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Abstract
While the interarrival times of the classical Poisson process are exponentially dis-
tributed, complex systems often exhibit non-exponential patterns, motivating the use
of the fractional Poisson process, in which interarrival times follow a Mittag–Leffler
distribution. This paper investigates the associated risk process, describes its Cramér–
Lundberg formula and establishes a relationship between the continuous premium rate
and the fractional claim frequency. For a compound fractional risk process with expo-
nential claims, we derive closed-form expressions for the finite-time ruin probability.
Furthermore, for a general claim distribution, we provide ruin probability estimates
that can serve as a basis for developing reinsurance strategies.
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1 Introduction

Insurance, particularly non-life insurance companies and reinsurers rely on proper
assumptions for claim sizes and claim frequencies. The classical assumption for claim
frequencies is the Poisson processwith exponentially distributedwaiting times. Unlike
the memoryless Poisson process, the fractional Poisson process is non-Markovian,
see Mainardi et al. (2004), Laskin (2003), Beghin and Orsingher (2009), Meerschaert
et al. (2011). This is achieved through interarrival times that follow a Mittag–Leffler
distribution, which, unlike the exponential distribution, has a heavier tail. This allows
the model to account for periods of high and low claim activity, reflecting a more
realistic clustering of events. Such periods are indeed observed empirically in complex
systems (Laskin 2003; Kumar et al. 2020), where non-exponential interarrival times
have been confirmed in insurance and internet traffic data.

A key feature of the fractional Poisson process is its ability to model long-range
dependence. This means that the number of claims in distant time intervals can be
correlated. This is particularly relevant in lines of business like catastrophic insur-
ance, where the effects of a major event can linger and influence claim patterns for
an extended period. In many insurance contexts, claims do not arrive independently.
External factors like weather patterns (hurricane seasons, freezing winters), economic
cycles, or pandemic waves can cause claims to cluster in a way that influences the
process for a long time. This is crucial for catastrophe insurance (hurricanes, earth-
quakes), crop insurance (droughts), and health insurance (epidemics), where events
are clearly not memoryless.

Let us now formally introduce fractional generalizations of the classical risk model.
Biard and Saussereau (2016) and Beghin and Macci (2013) studied the renewal risk
process in which the surplus of an insurance company is modelled by a fractional risk
process

Rα(t) = u + c t −
Nα(t)∑

i=1

Zi , t ≥ 0, (1.1)

where u > 0 is the initial capital, c > 0 is the constant premium rate, the sequence
Z1, Z2, . . . is the successive claims modelled by independent nonnegative random
variables with mean μ. The renewal process Nα(t) is independent of the sequence
Z1, Z2, . . . and has the form

Nα(t) = max {n : V1 + . . . + Vn ≤ t} , t ≥ 0, 0 < α ≤ 1, (1.2)

where the interarrival times V1, . . . , Vn between claims are independent identically
distributed random variables with the Mittag–Leffler distribution, that is,

P [Vi ≤ t] = 1 − Eα

(−λtα
)
, t ≥ 0, 0 < α ≤ 1, (1.3)
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where

Eα(z) =
∞∑

k=0

zk

�(αk + 1)
, z ∈ C, �(α) > 0, (1.4)

is the Mittag–Leffler function and �(·) is the gamma function. Note that

EVi = ∞ (1.5)

for 0 < α < 1. As known, Nα(t) is also called the fractional Poisson process (FPP),
see Beghin and Orsingher (2009), Meerschaert et al. (2011) for other approaches to
the definition of the FPP. Biard and Saussereau (2014), Biard and Saussereau (2016)
derived some expressions for the ruin probabilities of the fractional risk process (1.1)
in the case of light-tailed and heavy-tailed claim sizes, see “Appendix” for details.

For α = 1, the model (1.1) becomes the classical collective risk Cramér–Lundberg
model denoted by R(t), where P(Vi ≤ t) = 1 − e−λt , t ≥ 0, see, for example,
Malinovskii (2021). To avoid ruin with certainty under the net profit condition, we
assume that Lundberg’s constant

β = λμ

c
= EZi

c · EVi
(1.6)

satisfies the constraint β < 1.
Recently, Kumar et al. (2020) introduced and studied the compound fractional risk

process

R•
α(t) = u + c Yα(t) −

Nα(t)∑

i=1

Zi , t ≥ 0, 0 < α < 1, (1.7)

where Yα(t), t ≥ 0, 0 < α < 1, is the inverse stable subordinator defined below
by (2.1). They investigate the infinite horizonprobability of ruin of the risk process (1.7)
and show that it is the same as for the classical risk process for exponentially distributed
claims.

