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Introduction 27 

Alzheimer’s disease involves progressive white matter microstructural degeneration that may precede 28 

clinical symptoms by decades. While polygenic risk scores (PRS) quantify cumulative genetic 29 

liability for AD, genome-wide PRS lack mechanistic specificity. We tested whether pathway-specific 30 

PRS, targeting areas of biology including tau binding, lipid metabolism, and immune response, are 31 

differentially associated with diffusion MRI measures across the lifespan. 32 

Methods 33 

We analysed two population-based cohorts: the Avon Longitudinal Study of Parents and Children 34 

(ALSPAC; mean age = 19.8 years, n = 517) and UK Biobank (mean age = 64.2 years, n = 18,172). 35 

Genome-wide and nine pathway-specific PRS for Alzheimer’s disease were constructed using 36 

GWAS summary statistics and a clumping threshold of r² < 0.2 at p < 0.001. Diffusion MRI data 37 

were processed separately within each cohort: in ALSPAC, tract-based fractional anisotropy (FA) 38 

and mean diffusivity (MD) were extracted using probabilistic tractography from native-space regions 39 

of interest; in UK Biobank, diffusion metrics were derived from TBSS-aligned skeletons and 40 

standard atlas-based ROIs. Analyses focused on three tracts vulnerable to early AD pathology: the 41 

dorsal cingulum, parahippocampal cingulum, and fornix. Multiple linear regression models were 42 

used to assess PRS associations with FA and MD, adjusting for demographic, scanner, and genetic 43 

ancestry covariates. False discovery rate correction addressed multiple comparisons, and sensitivity 44 

analyses were performed excluding the APOE region. 45 

Results 46 

In UK Biobank, higher PRS for protein–lipid complex assembly and tau protein binding were 47 

robustly associated with lower fractional anisotropy and higher mean diffusivity in both dorsal and 48 

parahippocampal cingulum segments (False discovery rate-corrected p < 0.05), explaining more 49 

variance than APOE alone; no significant effects emerged in the fornix. Genome-wide PRS showed 50 

weaker, non-significant associations. In ALSPAC, no PRS metric survived FDR correction, though 51 

nominal trends appeared in the dorsal cingulum. Sensitivity analyses confirmed that key cingulum 52 

associations in older adults persisted after omitting APOE. 53 

Conclusions: 54 

Pathway-specific polygenic risk for Alzheimer’s disease manifests in white matter microstructure by 55 

mid- to late adulthood but not in early adulthood, suggesting an age-dependent emergence of genetic 56 
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effects. dMRI phenotypes may thus serve as intermediate biomarkers for dissecting mechanistic 57 

pathways of preclinical Alzheimer’s disease vulnerability. 58 

 59 

Introduction 60 

Alzheimer’s disease (AD) is a progressive neurodegenerative condition that represents a major global 61 

health challenge, with prevalence rates estimated between 5% and 7% in adults over 60 years of age 62 

(Prince et al., 2013). While a small subset of cases result from rare autosomal dominant mutations in 63 

genes such as APP, PSEN1, and PSEN2 (Tanzi, 2012), most are due to the interplay of complex genetic 64 

and environmental factors. Genome-wide association studies (GWAS) have identified close to 80 loci 65 

associated with AD risk, with the APOE ε4 allele representing the most significant contributor   66 

(Marioni et al., 2017; Jansen et al., 2019; Kunkle et al., 2019; Bellenguez et al., 2022). Polygenic risk 67 

scores (PRS), which aggregate the genetic risk across these loci, offer a powerful approach to quantify 68 

the cumulative genetic burden for AD (Escott-Price et al., 2015; Harrison et al., 2020). PRS have been 69 

linked to structural brain changes, including cortical thinning and subcortical atrophy, which are 70 

established markers of AD-related pathology (Mak et al., 2017; Harrison et al., 2020). However, 71 

studies focusing on PRS and white matter microstructure, which is an important mediator of brain 72 

network integrity, remain limited. 73 

White matter signal changes, such as reduced fractional anisotropy (FA) and increased mean diffusivity 74 

(MD), are putative indicators of microstructural degenerationand have been reported in both 75 

symptomatic and preclinical stages of AD (Kantarci et al., 2014; Alm and Bakker, 2019). These 76 

changes may emerge decades before cognitive symptoms, particularly in key tracts such as the 77 

parahippocampal cingulum and fornix, which are vulnerable to early AD pathology (Zhuang et al., 78 

2013; Wen et al., 2019). Combining PRS with diffusion MRI (dMRI)-derived metrics offers a 79 

promising avenue for detecting early, preclinical indicators of AD risk. Yet, most AD PRS studies have 80 

concentrated on cortical or subcortical volumes (Mak et al., 2017), with few investigations of white 81 

matter pathways (Harrison et al., 2020).  82 

In addition to understanding overall genetic risk, pathway-specific PRS provide a more granular 83 

approach by quantifying genetic burden within defined biological pathways, such as those related to 84 

amyloid processing, tau binding, and immune response (Kunkle et al., 2019; Vogrinc, Goričar and 85 

Dolžan, 2021). This could enable researchers to delineate the mechanistic links between genetic risk 86 
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and neuroimaging phenotypes. Emerging evidence suggests that pathway-specific PRS may explain 87 

more variance in brain structure than genome-wide PRS, particularly in cortical regions and subcortical 88 

volumes implicated in AD (Ahmad et al., 2018; Caspers et al., 2020; Harrison et al., 2023). Recent 89 

work has linked AD polygenic risk to white-matter alterations in UK Biobank (Lorenz et al., 2025); 90 

our contribution is to interrogate pathway-specific PRS and their age-dependent expression.  91 

