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A B S T R A C T

The thermoelastic responses of the sandwich truncated conical shells with graphene platelets (GPLs) reinforced 
composite face sheets and GPLs reinforced composite porous core subjected to ring-shape moving thermo- 
mechanical loading are studied. In order to capture the influences of the finite heat wave speed and the 
thermo-mechanical coupling, the Lord-Shulman thermoelasticity theory, which has no kinematical assumption 
such as those used in the two-dimensional theories, is employed to accurately estimate the thermoelastic be
haviors of the sandwich shells. A layerwise hybrid numerical technique composed of the differential quadrature 
method and multi-step based NURBS method is applied to discretize the strong form of the equations in the 
spatial and temporal domains, respectively. Also, the boundary and compatibility conditions at the interfaces of 
the layer are exactly implemented at the corresponding grid points. After validating the proposed approach, 
parametric studies are conducted and discussed to explore the impacts of the porosity amount and distribution, 
GPLs weight fractions, thermo-mechanical load velocity, edge boundary conditions and some other parameters 
on the thermoelastic behaviors of the sandwich shells. The results indicate that the increase of the GPLs weight 
fraction decreases the displacement and changes its distribution along the shell thickness but does not affect the 
stress distribution. Also, the porosity distribution pattern changes the displacement distribution, and the 
displacement has the lowest values when the porosity is higher near the inner surface of the core layer.

1. Introduction

Due to their high structural performances and also design re
quirements, truncated conical shells have found a wide range of appli
cations in different fields of engineering such as marine, aerospace, civil 
and mechanical engineering; for example, in underwater vehicles, 
aircraft propulsion systems, spacecraft, missiles and reactors [1–6]. To 
achieve high-performance lightweight conical shells, composite mate
rials have been used to form these types of structural elements. Among 
them, sandwich materials are commonly used to build up shells of 
different shapes [7,8]. The sandwich materials are composed of a rela
tively thick soft and low-density layer placed between two thin but stiff 
layers. The core layer is usually made of cellular polymeric foam ma
terials, metallic and non-metallic honeycombs, balsa wood or trusses. 
Also, the face sheets are structured from laminated composite materials 
or metals such as aluminum.

Nowadays, the advances in manufacturing technologies, particularly 
conception of 3D printing [9–13], have permitted the scientists in the 

related field to create high-performance new composite materials by 
replacing the micro-sized reinforcements with the nano-sized fillers, 
which can be used as the face sheets of sandwich materials for advanced 
technologies. One of the important and emerging nanofillers is graphene 
platelets (GPLs) [14–16]. These very thin flat monolayer nanomaterials 
are structured by joining carbon atoms in a hexagonal lattice pattern. 
GPLs have ease and low cost of manufacturing in comparison to gra
phene and its other derivatives, in addition to extraordinary properties 
such as Young’s modulus, strength, thermal conductivity, electrical 
conductivity and chemical stability [17–19]. It has been explored that 
addition of small amount of GPLs in any matrix materials results in a 
significant improvement of the mechanical properties of the resulting 
advanced nanocomposites [19].

Despite some advantages of porosities in the core layer of sandwich 
shells such as low density, sound isolation, impact and thermal resis
tance, they reduce the overall stiffness of the resulted composite shells. 
However, the porosities in the core layer can be tailored to satisfy the 
required performance [20,21]. On the other hand, it has been shown 
that reinforcing the porous materials with a small amount of GPLs can 
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Nomenclature

Aξ
ij,A

η
ij The DQM first-order weighting coefficients corresponding 

to the ξ − and η − directions, respectively, m− 2

aGPL The GPLs length, m
bGPL The GPLs width, m
Bξ

ij,B
η
ij The DQM second-order weighting coefficients 

corresponding to the ξ − and η − directions, respectively, 
m− 4

b The total thickness of the truncated cone in the 
computational domain, m

c The specific heat capacity, J kg− 1 K− 1

cij The specific heat capacity at a typical grid point 
(
ξi, ηj

)
, J 

kg− 1 K− 1

Cij The material stiffnesses at a typical grid point 
(
ξi, ηj

)
, N 

m− 2

C The damping matrix
Δt Time step, s
E The effective Young’s modulus, N m− 2

e0, em The porosity coefficients, dimensionless
Fo Fourier number, dimensionless
f The load vector
H(p) A geometric parameter, dimensionless
h The thickness of the truncated cone in each layer, m
hc The convective heat transfer coefficient, W m− 2 K
k The thermal conductivity, W m− 1 K− 1

kGPL The thermal conductivity of the GPLs, W m− 1 K− 1

kij The thermal conductivity at a typical grid point 
(
ξi, ηj

)
, W 

m− 1 K− 1

km The thermal conductivity of the matrix, W m− 1 K− 1

K The stiffness matrix
L Length of the truncated cone, m
M The mass matrix
M The material graded index, dimensionless
NL The number of physical layers
Nt The number of time steps, dimensionless
Nξ, Nη The grid points along the ξ , η and θ− directions, 

dimensionless
P A typical material property
p The power law index, dimensionless
Po The value of the moving pressure, N m− 2

q0 The intensity of the moving heat flux, J m− 2 s− 1

Ri,Ro The inner and outer radius of the shell, m
Ri(z),Ro(z) The inner and outer radiuses of the truncated cone at the 

section z, m
R1,R2 The inner radiuses of the largest and smallest sections of 

the truncated cone, m
Rm The mean radius of the truncated cone at section Lcosβ/2, 

m
r The radial coordinate variable, m
T Temperature, K
Tij The temperature at a typical grid point 

(
ξi, ηj

)
, K

T0 The initial temperature, K
T The unknown temperature vector
T∞ The ambient temperature, K
T, T* The non-dimensional temperature, dimensionless

t Time, s
tGPL The GPLs thickness, m
nr,nz The radial and axial components of the unit normal to the 

shell outer surface, dimensionless
U A dimensionless parameter, defined in equation (40d)
u The displacement component along the radial direction, m
û The unknown displacement components vector along the 

ξ − axis
u* The velocity of the moving load, cm s− 1

VGPL The GPLs volume fraction, dimensionless
Vm The matrix volume fraction, dimensionless
w The displacement component along the axial direction, m
ŵ The unknown displacement component vector along the 

η − axis, m
wGPL The GPLs weight fraction, dimensionless
wi The weighting coefficients of the multi-step time 

integration scheme, dimensionless
Z The axial coordinate variable, m
zo The location of the thermomechanical moving load along 

the z-axis, m

Greek symbols
α The thermal expansion coefficient, K− 1

αij The thermal expansion coefficient at a typical grid point 
(
ξi, ηj

)
, K− 1

β The semi-vertex angle, degree
γ A fitting parameter, dimensionless
ζ A dimensionless parameter, defined in equation (40e)
η A coordinate variable in the computational domain, m
θ A cylindrical coordinate variable, degree
Σij A dimensionless parameter, defined in equation (40f)
σij The stress tensor components, N m− 2

εij The strain tensor components, dimensionless
λ and μ The Lamé’s elastic constants, N m− 2

ν The Poisson’s ratio, dimensionless
ξ The coordinate variable in the computational domain, m
ρ Density, kg m− 3

ρij The density at a typical grid point 
(
ξi, ηj

)
, kg m− 3

τ0 The relaxation time, s
τ A dimensionless parameter, defined in equation (40b)
Ξ The porosity function
δ() Dirac delta function

Subscripts
C Ceramic material
GPL Graphene platelets
M Matrix material
I Grid point along the ξ− direction
j Grid point along the η− direction
χ The porosity coefficient

Superscripts
e Physical layer
NL Outer layer
p Power law index, dimensionless
− Dimensionless
* Dimensionless

P. Malekzadeh et al.                                                                                                                                                                                                                           Composite Structures 373 (2025) 119713 

2 



compensate this effect and enhance their stiffness [22,23]. Thus, 
without increasing its thickness or its weight considerably, the porous 
core layer can also be reinforced by GPLs to recover its lost stiffness.

The mechanical and thermo-mechanical behaviors of the truncated 
conical shells made of different homogeneous and composite materials 
have been investigated in recent years [24–29]. In continuation, some of 
these works are briefly reviewed.

Yang et al. [30] employed the first-order shear deformation theory 
(FSDT) under the von-Kármán nonlinear geometric assumptions to 
investigate the nonlinear free vibration behaviors of a functionally 
graded graphene platelet-reinforced composite (FG-GPLRC) truncated 
conical shell. They applied the Galerkin method together with the har
monic balance method (HBM) to analytically estimate the nonlinear 
frequencies of the shell. Baranifard et. al. [31] studied the free vibration 
characteristics of the point supported sandwich truncated conical shells 
with GPLRC face sheets and porous core using a first-order shear 
deformation-based zigzag shell theory. They utilized linear elastic 
springs to simulate the point supports and solve the problem by applying 
the Ritz method with Chebyshev polynomials multiplied by some 
boundary functions as its admissible basis functions (the so-called 
Chebyshev-Ritz method). Youseftabar et al. [32] introduced an analyt
ical approach to present the nonlinear free vibrational behavior of a 
porous cone-shaped shell surrounded by an elastic media based on the 
FSDT subjected to von Kármán large deformation assumptions. They 
determined the nonlinear frequencies by means of the Galerkin 
decomposition and the harmonic balance methods. By using the trav
eling wave vibration analysis, Li et al. [33] studied the nonlinear vi
bration characteristics of rotating sandwich conical shell with GPLRC 
porous core and aluminum face sheets. They modeled the shell defor
mation according to the FSDT and von Kármán nonlinear geometric 

nonlinear assumptions. The nonlinear vibration behaviors of axially 
moving porous GPLRC truncated conical shells were discussed in a 
research work by Huang et al. [34]. They derived the shell motion 
equations in the context of the classical shell theory and utilized the 
Galerkin method to extract frequencies. Khoddami Maraghi et al. [35] 
explored the effects of GPLs distribution patterns and the shell geometric 
parameters on the linear free vibration frequencies of a sandwich 
truncated conical shell with a re-entrant auxetic core and GPLRC face 
sheets based on the FSDT of shells. A combination of the trigonometric 
functions and the differential quadrature method (DQM) was employed 
to spatially discretize the motion equations and the related boundary 
conditions.

