of the sandwich shells. The results 

indicate that the increase of the GPLs weight fraction decreases the displacement and changes its 

distribution along the shell thickness but does not affect the stress distribution. Also, the porosity 

distribution pattern changes the displacement distribution, and the displacement has the lowest 

values when the porosity is higher near the inner surface of the core layer. 
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1. Introduction 
 

Due to their high structural performances and also design requirements, truncated conical shells 

have found a wide range of applications in different fields of engineering such as marine, 

aerospace, civil and mechanical engineering; for example, in underwater vehicles, aircraft 

propulsion systems, spacecraft, missiles and reactors [1-6]. To achieve high-performance 

lightweight conical shells, composite materials have been used to form these types of structural 

elements. Among them, sandwich materials are commonly used to build up shells of different 

shapes [7, 8]. The sandwich materials are composed of a relatively thick soft and low-density layer 

placed between two thin but stiff layers. The core layer is usually made of cellular polymeric foam 

materials, metallic and non-metallic honeycombs, balsa wood or trusses. Also, the face sheets are 

structured from laminated composite materials or metals such as aluminum.  

Nowadays, the advances in manufacturing technologies, particularly conception of 3D printing [9-

13], have permitted the scientists in the related field to create high-performance new composite 

materials by replacing the micro-sized reinforcements with the nano-sized fillers, which can be used 

as the face sheets of sandwich materials for advanced technologies. One of the important and 

emerging nanofillers is graphene platelets (GPLs) [14-16]. These very thin flat monolayer 

nanomaterials are structured by joining carbon atoms in a hexagonal lattice pattern. GPLs have 

ease and low cost of manufacturing in comparison to graphene and its other derivatives, in addition 

to extraordinary properties such as Young’s modulus, strength, thermal conductivity, electrical 

conductivity and chemical stability [17-19]. It has been explored that addition of small amount of 

GPLs in any matrix materials results in a significant improvement of the mechanical properties of 

the resulting advanced nanocomposites [19]. 

Despite some advantages of porosities in the core layer of sandwich shells such as low density, 

sound isolation, impact and thermal resistance, they reduce the overall stiffness of the resulted 

composite shells. However, the porosities in the core layer can be tailored to satisfy the required 

performance [20,21]. On the other hand, it has been shown that reinforcing the porous materials 

with a small amount of GPLs can compensate this effect and enhance their stiffness [22,23]. Thus, 
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without increasing its thickness or its weight considerably, the porous core layer can also be 

reinforced by GPLs to recover its lost stiffness.  

The mechanical and thermo-mechanical behaviors of the truncated conical shells made of 

different homogeneous and composite materials have been investigated in recent years [24-29]. In 

continuation, some of these works are briefly reviewed.  

Yang et al. [30] employed the first-order shear deformation theory (FSDT) under the von-

Kármán nonlinear geometric assumptions to investigate the nonlinear free vibration behaviors of a 

functionally graded graphene platelet-reinforced composite (FG-GPLRC) truncated conical shell. 

They applied the Galerkin method together with the harmonic balance method (HBM) to 

analytically estimate the nonlinear frequencies of the shell. Baranifard et. al. [31] studied the free 

vibration characteristics of the point supported sandwich truncated conical shells with GPLRC face 

sheets and porous core using a first-order shear deformation-based zigzag shell theory. They 

utilized linear elastic springs to simulate the point supports and solve the problem by applying the 

Ritz method with Chebyshev polynomials multiplied by some boundary functions as its admissible 

basis functions (the so-called Chebyshev-Ritz method). Youseftabar et al.  [32] introduced an 

analytical approach to present the nonlinear free vibrational behavior of a porous cone-shaped shell 

surrounded by an elastic media based on the FSDT subjected to von Kármán large deformation 

assumptions. They determined the nonlinear frequencies by means of the Galerkin decomposition 

and the harmonic balance methods. By using the traveling wave vibration analysis, Li et al. [33] 

studied the nonlinear vibration characteristics of rotating sandwich conical shell with GPLRC 

porous core and aluminum face sheets. They modeled the shell deformation according to the FSDT 

and von Kármán nonlinear geometric nonlinear assumptions. The nonlinear vibration behaviors of 

axially moving porous GPLRC truncated conical shells were discussed in a research work by 

Huang et al. [34]. They derived the shell motion equations in the context of the classical shell 

theory and utilized the Galerkin method to extract frequencies. Khoddami Maraghi et al. 

[35] explored the effects of GPLs distribution patterns and the shell geometric parameters on the 

linear free vibration frequencies of a sandwich truncated conical shell with a re-entrant auxetic core 

and GPLRC face sheets based on the FSDT of shells. A combination of the trigonometric functions 

and the differential quadrature method (DQM) was employed to spatially discretize the motion 

equations and the related boundary conditions.   
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Huang et al. [36] reported the static stability of porous FG-GPLRC truncated conical shells 

loaded by hydrostatic pressure and axial tension. They obtained the critical buckling hydrostatic 

pressure and axial tension using the Galerkin method. Bahranifard et al. [37,38] studied the linear 

and nonlinear dynamic responses of the ring-stiffened sandwich truncated conical shells with 

GPLRC face sheets and porous core under a moving ring-shaped pressure loading based on the 

FSDT of shells. They obtained the linear solution by employing the Ritz method with Chebyshev 

polynomials multiplied by some boundary functions as its admissible basis functions (the so-called 

Chebyshev-Ritz method) and Newmark time integration technique. The large amplitude responses 

were extracted using the same approach but by considering the von Kármán geometric nonlinearity 

assumptions and additionally applying the Newton-Raphson method. Gao et al. [39] investigated 

the random vibration of FG-GPLRC conical shells due to base acceleration excitation by applying 

a combination of the spectro-geometric method and the pseudo-excitation method in the framework 

of the FSDT. Li et al. [40] analyzed the stochastic vibration responses of FG-GPLRC truncated 

conical shells subjected to meridional and circumferential moving random loads.  

Heydarpour et al. [41] estimated the thermoelastic responses of rotating FG-GPLRC 

truncated conical shells under a standing thermal shock loading based on the Lord-Shulman 

thermoelasticity theory. They employed the transformed differential quadrature method (TDQM) 

and a multi-step time integration scheme based on a non-uniform rational B-spline (NURBS) 

interpolation to solve the governing differential equations. Mohammadlou et al. [42] carried out 

the analysis on the steady state axisymmetric thermoelastic responses of a homogeneous thin-

walled conical shell subjected to uniform heat flow along its side surfaces. They assumed the 

thermal insulation at both ends of shell and utilized the Galerkin finite element method to solve the 

semi-coupled steady state thermoelastic equations. Recently, Heydarpour et al. [43] analyzed the 

thermal behavior of the sandwich truncated conical shells with GPLRC face sheets and GPLRC 

porous core under a moving heat flux using a non-Fourier heat conduction law. The thermoelastic 

deformation of the shell under thermo-mechanical loading was not studied in this work.   