To address this gap, we tested associations between nine biologically informed AD PRS and diffusion 92 

MRI measures (FA, MD) in two population cohorts: we compared a young adult cohort (ALSPAC; 93 

~20 years) with an older adult cohort (UK Biobank; ~64 years) to test a lifespan hypothesis of age-94 

dependent genetic expression. By directly comparing these age groups, we evaluate whether pathway‐95 

specific genetic risk manifests in white matter early in adulthood, and how those effects might evolve 96 

with age. 97 

Hypotheses 98 

1. Higher pathway‐specific PRS will be linked to lower FA and higher MD in AD‐vulnerable 99 

tracts. 100 

2. Associations will be stronger in older versus younger adults, reflecting accumulated effects of 101 

genetic liability on white matter structure. 102 

 103 

Methods 104 

Participants  105 

Participants were drawn from two population-based cohorts: the Avon Longitudinal Study of Parents 106 

and Children (ALSPAC) (Boyd et al., 2013) and UK Biobank (Sudlow et al., 2015). For ALSPAC, 107 

pregnant women resident in Avon, UK with expected dates of delivery between 1st April 1991 and 108 

31st December 1992 were invited to take part in the study. The initial number of pregnancies enrolled 109 

was 14,541; 13,988 children were alive at 1 year of age. Additional enrolments brought the total sample 110 

size for analyses using any data collected after the age of seven to 15,447 pregnancies, with 14,901 111 

children were alive at 1 year of age. The ALSPAC cohort analysed in the present study comprised 112 

younger adults recruited for neuroimaging studies at approximately 19 years of age. Ethical approval 113 

for the study was obtained from the ALSPAC Ethics and Law Committee and the Local Research 114 
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Ethics Committees (Boyd et al., 2013; Northstone et al., 2019). Following genotyping and imaging 115 

quality control, 517 participants (80.7% male; mean age: 19.81 years, SD: 0.02) with high-quality 116 

structural T1 and diffusion MRI data were included (Sharp et al., 2020). 117 

UK Biobank is an ongoing longitudinal cohort study of over 500,000 participants. A subset of 100,000 118 

individuals is being recalled for multimodal imaging, and the first 20,000 datasets were analysed in 119 

this study (Sudlow et al., 2015). Ethical approval for UK Biobank was granted by several organisations 120 

(Biobank, 2007). UK Biobank data were accessed under application number 17044. All analyses 121 

reported here were conducted using the 2023 data release and completed during the active approval 122 

period of the project. Data use was in full compliance with the UK Biobank Material Transfer 123 

Agreement and data access conditions in place at the time. UK Biobank participants were excluded if 124 

they self-reported a history of neurological or major psychiatric disorders at baseline or follow-up, or 125 

if hospital admission records indicated conditions such as substance abuse/dependency, bipolar 126 

disorder, schizophrenia/psychosis, neurodegenerative disorders, dementia, or intellectual disability. 127 

After quality control, 18,172 individuals (47.3% male; mean age: 64.2 years, SD: 7.75) with diffusion 128 

MRI and genetic data were included.  129 

Participants from both cohorts were excluded if they did not report white British or Irish descent, or if 130 

they requested data withdrawal. In UK Biobank, this ancestry was defined using the ‘white British 131 

ancestry subset’ field, which combines self-reported ethnicity with principal component-based genetic 132 

clustering, to ensure population homogeneity for PRS calculation. The study adhered to the principles 133 

of the Human Tissue Act (2004), and all participants provided written informed consent. Further details 134 

of participant recruitment and exclusion criteria are described in previously published work (Harrison 135 

et al., 2023). 136 

Genotyping  137 

Genotyping data for ALSPAC participants were obtained using the Illumina HumanHap550 quad SNP 138 

genotyping platform (Illumina Inc., San Diego, CA, USA), while UK Biobank data were derived from 139 

the Affymetrix UK BiLEVE Axiom and UK Biobank Axiom arrays 140 

(https://biobank.ctsu.ox.ac.uk/crystal/ukb/docs/genotyping_sample_workflow.pdf). Quality control 141 

was conducted using PLINK, with exclusions applied for genotyping completeness below 97%, minor 142 

allele frequency (MAF) less than 1%, and deviations from Hardy-Weinberg equilibrium (p < 1 × 10⁻⁴) 143 

(Purcell et al., 2007). Genotype imputation was carried out using a prephasing and imputation strategy 144 

implemented in IMPUTE2 and SHAPEIT (Howie, Marchini and Stephens, 2011; Delaneau, Marchini 145 

https://biobank.ctsu.ox.ac.uk/crystal/ukb/docs/genotyping_sample_workflow.pdf
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and Zagury, 2012), using the 1000 Genomes Project Phase I integrated variant set (December 2013 146 

release) as the reference panel (1000 Genomes Project Consortium et al., 2015). 147 

Polygenic Risk Score (PRS) Calculations 148 

As described previously (Harrison et al., 2023), PRS were calculated using GWAS summary statistics 149 

from the largest clinically-defined AD study available (Kunkle et al., 2019), that does not include either 150 

of the ALSPAC or UK Biobank cohorts. SNPs with a minor allele frequency below 1% were excluded 151 

from analyses. To account for linkage disequilibrium (LD), the data were pruned using the clumping 152 

procedure in PLINK, with a threshold of r² > 0.2 and a 500 kb window (--clump-r2 and --clump-kb 153 

parameters). Polygenic risk scores (PRS) were then calculated using the PLINK --score function 154 