Furthermore, Kataria and Khandakar (2021) introduced and investigated a mixed
fractional risk process, while Pirozzi (2022) studied some other fractional insurance
models.

The present paper investigates both fractional risk processes (1.1) and (1.7). We
study the probability of ruin within finite time for the compound fractional risk
process (1.7) and present closed forms, which are only available for specific claim
distributions. For the general situation, we discuss the Cramér–Lundberg inequality
in the framework of fractional risk processes (1.1). For a general discussion on the
probability of ruin within finite time, we refer to the papers and books of Asmussen
and Albrecher (2010) and Malinovskii (2021), see also the references therein.
Outline of the paper. The paper presents preliminaries on the α-stable subordinator,
its inverse and the fractional Poisson process in Section 2. Section 3 introduces the
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probability of ruin within finite time for the compound fractional risk process R•
α(t),

while Section 4 discusses the time of ruin itself. As closed-form formulae are not
always available, Section 5 highlights the Cramér–Lundberg formula for the frac-
tional risk process Rα(t). Its perspective for insurance is considered in Section 6. The
simulation of the compound fractional risk process R•

α(t) is discussed in Section 7.
Proofs of our results are deferred to “Appendix”, and the R code with demonstration
of our findings is placed in online supplement.

2 Preliminaries

This section presents some known results, which will be required later.
An α-stable subordinator {Dα(t)}t≥0 is a one-dimensional Lévy process whose

sample paths are non-decreasing and continuous from the right with left limits
(càdlàg). It is characterized by the Laplace transform E

[
e−s Dα(t)

] = e−t φ(s), s ≥
0, where φ(s) = sα , which can also be written in the integral form φ(s) =∫ ∞
0

(
1 − e−sx

)
ν(dx), 0 < α < 1, with the Lévy measure ν(dx) = α

�(1−α) x1+α dx,

x > 0. The first-passage time of {Dα(t)}t≥0 is a non-decreasing process Yα(t) known
as the inverse subordinator. It is defined as

Yα(t) = inf {s > 0 : Dα(s) > t} , t ≥ 0. (2.1)

For further details on the subordinator and its inverse, we refer to Meerschaert and
Sikorskii (2019). We only note that the density of Yα(t) is given by

fα(x, t) = t

α

1

x1+ 1
α

gα

(
t

x1/α

)
, x > 0, t > 0, (2.2)

where gα(x) is the density of Dα(1), see Meerschaert and Sikorskii (2019, Eq. 4.47,
p. 111), and can be written explicitly as

gα(x) = 1

π

∞∑

k=1

(−1)k+1�(αk + 1)

k!
sin(παk)

xαk+1 , x ≥ 0, (2.3)

see Feller (1991, p. 583). Figure 1 displays the density of Yα(1). We note that the
density fα(x, 1) cannot be well numerically computed at the right tail due slow con-
vergence of the series in (2.3). Other representations of the density fα(x, t) are given
in “Appendix”, while the representation (8.1) using the M-Wright function is more
computationally suitable.

We note that both processes {Dα(t)}t≥0 and {Yα(t)}t≥0 are self-similar, that is, there
are equalities

Dα(at)
d= a1/α Dα(t), Yα(at)

d= aαYα(t), t ≥ 0, a ≥ 0,
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Fig. 1 The density of Yα(t) given in (2.2) for t = 1 and varying α using the truncated series with 120 terms
of (2.3) (left) and the M-Wright function (right)

where "
d= " means equality in the sense of finite-dimensional distributions. We also

note that t
/

[Yα(t)]1/α d= Dα(1), the subordinator {Dα(t)}t≥0 has independent incre-

ments but the inverse subordinator {Yα(t)}t≥0 does not have independent increments.
The Laplace transform of Yα(t) is given by

E

[
e−s Yα(t)

]
=

∫ ∞

0
e−sh fα(h, t)dh = Eα

(−s tα
)
, s > 0, (2.4)

where Eα(·) is the Mittag–Leffler function defined by (1.4). Note that

E
[
Yα(t)ν

] = �(ν + 1)