To the best of our knowledge, the thermoelastic analysis of the sandwich truncated conical shells 

with GPLRC face sheets (GPLRC-FSs) and GPLRC porous core (GPLRC-PC) subjected to 

moving thermo-mechanical load has not been investigated yet. Due to their wide range of 

applications of composite truncated conical shells in aerospace engineering and other advanced 

industries, these types of thermoelastic problems have both academic value and industrial 

https://www.sciencedirect.com/topics/engineering/conical-shell
https://www.sciencedirect.com/topics/engineering/quadrature-method
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applications. On the other hand, the accurate predication of the thermoelastic behaviors of the 

sandwich truncated conical shells manufactured with GPLRC-FSs and GPLRC-PC under moving 

thermo-mechanical loading has a key role in their design and construction, typically adopted as 

structural components in aircrafts, or as loudspeaker cones in the music industry. In addition, it is 

an important and challenging problem from the academic point of view and it essential to develop 

a computationally efficient and simple numerical approach based on a relatively complete and 

accurate theory. Therefore, this work aims to provide an insight into the thermoelastic responses 

of these types of sandwich truncated conical shells under ring-shape moving thermo-mechanical 

loading. In order to capture the effect of thermos-mechanical shock loading, the Lord-Shulman 

thermoelasticity theory is chosen. On the other hand, an efficient and accurate numerical method 

is necessary for in-depth study of this complicated problem. To carry out this task, the Lord-

Shulman is employed to develop the thermoelastic equations of each layer of the sandwich shells 

in a layerwise manner. In addition, the natural compatibility conditions at the interface of the two 

adjoining layers together with the external boundary conditions at the inner surface, outer surface 

and the ends of the shell are explained and imposed exactly on the related surfaces. One advantage 

of this method over the other methods that used the weak form of the equations is that the strong 

form of the equations and the related boundary and natural compatibility conditions at the 

corresponding points are discretized. The verification and reliability of the present approach are 

completed by showing its convergence behavior and doing comparison studies with some available 

solutions in the limit cases. After that, the influences of the load velocity, porosity distribution and 

amounts, GPLs weight fractions and the shell geometric parameters on the thermoelastic responses 

of the sandwich truncated conical shells with GPLRC-FSs and GPLRC-PC are presented and 

discussed.  

2. Mathematical modelling 

The sandwich conical shells to be studied are composed of two GPLRC face sheets and a 

GPLRC core layer (Fig. 1) and have a length L, the smallest inner radius ,1R the largest inner radius

,2R  semi-vertex angle  , mean radius mR  (at its middle section) and total thickness h (see Fig. 

1a). The core layer and the face sheets are manufactured from a GPLs reinforced porous material 

and a GPLs reinforced polymer matrix, respectively, and it is assumed that the layers are perfectly 

bonded. In both core layer and face sheets, GPLs are uniformly distributed and randomly oriented. 
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In this work, the shells are under an axisymmetric ring-shape moving thermo-mechanical loading, 

which enter the shell with a constant velocity at the section z=0 and leave it at the section z= Lcosβ. 

On the other hand, the shells have axisymmetric geometry, material properties, and boundary 

conditions. Thus, a cylindrical coordinate system with coordinate variables ( )zr,  is appropriate 

and sufficient to detect the material points of the shells in the unreformed reference state (Fig. 1 

(a)). In continuation, the relations and equations that govern the transient thermoelastic responses 

of the sandwich shells with GPLRC-FSs and GPLRC-PC subjected to moving thermos-mechanical 

moving are reported. 

 

2.1 Material properties and the constitutive relations of GPLRC-FSs and GPLRC-PC 

To estimate the effective material properties of the GPLRC materials, it is assumed that the in-

plane properties of the individual GPLs are isotropic [19].  On the other hand, by considering that 

the rectangular GPLs are uniformly distributed and randomly oriented in the isotropic polymer 

matrix, the resulted nanocomposite becomes an isotropic and homogeneous material. Thus, its 

equivalent Young’s modulus can be obtained in terms of the GPL dimensions and volume fraction

( )GPLV , and the matrix Young’s modulus (Em) using the modified Halpin-Tsai micromechanical 

model, and described by [9] 
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The dimensionless parameters i and i (i=L,T) are related to the dimensions, the Young’s modulus 

of GPLs, and the Young’s modulus of matrix, and given as [19]           
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where GPLa , GPLb , GPLt  and GPLE denote the length, width, thickness and Young’s modulus of 

GPLs, respectively.  
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 The remainder properties of GPLRC material are determined using the simple mixture rule 

[19,44,45] 

GPLGPLmm VV  +=                                                                                                                 (3) 

GPLGPLmm VV  +=                                                                                                                   (4) 

GPLGPLmm VcVcc +=                                                                                                                    (5) 

GPLGPLmm VV  +=                                                                                                                 (6) 

where , , c and  are the mass density, Poisson’s ratio, specific heat capacity and thermal 

expansion coefficient of GPLRC, respectively. Also, the parameters with the subscripts “m” and 

“GPL” represent the counterpart parameters of the matrix and GPLs, respectively. The relation 

between the GPLs and matrix volume fractions is mV + GPLV =1.  

 It is clear that the measurement of the GPLs weight fraction is easier than their volume fraction. 

Thus, it is preferred to express the GPLs volume fraction by the related weight fraction ( )GPLw  and 

consider it as input data when reporting the extracted numerical results 
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The effective thermal conductivity of the GPLRC material (k) is estimated by the formulation 

suggested by Chu et al. [28,29] 
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where ,/ GPLGPL tap =   is a fitting parameter and ( )pH  is a dimensionless geometric function 

[46,47]  
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It is clear that the porosities influence the thermo-mechanical properties of the materials. To 

engineer the porosity distribution to achieve the required material properties, it is usually preferred 

to distribute the porosities along the thickness direction in a functionally graded (FG) manner. In 

the present work, three FG porosity distribution patterns that have been used by other researchers 

are considered. The effective Young’s modulus (E), density (  ), specific heat capacity (c) and 

thermal conductivity ( k ) of the porous core are estimated, respectively, according to the following 

equations [37,38],  
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( ) ( ) 0,1 erErE c −= , ( ) ( ) mc err ,1  −= , ( ) ( ) 0,1 ercrc c −= , ( ) ( ) 0,1 erkrk c −=   (10a-d) 

where Ec, c , cc and  kc are the effective Young’s modulus, density, specific heat capacity and 

thermal conductivity of the perfect GPLR core, respectively. In addition, the porosity functions 

( )0,ez  of the considered different distribution patterns are as follows [37,38] 

Type 1: ( ) ( ) reez −= 5.0cos, 

    

 

Type 2: ( ) ( ) reez −−= 5.0cos1, 

    

 

Type 3: ( ) ( ) reez 5.0cos, =

                                                 

(11a-c)  
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( )me ,0=  are determined as [37,38] 
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where min is the minimum density of the GPLR porous core. In this work, to provide a rational 

comparison studies when using different porosity distribution patterns, the GPLR porous cores 

with the same mass are examined.    

 The stress tensor components ij ( )zrji ,,, =  of the shell layer are related to the strain tensor 

components ij ( )zrji ,,, =  through the following constitutive relations [41] 
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where the strain tensor components ij ( )zrji ,,, = are related to the displacement components by 
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where u and w are the displacement components along the radial and axial directions at a 

material point of the shell. Also, the material stiffnesses ijC  are related to the material elastic 

constants as follows [41] 
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2.2. Transient thermoelastic analysis  

In this subsection, the differential equations governing the transient thermoelastic responses of 

the sandwich truncated conical shells with the GPLRC-FS and GPLRC-PC under internal 

axisymmetric moving heat flux and pressure loading are presented. These equations include the 

thermo-mechanical energy balance equation and the thermoelastic equations of motion together 

with the corresponding constitutive relations. Due to axisymmetric geometry, material, boundary 

conditions and mechanical loading conditions, the field variables do not vary along the tangential 

direction. Considering this point, the governing equations together with the related external 

boundary and compatibility conditions at the interface of two adjacent layers of the shell will be 

obtained in terms of the displacement components and temperature. 