(Purcell et al., 2007). Based on prior research demonstrating that a p-value threshold (PT) of 0.001 155 

captures the greatest variance in brain structural phenotypes linked to AD risk (Foley et al., 2016), this 156 

threshold was used for the primary analysis. Secondary analyses evaluated a range of p-value 157 

thresholds spanning more and less stringent settings relative to PT = 0.001 (0.5, 0.3, 0.1, 0.01, 1×10⁻⁴, 158 

1×10⁻⁵, 1×10⁻⁶). 159 

To derive pathway-specific PRS, we used the set of disease-relevant biological pathways identified by 160 

Kunkle et al. (2019), who reported nine Gene Ontology (GO) terms significantly enriched for AD-161 

associated variants using the MAGMA gene-set analysis tool (de Leeuw et al., 2015). These pathways 162 

include: protein–lipid complex assembly; regulation of Aβ formation; protein–lipid complex; 163 

regulation of amyloid precursor protein catabolic process; tau protein binding; reverse cholesterol 164 

transport; protein–lipid complex subunit organization; plasma lipoprotein particle assembly; and 165 

activation of immune response. Further methodological details on the MAGMA pathway analysis, 166 

including the n genes and n SNPs in UK Biobank and ALSPAC pathways, can be found in our previous 167 

publication (Harrison et al., 2023). Genes within each pathway were used to generate pathway-specific 168 

SNP sets, which were then aligned with the discovery GWAS summary statistics. These pathway PRS 169 

were computed following the same clumping and scoring procedure used for the genome-wide PRS.  170 

MRI Data Acquisition 171 

For the ALSPAC cohort, MRI data were acquired at Cardiff University Brain Research Imaging Centre 172 

(CUBRIC) using a 3T General Electric HDx scanner and an 8-channel head coil. T1-weighted 173 

structural images were collected using a 3D fast spoiled gradient echo (FSPGR) sequence with 168–174 

182 oblique-axial AC-PC slices, 1 mm isotropic resolution, flip angle = 20°, TR/TE/TI = 7.9 ms or 7.8 175 
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ms/3.0 ms/450 ms, slice thickness = 1 mm, field of view = 256 × 192 mm, and acquisition time between 176 

6 and 10 minutes (Sharp et al., 2020). Diffusion MRI data were acquired using a pulsed gradient spin 177 

echo EPI sequence with 60 diffusion directions at b = 1,200 s/mm², 5 b = 0 s/mm² volumes, voxel size 178 

= 2.4 mm isotropic, TR = 16.5 s, TE = 87ms, and a total scan duration of approximately 13 minutes. 179 

For the UK Biobank cohort, MRI data were obtained across three dedicated imaging centres using 180 

Siemens Skyra 3T scanners and standard Siemens 32-channel head coils. T1-weighted structural 181 

images were acquired using a 3D MPRAGE sequence with sagittal orientation, TR = 2,000 ms, TI = 182 

880 ms, voxel size = 1 mm³ isotropic, matrix = 208 × 256 × 256 mm, and scan time of approximately 183 

5 minutes (Alfaro-Almagro et al., 2018). Diffusion MRI was conducted with a multi-shell acquisition 184 

comprising 100 diffusion directions at b-values of 1,000 and 2,000 s/mm², along with 6 b = 0 s/mm² 185 

volumes, voxel size = 2 mm³ isotropic, TR = 3.6 s, TE = 92 ms, and a scan duration of approximately 186 

7 minutes. 187 

Diffusion MRI Data Processing 188 

For the ALSPAC cohort, diffusion MRI data were processed using tools from FSL (Smith et al., 2004) 189 

and MRtrix3 (Tournier, Calamante and Connelly, 2012). Raw diffusion-weighted images underwent 190 

correction for eddy current-induced distortions and participant motion using FSL’s eddy. Non-brain 191 

tissue was removed using the Brain Extraction Tool (BET), and diffusion tensors were fitted at each 192 

voxel using dtifit to generate FA and MD maps. These maps were non-linearly registered to MNI152 193 

standard space. Regions of interest (ROIs), including the parahippocampal cingulum, dorsal cingulum 194 

and fornix, were delineated using probabilistic tractography based on anatomical priors (see examples, 195 

Figure 1). Mean FA and MD values were extracted from these tracts for downstream statistical 196 

analysis. 197 

 198 

[FIGURE 1] 199 

 200 

In the UK Biobank cohort, diffusion data were preprocessed using the standardised UK Biobank 201 

pipeline (Alfaro-Almagro et al., 2018). This included correction for eddy currents, head motion, and 202 

gradient distortion. Diffusion tensor imaging metrics were derived from the b = 1,000 s/mm² shell 203 

using FSL’s dtifit. The resulting FA images were aligned to MNI space and processed with tract-based 204 
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spatial statistics (TBSS) to project individual data onto a mean white matter skeleton (Smith et al., 205 

2006). Mean FA and MD values were extracted from predefined white matter ROIs based on the JHU-206 