Huang et al. [36] reported the static stability of porous FG-GPLRC 
truncated conical shells loaded by hydrostatic pressure and axial ten
sion. They obtained the critical buckling hydrostatic pressure and axial 
tension using the Galerkin method. Bahranifard et al. [37,38] studied 
the linear and nonlinear dynamic responses of the ring-stiffened sand
wich truncated conical shells with GPLRC face sheets and porous core 
under a moving ring-shaped pressure loading based on the FSDT of 
shells. They obtained the linear solution by employing the Ritz method 
with Chebyshev polynomials multiplied by some boundary functions as 
its admissible basis functions (the so-called Chebyshev-Ritz method) and 
Newmark time integration technique. The large amplitude responses 
were extracted using the same approach but by considering the von 
Kármán geometric nonlinearity assumptions and additionally applying 
the Newton-Raphson method. Gao et al. [8] investigated the random 
vibration of FG-GPLRC conical shells due to base acceleration excitation 
by applying a combination of the spectro-geometric method and the 
pseudo-excitation method in the framework of the FSDT. Li et al. [39] 
analyzed the stochastic vibration responses of FG-GPLRC truncated 

Fig. 1. The geometry and coordinate system of multilayer GPLRC truncated conical shell.
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conical shells subjected to meridional and circumferential moving 
random loads.

Heydarpour et al. [40] estimated the thermoelastic responses of 
rotating FG-GPLRC truncated conical shells under a standing thermal 
shock loading based on the Lord-Shulman thermoelasticity theory. They 
employed the transformed differential quadrature method (TDQM) and 
a multi-step time integration scheme based on a non-uniform rational B- 
spline (NURBS) interpolation to solve the governing differential equa
tions. Mohammadlou et al. [41] carried out the analysis on the steady 
state axisymmetric thermoelastic responses of a homogeneous thin- 
walled conical shell subjected to uniform heat flow along its side sur
faces. They assumed the thermal insulation at both ends of shell and 
utilized the Galerkin finite element method to solve the semi-coupled 
steady state thermoelastic equations. Recently, Heydarpour et al. [42] 
analyzed the thermal behavior of the sandwich truncated conical shells 
with GPLRC face sheets and GPLRC porous core under a moving heat 
flux using a non-Fourier heat conduction law. The thermoelastic 
deformation of the shell under thermo-mechanical loading was not 
studied in this work.

To the best of our knowledge, the thermoelastic analysis of the 
sandwich truncated conical shells with GPLRC face sheets (GPLRC-FSs) 
and GPLRC porous core (GPLRC-PC) subjected to moving thermo- 
mechanical load has not been investigated yet. Due to their wide 
range of applications of composite truncated conical shells in aerospace 
engineering and other advanced industries, these types of thermoelastic 
problems have both academic value and industrial applications. On the 
other hand, the accurate predication of the thermoelastic behaviors of 
the sandwich truncated conical shells manufactured with GPLRC-FSs 
and GPLRC-PC under moving thermo-mechanical loading has a key 
role in their design and construction, typically adopted as structural 
components in aircrafts, or as loudspeaker cones in the music industry. 
In addition, it is an important and challenging problem from the aca
demic point of view and it essential to develop a computationally effi
cient and simple numerical approach based on a relatively complete and 
accurate theory. Therefore, this work aims to provide an insight into the 
thermoelastic responses of these types of sandwich truncated conical 
shells under ring-shape moving thermo-mechanical loading. In order to 
capture the effect of thermos-mechanical shock loading, the Lord- 
Shulman thermoelasticity theory is chosen. On the other hand, an effi
cient and accurate numerical method is necessary for in-depth study of 
this complicated problem. To carry out this task, the Lord-Shulman is 
employed to develop the thermoelastic equations of each layer of the 
sandwich shells in a layerwise manner. In addition, the natural 
compatibility conditions at the interface of the two adjoining layers 
together with the external boundary conditions at the inner surface, 
outer surface and the ends of the shell are explained and imposed exactly 
on the related surfaces. One advantage of this method over the other 
methods that used the weak form of the equations is that the strong form 
of the equations and the related boundary and natural compatibility 
conditions at the corresponding points are discretized. The verification 
and reliability of the present approach are completed by showing its 
convergence behavior and doing comparison studies with some avail
able solutions in the limit cases. After that, the influences of the load 
velocity, porosity distribution and amounts, GPLs weight fractions and 
the shell geometric parameters on the thermoelastic responses of the 
sandwich truncated conical shells with GPLRC-FSs and GPLRC-PC are 
presented and discussed.

2. Mathematical modelling

The sandwich conical shells to be studied are composed of two 
GPLRC face sheets and a GPLRC core layer (Fig. 1) and have a length L, 
the smallest inner radius R1, the largest inner radius R2, semi-vertex 
angle β, mean radius Rm (at its middle section) and total thickness h 
(see Fig. 1a). The core layer and the face sheets are manufactured from a 
GPLs reinforced porous material and a GPLs reinforced polymer matrix, 

respectively, and it is assumed that the layers are perfectly bonded. In 
both core layer and face sheets, GPLs are uniformly distributed and 
randomly oriented. In this work, the shells are under an axisymmetric 
ring-shape moving thermo-mechanical loading, which enter the shell 
with a constant velocity at the section z = 0 and leave it at the section z 
= Lcosβ. On the other hand, the shells have axisymmetric geometry, 
material properties, and boundary conditions. Thus, a cylindrical coor
dinate system with coordinate variables (r, z) is appropriate and suffi
cient to detect the material points of the shells in the unreformed 
reference state (Fig. 1(a)). In continuation, the relations and equations 
that govern the transient thermoelastic responses of the sandwich shells 
with GPLRC-FSs and GPLRC-PC subjected to moving thermos- 
mechanical moving are reported.

2.1. Material properties and the constitutive relations of GPLRC-FSs and 
GPLRC-PC

To estimate the effective material properties of the GPLRC materials, 
it is assumed that the in-plane properties of the individual GPLs are 
isotropic [19]. On the other hand, by considering that the rectangular 
GPLs are uniformly distributed and randomly oriented in the isotropic 
polymer matrix, the resulted nanocomposite becomes an isotropic and 
homogeneous material. Thus, its equivalent Young’s modulus can be 
obtained in terms of the GPL dimensions and volume fraction (VGPL), and 
the matrix Young’s modulus (Em) using the modified Halpin-Tsai 
micromechanical model, and described by [9] 

E =

(
3
8

1 + ζLηLVGPL

1 − ηLVGPL
+

5
8

1 + ζTηTVGPL

1 − ηTVGPL

)

Em (1) 

The dimensionless parameters ζi and ηi(i = L,T) are related to the di
mensions, the Young’s modulus of GPLs, and the Young’s modulus of 
matrix, and given as [19] 

ζL = 2 (aGPL/tGPL) = 2(aGPL/bGPL)(bGPL/tGPL)ζT = 2 (bGPL/tGPL)ηL

=
(EGPL/Em) − 1
(EGPL/Em) + ζL 

ηT =
(EGPL/Em) − 1
(EGPL/Em) + ζT

(2a-d) 

where aGPL, bGPL, tGPL and EGPL denote the length, width, thickness and 
Young’s modulus of GPLs, respectively.

The remainder properties of GPLRC material are determined using 
the simple mixture rule [19,43,44] 

ρ = ρmVm + ρGPLVGPL (3) 

ν = νmVm + νGPLVGPL (4) 

c = cmVm + cGPLVGPL (5) 

α = αmVm +αGPLVGPL (6) 

where ρ,ν, c and α are the mass density, Poisson’s ratio, specific heat 
capacity and thermal expansion coefficient of GPLRC, respectively. Also, 
the parameters with the subscripts “m” and “GPL” represent the coun
terpart parameters of the matrix and GPLs, respectively. The relation 
between the GPLs and matrix volume fractions is Vm+VGPL = 1.

It is clear that the measurement of the GPLs weight fraction is easier 
than their volume fraction. Thus, it is preferred to express the GPLs 
volume fraction by the related weight fraction (wGPL) and consider it as 
input data when reporting the extracted numerical results 

VGPL =
wGPL

wGPL + (ρGPL/ρm)(1 − wGPL)
(7) 

The effective thermal conductivity of the GPLRC material (k) is 
estimated by the formulation suggested by Chu et al. [28,29] 
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k
km

=
2/3 (VGPL − 1/p)γ

H(p) + 1/(kGPL/km − 1)
+1 (8) 

where p = aGPL/tGPL, γ is a fitting parameter and H(p) is a dimensionless 
geometric function [45,46] 

H(p) =
ln
(

p +
̅̅̅̅̅̅̅̅̅̅̅̅̅
p2 − 1

√ )
p

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(p2 − 1)3
√ −

1
p2 − 1

(9) 

It is clear that the porosities influence the thermo-mechanical 
properties of the materials. To engineer the porosity distribution to 
achieve the required material properties, it is usually preferred to 
distribute the porosities along the thickness direction in a functionally 
graded (FG) manner. In the present work, three FG porosity distribution 
patterns that have been used by other researchers are considered. The 
effective Young’s modulus (E), density (ρ), specific heat capacity (c) and 
thermal conductivity (k) of the porous core are estimated, respectively, 

according to the following equations [37,38], 

E(r) = Ec[1 − Ξ(r, e0) ], ρ(r) = ρc[1 − Ξ(r, em) ], c(r)

= cc[1 − Ξ(r, e0) ], k(r) = kc[1 − Ξ(r, e0) ] (10a-d) 

where Ec, ρc, cc and kc are the effective Young’s modulus, density, spe
cific heat capacity and thermal conductivity of the perfect GPLR core, 
respectively. In addition, the porosity functions Ξ(z, e0) of the consid
ered different distribution patterns are as follows [37,38]. 