�(αν + 1)
tαν, ν > 0,

and

Cov (Yα(s), Yα(t)) =
∫ min{s,t}

0

((t − τ)α + (s − τ)α) τα−1

�(α)�(1 + α)
dτ − (s t)α

�2(1 + α)
,(2.5)

see Leonenko et al. (2014). For 0 < s < t , we have

Cov (Yα(s), Yα(t)) = 1

�2(α+1)

(
αs2α B(α, α+1)+αt2α B(α, α+1, s/t)−(st)α

)
,

where B(α, α + 1) is the beta function and B(α, α + 1, s/t) is the incomplete beta
function. For fixed s and large t , we obtain

Cov (Yα(s), Yα(t)) ∼= 1

�2(α+1)

(
αs2α B(α, α+1)− α2sα+1

(α+1)t1−α

)
, 0 < s < t .

(2.6)

The stochastic process {Yα(t)}t≥0 is not stationary, but we will refer to the prop-
erty (2.6) as long-range dependence, see Maheshwari and Vellaisamy (2016) for
details.

Finally, the FPP Nα(t) which is introduced in (1.2) can be defined as

Nα(t) = N (Yα(t)), t ≥ 0, (2.7)
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as shown in Meerschaert et al. (2011), where {N (t)}t>0 is the homogeneous Poisson
process with intensity λ > 0, and {Yα(t)}t≥0 is the inverse stable subordinator defined
by (2.1), independent of {N (t)}t≥0. We have

ENα(t) = λtα

�(1 + α)
,

Var Nα(t) = λ2t2α

�(1 + α)

(
α�(α)

�(2α)
− 1

)
+ λtα

�(1 + α)
, t ≥ 0,

and

Cov (Nα(t), Nα(s)) = λ(min{t, s})α
�(1 + α)

+ λ2 Cov (Yα(t), Yα(s)) ,

where Cov (Yα(t), Yα(s)) is given by (2.5).
The state probabilities of the FPP are of the form:

P {Nα(t) = k} =
∫ ∞

0

e−λx (λx)k

k! fα(t, x)dx

= (λtα)k

k!
∞∑

j=0

(k + j)!
j !

(−λtα) j

�(α( j + k) + 1)

= (λtα)k

k! E (k)
α (−λtα), (2.8)

where

E (k)
α (z) = dk

dzk
Eα(z), z ∈ C, (2.9)

is the k-th derivative of Eα(z), which is given in (1.4). From Podlubny (1998), we
have E (k)

α,ρ(z) = k! Ek+1
α,kα+ρ(z), k ≥ 0, where

Eγ
α,ρ(z) =

∞∑

k=0

(γ )k zk

�(αk + ρ)k! , z ∈ C, α, ρ, γ ∈ C, �(α) > 0, (2.10)

is the 3-parameterMittag–Leffler function and (γ )k is thePochhammer symbol defined
by (γ )0 = 1, (γ )k = �(γ+k)

�(γ )
= γ (γ + 1) · · · (γ + k − 1). Note that Eα(z) = E1

α,1(z).
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3 The probability of ruin within finite time

By involving the fractional Poisson process, we address the compound fractional risk
process R•

α(t) defined in (1.7),

R•
α(t) := R(Yα(t)) = u + c Yα(t) −

N (Yα(t))∑

i=1

Zi , t ≥ 0, 0 < α < 1, (3.1)

where the classical risk process R(t) and the inverse stable subordinator Yα(t), defined
in (2.1), are independent. For α = 1, we define R1(t) := R(t).

From Wald’s formula, we have

ER•
α(t) = u + c

tα

�(1 + α)
− μλ

tα

�(1 + α)

and

Cov
(
R•

α(t), R•
α(s)

) = λ · min(s, t)α

�(1 + α)

[
μ2 + σ 2

]
+ (λμ)2 Cov (Yα(t), Yα(s)) ,

where σ 2 = Var Zi , and Cov (Yα(t), Yα(s)) is given by (2.5), where P [Zi ≤ x] =
1 − e−x/μ, x > 0 and EZi = μ.