ICBM tractography atlas for comparative analysis across participants. 207 

Statistical Analysis 208 

Statistical analyses were conducted using R v3.6.3 (R Core Team, 2020). Modelling used 209 

base stats::lm and related functions;  figures were generated with "ggplot2". Polygenic risk scores 210 

were z-standardised prior to analysis. FA and MD values were used in their original units, as derived 211 

from diffusion MRI processing pipelines. Multiple linear regression models were used to assess the 212 

association between PRS and FA/MD in anatomically defined tracts. Separate models were constructed 213 

for genome-wide PRS and each of the nine pathway-specific PRS. For each tract and hemisphere, 214 

diffusion metrics (FA or MD) were the dependent variables. Separate linear models were fit for the 215 

genome-wide PRS and each pathway-specific PRS, with the PRS as the predictor of interest and the 216 

following covariates: age, sex, intracranial volume; UK Biobank models additionally included imaging 217 

centre (site) and genotyping array; ancestry was controlled via principal components (10 for ALSPAC; 218 

15 for UK Biobank, in accordance with cohort recommendations; (Fraser et al., 2013; Sudlow et al., 219 

2015)). Genotyping array was included for UK Biobank to account for platform/imputation batch 220 

effects that can influence PRS values. 221 

To account for multiple comparisons across imaging phenotypes and PRS models, p-values were 222 

corrected using the False Discovery Rate (FDR) procedure (Benjamini et al., 2001). Secondary 223 

analyses included re-estimation of all models excluding SNPs within the APOE genomic region 224 

(chr19:44.4Mb–46.5Mb) to determine APOE-independent effects. Additional analyses were conducted 225 

using APOE-only PRS to evaluate its relative explanatory power. Finally, associations were examined 226 

across a range of p-value thresholds (PT = 0.5, 0.3, 0.1, 0.01, 1 × 10⁻⁴, 1 × 10⁻⁵, 1 × 10⁻⁶) to assess the 227 

consistency of effects under varying inclusion criteria for SNPs. 228 

 229 

Results 230 

Associations Between AD PRS and White Matter Microstructure in Older Adults 231 

In the older adults, multiple pathway-specific PRS were significantly associated with white matter 232 

microstructure measures, particularly in the parahippocampal cingulum and dorsal cingulum. These 233 
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results are summarised in Supplementary Tables 1-2. Associations that withstood correction for 234 

multiple comparisons and those that explained more variance than APOE are indicated.  235 

Patterns of association were consistent for most pathway PRS. For example, the protein–lipid 236 

complex assembly pathway PRS was negatively associated with FA in the parahippocampal 237 

cingulum, on the left (p = 0.001; Beta = -8.43 x 10-4; 95% CI -1.36 x 10-3, -3.28 x 10-4; r2 = 5.8 x 10-238 

4) and on the right (p = 3.89 x 10-5; Beta = -1.09 x 10-3; 95% CI -1.62 x 10-3, -5.73 x 10-4; r2 = 9.4 x 239 

10-4). However, there were no associations with FA in the dorsal cingulum. For MD, the protein–240 

lipid complex assembly pathway PRS was positively associated in the left and right parahippocampal 241 

cingulum (p = 0.005; Beta = 7.58 x 10-7; 95% CI 2.33 x 10-7, 1.28 x 10-6; r2 = 4.7 x 10-4 and p = 242 

0.005; Beta = 8.19 x 10-7; 95% CI 3.0 x 10-7, 1.34 x 10-6; r2 = 5.7 x 10-4, respectively). There was also 243 

a positive association with MD in the left and right dorsal cingulum (p = 1.64 x 10-4; Beta = 8.4 x 10-244 

7; 95% CI 4.03 x 10-7, 1.28 x 10-6; r2 = 1.6 x 10-4 and p = 3.94 x 10-4; Beta = 8.04 x 10-7; 95% CI 3.59 245 

x 10-7, 1.25 x 10-6; r2 = 3.9 x 10-4 respectively). The only pathway PRS with a different pattern of 246 

association was the immune response PRS, with no significant effects.  247 

The genome-wide PRS showed less evidence of association with white matter microstructure than 248 

the pathway PRS. There were nominally significant associations with reduced FA in the right 249 

parahippocampal cingulum and increased MD in the left dorsal cingulum, but these did not withstand 250 

FDR correction, as indicated in the Supplementary Tables.  251 

Associations Between AD PRS and White Matter Microstructure in Younger Adults  252 

In the younger adult cohort, there was less evidence of association between PRS and white matter 253 

microstructure. The direction of the effect seen inconsistent across ROIs and PRS, and r2 indicted 254 

minimal variance was explained (r2 up to 5.5 x 10-7). Two nominally significant associations were 255 

observed. For instance, there was evidence of a positive association between MD in the left dorsal 256 

cingulum and the regulation of amyloid precursor protein catabolic process pathway PRS (p = 0.042; 257 

Beta = 2.21 x 10-6; 95% CI 2.21 x 10-8, 4.34 x 10-6; r2 = 7.84 x 10-3) and the protein−lipid complex 258 

subunit organization PRS both showed (p = 0.043, Beta = 2.26 x 10-6; 95% CI 6.94 x 10-8, 4.26 x 10-259 

6; r2 = 7.9 x 10-3). See Tables 3 and 4 in Supplementary Materials for a summary of results.  260 

APOE-Independent and APOE-Specific Effects 261 
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Several of the significant associations observed in the UK Biobank cohort showed corrected 262 

significance after excluding the APOE region from the PRS, indicating that these effects were not 263 

solely driven by APOE-related variants. Associations which remained significant when APOE was 264 

removed from the PRS are indicated in Supplementary Tables 1-4. For example, the tau protein 265 

binding pathway PRS was negatively associated with FA in the left and right parahippocampal 266 

cingulum (p = 0.001; Beta = -8.43 x 10-4; 95% CI -1.36 x 10-3, -3.28 x 10-4 and p = 3.91, Beta = -1.09 267 

x 10-3; 95% CI -1.61 x 10-3, -5.73 x 10-4, respectively), and this effect was still significant (with FDR 268 

correction) when APOE was excluded (see Supplementary Figure 1). Similarly, there were also 269 

significant positive associations with the tau pathway PRS and MD in the dorsal cingulum and 270 

parahippocampal cingulum bilaterally which persisted without APOE (p range = 0.005-1.64 x 10-4, 271 

see Supplementary Tables 1-4). In contrast, in the ALSPAC younger adult cohort, the exclusion of 272 