The thermo-mechanical energy balance equation for each nanocomposite layer of the sandwich 

shell based on the Lord–Shulman thermoelasticity theory can be expressed as [48] 

( ) 











++
















+




++












+




=
















+

















z

w

r

u

r

u

tt
T

t

T

t

T
c

z

T
k

zr

T
rk

rr 2

2

002

2

0 23
1



   

(16) 

where T is the temperature at a material point of the shell, 0T  the stress-free temperature of 

the shell, t the time and 0  the relaxation time of the Lord–Shulman thermoelasticity theory. Also, 

the Lamé’s elastic constants (i.e.,  and  ) are related to the shell Young’s modulus and 

Poisson’s ratio as 
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The equations of motion along the radial and axial directions are summarized as follows, 

respectively 

u :    
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where 0TTT −= . 

The inner surface of the sandwich shell ( )iRr = i.e.,  is subjected to a tangentially uniform 

moving ring heat flux. Thus, the corresponding boundary condition on this surface is as follows  

( ))(00 tzzq
r

T
k −=



−                                                                                  (19) 

where 0q  and 0z  represent the intensity and the location along the z-axis of the moving heat flux, 

respectively. Also, ( )  is the Dirac delta function. In the current work, without losing 

generalization of the mathematical modelling and method of solution, the speed of the moving heat 

flux and mechanical loading is assumed to be a constant value u along the z-axis. These thermo-

mechanical loads enter the shell at time t=0, when the shell is at rest and at room temperature.  

The outer shell surface exchanges heat with the environment by the convection mechanism. Thus, 

the corresponding thermal boundary condition becomes  

At oRr = : ( )−=



− TTh

r

T
k c                                                                                                     (20) 

where T and hc are the temperature of outer environment and the convective heat transfer 

coefficient, respectively. In comparison with the heat transfer from the lateral shell surfaces, those 
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at the shell ends can be ignored. Hence, the thermal boundary conditions at shell ends are simplified 

as 

At 0=z and :cosLz =  0=




z

T
                                                                                             (21) 

Based on the aforementioned assumptions, the corresponding initial thermal conditions become 
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Due to layerwise nature of the solution technique, the satisfaction of the thermal compatibility 

conditions at the interface of two neighboring layers is essential. Accordingly, the following 

conditions must be considered
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where e=1, 2 and 3 indicate the inner face sheet, the core layer and the outer face sheet layer of the 

sandwich shell, respectively.     

The boundary conditions corresponding to a tangentially uniform moving ring pressure exerted 

on the shell inner surface are as follows 
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where 0P  and )(0 tz are the value and the position along the z-axis of the moving pressure, 

respectively. The traction free boundary conditions on the shell outer surface (i.e., oRr = ) are 

assumed. Therefore, the normal and shear components of the stress tensor must be zero on this 

surface  
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where rn and zn are the radial and axial components of the unit normal to the shell outer surface, 

respectively. In addition, the geometric and natural mechanical compatibility conditions must be 

kept at the interface of two adjacent shell layers “e” and “e+1” 
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where e=1, 2 and 3 indicate the inner face sheet, the core layer and the outer face sheet layer of the 

sandwich shell, respectively.  

Since it is assumed that the shell is at rest before loading, the zero initial displacement and velocity 

are considered as the initial mechanical conditions 
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The shells with some combinations of the following boundary conditions at their ends are analyzed 

in the present work 
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Clamped (C):  

0=u , 0=w                                                                                                                              (32a,b) 

3. Method of solution 

Because the presented governing differential equations have large number of variable 

coefficients, if it is not impossible, it would be very hard and cumbersome to solve them 

analytically. Therefore, the use of an appropriate approximate analytical or numerical method is 

essential to obtain their solution. On the other hand, it has been shown that the differential 

quadrature method (DQM) as an accurate and efficient numerical technique can be used for 

complicated structural problems; for example, see Refs. [49-53] and the related references. 

Therefore, this method is employed to spatially discretize the governing differential equations of 

each nanocomposite shell layer together with the related end boundary conditions and the 

compatibility conditions at the interface of two adjacent layers in the spatial domain. Since the 

computational domain of the DQM is a rectangular one, the skewed cross section of the multi-

layered truncated conical shells must be mapped into such a domain. The transformation between 

the two domains is completed using the following simple geometric rules  

 sin2 −+= Rr ,  cos=z                                                                                                 (33) 

where and   are the coordinate variables of the computational domain (see Fig. 2). In order to 

reduce the mathematical manipulations and consequently computational costs, the mapping and 
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DQM rules are combined and the discretized equations are obtained in a single stage (see Appendix 

A). To start the discretization procedure of the governing differential equations and the related 

boundary and compatibility conditions in the computational domain, each nanocomposite layer of 

the sandwich shell is meshed into N  and N  discrete points along the − and − directions, 

respectively. At the next stage, by employing the transformed DQM rules, the thermoelastic 

governing differential equations and the other conditions are spatially discretized at the domain 

grid points and the corresponding boundary grid points, respectively. To save the paper length, 

only the discretized form of Eq. (16) at the domain discrete point ( )ji  ,  is presented
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where the DQM weighting coefficients 
ijA

 
and 

ijB ( ) ,=  are defined in Appendix A. At the 

end of this stage, a system of ordinary differential equations in time domain is obtained as 

fKddCdM =++                                                                                                                        (35) 

where  TTTT wuTd ˆˆ= is the vector of unknown field variables at the grid points (or the so-

called degrees of freedom vector), M the mass matrix, C  the damping matrix, K the stiffness 

matrix and f the load vector. Vectors T , û  and ŵ  are the unknown temperature and displacement 

components vectors along the − and − axis, respectively. Also, dot over a variable or vector 
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means its time derivative with respect to time. It should be mentioned that based on the unknown 

vector definition, the elements of the matrices and the load vector in Eq. (35) are obtained from the 

coefficients of these field variables and the left-hand side of the discretized equations, respectively.  

   Different numerical techniques can be used to solve the initial value system of differential 

equations (35). In this work, a recently proposed multi-step method based on the NURBS curves 

is chosen to solve this system of equations. The computational efficiency and accuracy of this 

method have been successfully illustrated previously [54-58]. To apply this method, the system of 

equations (35) is split to a system of first-order differential equations as follows 





=++

=

fKdCyyM

yd





                                                                                                            

(36a,b) 

The order of the NURBS curves and the weighting coefficients ( )iw  for the NURBS curves with 

the same degrees are two important parameters that allow one to create different multi-step 

schemes. In this study, a four-step scheme with the weighting coefficients ,10 3

1

−=w ,12 ww =  

23 =w and 34 =w  [54-58] is selected to solve Eqs. (36a,b). Accordingly, the unknown variables 

in these equations at the time iteration “n+1” are obtained from their values at the time iterations 

(n,n-1,n-2,n-3) as follows, respectively  
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                                                           (37a,b)                        

where 

( )fKdCyMy +−−= −1ˆ                                                                                               (38) 

50002585.11 =a , 50005291.02 =a , 8

3 102827 −=a , 
7

4 1012 −=a                                      (39a-d) 

Also, t is the time step size. 
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It should be mentioned that in using this approach, the strong forms of the boundary conditions 

are also exactly discretized at the boundary grid points by employing the DQM rules. Then, the 

results are considered as algebraic equations into the final system of algebraic equations resulted 

from the differential equations governing the thermoelastic behavior of the shell under 

investigation. In addition, any types of boundary conditions can be easily implemented. 