The probability of ruin associated with the process R•
α(t) within finite time is

denoted by

ψα(t) = P

[
inf

0≤s≤t
R•

α(s) < 0

]
, (3.2)

while the probability of ultimate ruin is

ψα∞ = lim
t→∞ ψα(t). (3.3)

It follows from Kumar et al. (2020) that for any 0 < α < 1 and exponentially
distributed claims Zk with mean μ, we have

ψα∞ = ψ∞ :=
{

β exp
(
− u

μ
(1 − β)

)
, if β < 1,

1, if β ≥ 1,
(3.4)

where β = λμ
c is Lundberg’s constant; note, however, that E Vi is infinite for the

fractional models, while E Vi is finite for the classical risk process. It is also known
[see, for example, Malinovskii (2021, Theorems C.14–16) and the references therein]
that there are three expressions for the ruin probability ψ(t) if the claims Zk , k ≥ 1,
are exponentially distributed with mean μ > 0.
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One expression is given by

ψ(t) = ψ∞ − 1

π

∫ π

0
Ft (x)dx,

where ψ∞ is given by (3.4), and Ft (x) = Ut (x)V (x), where

Ut (x) = exp

(
−t · c

μ

(
1 + β − 2

√
β cos(x)

))
(3.5)

and

V (x) = β

1 + β − 2
√

β cos x
exp

(
u

μ

(√
β cos x − 1

))
(3.6)

×
(
cos

(
u

μ

√
β sin x

)
− cos

(
u

μ

√
β sin x + 2x

))
. (3.7)

Other two expressions for ψ(t) can be written as

ψ(t) = βe− u
μ

∫ tc/μ

0
e−(1+β)x G(x)dx,

where

G(x) = I0
(
2
√

βx(x + u/μ)
)

− x

x + u/μ
I2

(
2
√

βx(x + u/μ)
)

,

which follows from Malinovskii (2021, Th. C.14), or alternately

G(x) =
∞∑

n=0

(√
β

u

μ

)n n + 1

x
√

β n! In+1

(
2x

√
β
)

, (3.8)

which follows from Malinovskii (2021, Th. C.15), where

In(z) =
∞∑

k=0

1

k!(n + k)!
( z

2

)n+2k
, z ∈ C,

k = 0, 1, 2, . . ., is the modified Bessel function of the first kind of order n.

3.1 Explicit expression of the probability of ruin

This section presents the density of ruin probabilities of the compound fractional risk
model R•

α(t) and provides explicit expressions for exponentially distributed claims.
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Theorem 1 Let ψ(t) be the ruin probability for the Cramèr–Lundberg model. Then,
the ruin probability for the compound fractional risk model (3.1) is given by

ψα(t) =
∫ ∞

0
ψ(h) fα(h, t)dh, (3.9)

where fα(·, t) is the density of Yα(t) provided by (2.2).

According to Theorem 1, the numerical computation of the ruin probability ψα(t)
requires double integration and all three expressions of the ruin probabilityψ(t) given
above can be used. Fortunately, for one expression of ψ(t), the computation of the
ruin probability ψα(t) can be simplified as follows.

Theorem 2 In the compound fractional risk model (3.1)with exponentially distributed
claims Zi with mean μ, the probability of ruin within finite time is given by

ψα(t) = ψ∞ − 1

π

∫ π

0
Fα

t (x)dx, 0 < α < 1,

where Fα
t (x) = V (x) · Uα

t (x) and ψ∞ is defined by (3.4), while V (x) is defined
by (3.7), and Uα

t (x) = Eα

(−tα A(x)
)
, where Eα(·) is the Mittag–Leffler function

given by (1.4) and

A(x) = c

μ

(
1 + β − 2

√
β cos(x)

)
. (3.10)

Remark 3 For α = 1, we have E1
(−t A(x)

) = e−t A(x), and the formula from Theo-
rem 2 is consistent with (3.5). Using Simon (2014, Th. 4), we obtain the two-sided
inequality

1

1 + �(1 − α)tα A(x)
≤ Eα

(−tα A(x)
) ≤ 1

1 + 1
�(1+α)

tα A(x)

for α ∈ (0, 1) uniformly in t ≥ 0.

Figure 2 depicts the cumulative distribution function (cdf) of the Mittag–Leffler
distribution and the ruin probability ψα(t) for various values of parameters, and the
R code is deferred to online supplement.