APOE led to attenuation of all previously nominal associations and reduced effect sizes. Analyses 273 

using an APOE-only PRS showed that although APOE evidently contributed to white matter 274 

variation in UK Biobank, in several cases, pathway-specific scores explained a greater proportion of 275 

the variance in white matter microstructure than APOE alone (see Supplementary Tables 1-4).  276 

 277 

PRS Threshold Sensitivity Analyses 278 

To assess the robustness of associations across varying degrees of SNP inclusion, analyses were 279 

repeated using a range of additional p-value thresholds (PTs) for PRS construction: 0.5, 0.3, 0.1, 280 

0.01, 1 × 10⁻⁴, 1 × 10⁻⁵, and 1 × 10⁻⁶. These are shown on Figures 2-5. In the UK Biobank cohort, 281 

significant associations between white matter microstructure and pathway-specific PRS were most 282 

consistently observed at PT = 0.001 and other more stringent thresholds, particularly for the tau 283 

protein binding and protein–lipid complex assembly pathways (shown in Figures 2-5 and 284 

Supplementary Figure 1). The genome-wide PRS showed some trends towards significance at more 285 

liberal thresholds, however they didn’t remain when corrected for multiple comparisons and the 286 

direction of effect was often reversed. For example, there was an apparent positive association with 287 

FA in the left hippocampal cingulum at PTs >0.05. In contrast, in the ALSPAC cohort, none of the 288 

associations reached significance at any threshold following correction for multiple comparisons, 289 

although nominal effects occasionally varied by PT. Overall, these findings support PT = 0.001 as the 290 

optimal threshold for capturing variance in white matter microstructure associated with AD genetic 291 

risk, consistent with prior literature (Foley et al., 2016). 292 
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[FIGURE 2] 294 

[FIGURE 3] 295 

[FIGURE 4] 296 

[FIGURE 5] 297 

  298 
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Discussion 299 

This study provides evidence that AD-related genetic risk, when partitioned by biological pathway, is 300 

associated with variation in white matter microstructure in mid-to-late adulthood, but not in early 301 

adulthood. Using large population cohorts at two developmental stages, we identified tract-specific 302 

associations between higher pathway-specific polygenic scores and diffusion MRI markers of white 303 

matter microstructure in older adults, with no significant findings in younger adults after correction 304 

for multiple comparisons. These findings add to emerging evidence that the influence of AD genetic 305 

liability on brain structure may be age-dependent (Jiaxuan Peng et al., 2024; Korologou-Linden et 306 

al., 2025), with expression of risk increasing with advancing age. 307 

In the UK Biobank cohort of older adults, pathway-specific PRS, particularly those linked to tau 308 

protein binding, lipid and amyloid metabolism, were significantly associated with increased MD and 309 

decreased FA in the parahippocampal cingulum and dorsal cingulum. The strongest associations 310 

were observed for MD in these regions, with more modest negative correlations between PRS and 311 

FA in the parahippocampal cingulum. These effects were significant even after exclusion of the 312 

APOE region and were stronger than those observed with an APOE alone. No associations were 313 

identified with either MD or FA in the fornix at the primary p value threshold (PT = 0.001), although 314 

some emerged in secondary analysis of more liberal thresholds. The genome-wide PRS showed 315 

weaker evidence overall, with no associations surviving correction.  316 

In the ALSPAC cohort of younger adults, no associations between AD-related genetic risk and white 317 

matter microstructure survived correction for multiple comparisons. Nonetheless, nominal 318 

associations were observed, including between higher PRS and increased MD in the left cingulum, 319 

although these effects were small and not statistically robust. However, several nominal associations 320 

showed the opposite direction of effect compared to older adults, raising the possibility of age-321 

dependent modulation or developmental non-linearity in the expression of AD genetic risk (Lopez, 322 

Becker and Kuller, 2012; Bonham et al., 2016). Given differences in acquisition and processing 323 

pipelines between cohorts, diffusion metrics were not standardised within samples, and thus direct 324 

comparisons of beta coefficients should be interpreted cautiously. However, r² values, which are 325 

scale independent, were generally smaller in ALSPAC than UK Biobank, suggesting that the lack of 326 

significant associations is not solely attributable to sample size, but also reflects weaker underlying 327 

effects. White matter microstructure continues to mature throughout adolescence and early adulthood 328 

(Paus, 2010; Tamnes et al., 2010), and previous studies have suggested that age-related 329 
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neurodevelopmental changes may mask or modulate the influence of genetic risk variants during this 330 

period (Giedd et al., 1999; Mills et al., 2016). Indeed, studies have demonstrated changes in white 331 

matter microstructure in young APOE or clusterin risk allele carriers (Braskie et al., 2011; Heise et 332 

al., 2011), and in infants carrying APOE4, with altered myelin development detectable within the 333 

first year of life (Dean et al., 2014; Remer et al., 2020). These findings support the notion that while 334 