 The solution process is started by determining the values of the unknown field variables at the 

first four points using the initial conditions and by solving a system of linear algebraic equations 

resulted from the first, second and third multi-step schemes. Afterward, the values of unknown 

field variables at the next iteration are determined. More details of this procedure can be found in 

Ref. [54]. The obtained results are then used as the initial conditions for the next time step. Finally, 

the output of this technique is the time history of the thermoelastic field variables at the DQ grid 

points of each GPLRC shell layer. 

4. Numerical results  

In this section, at first the current approach is validated and then some new numerical results are 

presented and discussed. The matrix phase of the sandwich shell is assumed to be epoxy and its 

material properties together with those of the reinforcing phase (i.e., GPLs) are provided in Table 

1. If otherwise not stated, the following non-dimensional parameters are used to facilitate the 

parametric studies 
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where ( )ck  /ˆ =
 
is the thermal diffusivity of the sandwich shells. In the absence of other 

specifications, the GPLs dimensions [41] and the other geometrical and physical parameters of the 

FG-GPLRC shells are assumed to have the following values 
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( ),μm5.2=GPLa ( ),μm5.1=GPLb ( ),nm5.1=GPLt ( ),m1=mR ( ),m1=L ( ),m1.0=h

( )2

0 W/m 50000=q , ( )K 3000 == TT , 100=ch ( )Km/W 2 ,  ,5.0= 1000 =P ( )MPa . 

Also, in this section, the symbolism such as “C-F”, means that the edge z=0 is clamped and the 

edge z=L has free boundary conditions.     

 

4.1. Validation 

As a first example, comparison between the results when using the NURBS-based multi-step 

time integration scheme and the Galerkin scheme from the Newmark’s family of time integrations 

is executed to verify its superior computational efficiency over this conventional approach. In this 

regard, the data in Table 2 show the convergence rate and the CPU time requirements of both 

methods for the thermoelastic analysis of the multilayer truncated conical shells with the GPLRC-

FS and GPLR-PC subjected to thermo-mechanical moving loads. The non-dimensional 

displacement and temperature at points 0=  are provided in this table. Based on the presented 

results, it is noted that in spite of the close agreement between the converged results of the two 

methods, the CPU time requirement of NURBS-based multi-step technique is much less than that 

of the Newmark’s scheme.  

The convergence behaviors of the non-dimensional thermoelastic field variables of the 

multilayer truncated conical shell with the GPLRC-FS and GPLRC-PC under the 

thermomechanical loadings against the DQ number of grid points along the radial and axial 

directions are exhibited in Figs. 3 and 4, respectively. As depicted in these figures, seven grid points 

per layer in the radial direction ( )7=N  and twenty-nine grid points along the axial direction 

( )29=N  yield adequate results. Also, based on the convergence study performed in Table 2, 400 

time steps are used to solve the system of ordinary differential equations (36) in the temporal 

domain.   
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To validate the presented approach for the thermoelastic analysis of rotating the FG truncated 

conical shell, an FG annular disk, as a limiting case of a truncated conical shell (truncated conical 

shell with 2/ =  and small length-to-outer radius ratio), subjected to a thermal environment 

studied by Peng and Li [59] using an analytical solution is analyzed here. Peng and Li [59] 

transformed the one-dimensional thermoelasticity equation into a Fredholm integral equation to 

obtain the analytical solution. To find such a solution, all the material properties, except Poisson’s 

ratio, were assumed to vary according to nr0 =  where 0  is a material constant at the outer 

surface and n is the material graded index. The material properties are as follows [59],  

,GPa70=mE ,3.0=m ( ),CW/m209 o=mK ( ),C1/1023 o6−=m ( ),Kg/m2700 3=m  

,GPa151=cE ,3.0=c ( ),CW/m2 o=cK ( ),C1/1010 o6−=c ( ),Kg/m5700 3=c  

Also the surface temperature at the inner and outer surfaces of the disk is assumed to be  

( ) CRT i

o0= , ( ) CRT o

o1000=                            (41a, b)

 

where iR and oR are inner and outer radius of disk, respectively. 

The non-dimensional radial displacement and the non-dimensional radial and tangential stress 

components at different locations and for different values of the material graded index ( )n are 

compared with those of Peng and Li [59] in Table 3. Excellent agreement between the results of 

the two approaches can be seen. 

For further validation of the present approach, the thermoelastic analysis of FG hollow 

cylindrical shells subjected to a thermal loading available in the literature is conducted. For this 

purpose, the formulation degenerates to those of the cylindrical shells by setting 0= . This 

example is chosen from the work of Santos et al. [60], who analyzed the FG cylindrical shells under 

thermal loading in the context of the uncoupled thermoelasticity. The material properties of the 
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shell constituents are provided in Table 4. They presented a semi-analytical finite element solution 

for the FG cylindrical shells subjected to the following thermal boundary and initial conditions  

At iRr = : ( ) ( )teTtzrT 5.0

0 1,, −−=
                                                                                              

(42) 
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


Th

r

T
k c
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At : ,0 Lz = ( ) 0,, =tzrT                                                                                                         (44a,b) 

They assumed that the material composition changes across the shell thickness from ceramic at the 

inner surface to metal at the outer surface along with the power law distribution as 

( ) ( ) mcmc VPPPrP −+=                                                                                                                 (45) 

where P is a generic material property, and 
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is the volume fraction of metal phase, 

wherein p denotes the power law index. In Figs. 5 (a) and (b), the through-the-thickness non-

dimensional temperature and displacement variations according to the two approaches and for 

different values of the power law index p are compared. The excellent agreement between the 

results of the two approaches shows the accuracy of the present approach. 

The present approach is further validated by analyzing an elastodynamic problem of FG 

truncated conical shells. For this purpose, the free vibration frequencies of a FG truncated conical 

shell with fully clamped ends are determined and compared with those reported by Bhangale et al. 

[61]. They estimated the frequencies based on the FSDT of shells by employing the finite element 

method. In their work, all the material properties vary according to the power law distribution as 

presented in Eq. (45) with

p

m
z

hz
V 







 +
−=

2

2
1 . Also, the following values for the material properties 

of the metal (SUS304) and ceramic (Si3N4) phases are considered 



 20 

,GPa27.322=mE ,24.0=m ( );kg/m2370 3=m ,GPa7877.207=cE ,317756.0=c

( )3kg/m8166=c  

In Figs. 6 (a) and (b) for two different values of the semi-vertex angle and the power law index p, 

the frequencies of the first 20 circumferential modes of the shell are illustrated and compared with 

those provided in Ref. [61]. The consistence between the obtained frequencies and those of Ref. 

[61] partially verifies the current approach.  