4 Ruin time for the compound fractional risk process

Another characteristic associated with the probability of ruin in (3.2) and (3.3) is the
time of ruin

τα = inf
{
t > 0 : R•

α(t) < 0
}
, 0 < α < 1, (4.1)
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Fig. 2 The cdf of the Mittag–Leffler distribution and the ruin probability ψα(t) for various values of
parameters

which reduces to

τ = inf{t > 0 : R(t) < 0} (4.2)

for α = 1, where R(t) is the classical risk model and R•
α(t) is defined by (1.7). We

define τα = ∞ and τ = ∞ if R(t) > 0 and R•
α(t) > 0 for all t > 0. Next proposition

establishes a relation between the ruin times τα and τ .

Proposition 4 For the given random paths of Yα(t) and the classical risk model R(t),
we have

Yα(τα)
d= τ, (4.3)

and τα ≤ Dα(τ ), where Yα(t) is the inverse subordinator of Dα(t), cf. (2.1).

Let pτ (t) be the density of τ and pτα (t) be the density of τα . As stated in Dickson
(2016), we have pτ (t) = d

dt ψ(t)which implies that the density of the time of ruin can
be computed as the derivative of the probability of ruin within finite time. Similarly,
for pτα (t) = d

dt ψ
α(t) we have

pτα (t) = − 1

π

∫ π

0
V (x)

∂

∂t
Uα

t (x)dx = αtα−1

π

∫ π

0
V (x)A(x)E2

α,α+1(−tα A(x))dx,

whereψα(t) is given in Theorem 2, V (x) is defined in (3.7), A(x) is defined in (3.10),
and E2

α,α+1(·) is defined in (2.10).
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Alternatively, using Borovkov and Dickson (2008, Th. 1), we have

pτ (t) =uλe− u+ct
μ

−λt

u + ct

∞∑

m=0

(u + ct)m

m!μm

(λt)m

�(m + 1)

+ λt
ce− u+ct

μ
−λt

u + ct

∞∑

m=0

(u + ct)m(λt)m

m!μm�(m + 2)

and pτα (t) = d
dt P [τα ≤ t], where

P [τα ≤ t] = P
[
inf

{
v ≥ 0 : R•

α(v) ≤ 0
}]

=
∫ ∞

0
P

[
inf

0≤s≤h
R(s) ≤ 0

]
fα(h, t)dh

=
∫ ∞

0

[∫ h

0
pτ (z)dz

]
fα(h, t)dh

=
∫ ∞

0

∫ h

0

[
uλe− u+cz

μ
−λz

u + cz
·

∞∑

m=0

(u + cz)m

m!μm
· (λz)m

�(m + 1)

+ (λz)
ce− u+cz

μ
−λz

u + cz

∞∑

m=0

(u + cz)m

m!μm

(λz)m

�(m + z)

]
dz fα(h, t)dh

]
.

5 The Cramér–Lundberg inequality for the fractional risk process

In this section, we discuss the general situation where explicit expressions for the
probability of ruin are not available. In particular, we present bounds and premiums
for the fractional risk process Rα(t).

5.1 Cramér–Lindberg coefficient of the fractional risk process

Wewill now consider the Cramér–Lundberg inequality for general claim distributions,
as it provides anupper bound for the ruin probability in caseswhere explicit expressions
are not available.

As in (1.2), consider the interarrival times V1, V2, . . . in the risk process with
claim Zi after waiting time Vi , i = 1, 2, . . . . At the times of claim occurrences, the
fractional risk process (1.1) is

Rα(V1 + · · · + Vn) = u + c V1 + · · · + c Vn −
n∑

i=1

Zi = u +
n∑

i=1

(c Vi − Zi ).(5.1)

The classical net profit condition in non-life insurance mathematics [cf. Mikosch
(2003, Definition 4.1.4)] reads E(c Vi − Zi ) ≥ 0, but this condition is void as E Vi
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is infinite by (1.5) (cf. also (1.6)). Alike, Lundberg’s constant β = E Zi
c·E Vi

is not well
defined, cf. (1.6). However, the Cramér–Lundberg inequality also holds true in the
framework of the fractional risk process.

In what follows, we include the initial capital u of (5.1) in (3.2) in the notation, and
we write

ψα
u := P

[
inf
s≥0

Rα(s) ≤ 0

]
. (5.2)

Theorem 5 (Cramér–Lundberg inequality for the fractional risk process Rα(t)) For
the probability of ruin (cf. (3.2) and (3.3)), it holds that

ψα
u ≤ e−rα u, (5.3)

where rα > 0 is the adjustment or Cramér–Lundberg coefficient, which is defined to
be the unique and positive solution of

E erα(Zi −c Vi ) = 1. (5.4)

We shall apply this bound to provide a basis for premiums for both, insurance and
reinsurance.