AD risk variants may influence white matter structure early in life, the phenotypic effects may 335 

remain subtle or regionally specific until later stages of development or aging. 336 

The link between changes in white matter signal and poorer cognitive function has been 337 

demonstrated across several neurodegenerative cohorts, further highlighting white matter metrics as 338 

promising markers for preclinical detection of AD vulnerability (Acosta-Cabronero et al., 2012; 339 

Power et al., 2019). The absence of corrected associations in ALSPAC, contrasted with robust effects 340 

in UK Biobank, supports a developmental timing model in which pathway-specific AD liability 341 

becomes phenotypically expressed in mid- to late adulthood. These patterns are consistent with 342 

recent evidence showing that the influence of AD-related genetic risk on brain structure may be latent 343 

in early life and become phenotypically expressed through age-accelerated neurodegeneration in mid-344 

to-late adulthood (Jiaxuan Peng et al., 2024; Korologou-Linden et al., 2025). Indeed, developmental 345 

mismatch models suggest that genetically vulnerable white matter circuits may follow altered 346 

maturational trajectories, potentially laying a structural foundation for later neurodegenerative 347 

processes (Mills et al., 2014).  348 

To our knowledge, this is the first study to investigate white matter microstructure in relation to 349 

pathway-specific AD PRS. Prior research has focused on grey matter phenotypes. Three previous 350 

studies applied pathway-specific PRS in dementia-free older adult cohorts but only used only used 351 

Bonferroni significant loci from GWAS. Corlier et al. (N = 355) found that an immune response PRS 352 

(comprising 11 SNPs) was associated with a global measure of cortical thinning (Corlier et al., 353 

2018). Ahmad et al. (N = 4,521) reported no significant associations between seven pathway-based 354 

PRS (each with ~20 SNPs) and hippocampal or whole brain volumes (Ahmad et al., 2018). Caspers 355 

et al. (N = 544) identified associations between pathway-specific PRS and cortical thinning, noting 356 

more bilateral effects and distinct patterns involving superior parietal and anterior/mid-cingulate 357 

regions (Caspers et al., 2020). Our previous work using UK Biobank and ALSPAC data showed no 358 

significant associations between AD PRS and grey matter volumes in younger adults (Harrison et al., 359 

2023), consistent with the null white matter results in the present study.  360 
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A growing body of evidence suggests that the neuroanatomical effects of Alzheimer’s disease genetic 361 

risk are developmentally regulated, with expression emerging gradually across the lifespan. 362 

Korologou-Linden et al. (2023) and He et al. (2023) demonstrated age-dependent PRS effects on 363 

brain morphology across large datasets (N > 20,000), with associations absent in youth but prominent 364 

in mid-to-late adulthood (He et al., 2023, p. 20; Korologou-Linden et al., 2025). Similarly, Peng et 365 

al. (2024) reported that higher AD PRS was linked to reduced white matter signal changes and 366 

network efficiency in older cohorts, particularly in tracts implicated in AD progression (Jiaxuan Peng 367 

et al., 2024). Network-based approaches may be more sensitive to subtle white matter changes in 368 

young adults. For example, Mirza-Davies et al. (2023) used diffusion MRI-derived connectome 369 

analyses in the ALSPAC cohort and found that higher genome-wide AD PRS was associated with 370 

reduced connectivity in visual and rich-club brain regions (Mirza-Davies et al., 2022). Our findings 371 

extend this evidence by showing that pathway-specific scores track with microstructural disruption in 372 

these same regions, and that several effects remain after removing APOE, underscoring the value of 373 

polygenic approaches that move beyond single-gene models (Escott-Price et al., 2015). 374 

This study has several notable strengths. First, it is the largest to date to examine white matter 375 

microstructure in relation to pathway-specific polygenic risk for Alzheimer’s disease, using 376 

harmonised genetic pipelines across two well-characterised population cohorts at different life stages. 377 

Second, we applied summary statistics from the largest GWAS of clinically-defined AD (Kunkle et 378 

al., 2019), and were able to construct threshold-based PRS with increased statistical power and more 379 

comprehensive genetic signal compared to previous studies that relied solely on genome-wide 380 

significant loci. The large sample sizes in both cohorts provided sufficient power to detect subtle 381 

associations, while the use of biologically informed pathway scores allowed for a more 382 

mechanistically nuanced investigation of AD risk architecture.  383 

Several limitations must be acknowledged. The ALSPAC cohort was much smaller than the UKBB 384 

cohort, and therefore may not have been powered to detect very subtle effects. Although the same 385 

quality control procedures and PRS construction pipeline were applied across both cohorts, minor 386 

differences in SNP availability may have resulted in variation in the SNPs retained after LD 387 

clumping, potentially affecting the comparability of the resulting scores. We used 1000 Genomes 388 

phase I imputation, which is robust for common variants but may underperform TOPMed for lower-389 

frequency alleles; this could modestly reduce PRS fidelity. Incorporating TOPMed-based imputation 390 

in future studies may enhance sensitivity. Both ALSPAC and UK Biobank reflect relatively healthy, 391 
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high-functioning populations, which may limit generalisability, and the ALSPAC imaging subsample 392 

was predominantly male due to recruitment criteria (Fraser et al., 2013; Fry et al., 2017; Sharp et al., 393 

2020). As with all PRS-based approaches, the underlying biological mechanisms remain uncertain; 394 

individual SNPs may tag multiple biological processes via linkage disequilibrium. As noted in our 395 

previous study, pathway boundaries are overlapping and imprecise (Harrison et al., 2023). We used 396 

summary statistics from Kunkle et al. (2019) (Kunkle et al., 2019) a large clinically defined AD 397 