Type 1 : Ξ
(
z, eχ

)
= eχcos[π(0.5 − r) ]

Type 2 : Ξ
(
z, eχ

)
= 1 − eχcos[π(0.5 − r) ]

Type 3 : Ξ
(
z, eχ

)
= eχcos(0.5rπ) (11a-c) 

where r =

[
r− Ri(z)
hsecβ

]

, which indicates that 0 ≤ r ≤ 1, and χ = 0, m. Also, 

the porosity coefficients eχ(χ = 0,m) are determined as [37,38]. 

e0 = 1 −
ρmin

ρc
, em = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − e0

√
(12a,b) 

where ρmin is the minimum density of the GPLR porous core. In this 
work, to provide a rational comparison studies when using different 
porosity distribution patterns, the GPLR porous cores with the same 
mass are examined.

The stress tensor components σij(i, j = r, θ, z) of the shell layer are 
related to the strain tensor components εij(i, j = r, θ, z) through the 
following constitutive relations [40] 

Fig. 2. The physical and computational domains.

Table 1 
Material properties of the epoxy and GPLs [40].

Material Epoxy GPLs

E (GPa) 3 1010
ν 0.34 0.186

ρ
(

kg/m3
)

1200 1062.5

c(J/kg K) 1110 644
α (1/K) 60× 10− 6 5× 10− 6

k (W/mK) 0.246 3000

Table 2 
Comparison between the convergence and CPU time requirement of the NURBS-based multi-step technique and the Newmark’s scheme for the analysis of the clamped 
multilayer truncated conical shell with the GPLRC-FS and GPLRC-PC [WGPL = 1%, ζ = 0, η = 0.5,e0 = 0.4, porosity type 1,β = 15o, Fo = 1,u* = 0.1 (cm/s), τ = 0.01].

NURBS-based scheme Newmark’s scheme
Nt T∗ U CPU time (s) T∗ U CPU time (s)

25 18.5398 0.9742 0.023179 18.5498 0.9570 14.022937
50 18.5620 0.9833 0.039076 18.5517 0.9862 29.594114
100 18.5696 0.9975 0.054275 18.5543 0.9988 54.511361
200 18.5743 1.0031 0.079816 18.5866 1.0043 107.38951
300 18.5779 1.0058 0.185271 18.5954 1.0061 162.56988
400 18.5803 1.0062 0.225409 18.5967 1.0065 210.23766
500 18.5816 1.0062 0.278912 18.5981 1.0066 304.07169
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⎧
⎪⎪⎨

⎪⎪⎩

σrr
σθθ
σzz
σrz

⎫
⎪⎪⎬

⎪⎪⎭

=

⎡

⎢
⎢
⎣

C11 C12 C13 0
C12 C22 C23 0
C13 C23 C33 0
0 0 0 C55

⎤

⎥
⎥
⎦

⎧
⎪⎪⎨

⎪⎪⎩

εrr
εθθ
εzz

2ε0rz

⎫
⎪⎪⎬

⎪⎪⎭

(13) 

where the strain tensor components εij(i, j = r, θ, z) are related to the 
displacement components by 

εrr =
∂u
∂r
, εθθ =

u
r
, εzz =

∂w
∂z

,2εrz =
∂u
∂z

+
∂w
∂r

(14a-d) 

where u and w are the displacement components along the radial and 
axial directions at a material point of the shell. Also, the material stiff
nesses Cij are related to the material elastic constants as follows [40]. 

C11 = C22 = C33 =
(1 − ν)E

(1 + ν)(1 − 2ν),C12 = C23 = C13

=
νE

(1 + ν)(1 − 2ν),C55 =
E

2 (1 + ν) (15a-c) 

2.2. Transient thermoelastic analysis

In this subsection, the differential equations governing the transient 
thermoelastic responses of the sandwich truncated conical shells with 
the GPLRC-FS and GPLRC-PC under internal axisymmetric moving heat 
flux and pressure loading are presented. These equations include the 

thermo-mechanical energy balance equation and the thermoelastic 
equations of motion together with the corresponding constitutive re
lations. Due to axisymmetric geometry, material, boundary conditions 
and mechanical loading conditions, the field variables do not vary along 
the tangential direction. Considering this point, the governing equations 
together with the related external boundary and compatibility condi
tions at the interface of two adjacent layers of the shell will be obtained 
in terms of the displacement components and temperature.

The thermo-mechanical energy balance equation for each nano
composite layer of the sandwich shell based on the Lord–Shulman 
thermoelasticity theory can be expressed as [47] 

1
r

∂
∂r

(

rk
∂T
∂r

)

+
∂
∂z

(

k
∂T
∂z

)

= ρ c
(

∂T
∂t

+ τ0
∂2T
∂t2

)

+ α(3λ + 2μ)T0

(

τ0
∂2

∂t2

+
∂
∂t

)(
∂u
∂r

+
u
r
+

∂w
∂z

)

(16) 

where T is the temperature at a material point of the shell, T0 the stress- 
free temperature of the shell, t the time and τ0 the relaxation time of the 
Lord–Shulman thermoelasticity theory. Also, the Lamé’s elastic con
stants (i.e.,λ and μ) are related to the shell Young’s modulus and Pois
son’s ratio as λ = Eν

(1+ν)(1− 2ν) and μ = E
2(1+ν).

The equations of motion along the radial and axial directions are 

Fig. 3. Through-the-thickness variation of the results for the clamped multilayer truncated conical shell with the GPLRC-FS and GPLRC-PC, and different DQ number 
of grid point along the radial direction [WGPL = 0.3%, η = 0.5,e0 = 0.4, porosity type 1,β = 15o, Nη = 29,Fo = 0.5,u* = 1 (cm/s), τ = 0.03].
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Fig. 4. Through-the-thickness variations of the results for the clamped multilayer truncated conical shell with the GPLRC-FS and GPLRC-PC, and different DQ 
number of grid point along the axial direction [WGPL = 0.3%, η = 0.5,e0 = 0.4, porosity type 1,β = 15o, Nξ = 9,Fo = 0.5,u* = 1 (cm/s), τ = 0.03].

Table 3 
Comparison of the results for the freely rotating FG annular disk subjected to non-uniform temperature rise [Ri/Ro = 0.2, L/Ro = 0.05,Ro = 1 m,Ω = 600 (Rad/s),
η = 0.5].

Present Analytical [58]
n ϛ U Σθθ Σrr U Σθθ Σrr

0.5 0 0.1813 0.3691 1.41E− 4 0.1813 0.3689 0
​ 0.5 0.2546 0.1730 0.1290 0.2547 0.1735 0.1294
​ 1 0.4054 0.0101 − 1.24E− 4 0.4054 0.0102 0
0 0 0.1470 0.6675 − 1.51E− 4 0.1468 0.6680 0
​ 0.5 0.2381 0.1639 0.1583 0.2381 0.1636 0.1580
​ 1 0.3997 0.005 − 3.62E− 4 0.3994 4.73E− 3 0
− 0.5 0 0.1197 1.2163 − 4.60E− 4 0.1194 1.2152 0
​ 0.5 0.2267 0.1464 0.1891 0.2267 0.1465 0.1893
​ 1 0.3965 0.0021 − 1.43E− 5 0.3961 1.74E− 3 0

Table 4 
Material properties of ceramic (Zirconia) and metal (steel) [59].

Material Zirconia steel

k (W/cm ∧0C) 2.09 20
ρ
(

kg/m3) 5700 8166
Cv (J/kg oC) 531.9 325.35
E (MPa) 168.06 207.79
α (1/ oC) 2.3× 10− 4 1.5× 10− 5

ν 0.298 0.3178
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Fig. 5. Transient non-dimensional temperature distribution and radial displacement across the thickness for a FG hollow cylinder subjected to a prescribed tem
perature on its inner surface [Ri = 4 (cm), Ro = 6 (cm), t = 1(s), L = 20 (cm),T = T/T0 , η = 0.5].

Fig. 6. First natural frequency corresponding to the first twelve circumferential wave numbers of the clamped FG truncated conical shell (R/H = 292, L/R =

1.0438,R = R1+R2
2

)

.
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summarized as follows, respectively 

δu 

rC11
∂2u
∂r2 +

(

r
dC11

dr
+ C12

)
∂u
∂r

+ rC55
∂2u
∂z2 +

(
dC12

dr
−

C22

r

)

u +

(

r
dC13

dr
+ C13

− C23

)
∂w
∂z

+ r(C55 + C13)
∂2w
∂r∂z

= rρ ∂2u
∂t2 + r

(
dC11

dr
+

dC12

dr
+

dC13

dr

)

αΔT 

+ r(C11 + C12 + C13 )
∂
∂r

(αΔT) (17) 

δw 

(

r
dC55

dr
+ C23 + C55

)
∂u
∂z

+ r(C13 + C55)
∂2u
∂r∂z

+ rC55
∂2w
∂r2 +

(

r
dC55

dr

+ C55

)
∂w
∂r

+ rC33
∂2w
∂z2

= r(C13 + C23 +C33)
∂
∂z

(αΔT)+ rρ ∂2w
∂t2 (18) 

where ΔT = T − T0.