4.2. Parametric studies 

In this section, some parametric studies aim at analyzing the sensitivity of the responses to 

different porosity distribution and amount, GPLs weight fraction, boundary conditions at the shell 

ends, moving thermomechanical load velocity, etc.  

 As the first study, the effects of the porosity distribution on the through-the-thickness variations 

and the time-histories of the no-dimensional temperature, displacement and stress tensor 

components of the sandwich shells under investigation are exhibited in Figs. 7 and 8, respectively. 

As can be observed from Figs. (7a) the gradient of the temperature in the type-2 shell of the porosity 

distribution is greater than those of the other cases when   lies between 0 and almost 0.3. In 

addition, the displacement gradient of this type of shell is generally greater than those of the other 

two shell types of the porosity distributions. These issues together with the nonlinear variations of 

the material properties along the thickness direction cause a different trend of the stress variations 

for the type-2 shell in comparison with the other two cases. The influences of the porosity amount 

on these non-dimensional field variables are shown in Figs. 9 and 10 and Table 5. The results in 

these figures and table indicate that both the porosity distribution and porosity amount change the 

temperature distribution in the region traveled by the heat wave. However, they have no visible 

effect on the time histories of temperature at a specified point of the shell. This is because the 
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nonuniform distribution of the porosities in the core thickness direction causes the thermal 

properties to vary in this direction. Thus, by changing the type of porosity distribution, the 

variations of these parameters change, and the temperature distribution in the thickness direction 

also changes. However, since the porosity distribution and amount do not significantly affect the 

thermal properties of the sandwich shell under consideration, the time history of temperature at a 

specific point of the shell does not change considerably. For example, the variations in the specific 

heat capacity, thermal conductivity and mass density of the shell are smaller than 2 percent once 

the porosity amount parameter (i.e., 0e ) increases from 0 to 0.6. On the other hand, its effects on 

the Young’s modulus of the sandwich shell are excessive. The Young’s modulus of the shell is 

reduced by almost 37.46% when the porosity amount changes from 0 to 0.6. Thus, by increasing 

the porosity amount parameter (i.e., 0e ), the overall stiffness of the shell reduces, which increases 

the displacement components. In addition, any porosity distribution that reduces the overall 

stiffness of the shell, increases the displacement components. Among the three types of porosity 

distributions considered in this work, more porosities are distributed in the region near the inner 

surface of the core layer in type-3 distribution, whereas more porosities are distributed near the 

inner and outer surfaces of the core layer in type 2, and near the middle region of the core layer in 

type 1. On the other hand, it can be realized that the more away the porosity distribution from the 

outer surface of the core layer, the stiffer the shell structure. It can be seen that the stress 

components are affected by the type of porosity distribution and amount. This is because the 

variations of the porosity distribution in the core layer cause the variation of the shell Young’s 

modulus in the shell thickness direction and the increase of the porosity amount further increases 

the variation of the material properties. It should be noted that if the Young’s modulus remains 

constant, its constant value does not affect the stress tensor components in the shell layers. Thus, 
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both the porosity distribution type and amount affect the stress tensor components in the shell layers, 

and a stiffer shell has lower stress components in general. The obtained results confirm this 

behavior, further validating the present approach. In addition, one can see that the stress 

components approach their steady state values when the time level increases. 

 To explore the effects of GPLs weight fraction on the thermoelastic characteristics of the 

sandwich truncated conical shells, the through-the-thickness variations of dimensionless 

temperature, radial displacement and stress components are illustrated in Fig. 11, and the time 

histories of these filed variables at the points on the centerline of the shell middle section are shown 

in Fig. 12.  As can be seen from Fig. 11(a), by increasing the GPL weight fraction, the heat wave 

speed increases meanwhile the maximum temperature decreases (see also Fig. 12(a)). The reason 

of this is that by adding GPLs, the thermal conductivity increases noticeably, but the density and 

specific heat capacity reduce a little. On the other hand, from Eq. (16), it can be deduced that the 

heat wave speed is proportional to
0c

k
. Therefore, any parameter that increases the thermal 

conductivity and decreases the mass density and specific heat capacity will increase the heat wave 

speed. In addition, when the GPLs weight fraction increases from zero to one percent, the thermal 

conductivity is increased by 78%, meanwhile the mass density and specific heat capacity have no 

considerable change and virtually remain constant. As a results, the maximum temperature must 

decrease by increasing the GPLs weight fraction. Figs. 11 (b) and (12b) depict the influences of 

GPLs weight fraction on the dimensionless radial displacement component. It is clear from Fig. 11 

(b) that by increasing the GPL weight fraction, the distribution of the displacement component 

changes. Since the GPLs are uniformly distributed, the change of the weight fraction should not 

affect the distribution of the displacement component and therefore, there must be other reasons 

for this trend. One of the major features in this regard may be due to the dissimilar boundary 

conditions on the inner and outer surfaces of the shell. To further discuss this issue, it should be 

noted that the outer surface of the shell is traction free   meanwhile its inner surface is subjected to 

a thermomechanical moving load. Thus, the boundary conditions on the outer surface become 

independent of the Young’s modulus, and the boundary conditions on its inner surface depend on 

it (see Eq. (24)). In addition, the boundary conditions at the ends of the shell are independent of the 
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Young’s modulus. Thus, by changing the Young’s modulus, the displacement variation along the 

radial direction should change. Also, another feature that could affect this issue slightly is the 

variation of temperature distribution due to change of the GPLs weight fraction. The reduction of 

the displacement at all times when the load is applied on the shell is more exhibited in Fig. 12 (b). 

The reason of this trend is that by increasing the GPL weight fraction, the overall shell stiffness 

increases and consequently, the displacement decreases. As can be expected, the change of the 

GPL weigh fraction does not affect the distributions of the stress components along the radial 

direction.  This is owing to two reasons: 1) the uniform distribution of the GPLs through the 

thickness of the shell, 2) the linear analysis of the shell deformation, which make the stress 

components independent of the change of the Young’s modulus. The same behavior is observed 

for the time histories of the stress components in Figs. 12 (c) and (d), except when the load is at 

the near- end of the shell for the relatively large value of GPLs weight fraction which may be 

computational error due to very low values of the stress components. These expectations validate 

the reported results. 

 The effects of dimensionless relaxation time on the temperature and displacement variations 

along the shell thickness for two different positions of the thermo-mechanical loading are 

illustrated in Fig. 13. It is clear that by increasing the relaxation time, the temperature rise 

decreases. This is due to the fact that by increasing this parameter the heat wave speed 














0c

k

decreases. When the load is at middle section of the shell (i.e., the case of Fo=0.5), neither the 

displacement nor the temperature is considerably changed by varying the dimensionless relaxation 

time. But, when the load leaves the shell (i.e., the case of Fo=1.0), its effects on the reduction of 

temperature and displacement are clearly observable.          

 The impacts of thermo-mechanical moving load speed on the thermoelastic responses of the 

sandwich truncated conical shell with the GPLRC-FS and GPLRC-PC are studied in Figs. 14 and 

15. These figures show that the temperature and displacement decrease when increasing the 

thermo-mechanical load speed in the range of 0.01 to 1 (cm/s). This is because by increasing the 

load speed, the time duration of the applied moving load reduces and also the load travels through 

the shell in less time. Due to its thermal resistance and inertia, the shell cannot react to this rapidly-

applied load promptly, and therefore, the temperature and displacement reduce by increasing the 
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moving load speed. On the other hand, when increasing the load speed, the gradient of the 

displacement decreases, which causes the reduction of the strain components and consequently the 

stress components as observed in Figs. 14(c), 14 (d),15 (c) and 15 (d). 