GWAS that excludes UK Biobank, thereby maintaining discovery–target independence in both 398 

cohorts. Although the more recent Bellenguez et al. (2022) (Bellenguez et al., 2022) GWAS 399 

increases power, it incorporates UK Biobank (including AD-by-proxy), which would reduce 400 

independence for the present analyses. Future studies should assess the generalisability of pathway-401 

specific effects using Bellenguez-based scores, and those using UK Biobank should also examine 402 

whether pathway-specific PRS show stronger associations in participants with a positive AD-by-403 

proxy phenotype. 404 

A key methodological consideration is that the diffusion MRI pipelines differed substantially 405 

between cohorts. The UK Biobank analysis employed TBSS, which, while widely used, is known to 406 

have limited spatial specificity and reduced sensitivity to small or curved tracts—particularly those 407 

near cerebrospinal fluid or grey matter boundaries (Smith et al., 2006; Bach et al., 2014). For 408 

example, the fornix showed no significant associations in the UK Biobank cohort despite its known 409 

relevance to AD. It is anatomically narrow, highly curved, and runs adjacent to the ventricles, making 410 

it particularly difficult to delineate with TBSS. ALSPAC diffusion data were analysed with native-411 

space tractography to maximise anatomical specificity in small, curved tracts adjacent to CSF (e.g., 412 

fornix), which can be challenging for skeleton-based TBSS approaches. We modelled UKBB scanner 413 

site as a covariate, consistent with common practice. Alternative harmonisation approaches, such as 414 

ComBat and longitudinal ComBat, can further reduce unwanted site/batch variance. Future work 415 

should consider harmonised within-cohort pipelines to balance spatial specificity and cross-dataset 416 

comparability (Beer et al., 2020). 417 

Finally, interpreting diffusion MRI measures is inherently complex. Both lower FA and higher MD 418 

are non-specific and may reflect a range of underlying biological changes, including demyelination, 419 

axonal loss, oedema, or fibre crossing (Beaulieu, 2002; Jones, Knösche and Turner, 2013). As such, 420 

caution is warranted when attributing diffusion changes directly to neurodegeneration. Although we 421 

focused a priori on tracts with strong evidence for early AD vulnerability (parahippocampal and 422 
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dorsal cingulum, fornix), pathway-specific genetic effects could extend to additional association and 423 

prefrontal pathways, particularly in younger adults. Systematic whole-brain or frontally focused 424 

extensions will be an important target for future studies, incorporating multimodal neuroimaging and 425 

functional genomic annotation, to clarify the molecular and structural pathways linking polygenic 426 

risk to brain changes. 427 

This study provides new evidence that polygenic risk for Alzheimer’s disease, stratified according to 428 

biological pathway, is associated with differences in white matter microstructure in cognitively 429 

healthy older adults. The strongest associations were observed in tracts vulnerable to early AD 430 

pathology, such as the parahippocampal cingulum and dorsal cingulum, and surpassed nominal 431 

significance threshold after exclusion of the APOE locus. In contrast, no robust associations were 432 

detected in a younger cohort, despite using harmonised genetic methods and a targeted set of tracts. 433 

These findings support the hypothesis that the neuroanatomical effects of AD genetic risk may be 434 

developmentally regulated, with minimal impact in early adulthood and greater expression in mid-to-435 

late life. By applying a pathway-specific polygenic approach to large imaging cohorts across the 436 

lifespan, this study highlights the value of white matter microstructure as a potential intermediate 437 

phenotype for understanding how AD risk unfolds across development  and underscores the 438 

importance of lifespan and mechanistic perspectives in genetic neuroimaging research. 439 
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1 Supplementary Material 640 

Supplementary Tables 1-4: Findings from regression analyses assessing the associations between 641 

pathway-specific AD PRS and white matter microstructure metrics (FA and MD) in the UK Biobank 642 

and ALSPAC cohorts. Analyses were performed at PT = 0.001. Standardized beta coefficients, 643 

standard errors, and p-values are provided for each tract and pathway combination. The tables 644 

indicate which associations survived correction for multiple comparisons, and which persisted at p < 645 

0.05 (uncorrected) after APOE was excluded from the PRS.  646 

Supplementary Figure 1: Associations with the Tau Protein Binding PRS and diffusion metrics 647 

in UK Biobank (n = 18 172). Pathway-specific polygenic scores were negatively associated with FA 648 

in the dorsal and parahippocampal cingulum and positively associated with MD in the same regions. 649 

There were no associations with FA or MD in the fornix that withstood multiple comparisons 650 

correction. Imaging phenotypes are shown on the x-axis, the R2 multiplied with the sign of the B-651 

coefficients (positive and negative) are shown on the y-axis. Any nominally significant results are 652 

labelled with their nominal P-value. Each bar represents a version of the PRS, colour-coded by the P-653 

value threshold used in the training data, shown on the legend. ‘p-value threshold’ denotes the SNP 654 

inclusion threshold for PRS construction (not a training/validation split). Numerical coefficients, 655 

standard errors, confidence intervals, and p-values for each model are provided in Supplementary 656 