The inner surface of the sandwich shell (i.e., r = Ri) is subjected to a 
tangentially uniform moving ring heat flux. Thus, the corresponding 
boundary condition on this surface is as follows 

− k
∂T
∂r

= q0 δ(z − z0(t)) (19) 

where q0 and z0 represent the intensity and the location along the z-axis 
of the moving heat flux, respectively. Also, δ( ) is the Dirac delta func
tion. In the current work, without losing generalization of the mathe
matical modelling and method of solution, the speed of the moving heat 
flux and mechanical loading is assumed to be a constant value u along 
the z-axis. These thermo-mechanical loads enter the shell at time t = 0, 
when the shell is at rest and at room temperature.

The outer shell surface exchanges heat with the environment by the 
convection mechanism. Thus, the corresponding thermal boundary 
condition becomes. 

At r = Ro : − k
∂T
∂r

= hc (T − T∞) (20) 

where T∞ and hc are the temperature of outer environment and the 
convective heat transfer coefficient, respectively. In comparison with 
the heat transfer from the lateral shell surfaces, those at the shell ends 
can be ignored. Hence, the thermal boundary conditions at shell ends are 
simplified as 

Fig. 7. Effects of porosity distribution pattern on the through-the-thickness variation of the results of the clamped multilayer truncated conical shell with the GPLRC- 
FS and GPLRC-PC [WGPL = 0.3%, η = 0.5, Fo = 0.5, e0 = 0.4, β = 15o, u* = 1 (cm/s), τ = 0.03].
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At z = 0 and z = Lcosβ :
∂T
∂z

= 0 (21) 

Based on the aforementioned assumptions, the corresponding initial 
thermal conditions become. 

T(r, z,0) = T0,
∂T(r, z, t)

∂t

⃒
⃒
⃒
⃒
t=0

= 0 (22a,b) 

Due to layerwise nature of the solution technique, the satisfaction of 
the thermal compatibility conditions at the interface of two neighboring 
layers is essential. Accordingly, the following conditions must be 
considered. 

T
(
R(e)

o , t
)
= T

(
R(e+1)

i , t
)
, k

∂T
∂r

⃒
⃒
⃒
⃒
r=R(e)

o

= k
∂T
∂r

⃒
⃒
⃒
⃒
r=R(e+1)

i

, for e = 1, 2, 3

(23a,b) 

where e = 1, 2 and 3 indicate the inner face sheet, the core layer and the 
outer face sheet layer of the sandwich shell, respectively.

The boundary conditions corresponding to a tangentially uniform 
moving ring pressure exerted on the shell inner surface are as follows

At r = Ri: 

Fig. 8. Effects of porosity distribution pattern on the time histories of the results of the clamped multilayer truncated conical shell with the GPLRC-FS and GPLRC-PC 
[WGPL = 0.3%, ζ = 0.5, η = 0.5, e0 = 0.4, β = 15o, u* = 1 (cm/s), τ = 0.03].
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nr

[

C11
∂u
∂r

+ C12
u
r
+ C13

∂w
∂z

− (C11 + C12 + C13)(αΔT)
]

+ nz

[

C55

(
∂u
∂z

+
∂w
∂r

)]

= P0 δ(z − z0(t))
(24) 

nz

[

C13
∂u
∂r

+ C23
u
r
+ C33

∂w
∂z

− (C13 + C23 + C33)(αΔT)
]

+ nr

[

C55

(
∂u
∂z

+
∂w
∂r

)]

= 0
(25) 

where P0 and z0(t) are the value and the position along the z-axis of the 
moving pressure, respectively. The traction free boundary conditions on 
the shell outer surface (i.e., r = Ro) are assumed. Therefore, the normal 
and shear components of the stress tensor must be zero on this surface 

nr

[

C11
∂u
∂r

+ C12
u
r
+ C13

∂w
∂z

− (C11 + C12 + C13)(αΔT)
]

+ nz

[

C55

(
∂u
∂z

+
∂w
∂r

)]

= 0
(26) 

nz

[

C13
∂u
∂r

+ C23
u
r
+ C33

∂w
∂z

− (C13 + C23 + C33)(αΔT)
]

+ nr

[

C55

(
∂u
∂z

+
∂w
∂r

)]

= 0
(27) 

where nr and nz are the radial and axial components of the unit normal to 
the shell outer surface, respectively. In addition, the geometric and 
natural mechanical compatibility conditions must be kept at the inter
face of two adjacent shell layers “e” and “e + 1”

u
(
R(e)

o , z, t
)
= u

(
R(e+1)

i , z, t
)

, w
(
R(e)

o , z, t
)
= w

(
R(e+1)

i , z, t
)

and  

Fig. 9. Effects of porosity amounts on the through-the-thickness variation of the results of the clamped multilayer truncated conical shell with the GPLRC-FS and 
GPLRC-PC [WGPL = 0.3%, η = 0.5,Fo = 0.5, porosity type 1,β = 15o, u* = 1 (cm/s), τ = 0.03].

{

nr

[

C11
∂u
∂r

+ C12
u
r
+ C13

∂w
∂z

− (C11 + C12 + C13)(αΔT)
]

+ nz

[

C55

(
∂u
∂z

+
∂w
∂r

)]}

r=R(e)
o

=
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where e = 1, 2 and 3 indicate the inner face sheet, the core layer and the 
outer face sheet layer of the sandwich shell, respectively.

Since it is assumed that the shell is at rest before loading, the zero 
initial displacement and velocity are considered as the initial mechani
cal conditions 

u(r, z,0) = 0,w(r, z,0) = 0,
∂u(r, z, t)

∂t

⃒
⃒
⃒
⃒
t=0

= 0,
∂w(r, z, t)

∂t

⃒
⃒
⃒
⃒
t=0

= 0

(29a-d) 

The shells with some combinations of the following boundary con
ditions at their ends are analyzed in the present work

Free (F): 

C55

(
∂u
∂z

+
∂w
∂r

)

= 0,C13
∂u
∂r

+C23
u
r
+C33

∂w
∂z

− (C13 + C23 + C33)(αΔT) = 0

(30a,b) 

Simply support (S): 

u = 0,C13
∂u
∂r

+C23
u
r
+C33

∂w
∂z

− (C13 + C23 + C33)(αΔT) = 0 (31a,b) 

Clamped (C): 

u = 0,w = 0 (32a,b) 

3. Method of solution

Because the presented governing differential equations have large 
number of variable coefficients, if it is not impossible, it would be very 
hard and cumbersome to solve them analytically. Therefore, the use of 
an appropriate approximate analytical or numerical method is essential 
to obtain their solution. On the other hand, it has been shown that the 
differential quadrature method (DQM) as an accurate and efficient nu
merical technique can be used for complicated structural problems; for 
example, see Refs. [48–52] and the related references. Therefore, this 
method is employed to spatially discretize the governing differential 
equations of each nanocomposite shell layer together with the related 

end boundary conditions and the compatibility conditions at the inter
face of two adjacent layers in the spatial domain. Since the computa
tional domain of the DQM is a rectangular one, the skewed cross section 
of the multi-layered truncated conical shells must be mapped into such a 
domain. The transformation between the two domains is completed 
using the following simple geometric rules 

r = R2 + ξ − ηsinβ, z = ηcosβ (33) 

where ξ and η are the coordinate variables of the computational domain 
(see Fig. 2). In order to reduce the mathematical manipulations and 
consequently computational costs, the mapping and DQM rules are 
combined and the discretized equations are obtained in a single stage 
(see Appendix A). To start the discretization procedure of the governing 
differential equations and the related boundary and compatibility con
ditions in the computational domain, each nanocomposite layer of the 
sandwich shell is meshed into Nξ and Nη discrete points along the ξ −
and η − directions, respectively. At the next stage, by employing the 
transformed DQM rules, the thermoelastic governing differential equa
tions and the other conditions are spatially discretized at the domain 
grid points and the corresponding boundary grid points, respectively. To 
save the paper length, only the discretized form of Eq. (16) at the domain 
discrete point 

(
ξi, ηj

)
is presented here 

kij
(
1 + tan2β

) ∑
Nξ

k=1
Bξ

ikTkj +

[
(
1

+ tan2β
)
(

∂k
∂ξ

)

ij
+

kij

R2 + ξi − ηjsinβ

]
∑Nξ

k=1

Aξ
ikTkj + kijsec2β

∑Nη

l=1

Bη
jlTil +

secβtanβ
(

∂k
∂ξ

)

ij

∑Nη

l=1
Aη

jlTil +2kijtanβ secβ
∑Nξ

m=1

∑Nη

n=1
Aξ

ikA
η
jlTkl

= ρijcij

(
dTij

dt
+ τ0

d2Tij

dt2

)

+

{

nr

[

C11
∂u
∂r

+ C12
u
r
+ C13

∂w
∂z

− (C11 + C12 + C13)(αΔT)
]

+ nz

[

C55

(
∂u
∂z

+
∂w
∂r

)]}

r=R(e+1)
i 

{

nz

[

C13
∂u
∂r

+ C23
u
r
++C33

∂w
∂z

− (C13 + C23 + C33)(αΔT)
]

+ nr

[

C55

(
∂u
∂z

+
∂w
∂r

)]}

r=R(e)
o

=

{

nz

[

C13
∂u
∂r

+ C23
u
r
++C33

∂w
∂z

− (C13 + C23 + C33)(αΔT)
]

+ nr

[

C55

(
∂u
∂z

+
∂w
∂r

)]}

r=R(e+1)
i

(28a-d) 
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Table 5 
The influences of the load velocity and porosity amount on the results for the clamped multilayer truncated conical shell with the GPLRC-FS and GPLRC-PC 
[WGPL = 0.3%, ζ = η = 0.5, porosity type 1,β = 15o,τ = 0.03]