 The influences of the shell thickness-to-length ratio on the thermoelastic behavior of the 

sandwich shell under investigation are shown in Figs. 16 and 17. It is observed that the increase of 

this geometric parameter causes the reduction of the temperature, displacement and stress 

components. This is because, by increasing the shell thickness, the thermal resistance, the mass   

and the overall stiffness of the sandwich shell increase, which reduces the transient temperature 

and the displacements of the shell when it is subjected to a constant moving internal heat flux and 

ring pressure. In addition, the increase of the shell thickness reduces the displacement gradients, 

consequently decreasing the values of stress components. It is interesting to note that by increasing 

the shell thickness the heat wave front becomes observable.    

In Figs. 18-20, the impacts of different end boundary conditions of the shell on its dimensionless 

displacement and stress components are explored. The through-the-thickness variations of the 

dimensionless field variables at two dimensionless times Fo=0.5 and Fo=1 are shown in Figs. 18 

and 19, respectively. When Fo=0.5, the load is at the middle section of the shell, and when Fo=1, 

the load is at the end section of the shell. It is observed that the influences of the boundary 

conditions on the responses of the shell depend on the location of the load. However, the shell with 

completely clamped edges has the lowest displacement and stress values regardless of the load 

position. When the load is at the middle section of the shell, the stress components of the shell with 

the C-S ends have slightly greater magnitudes than those of the shell with C-F ends. This is because 

in this situation, the displacement gradients of the shell with C-S ends are greater than those of the 

shell with a free edge. But when Fo=1.0, the load is on the end section of the shell and it can be 

expected, the shell with C-F edges has the greatest displacement and stress components in this case. 

At this time, the load acts on the free edge of the shell with C-F ends and on the simply supported 

edges of the shell with C-S ends. On the other hand, the simply supported and clamped constraints 

prevent the radial displacement of edges. Thus, less deformations are induced for the shells with 

C-C and C-S edges than the shell with C-F edges at this position. Also, based on Fig. 19, there are 

no substantial differences between the results through the thickness direction for the shells with C-

F and C-S edges. The time histories of the dimensionless displacement and stress components at 

the points on the center of the middle section of the shell are exhibited in Fig. 20. The results show 
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that by increasing the constraints at the edges of the shell, the dimensionless displacement and hoop 

stress component reduce. Due to one free edge, the shell with C-F edges can more easily expand 

in the radial direction under the internally applied load than the shells with C-C and C-S edges. 

Thus, it has greater hoop stresses than those of the shells with the other boundary conditions. As 

can be expected, the maximum transverse shear stress component ( )rz  and the axial stress 

component ( )zz  of the shell with C-F boundary conditions are lower than those of the shells with 

C-C and C-S boundary conditions. This is owing to the fact that to prevent the radial displacement 

of the shell edges, the nonzero transverse shear stresses must exist at these edges. For the shell with 

one free edge, the transverse shear stress is absent on the free edge and consequently, the maximum 

value of this stress component becomes less than those of the other cases. However, at the time 

that the thermo-mechanical load is near the end of the shell, due to the radial edge constraints the 

shell with C-C and C-S edges have lower transverse shear and axial normal stress components than 

the shell with C-F edges. 

5. Conclusions 

The thermoelastic responses of the sandwich truncated conical shells with GPLRC face sheets 

and GPLRC porous core subjected to moving thermo-mechanical load were investigated 

successfully based on the Lord-Shulman thermoelasticity theory. The applied theory had no 

kinematical assumption as those used in the two-dimensional theories, thus accurately predicted 

the thermoelastic behaviors of the sandwich truncated conical shells. On the other hand, the 

numerical method employed to obtain the solution was a layerwise hybrid technique that used the 

strong form of the equations, and also implemented the boundary and compatibility conditions at 

the interfaces of the layers exactly at the corresponding grid points. Also, the time domain was 

discretized using a computationally efficient multi-step NURBS based technique. After verifying 

the correctness and accuracy of the proposed approach in the limit cases, some parametric studies 

were conducted and discussed to explore the effects of the porosity distribution and amount, GPLs 

weight fraction, load velocity, edge boundary conditions and the shell geometric parameters on the 

thermoelastic behaviors of the under-investigation sandwich shells. Based on the provided results, 

some findings are summarized as follows: 
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• The porosity distribution and amount do not significantly affect the time history of temperature 

at a specific point of the shell; however, they change the distribution of temperature along the 

thickness direction. 

• The increase of porosity amount increases the displacement components. In addition, the type 

of porosity distribution affects the displacement, and in the case when the porosities are more 

distributed near the inner surface of the core layer, the displacement has the lowest values. 

• The increase of the GPLs weight fraction increases the heat wave speed but decreases the 

maximum value of the temperature.  

• The GPLs weigh fraction has no influence on the stress components, but addition of GPLs 

reduces the displacement component considerably. In addition, the increase of the GPLs weight 

fraction changes the distribution of the radial displacement component along the shell thickness 

direction.  

• By increasing the thickness-to-length of the shell, the temperature, displacement and stress 

components reduce. 

• The impacts of the end boundary conditions of the shell on its response depend on the position 

of the moving thermo-mechanical load. However, the shell with completely clamped edges has 

the lowest displacement and stress values regardless of the load position in comparison with the 

C-F and C-S ends shells.  

In the future works, the influences of the geometric nonlinearity on the thermoelastic responses 

of the sandwich shells with GPLs with GPLs reinforced face sheets and porous core subjected to 

different moving thermo-mechanical loads will be studied. 

 

Appendix A. The combined geometric mapping and DQM 

 Using the geometric transformation together with the DQM rules, the spatial derivatives are 

discretized as [41] 
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where 
ijA

 
and 

ijB ( ) ,=  are the DQM weighting coefficients of the first and second-order 

derivatives in the  -direction, respectively [41]. Also,  

 sin2 −+= Rr ,  cos=z                                                                                        (A6,7) 

 

 

Nomenclature 


ijij AA ,  

The DQM first-order weighting coefficients corresponding to the 𝜉 − and 

𝜂 −directions, respectively, m-2 

GPLa  The GPLs length, m 

GPLb  The GPLs width, m 


ijij BB ,  

The DQM second-order weighting coefficients corresponding to the 𝜉 − and 

𝜂 −directions, respectively, m-4 

b The total thickness of the truncated cone in the computational domain, m 

c  The specific heat capacity, J.kg-1.K-1 

ijc  The specific heat capacity at a typical grid point ( )ji  , ,  J.kg-1.K-1 

ijC  The material stiffnesses at a typical grid point ( )ji  , , N.m-2 

C The damping matrix 

t
  

Time step, s 

E The effective Young’s modulus, N.m-2 
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e0, em The porosity coefficients, dimensionless 