5.2 Premium adjustment for higher claim frequencies

For independent random variables Zi and Vi , the moment generating function in (5.4)
decomposes to

E erα(Z−c V ) = E erα Z · E e−rα c V ,

where the first expression involves the amount of the claim only, and the second
expression involves the interarrival times of the fractional risk process. We have the
following explicit form for this expression.

Proposition 6 Suppose the interarrival times Vi and the claims Zi are independent.
Then, the Cramér–Lundberg coefficient rα of the fractional risk process Rα(t) with
intensity λ satisfies the nonlinear equation

E erα Z = 1 + (c rα)α

λ
. (5.5)

Remark 7 (Premium adjustment for increased claim frequencies) Suppose the fre-
quency of claims increases from λ to λ′. Then, the Cramér–Lundberg coefficient rα

does not change, provided that the premium increases from c to c′ := c · (
λ′/λ

)1/α .
Indeed, from (5.5) we obtain that (c′ rα)

α
/λ′ = (c rα)α/λ and thus the processes with

parameters (c, λ) and (c′, λ′) are equivalent with respect to (5.5).

The following section combines the results to assess the loss in the case of ruin.
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6 Quantification of the loss at ruin

The preceding sections and the Cramér–Lundberg formula (5.3) study the probability
of ruin. This assessment does not give access to the expected loss in the case of ruin.
Let us extend the discussion by describing the expected loss in the case of ruin at
time t , as well as the expected maximum loss over time. Our results will constitute
the basis to thoroughly assess the price for reinsurance for the fractional risk process.

6.1 Loss

To study the random losses, we associate the random variable

Rα := inf
t>0

Rα(t)

with the fractional risk process Rα(t). The worst loss constitutes the left tail of Rα ,
and the expectation of Rα can be written as

E Rα = u −
∫ u

−∞
P(Rα ≤ r) dr ,

which is obtained by integration by parts. Also, we note that Rα ≤ Rα(0) = u.
Employing Markov’s inequality, the expected loss is an upper bound for this expres-
sion, and the probability P(Rα ≤ r) is bounded as

P(Rα ≤ r) ≤ inf
s>0

esr · E e−s Rα (6.1)

= inf
s>0

esr+logE e−s Rα

= einfs>0{sr−K Rα (s)}

= e−K ∗
Rα

(r)
,

where K Rα (s) := − logE e−s Rα is the cumulant-generating function of the random
variable Rα , and K ∗

Rα
(r) := infs>0{rs − K Rα (s)} its convex conjugate func-

tion (Legendre–Fenchel transformation). Combining the components above and the
expression (6.1)— well-known from large deviations theory —we obtain the lower
bound

E Rα ≥ u −
∫ u

−∞
e−K ∗

Rα
(r)dr .

The following proposition addresses the Laplace transform E e−s Rα employed
in (6.1) and the preceding upper bound.

Proposition 8 The Laplace transform of the fractional risk process Rα(t) is

E e−s Rα(t) = e−su · Eα

(
λtα

(
λ ϕZ (s)

λ + (sc)α
− 1

))
, (6.2)
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where ϕZ (s) = E es Zi is the moment generating function of the claims Zi and s > 0,
and the interarrival times Vi are independent from the claims Zi .

The Laplace transform in Proposition 8 is essential in elaborating the Legendre–
Fenchel transformation, which is critical, by (6.1), in providing estimates for the
random loss Rα . The quantity involves the individual claims Zi via its moment gen-
erating function ϕZ (·).

6.2 Reinsurance against ruin

The fractional risk process Rα(t) is of fundamental importance in insurance, as it
models the accumulated premiums c · t and losses Z1, . . . , Z Nα(t) up to time t . The
right tail of the distributionof Rα(t) corresponds to the accumulatedprofit of the insurer
at time t , whereas its left tail represents potential losses. The expectation E

(−Rα(t)
)

defines the fair premium for insuring against the loss Rα(t) [cf. Deprez and Gerber
(1985) for an early discussion, or Young (2006)]. To incorporate a customary safety
margin γ , the premium can be determined via

AV@Rγ

(−Rα(t)
)
, (6.3)

where

AV@Rγ (Y ) = inf
t∈R

(
t + 1

1 − γ
E(Y − t)+

)

is called the average value-at-risk of the random variable Y at risk level γ ∈ [0, 1).
The average value-at-risk is a risk functional, and it satisfies the axioms in the

following definition.