Fo = 0.5 Fo = 1
e0 u*(cm/s) T∗ U Σzz T∗ U Σzz

0 0.01 143.6198 25.1383 − 0.0802 66.4413 7.1292 − 0.1531
​ 0.1 13.8985 20.4797 0.0298 17.4160 1.9781 − 0.0372
​ 1 0.1812 19.8943 0.0493 0.4331 0.2636 − 0.0012
0.4 0.01 83.5917 27.3651 − 0.1162 68.3034 7.3584 − 0.1594
​ 0.1 16.4484 22.4693 0.0024 19.5281 2.1887 − 0.0419
​ 1 0.3768 21.7591 0.0274 1.1982 0.2942 − 0.0032
0.6 0.01 87.4499 29.2158 − 0.1664 69.6473 7.6196 − 0.1637
​ 0.1 17.9356 24.0962 − 0.0414 20.7403 2.3379 − 0.0445
​ 1 0.2104 23.2775 − 0.0107 1.9920 0.3168 − 0.0051

Fig. 10. Effects of porosity amounts on the time histories of the results of the clamped multilayer truncated conical shell with the GPLRC-FS and GPLRC-PC [WGPL =

0.3%, ζ = 0.5, η = 0.5, porosity type 1,β = 15o, u* = 1 (cm/s), τ = 0.03].
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T0αij
(
3λij + 2μij

)
(

τ0
d2

dt2 +
d
dt

)(
∑Nξ

k=1
Aξ

ikukj +
uij

R2 + ξi − ηjsinβ

+ tanβ
∑Nξ

k=1

Aξ
ikwkj + secβ

∑Nη

l=1

Aη
jlwil

)

(34) 

where the DQM weighting coefficients Aα
ij and Bα

ij(α = ξ, η) are defined in 
Appendix A. At the end of this stage, a system of ordinary differential 
equations in time domain is obtained as 

Md̈+Cḋ+Kd = f (35) 

where d =
[
TT ûT ŵT ] T is the vector of unknown field variables at 

the grid points (or the so-called degrees of freedom vector), M the mass 

matrix, C the damping matrix, K the stiffness matrix and f the load 
vector. Vectors T, û and ŵ are the unknown temperature and 
displacement components vectors along the ξ − and η − axis, respec
tively. Also, dot over a variable or vector means its time derivative with 
respect to time. It should be mentioned that based on the unknown 
vector definition, the elements of the matrices and the load vector in Eq. 
(35) are obtained from the coefficients of these field variables and the 
left-hand side of the discretized equations, respectively.

Different numerical techniques can be used to solve the initial value 
system of differential equations (35). In this work, a recently proposed 
multi-step method based on the NURBS curves is chosen to solve this 
system of equations. The computational efficiency and accuracy of this 
method have been successfully illustrated previously [53–57]. To apply 
this method, the system of equations (35) is split to a system of first- 

Fig. 11. Effects of GPLs weight fraction on the through-the-thickness variation of the results of the clamped multilayer truncated conical shell with the GPLRC-FS and 
GPLRC-PC [η = 0.5, Fo = 0.5, e0 = 0.4, porosity type 1,β = 15o, u* = 1 (cm/s), τ = 0.03].
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order differential equations as follows. 
{

ḋ = y
Mẏ + Cy + Kd = f

(36a,b) 

The order of the NURBS curves and the weighting coefficients (wi)

for the NURBS curves with the same degrees are two important pa
rameters that allow one to create different multi-step schemes. In this 
study, a four-step scheme with the weighting coefficients w1 =

10− 3,w2 = w1, w3 = 2 and w4 = 3 [53–57] is selected to solve Eqs. (36a, 
b). Accordingly, the unknown variables in these equations at the time 
iteration “n + 1” are obtained from their values at the time iterations (n, 
n-1,n-2,n-3) as follows, respectively. 
{

dn+1 = dn + Δt(a1yn − a2yn− 1 + a3yn− 2 − a4yn− 3
)

yn+1 = yn + Δt(a1 ŷn − a2 ŷn− 1 + a3 ŷn− 2 − a4 ŷn− 3
) (37a,b) 

where 

ŷ = M− 1( − Cy − Kd + f) (38) 

a1 = 1.50002585, a2 = 0.50005291, a3 = 2827 × 10− 8, a4 = 12 × 10− 7

(39a-d) 

Also, Δt is the time step size.
It should be mentioned that in using this approach, the strong forms 

of the boundary conditions are also exactly discretized at the boundary 
grid points by employing the DQM rules. Then, the results are consid
ered as algebraic equations into the final system of algebraic equations 
resulted from the differential equations governing the thermoelastic 
behavior of the shell under investigation. In addition, any types of 
boundary conditions can be easily implemented.

The solution process is started by determining the values of the un
known field variables at the first four points using the initial conditions 
and by solving a system of linear algebraic equations resulted from the 

Fig. 12. Effects of GPLs weight fraction on the time histories of the results of the clamped multilayer truncated conical shell with the GPLRC-FS and GPLRC-PC 
[ζ = 0.5, η = 0.5, e0 = 0.4, porosity type 1,β = 15o, u* = 1 (cm/s), τ = 0.03].
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first, second and third multi-step schemes. Afterward, the values of 
unknown field variables at the next iteration are determined. More de
tails of this procedure can be found in Ref. [53]. The obtained results are 
then used as the initial conditions for the next time step. Finally, the 
output of this technique is the time history of the thermoelastic field 
variables at the DQ grid points of each GPLRC shell layer.

4. Numerical results

In this section, at first the current approach is validated and then 
some new numerical results are presented and discussed. The matrix 
phase of the sandwich shell is assumed to be epoxy and its material 
properties together with those of the reinforcing phase (i.e., GPLs) are 
provided in Table 1. If otherwise not stated, the following non- 
dimensional parameters are used to facilitate the parametric studies. 

Fo =
tu∗

L
, τ =

̅̅̅̅̅̅̅̅
τ0 α̂
R2

m

√

,T* =
hc L2

q0 h2 T,U =
u

(1 + νGPL)RmαGPLT∞
, ζ =

ξ
b
,Σij

=
(1 + νGPL)

EGPLαGPLT∞
σij

(40a-f) 

where α̂( = k/ρc) is the thermal diffusivity of the sandwich shells. In the 
absence of other specifications, the GPLs dimensions [40] and the other 
geometrical and physical parameters of the FG-GPLRC shells are 

assumed to have the following values 

aGPL = 2.5 (μm) , bGPL = 1.5 (μm) , tGPL = 1.5 (nm),Rm = 1 (m) , L

= 1 (m) , h = 0.1 (m) , q0 = 50000
(

W/m2
)

T0 = T∞ = 300 (K)hc

= 100
(
W/m2K

)
γ = 0.5,P0 = 100(MPa)

Also, in this section, the symbolism such as “C-F”, means that the edge z 
= 0 is clamped and the edge z = L has free boundary conditions.

4.1. Validation

As a first example, comparison between the results when using the 
NURBS-based multi-step time integration scheme and the Galerkin 
scheme from the Newmark’s family of time integrations is executed to 
verify its superior computational efficiency over this conventional 
approach. In this regard, the data in Table 2 show the convergence rate 
and the CPU time requirements of both methods for the thermoelastic 
analysis of the multilayer truncated conical shells with the GPLRC-FS 
and GPLR-PC subjected to thermo-mechanical moving loads. The non- 
dimensional displacement and temperature at points ϛ = 0 are pro
vided in this table. Based on the presented results, it is noted that in spite 
of the close agreement between the converged results of the two 
methods, the CPU time requirement of NURBS-based multi-step tech
nique is much less than that of the Newmark’s scheme.

The convergence behaviors of the non-dimensional thermoelastic 

Fig. 13. Effects of the relaxation time on the through-the-thickness variations of the non-dimensional temperature and radial displacement for clamped multilayer 
truncated conical shell with the GPLRC-FS and GPLRC-PC [WGPL = 0.3%, e0 = 0.4, porosity type 1,β = 15o, u* = 1 (cm/s) ].
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field variables of the multilayer truncated conical shell with the GPLRC- 
FS and GPLRC-PC under the thermomechanical loadings against the DQ 
number of grid points along the radial and axial directions are exhibited 
in Figs. 3 and 4, respectively. As depicted in these figures, seven grid 
points per layer in the radial direction 

(
Nξ = 7

)
and twenty-nine grid 

points along the axial direction (Nη = 29) yield adequate results. Also, 
based on the convergence study performed in Table 2, 400 time steps are 
used to solve the system of ordinary differential equations (36) in the 
temporal domain.

To validate the presented approach for the thermoelastic analysis of 
rotating the FG truncated conical shell, an FG annular disk, as a limiting 
case of a truncated conical shell (truncated conical shell with β = π/2 
and small length-to-outer radius ratio), subjected to a thermal envi
ronment studied by Peng and Li [58] using an analytical solution is 
analyzed here. Peng and Li [58] transformed the one-dimensional 
thermoelasticity equation into a Fredholm integral equation to obtain 
the analytical solution. To find such a solution, all the material prop
erties, except Poisson’s ratio, were assumed to vary according to ψ =

ψ0rn where ψ0 is a material constant at the outer surface and n is the 

material graded index. The material properties are as follows [58], 

Em = 70 GPa, νm = 0.3,Km = 209 (W/m oC), αm = 23 × 10− 6 (1/ oC), ρm

= 2700
(

Kg/m3
)
,

Ec = 151 GPa, νc = 0.3,Kc = 2 (W/m oC),αc = 10 × 10− 6 (1/ oC), ρc

= 5700
(

Kg/m3
)
,

Also the surface temperature at the inner and outer surfaces of the disk is 
assumed to be 

T(Ri) = 0 oC,T(Ro) = 1000 oC (41a, b) 

where Ri and Ro are inner and outer radius of disk, respectively.
The non-dimensional radial displacement and the non-dimensional 

radial and tangential stress components at different locations and for 
different values of the material graded index (n) are compared with 
those of Peng and Li [58] in Table 3. Excellent agreement between the 
results of the two approaches can be seen.