Tables. 657 

. 658 
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 659 

 660 

12 Data Availability Statement 661 

The datasets analysed in this study are accessible upon request from ALSPAC and UK Biobank. Both 662 

studies provide comprehensive, searchable data dictionaries and variable search tools on their 663 

respective websites to support data discovery (http://www.bristol.ac.uk/alspac/researchers/our-data/,  664 

https://www.ukbiobank.ac.uk/). 665 

 666 

Figures and Legends 667 

 668 

Figure 1. Example dMRI regions of interest defined for ALSPAC. Left image: the fornix; Centre 669 

image: the dorsal cingulum; Right image: the parahippocampal cingulum. 670 

http://www.bristol.ac.uk/alspac/researchers/our-data/
https://www.ukbiobank.ac.uk/
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 671 

Figure 2. Associations with the Protein-Lipid Complex Assembly PRS and diffusion metrics in 672 

UK Biobank (n = 18 172). FA/MD are outcomes and PRS are predictors. Pathway-specific 673 

polygenic scores were negatively associated with FA in the dorsal and parahippocampal cingulum 674 

and positively associated with MD in the same regions. There were no positive associations with FA 675 

or MD in the fornix. Imaging phenotypes are shown on the x-axis, the R2 multiplied with the sign of 676 

the B-coefficients (positive and negative) are shown on the y-axis. Any nominally significant results 677 

are labelled with their nominal P-value. Each bar represents a version of the PRS, colour-coded by 678 

the P-value threshold used in the training data, shown on the legend. ‘p-value threshold’ denotes the 679 

SNP inclusion threshold for PRS construction (not a training/validation split). Numerical 680 

coefficients, standard errors, confidence intervals, and p-values for each model are provided in 681 

Supplementary Tables. Acronyms: PRS = Polygenic Risk Score; FA = Fractional Anisotropy; MD = 682 

Mean Diffusivity; UKBB = UK Biobank; ROI = Region of Interest; SNP = Single Nucleotide 683 

Polymorphism; R² = Coefficient of Determination; B = Regression Coefficient. 684 
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 685 

Figure 3. Associations with the Genome-Wide PRS and diffusion metrics in UK Biobank (n = 686 

18 172). FA/MD are outcomes and PRS are predictors. Genome-wide polygenic score was not 687 

significantly associated with any white matter metrics at the PT in our primary analysis (PT 0.001). 688 

There were trends towards associations at more liberal PT, however none withstood multiple 689 

comparisons correction and the direction of effect was the reverse of what would be expected in 690 

some cases, e.g. decreased MD in the right dorsal cingulum and increased FA in the left 691 

parahippocampal cingulum. Imaging phenotypes are shown on the x-axis, the R2 multiplied with the 692 

sign of the B-coefficients (positive and negative) are shown on the y-axis. Any nominally significant 693 

results are labelled with their nominal P-value. Each bar represents a version of the PRS, colour-694 

coded by the P-value threshold used in the training data, shown on the legend. ‘p-value threshold’ 695 

denotes the SNP inclusion threshold for PRS construction (not a training/validation split). Numerical 696 

coefficients, standard errors, confidence intervals, and p-values for each model are provided in 697 

Supplementary Tables. Acronyms: PRS = Polygenic Risk Score; FA = Fractional Anisotropy; MD = 698 

Mean Diffusivity; UKBB = UK Biobank; ROI = Region of Interest; SNP = Single Nucleotide 699 

Polymorphism; R² = Coefficient of Determination; B = Regression Coefficient. 700 

 701 
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 702 

Figure 4. Associations with the Protein-Lipid Complex Assembly PRS and diffusion metrics in 703 

ALSPAC (n = 517). FA/MD are outcomes and PRS are predictors. There were no associations that 704 

survived multiple comparisons correction even at more liberal PTs. There was a trend toward 705 

association with increased MD in the left dorsal cingulum. Imaging phenotypes are shown on the X 706 

axis, the R2 multiplied with the sign of the B-coefficients (positive and negative) are shown on the Y 707 

axis. Any nominally significant results are labelled with their nominal p-value. Each bar represents a 708 

version of the PRS, colour-coded by the p-value threshold used in the training data, shown on the 709 

legend. ‘p-value threshold’ denotes the SNP inclusion threshold for PRS construction (not a 710 

training/validation split). Numerical coefficients, standard errors, confidence intervals, and p-values 711 

for each model are provided in Supplementary Tables. Acronyms: PRS = Polygenic Risk Score; FA 712 

= Fractional Anisotropy; MD = Mean Diffusivity; UKBB = UK Biobank; ROI = Region of Interest; 713 

SNP = Single Nucleotide Polymorphism; R² = Coefficient of Determination; B = Regression 714 

Coefficient. 715 

 716 
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 717 

Figure 5. Associations with the Genome-Wide PRS and diffusion metrics in ALSPAC (n = 517). 718 

FA/MD are outcomes and PRS are predictors. There were no associations between any PT and FA or 719 

MD. Imaging phenotypes are shown on the X axis, the R2 multiplied with the sign of the B-720 

coefficients (positive and negative) are shown on the Y axis. Any nominally significant results are 721 

labelled with their nominal p-value. Each bar represents a version of the PRS, colour-coded by the p-722 

value threshold used in the training data, shown on the legend. ‘p-value threshold’ denotes the SNP 723 

inclusion threshold for PRS construction (not a training/validation split). Numerical coefficients, 724 

standard errors, confidence intervals, and p-values for each model are provided in Supplementary 725 

Tables. Acronyms: PRS = Polygenic Risk Score; FA = Fractional Anisotropy; MD = Mean 726 

Diffusivity; UKBB = UK Biobank; ROI = Region of Interest; SNP = Single Nucleotide 727 

Polymorphism; R² = Coefficient of Determination; B = Regression Coefficient. 728 

 729 

 730 

 731 