Fo  Fourier number, dimensionless 

f The load vector 

( )pH  A geometric parameter, dimensionless 

h  The thickness of the truncated cone in each layer, m 

ch  The convective heat transfer coefficient, W.m-2.K 

k  The thermal conductivity, W.m-1.K-1 

GPLk  The thermal conductivity of the GPLs, W.m-1.K-1 

ijk  
The thermal conductivity at a typical grid point ( )ji  , , W.m-1.K-1 

mk  The thermal conductivity of the matrix, W.m-1.K-1 

K The stiffness matrix 

L  Length of the truncated cone, m 

M The mass matrix 

m The material graded index, dimensionless 

LN  The number of physical layers 

tN  The number of time steps, dimensionless 

 NN ,  The grid points along the   ,   and  -directions, dimensionless 

P  A typical material property 

p The power law index, dimensionless 

Po The value of the moving pressure, N.m-2 

0q
 

The intensity of the moving heat flux, J.m-2.s-1 
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iR , oR  The inner and outer radius of the shell, m 

( )zRi , ( )zRo  The inner and outer radiuses of the truncated cone at the section z, m 

1R ,
2R  The inner radiuses of the largest and smallest sections of the truncated cone, m 

mR  The mean radius of the truncated cone at section 2/cosL , m 

r 
The radial coordinate variable, m 

T  Temperature, K 

ijT  The temperature at a typical grid point ( )ji  , , K 

0T  The initial temperature, K 

T  The unknown temperature vector 

T  The ambient temperature, K 

T , T*
 The non-dimensional temperature, dimensionless 

t  Time, s 

GPLt  The GPLs thickness, m 

rn , zn  
The radial and axial components of the unit normal to the shell outer surface, 

dimensionless 

U A dimensionless parameter, defined in equation (40d) 

u The displacement component along the radial direction, m  

û   The unknown displacement components vector along the − axis 

u* The velocity of the moving load, cm.s-1 

GPLV  The GPLs volume fraction, dimensionless 

mV  The matrix volume fraction, dimensionless 

w The displacement component along the axial direction, m 
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ŵ   The unknown displacement component vector along the − axis, m 

GPLw  The GPLs weight fraction, dimensionless 

wi 
The weighting coefficients of the multi-step time integration scheme, 

dimensionless 

z 
The axial coordinate variable, m 

zo The location of the thermomechanical moving load along the z-axis, m 

Greek symbols 

  The thermal expansion coefficient, K-1 

ij  The thermal expansion coefficient at a typical grid point ( )ji  , , K-1 

  The semi-vertex angle, degree 

  A fitting parameter, dimensionless 

  A dimensionless parameter, defined in equation (40e) 

  A coordinate variable in the computational domain, m 

  A cylindrical coordinate variable, degree 

ij  A dimensionless parameter, defined in equation (40f) 

ij  The stress tensor components, N.m-2 

ij  The strain tensor components, dimensionless 

 and   The Lamé’s elastic constants, N.m-2  

  The poisson’s ratio, dimensionless 

  The coordinate variable in the computational domain, m 

  Density, kg.m-3 

ij  The density at a typical grid point ( )ji  , , kg.m-3 
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0  The relaxation time, s 

  A dimensionless parameter, defined in equation (40b) 

  The porosity function 

𝛿( ) Dirac delta function 

Subscripts 

c Ceramic material 

GPL Graphene platelets 

m Matrix material 

i Grid point along the  -direction 

j Grid point along the  -direction 

  The porosity coefficient 

Superscripts 

e Physical layer 

NL Outer layer 

p Power law index, dimensionless 

− Dimensionless 

* Dimensionless 
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Table 1. Material properties of the epoxy and GPLs [41]. 

Material Epoxy GPLs 

E (GPa)
 3  1010 

  0.34 0.186 

( )3kg/m
 

1200 1062.5 

c (J/kgK) 1110 644 

( )1/K
 

61060 −  
6105 −  

k (W/mK) 0.246 3000 

 

Table 2. Comparison between the convergence and CPU time requirement of the 

NURBS-based multi-step technique and the Newmark’s scheme for the analysis of 

the clamped multilayer truncated conical shell with the GPLRC-FS and GPLRC-PC 

 %,1=GPLW ,5.0,0 ==  ,4.00 =e  porosity type 1, o15= , ,1o =F

( ),cm/s1.0* =u  
01.0= . 

  NURBS-based scheme   Newmark’s scheme  

tN  T  U CPU time (s) T  U CPU time (s) 

25 18.5398 0.9742 0.023179 18.5498 0.9570 14.022937 

50 18.5620 0.9833 0.039076 18.5517 0.9862 29.594114 

100 18.5696 0.9975 0.054275 18.5543 0.9988 54.511361 

200 18.5743 1.0031 0.079816 18.5866 1.0043 107.38951 

300 18.5779 1.0058 0.185271 18.5954 1.0061 162.56988 

400 18.5803 1.0062 0.225409 18.5967 1.0065 210.23766 

500 18.5816 1.0062 0.278912 18.5981 1.0066 304.07169 

 

 

 

https://doi.org/10.1016/j.compstruct.%202008.03.004
https://doi.org/10.1016/j.compstruct.%202008.03.004
https://doi.org/10.1016/j.jsv.2005.07.039
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Table 3. Comparison of the results for the freely rotating FG annular disk 

subjected to non-uniform temperature rise  ,2.0/ o =RRi ,05.0/ o =RL
 

,m1o  =R ( ),Rad/s600= 5.0= .
 

   Present  Analytical [59]  

n    U    
rr  U    

rr  

0.5 0 0.1813 0.3691 1.41E-4 0.1813 0.3689 0 
 0.5 0.2546 0.1730 0.1290 0.2547 0.1735 0.1294 
 1 0.4054 0.0101 -1.24E-4 0.4054 0.0102 0 

0 0 0.1470 0.6675 -1.51E-4 0.1468 0.6680 0 
 0.5 0.2381 0.1639 0.1583 0.2381 0.1636 0.1580 
 1 0.3997 0.005 -3.62E-4 0.3994 4.73E-3 0 

-0.5 0 0.1197 1.2163 -4.60E-4 0.1194 1.2152 0 
 0.5 0.2267 0.1464 0.1891 0.2267 0.1465 0.1893 
 1 0.3965 0.0021 -1.43E-5 0.3961 1.74E-3 0 

 

Table 4. Material properties of ceramic (Zirconia) 

and metal (steel) [60]. 

Material Zirconia steel 

( )Ccm/W 0k  2.09 20 

( )3m/kg  5700 8166 

( )CCv

okg/J  531.9 325.35 

( )MPaE  168.06 207.79 

( )C/1 o  4103.2 −  
5105.1 −  

  0.298 0.3178 

 

Table 5. The influences of the load velocity and porosity amount on the 

results for the clamped multilayer truncated conical shell with the GPLRC-

FS and GPLRC-PC  %,3.0=GPLW ,5.0==  porosity type 1, o15= , 
03.0=
 

   5.0=Fo   1=Fo   

e0 u*
(cm/s) T  U  zz  T  U  zz  

0 0.01 143.6198 25.1383 -0.0802 66.4413 7.1292 -0.1531 
 0.1 13.8985 20.4797 0.0298 17.4160 1.9781 -0.0372 
 1 0.1812 19.8943 0.0493 0.4331 0.2636 -0.0012 

0.

4 

0.01 83.5917 27.3651 -0.1162 68.3034 7.3584 -0.1594 
 0.1 16.4484 22.4693 0.0024 19.5281 2.1887 -0.0419 
 1 0.3768 21.7591 0.0274 1.1982 0.2942 -0.0032 

0.