Fig. 14. Effects of speed of the moving heat flux and pressure on the through-the-thickness variation of the results of the clamped multilayer truncated conical shell 
with the GPLRC-FS and GPLRC-PC [WGPL = 0.3%, η = 0.5,Fo = 0.5,e0 = 0.4, porosity type 1,β = 15o,τ = 0.03].
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For further validation of the present approach, the thermoelastic 
analysis of FG hollow cylindrical shells subjected to a thermal loading 
available in the literature is conducted. For this purpose, the formulation 
degenerates to those of the cylindrical shells by setting β = 0. This 
example is chosen from the work of Santos et al. [59], who analyzed the 
FG cylindrical shells under thermal loading in the context of the 
uncoupled thermoelasticity. The material properties of the shell con
stituents are provided in Table 4. They presented a semi-analytical finite 
element solution for the FG cylindrical shells subjected to the following 
thermal boundary and initial conditions 

At r = Ri : T(r, z, t) = T0
(
1 − e− 0.5t) (42) 

At r = Ro : k
∂T
∂r

+ hcT = 0 (43) 

At z = 0, L : T(r, z, t) = 0 (44a,b) 

They assumed that the material composition changes across the shell 
thickness from ceramic at the inner surface to metal at the outer surface 
along with the power law distribution as 

P(r) = Pc +(Pm − Pc)Vm (45) 

where P is a generic material property, and Vm =

(
r− Ri

Ro − Ri

)p 
is the volume 

fraction of metal phase, wherein p denotes the power law index. In Fig. 5
(a) and (b), the through-the-thickness non-dimensional temperature and 
displacement variations according to the two approaches and for 
different values of the power law index p are compared. The excellent 
agreement between the results of the two approaches shows the accu
racy of the present approach.

The present approach is further validated by analyzing an elasto
dynamic problem of FG truncated conical shells. For this purpose, the 
free vibration frequencies of a FG truncated conical shell with fully 
clamped ends are determined and compared with those reported by 
Bhangale et al. [60]. They estimated the frequencies based on the FSDT 
of shells by employing the finite element method. In their work, all the 
material properties vary according to the power law distribution as 

presented in Eq. (45) with Vm = 1 −

(
2z+h

2z

)p
. Also, the following values 

for the material properties of the metal (SUS304) and ceramic (Si3N4) 
phases are considered 

Em = 322.27 GPa, νm = 0.24, ρm = 2370
(

kg/m3
)
;Ec

= 207.7877 GPa, νc = 0.317756, ρc = 8166
(

kg/m3
)

In Fig. 6 (a) and (b) for two different values of the semi-vertex angle and 
the power law index p, the frequencies of the first 20 circumferential 

Fig. 15. Effects of speed of the moving heat flux and pressure on the time histories of the results of the clamped multilayer truncated conical shell with the GPLRC-FS 
and GPLRC-PC [WGPL = 0.3%, ζ = 0.5, η = 0.5,e0 = 0.4, porosity type 1,β = 15o, τ = 0.03].
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modes of the shell are illustrated and compared with those provided in 
Ref. [60]. The consistence between the obtained frequencies and those 
of Ref. [60] partially verifies the current approach.

4.2. Parametric studies

In this section, some parametric studies aim at analyzing the sensi
tivity of the responses to different porosity distribution and amount, 
GPLs weight fraction, boundary conditions at the shell ends, moving 
thermomechanical load velocity, etc.

As the first study, the effects of the porosity distribution on the 
through-the-thickness variations and the time-histories of the no- 
dimensional temperature, displacement and stress tensor components 
of the sandwich shells under investigation are exhibited in Figs. 7 and 8, 
respectively. As can be observed from Fig. 7a the gradient of the tem
perature in the type-2 shell of the porosity distribution is greater than 
those of the other cases when ξ lies between 0 and almost 0.3. In addi
tion, the displacement gradient of this type of shell is generally greater 
than those of the other two shell types of the porosity distributions. 
These issues together with the nonlinear variations of the material 
properties along the thickness direction cause a different trend of the 
stress variations for the type-2 shell in comparison with the other two 
cases. The influences of the porosity amount on these non-dimensional 
field variables are shown in Figs. 9 and 10 and Table 5. The results in 

these figures and table indicate that both the porosity distribution and 
porosity amount change the temperature distribution in the region 
traveled by the heat wave. However, they have no visible effect on the 
time histories of temperature at a specified point of the shell. This is 
because the nonuniform distribution of the porosities in the core 
thickness direction causes the thermal properties to vary in this direc
tion. Thus, by changing the type of porosity distribution, the variations 
of these parameters change, and the temperature distribution in the 
thickness direction also changes. However, since the porosity distribu
tion and amount do not significantly affect the thermal properties of the 
sandwich shell under consideration, the time history of temperature at a 
specific point of the shell does not change considerably. For example, the 
variations in the specific heat capacity, thermal conductivity and mass 
density of the shell are smaller than 2 percent once the porosity amount 
parameter (i.e., e0) increases from 0 to 0.6. On the other hand, its effects 
on the Young’s modulus of the sandwich shell are excessive. The 
Young’s modulus of the shell is reduced by almost 37.46 % when the 
porosity amount changes from 0 to 0.6. Thus, by increasing the porosity 
amount parameter (i.e., e0), the overall stiffness of the shell reduces, 
which increases the displacement components. In addition, any porosity 
distribution that reduces the overall stiffness of the shell, increases the 
displacement components. Among the three types of porosity distribu
tions considered in this work, more porosities are distributed in the re
gion near the inner surface of the core layer in type-3 distribution, 

Fig. 16. Effects of the thickness-to-length ratio on the through-the-thickness variation of the results of the clamped multilayer truncated conical shell with the 
GPLRC-FS and GPLRC-PC [WGPL = 0.3%, η = 0.5,Fo = 0.5, e0 = 0.4, porosity type 1,β = 15o, u* = 1 (cm/s), τ = 0.03].
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whereas more porosities are distributed near the inner and outer sur
faces of the core layer in type 2, and near the middle region of the core 
layer in type 1. On the other hand, it can be realized that the more away 
the porosity distribution from the outer surface of the core layer, the 
stiffer the shell structure. It can be seen that the stress components are 
affected by the type of porosity distribution and amount. This is because 
the variations of the porosity distribution in the core layer cause the 
variation of the shell Young’s modulus in the shell thickness direction 
and the increase of the porosity amount further increases the variation of 
the material properties. It should be noted that if the Young’s modulus 
remains constant, its constant value does not affect the stress tensor 
components in the shell layers. Thus, both the porosity distribution type 
and amount affect the stress tensor components in the shell layers, and a 
stiffer shell has lower stress components in general. The obtained results 
confirm this behavior, further validating the present approach. In 
addition, one can see that the stress components approach their steady 
state values when the time level increases.

To explore the effects of GPLs weight fraction on the thermoelastic 
characteristics of the sandwich truncated conical shells, the through-the- 
thickness variations of dimensionless temperature, radial displacement 
and stress components are illustrated in Fig. 11, and the time histories of 
these filed variables at the points on the centerline of the shell middle 
section are shown in Fig. 12. As can be seen from Fig. 11(a), by 
increasing the GPL weight fraction, the heat wave speed increases 
meanwhile the maximum temperature decreases (see also Fig. 12(a)). 
The reason of this is that by adding GPLs, the thermal conductivity in
creases noticeably, but the density and specific heat capacity reduce a 
little. On the other hand, from Eq. (16), it can be deduced that the heat 

wave speed is proportional to 
̅̅̅̅̅̅̅

k
ρcτ0

√
. Therefore, any parameter that 

increases the thermal conductivity and decreases the mass density and 
specific heat capacity will increase the heat wave speed. In addition, 
when the GPLs weight fraction increases from zero to one percent, the 
thermal conductivity is increased by 78 %, meanwhile the mass density 
and specific heat capacity have no considerable change and virtually 
remain constant. As a results, the maximum temperature must decrease 
by increasing the GPLs weight fraction. Fig. 11(b) and 12(b) depict the 
influences of GPLs weight fraction on the dimensionless radial 
displacement component. It is clear from Fig. 11 (b) that by increasing 
the GPL weight fraction, the distribution of the displacement component 
changes. Since the GPLs are uniformly distributed, the change of the 
weight fraction should not affect the distribution of the displacement 
component and therefore, there must be other reasons for this trend. 
One of the major features in this regard may be due to the dissimilar 
boundary conditions on the inner and outer surfaces of the shell. To 
further discuss this issue, it should be noted that the outer surface of the 
shell is traction free meanwhile its inner surface is subjected to a ther
momechanical moving load. Thus, the boundary conditions on the outer 
surface become independent of the Young’s modulus, and the boundary 
conditions on its inner surface depend on it (see Eq. (24)). In addition, 
the boundary conditions at the ends of the shell are independent of the 
Young’s modulus. Thus, by changing the Young’s modulus, the 
displacement variation along the radial direction should change. Also, 
another feature that could affect this issue slightly is the variation of 
temperature distribution due to change of the GPLs weight fraction. The 
reduction of the displacement at all times when the load is applied on 
the shell is more exhibited in Fig. 12 (b). The reason of this trend is that 
by increasing the GPL weight fraction, the overall shell stiffness in
creases and consequently, the displacement decreases. As can be 

Fig. 17. Effects of the thickness-to-length ratio on the time histories of the results of the clamped multilayer truncated conical shell with the GPLRC-FS and GPLRC- 
PC [WGPL = 0.3%, ζ = 0.5, η = 0.5,e0 = 0.4, porosity type 1,β = 15o, u* = 1 (cm/s), τ = 0.03].
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expected, the change of the GPL weigh fraction does not affect the dis
tributions of the stress components along the radial direction. This is 
owing to two reasons: 1) the uniform distribution of the GPLs through 
the thickness of the shell, 2) the linear analysis of the shell deformation, 
which make the stress components independent of the change of the 
Young’s modulus. The same behavior is observed for the time histories 
of the stress components in Fig. 12 (c) and (d), except when the load is at 
the near- end of the shell for the relatively large value of GPLs weight 
fraction which may be computational error due to very low values of the 
stress components. These expectations validate the reported results.

The effects of dimensionless relaxation time on the temperature and 
displacement variations along the shell thickness for two different po
sitions of the thermo-mechanical loading are illustrated in Fig. 13. It is 
clear that by increasing the relaxation time, the temperature rise de
creases. This is due to the fact that by increasing this parameter the heat 

wave speed 
( ̅̅̅̅̅̅̅

k
ρcτ0

√ )

decreases. When the load is at middle section of 

the shell (i.e., the case of Fo = 0.5), neither the displacement nor the 
temperature is considerably changed by varying the dimensionless 
relaxation time. But, when the load leaves the shell (i.e., the case of Fo =

1.0), its effects on the reduction of temperature and displacement are 
clearly observable.

The impacts of thermo-mechanical moving load speed on the ther
moelastic responses of the sandwich truncated conical shell with the 
GPLRC-FS and GPLRC-PC are studied in Figs. 14 and 15. These figures 
show that the temperature and displacement decrease when increasing 
the thermo-mechanical load speed in the range of 0.01 to 1 (cm/s). This 
is because by increasing the load speed, the time duration of the applied 
moving load reduces and also the load travels through the shell in less 
time. Due to its thermal resistance and inertia, the shell cannot react to 

this rapidly-applied load promptly, and therefore, the temperature and 
displacement reduce by increasing the moving load speed. On the other 
hand, when increasing the load speed, the gradient of the displacement 
decreases, which causes the reduction of the strain components and 
consequently the stress components as observed in Figs. 14(c), 14 (d),15 
(c) and 15 (d).

The influences of the shell thickness-to-length ratio on the thermo
elastic behavior of the sandwich shell under investigation are shown in 
Figs. 16 and 17. It is observed that the increase of this geometric 
parameter causes the reduction of the temperature, displacement and 
stress components. This is because, by increasing the shell thickness, the 
thermal resistance, the mass and the overall stiffness of the sandwich 
shell increase, which reduces the transient temperature and the dis
placements of the shell when it is subjected to a constant moving in
ternal heat flux and ring pressure. In addition, the increase of the shell 
thickness reduces the displacement gradients, consequently decreasing 
the values of stress components. It is interesting to note that by 
increasing the shell thickness the heat wave front becomes observable.

In Figs. 18-20, the impacts of different end boundary conditions of 
the shell on its dimensionless displacement and stress components are 
explored. The through-the-thickness variations of the dimensionless 
field variables at two dimensionless times Fo = 0.5 and Fo = 1 are shown 
in Figs. 18 and 19, respectively. When Fo = 0.5, the load is at the middle 
section of the shell, and when Fo = 1, the load is at the end section of the 
shell. It is observed that the influences of the boundary conditions on the 
responses of the shell depend on the location of the load. However, the 
shell with completely clamped edges has the lowest displacement and 
stress values regardless of the load position. When the load is at the 
middle section of the shell, the stress components of the shell with the C- 
S ends have slightly greater magnitudes than those of the shell with C-F 

Fig. 18. Effects of the boundary conditions on the through-the-thickness variation of the results of the multilayer truncated conical shell with the GPLRC-FS and 
GPLRC-PC [WGPL = 0.3%, η = 0.5,Fo = 1, e0 = 0.4, porosity type 1,β = 15o, u* = 1 (cm/s), τ = 0.03].
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ends. This is because in this situation, the displacement gradients of the 
shell with C-S ends are greater than those of the shell with a free edge. 
But when Fo = 1.0, the load is on the end section of the shell and it can be 
expected, the shell with C-F edges has the greatest displacement and 
stress components in this case. At this time, the load acts on the free edge 
of the shell with C-F ends and on the simply supported edges of the shell 
with C-S ends. On the other hand, the simply supported and clamped 
constraints prevent the radial displacement of edges. Thus, less de
formations are induced for the shells with C–C and C-S edges than the 
shell with C-F edges at this position. Also, based on Fig. 19, there are no 
substantial differences between the results through the thickness di
rection for the shells with C-F and C-S edges. The time histories of the 
dimensionless displacement and stress components at the points on the 
center of the middle section of the shell are exhibited in Fig. 20. The 
results show that by increasing the constraints at the edges of the shell, 
the dimensionless displacement and hoop stress component reduce. Due 
to one free edge, the shell with C-F edges can more easily expand in the 
radial direction under the internally applied load than the shells with 
C–C and C-S edges. Thus, it has greater hoop stresses than those of the 
shells with the other boundary conditions. As can be expected, the 
maximum transverse shear stress component (Σrz) and the axial stress 
component (Σzz) of the shell with C-F boundary conditions are lower 
than those of the shells with C–C and C-S boundary conditions. This is 
owing to the fact that to prevent the radial displacement of the shell 
edges, the nonzero transverse shear stresses must exist at these edges. 
For the shell with one free edge, the transverse shear stress is absent on 
the free edge and consequently, the maximum value of this stress 

component becomes less than those of the other cases. However, at the 
time that the thermo-mechanical load is near the end of the shell, due to 
the radial edge constraints the shell with C–C and C-S edges have lower 
transverse shear and axial normal stress components than the shell with 
C-F edges.

5. Conclusions

The thermoelastic responses of the sandwich truncated conical shells 
with GPLRC face sheets and GPLRC porous core subjected to moving 
thermo-mechanical load were investigated successfully based on the 
Lord-Shulman thermoelasticity theory. The applied theory had no 
kinematical assumption as those used in the two-dimensional theories, 
thus accurately predicted the thermoelastic behaviors of the sandwich 
truncated conical shells. On the other hand, the numerical method 
employed to obtain the solution was a layerwise hybrid technique that 
used the strong form of the equations, and also implemented the 
boundary and compatibility conditions at the interfaces of the layers 
exactly at the corresponding grid points. Also, the time domain was 
discretized using a computationally efficient multi-step NURBS based 
technique. After verifying the correctness and accuracy of the proposed 
approach in the limit cases, some parametric studies were conducted 
and discussed to explore the effects of the porosity distribution and 
amount, GPLs weight fraction, load velocity, edge boundary conditions 
and the shell geometric parameters on the thermoelastic behaviors of 
the under-investigation sandwich shells. Based on the provided results, 
some findings are summarized as follows: 

Fig. 19. Effects of the boundary conditions on the through-the-thickness variation of the results of the multilayer truncated conical shell with the GPLRC-FS and 
GPLRC-PC [WGPL = 0.3%, η = 0.5,Fo = 0.5, e0 = 0.4, porosity type 1,β = 15o, u* = 1 (cm/s), τ = 0.03].
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• The porosity distribution and amount do not significantly affect the 
time history of temperature at a specific point of the shell; however, 
they change the distribution of temperature along the thickness 
direction.

• The increase of porosity amount increases the displacement com
ponents. In addition, the type of porosity distribution affects the 
displacement, and in the case when the porosities are more distrib
uted near the inner surface of the core layer, the displacement has the 
lowest values.

• The increase of the GPLs weight fraction increases the heat wave 
speed but decreases the maximum value of the temperature.

• The GPLs weigh fraction has no influence on the stress components, 
but addition of GPLs reduces the displacement component consid
erably. In addition, the increase of the GPLs weight fraction changes 
the distribution of the radial displacement component along the shell 
thickness direction.

• By increasing the thickness-to-length of the shell, the temperature, 
displacement and stress components reduce.

• The impacts of the end boundary conditions of the shell on its 
response depend on the position of the moving thermo-mechanical 
load. However, the shell with completely clamped edges has the 

lowest displacement and stress values regardless of the load position 
in comparison with the C-F and C-S ends shells.

In the future works, the influences of the geometric nonlinearity on 
the thermoelastic responses of the sandwich shells with GPLs with GPLs 
reinforced face sheets and porous core subjected to different moving 
thermo-mechanical loads will be studied.
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Appendix A 

The combined geometric mapping and DQM
Using the geometric transformation together with the DQM rules, the spatial derivatives are discretized as [40] 

∂u
∂r

⃒
⃒
⃒
⃒
(ri ,zj)

=
∑Nξ

m=1
Aξ

imumj
∂u
∂z

⃒
⃒
⃒
⃒
(ri ,zj)

= tanβ
∑Nξ

m=1
Aξ
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⃒
⃒
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∂2u
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⃒
⃒
⃒
(ri ,zj)

= tanβ
∑Nξ

m=1
Bξ

imumj + secβ
∑Nξ

m=1

∑Nη

n=1
Aξ

imAη
jnumn (A1-5) 

where Aα
ij and Bα

ij(α = ξ, η) are the DQM weighting coefficients of the first and second-order derivatives in the α¡direction, respectively [40]. Also, 

r = R2 + ζ − ηsinβ, z = ηcosβ (A6,7) 
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generation of satellite sensors based on graphene and carbon nanotubes: a review. 
IEEE Sens J 2024;24:31645–57. https://doi.org/10.1109/JSEN.2024.3440499.

[14] Hussain M, Khan SM, Shafiq M, Al-Dossari M, Alqsair UF, Khan SU, et al. 
Comparative study of PLA composites reinforced with graphene nanoplatelets, 
graphene oxides, and carbon nanotubes: Mechanical and degradation evaluation. 
Energy 2024;308:132917. https://doi.org/10.1016/j.energy.2024.132917.