6 

0.01 87.4499 29.2158 -0.1664 69.6473 7.6196 -0.1637 
 0.1 17.9356 24.0962 -0.0414 20.7403 2.3379 -0.0445 
 1 0.2104 23.2775 -0.0107 1.9920 0.3168 -0.0051 
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(a) 

 

 

 

 

 

(b) 

Fig. 1: The geometry and coordinate system of multilayer GPLRC truncated conical shell. 

 

(a) The physical domain 

 

(b) The computational domain 

Fig. 2 The physical and computational domains. 



 41 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3: Through-the-thickness variation of the results for the clamped multilayer truncated conical 

shell with the GPLRC-FS and GPLRC-PC, and different DQ number of grid point along the radial 

direction  %,3.0=GPLW ,5.0= ,4.00 =e  porosity type 1, o15= , 29=N , ,5.0=Fo

( ),cm/s1* =u  
03.0= . 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4: Through-the-thickness variations of the results for the clamped multilayer truncated conical 

shell with the GPLRC-FS and GPLRC-PC, and different DQ number of grid point along the axial 

direction  %,3.0=GPLW ,5.0= ,4.00 =e  porosity type 1, o15= , 9=N , ,5.0=Fo

( ),cm/s1* =u  
03.0= .  
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(a)  

 
(b) 

Fig. 5: Transient non-dimensional temperature distribution and radial displacement across the 

thickness for a FG hollow cylinder subjected to a prescribed temperature on its inner surface 

( ) ,cm4i =R ( ),cm6o =R  t=1(s), ( ),cm20=L ,/ 0TTT = 5.0= .  

 

 
(a) 

o15=  

 
(b) 

o30=  

Fig. 6: First natural frequency corresponding to the first twelve circumferential wave numbers of 

the clamped FG truncated conical shell ( ,292/ =HR  ,0438.1/ =RL 


+
=

2

21 RR
R . 
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(a) 

 
(b) 

 
(c) 

 
(d)  

Fig. 7: Effects of porosity distribution pattern on the through-the-thickness variation of the results 

of the clamped multilayer truncated conical shell with the GPLRC-FS and GPLRC-PC 

 %,3.0=GPLW  ,5.0= ,5.0=Fo ,4.00 =e o15= , ( ),cm/s1* =u 03.0= . 
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0=  

(a) 

 
 

(b) 

 
(c) 

 
(d) 

Fig. 8: Effects of porosity distribution pattern on the time histories of the results of the clamped 

multilayer truncated conical shell with the GPLRC-FS and GPLRC-PC  %,3.0=GPLW  

,5.0,5.0 ==  ,4.00 =e o15= , ( ),cm/s1* =u 03.0= .  
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(a) 

 
(b) 

 
(c) 

 
(d)  

Fig. 9: Effects of porosity amounts on the through-the-thickness variation of the results of the 

clamped multilayer truncated conical shell with the GPLRC-FS and GPLRC-PC  %,3.0=GPLW  

,5.0= ,5.0=Fo  porosity type 1, o15= , ( ),cm/s1* =u 03.0= . 
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0=  

(a) 

 
 

(b) 

 
(c) 

 
(d) 

Fig. 10: Effects of porosity amounts on the time histories of the results of the clamped multilayer 

truncated conical shell with the GPLRC-FS and GPLRC-PC  %,3.0=GPLW  ,5.0,5.0 ==   

porosity type 1, o15= , ( ),cm/s1* =u 03.0= . 
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(a) 

 
(b) 

 
(c)  

 
(d)  

Fig. 11: Effects of GPLs weight fraction on the through-the-thickness variation of the results of 

the clamped multilayer truncated conical shell with the GPLRC-FS and GPLRC-PC  ,5.0=

,5.0=Fo  ,4.00 =e porosity type 1, o15= , ( ),cm/s1* =u 03.0= . 
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(a)  

 
(b) 

 
(c) 

 
(d) 

Fig. 12: Effects of GPLs weight fraction on the time histories of the results of the clamped 

multilayer truncated conical shell with the GPLRC-FS and GPLRC-PC   ,5.0,5.0 ==  ,4.00 =e  

porosity type 1, o15= , ( ),cm/s1* =u 03.0= . 
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(a) 5.0,5.0 o == F  

 
(b) 1,5.0 o == F  

 

 
(c) 5.0,5.0 o == F  

 

 
(d) 0.1,5.0 o == F  

Fig. 13: Effects of the relaxation time on the through-the-thickness variations of the non-

dimensional temperature and radial displacement for clamped multilayer truncated conical shell 

with the GPLRC-FS and GPLRC-PC  %,3.0=GPLW ,4.00 =e  porosity type 1, o15= , 

( )cm/s1* =u . 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 14: Effects of speed of the moving heat flux and pressure on the through-the-thickness 

variation of the results of the clamped multilayer truncated conical shell with the GPLRC-FS and 

GPLRC-PC  %,3.0=GPLW ,5.0= ,5.0=Fo ,4.00 =e porosity type 1, o15= , 03.0= .  
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0=  

(a) 

 
 

(b) 

 
(c) 

 
(d) 

Fig. 15: Effects of speed of the moving heat flux and pressure on the time histories of the results 

of the clamped multilayer truncated conical shell with the GPLRC-FS and GPLRC-PC  

 %,3.0=GPLW  ,5.0,5.0 ==  ,4.00 =e  porosity type 1, o15= , 
03.0= . 
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(a) 

 
(b) 

 
(c) 

 
(d)  

Fig. 16: Effects of the thickness-to-length ratio on the through-the-thickness variation of the results 

of the clamped multilayer truncated conical shell with the GPLRC-FS and GPLRC-PC 

 %,3.0=GPLW  ,5.0= ,5.0=Fo  ,4.00 =e porosity type 1, o15= , ( ),cm/s1* =u 03.0= . 
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(a) 

 

 
(b) 

 
(c) 

 
(d) 

Fig. 17: Effects of the thickness-to-length ratio on the time histories of the results of the clamped 

multilayer truncated conical shell with the GPLRC-FS and GPLRC-PC  %,3.0=GPLW  

,5.0,5.0 ==  ,4.00 =e  porosity type 1, o15= , ( ),cm/s1* =u 03.0= . 
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Fig. 18: Effects of the boundary conditions on the through-the-thickness variation of the results of 

the multilayer truncated conical shell with the GPLRC-FS and GPLRC-PC  %,3.0=GPLW  

,5.0= ,1=Fo  ,4.00 =e porosity type 1, o15= , ( ),cm/s1* =u 03.0= . 
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Fig. 19: Effects of the boundary conditions on the through-the-thickness variation of the results of 

the multilayer truncated conical shell with the GPLRC-FS and GPLRC-PC  %,3.0=GPLW  

,5.0= ,5.0=Fo  ,4.00 =e porosity type 1, o15= , ( ),cm/s1* =u 03.0= . 
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Fig. 20: Effects of the boundary conditions on the time histories of the results of the multilayer 

truncated conical shell with the GPLRC-FS and GPLRC-PC  %,3.0=GPLW  ,5.0,5.0 == 

,4.00 =e  porosity type 1, o15= , ( ),cm/s1* =u 03.0= . 

 

 