[15] Shi G, Araby S, Gibson CT, Meng Q, Zhu S, Ma J. Graphene platelets and their 
polymer composites: fabrication, structure, properties, and applications. Adv Funct 
Mater 2018;28(19):1706705. https://doi.org/10.1002/adfm.201706705.

[16] Qi P, Chen X, Zhu H, Lyu Y, Zhang B, Peng Q, et al. Quantifying the effects of 
geometric parameters on the elastic properties of multilayer graphene platelet 
films. Adv Mater 2025;2502546. https://doi.org/10.1002/adma.202502546.

[17] Mousavi SR, Estaji S, Kiaei H, Mansourian-Tabaei M, Nouranian S, Jafari SH, et al. 
A review of electrical and thermal conductivities of epoxy resin systems reinforced 
with carbon nanotubes and graphene-based nanoparticles. Polym Test 2022;112: 
107645. https://doi.org/10.1016/j.polymertesting.2022.107645.

[18] You X, Zhang Q, Yang J, Dong S. Review on 3D-printed graphene-reinforced 
composites for structural applications. Compos Part A-Appl S 2023;167:107420. 
https://doi.org/10.1016/j.compositesa.2022.107420.

[19] Yee K, Ghayesh MH. A review on the mechanics of graphene nanoplatelets 
reinforced structures. Int J Eng Sci 2023;186:103831. https://doi.org/10.1016/j. 
ijengsci.2023.103831.

[20] Barbaros I, Yang Y, Safaei B, Yang Z, Qin Z, Asmael M. State-of-the-art review of 
fabrication, application, and mechanical properties of functionally graded porous 
nanocomposite materials. Nanotechnol Rev 2022;11(1):321–71. https://doi.org/ 
10.1515/ntrev-2022-0017.

[21] Chen D, Gao K, Yang J, Zhang L. Functionally graded porous structures: analyses, 
performances, and applications-a review. Thin-Walled Struct 2023;191:111046. 
https://doi.org/10.1016/j.tws.2023.111046.

[22] Liu T, Sun X, Hu WF, Wang L, Zhang S, Bui TQ. Nonlinear thermal-mechanical 
coupled isogeometric analysis for GPLs reinforced functionally graded porous 
plates. Eng Struct 2024;319:118827. https://doi.org/10.1016/j. 
engstruct.2024.118827.

[23] Zhu J, Wang Z, Zhang L, Wu H, Zhao L, Zhang H, et al. Wave propagation in the 
semi-infinite functionally graded porous plates reinforced with graphene platelets. 
Int J Struct Stab Dy 2024;24(21):2450245. https://doi.org/10.1142/ 
S0219455424502456.

[24] Duc ND, Cong PH, Tuan ND, Tran PT, Nv.. Thermal and mechanical stability of 
functionally graded carbon nanotubes (FG CNT)-reinforced composite truncated 
conical shells surrounded by the elastic foundations. Thin-Walled Struct 2017;115: 
300–10. https://doi.org/10.1016/j.tws.2017.02.016.

[25] Chan DQ, Quan TQ, Kim SE, Duc ND. Nonlinear dynamic response and vibration of 
shear deformable piezoelectric functionally graded truncated conical panel in 
thermal environments. Eur J Mech A-Solid 2019;77:103795. https://doi.org/ 
10.1016/j.euromechsol.2019.103795.

[26] Chan DQ, Anh VTT, Duc ND. Vibration and nonlinear dynamic response of 
eccentrically stiffened functionally graded composite truncated conical shells in 
thermal environments. Acta Mech 2019;230:157–78. https://doi.org/10.1007/ 
s00707-018-2282-4.

[27] Chan DQ, Long VD, Duc ND. Nonlinear buckling and post-buckling of FGM shear 
deformable truncated conical shells reinforced by FGM stiffeners. Mech Compos 
Mater 2019;54(6):754–64. https://doi.org/10.1007/s11029-019-9780-x.

[28] Chan DQ, Thanh NV, Khoa ND, Duc ND. Nonlinear dynamic analysis of 
piezoelectric functionally graded porous truncated conical panel in thermal 
environments. Thin Walled Struct 2020;154:106837. https://doi.org/10.1016/j. 
tws.2020.106837.

[29] Duc ND, Quan TQ, Cong PH. Nonlinear vibration of auxetic plates and shells. 
Vietnam National University Press, Hanoi, 2021.

[30] Yang S, Hao Y, Zhang W, Yang L, Liu L. Nonlinear vibration of functionally graded 
graphene platelet reinforced composite truncated conical shell using first-order 
shear deformation theory. Appl Math Mech -Engl Ed 2021;42(7):981–98. https:// 
doi.org/10.1007/s10483-021-2747-9.

[31] Bahranifard F, Malekzadeh P, Golbahar Haghighi MR, Malakouti M. Free vibration 
of point supported ring-stiffened truncated conical sandwich shells with GPLRC 

P. Malekzadeh et al.                                                                                                                                                                                                                           Composite Structures 373 (2025) 119713 

24 

https://doi.org/10.1016/j.compstruct.2018.12.047
https://doi.org/10.1016/j.compstruct.2018.12.047
https://doi.org/10.1080/01495739.2017.1398623
https://doi.org/10.1080/01495739.2017.1398623
https://doi.org/10.1142/S0219455420500182
https://doi.org/10.3390/math10071081
https://doi.org/10.3390/math10071081
https://doi.org/10.1002/zamm.202401190
https://doi.org/10.1002/zamm.202401190
https://doi.org/10.2514/1.J065315
https://doi.org/10.3390/ma17102403
https://doi.org/10.3390/ma17102403
https://doi.org/10.1016/j.tws.2023.111410
https://doi.org/10.1016/j.compstruct.2020.113430
https://doi.org/10.1016/j.compstruct.2020.113430
https://doi.org/10.1016/j.compstruct.2020.112924
https://doi.org/10.1016/j.compstruct.2020.112924
https://doi.org/10.1016/j.ast.2021.107257
https://doi.org/10.1016/j.compstruct.2023.117871
https://doi.org/10.1109/JSEN.2024.3440499
https://doi.org/10.1016/j.energy.2024.132917
https://doi.org/10.1002/adfm.201706705
https://doi.org/10.1002/adma.202502546
https://doi.org/10.1016/j.polymertesting.2022.107645
https://doi.org/10.1016/j.compositesa.2022.107420
https://doi.org/10.1016/j.ijengsci.2023.103831
https://doi.org/10.1016/j.ijengsci.2023.103831
https://doi.org/10.1515/ntrev-2022-0017
https://doi.org/10.1515/ntrev-2022-0017
https://doi.org/10.1016/j.tws.2023.111046
https://doi.org/10.1016/j.engstruct.2024.118827
https://doi.org/10.1016/j.engstruct.2024.118827
https://doi.org/10.1142/S0219455424502456
https://doi.org/10.1142/S0219455424502456
https://doi.org/10.1016/j.tws.2017.02.016
https://doi.org/10.1016/j.euromechsol.2019.103795
https://doi.org/10.1016/j.euromechsol.2019.103795
https://doi.org/10.1007/s00707-018-2282-4
https://doi.org/10.1007/s00707-018-2282-4
https://doi.org/10.1007/s11029-019-9780-x
https://doi.org/10.1016/j.tws.2020.106837
https://doi.org/10.1016/j.tws.2020.106837
https://doi.org/10.1007/s10483-021-2747-9
https://doi.org/10.1007/s10483-021-2747-9


porous core and face sheets. Mech Based Des Struc 2024;52:6142–72. https://doi. 
org/10.1080/15397734.2023.2272674.

[32] Youseftabar H, Hosseinnejad F, Rostamiyan Y, Seyyedi SM, Rabbani M. Effect of 
porosity on the nonlinear free vibrational behavior of two-directional functionally 
graded porous cone-shaped shells resting on elastic substrates. Mech Based Des 
Struc 2024;52:8544–66. https://doi.org/10.1080/15397734.2024.2323147.

[33] Li H, Zhang W, Zhang YF, Jiang Y. Nonlinear vibrations of graphene-reinforced 
porous rotating conical shell with arbitrary boundary conditions using traveling 
wave vibration analysis. Nonlinear Dyn 2024;112:4363–91. https://doi.org/ 
10.1007/s11071-023-09255-3.

[34] Huang XL, Wei Y, Mo W, Zhang Y. Nonlinear vibration analysis of axially moving 
truncated porous composite conical shells reinforced with graphene nanoplatelets. 
J Vib Eng Technol 2025;13:121. https://doi.org/10.1007/s42417-024-01626-3.

[35] Khoddami Maraghi Z, Safari I, Ghorbanpour Arani A, Shekari AM, Saeidnejad S, 
Zahedi BA. Free vibration analysis of sandwich graphene-reinforced 
nanocomposite truncated conical shells with auxetic honeycomb core. J Strain 
Anal Eng Des 2025. https://doi.org/10.1177/03093247241311.

[36] Huang XL, Mo W, Sun W, Xiao W. Buckling analysis of porous functionally graded 
GPL-reinforced conical shells subjected to combined forces. Arch Appl Mech 2024; 
94:299–313. https://doi.org/10.1007/s00419-023-02521-1.

[37] Bahranifard F, Malekzadeh P, Golbahar Haghighi MR. Moving load response of 
ring-stiffened sandwich truncated conical shells with GPLRC face sheets and porous 
core. Thin-Walled Struct 2022;180:109984. https://doi.org/10.1016/j. 
tws.2022.109984.

[38] Bahranifard F, Malekzadeh P, Golbahar Haghighi MR, Żur KK. On the selected 
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