Definition 9 (Cf. Artzner et al. 1997, 1999) Let L be a set of random variables. The
mapping R : L → R is a risk functional, provided that the following axioms hold
true:

(i) For X ≤ Y almost everywhere, the risk measure R satisfies R(X) ≤ R(Y )

(monotonicity);
(ii) for λ > 0, it holds that R(λ Y ) = λR(Y ) (positive homogeneity);
(iii) for random variables X and Y , it holds that R(X + Y ) ≤ R(X) + R(Y ) (con-

vexity);
(iv) for c ∈ R, R(Y + c) = c + R(Y ) (translation equivariance).

The domain L of the risk function R in Definition 9 can be specified, in general,
as a specific Banach space, which is associated with the risk function R, cf. Pichler
(2013). For our study, it is sufficient to consider the domain L = L∞(P), the space
of uniformly bounded random variables.

The average value-at-risk allows expressing the expected loss in the case of ruin.
Indeed, from the identity

E(Y | Y ≥ V@Rγ (Y )) = AV@Rγ (Y ) (6.4)
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where V@Rγ (Y ) := F−1
Y (γ ) = inf{y : P(Y ≤ y) ≥ γ } is the generalized inverse

function, we obtain that

AV@R1−ψα
u
(−Rα(t)) = Emax(0,−Rα(t))

ψα
u

, (6.5)

where ψα
u = P(Rα(t) ≤ 0) is the probability of ruin introduced in (5.2), justifying

the premium (6.3). We note that the average value-at-risk is strongly related to the
probability of ruin of the fractional risk process.

Similarly, the loss up to fixed time t > 0 can be expressed via the average value-
at-risk as well by involving (6.4). Specifically, we obtain that

AV@R1−γ (−Rα(t)) = −Emin(0, Rα(t))

γ
,

where γ = P(R(t) ≤ 0), the crucial probability at time t .

6.3 Entropic value-at-risk

The total loss Rα(t), necessary in (6.5) to provide a premium, is usually not accessi-
ble for computations and does not coincide with the average value-at-risk in (6.3).
However, we have explicit access to the Laplace transform of the fractional risk
process Rα(t) via (6.2) in Proposition 8. The following entropic value-at-risk takes
advantage of this knowledge components.

Definition 10 The entropic value-at-risk of a random variable Y at risk level γ is

EV@Rγ (Y ) := inf
t>0

1

t
log

1

1 − γ
E etY , γ ∈ [0, 1),

cf. Ahmadi-Javid (2012) and Ahmadi-Javid and Pichler (2017).

For the fractional risk process Rα(t), the entropic value-at-risk is explicitly given by

EV@Rγ

(
Rα(t)

) = inf
s>0

1

s
log

1

1 − γ
E e−s·Rα(t)

= inf
s>0

1

s
log

1

1 − γ
e−su Eα

(
λtα

(
λϕZ (s)

λ + (sc)α
− 1

))
,

where we have used the explicit form (6.2).
The entropic value-at-risk is a convex premium, as the average value-at-risk. Their

relation is established in the following proposition.

Proposition 11 For every random variable Y and γ ∈ [0, 1), we have that

AV@Rγ (Y ) ≤ EV@Rγ (Y ).
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The general relationship between the average value-at-risk and the entropic value-
at-risk is given by its Kusuoka representation (cf. Kusuoka 2001), which is

EV@Rγ (Y ) = sup
μ

∫ 1

0
AV@Rx (Y )μ(dx),

where the supremum is along all measures μ on [0, 1], for which the associated
density σμ(p) := ∫ p

0
1

1−x μ(dx) satisfies
∫ 1
0 σμ(u) log σμ(u)du ≤ log 1

1−γ
; the latter

relationship is related to the Donsker and Varadhan’s variational formula, cf. Pichler
and Schlotter (2020), and gives the upper bound for the entropy of the distribution
with density σμ.

7 Simulation

We propose the simulation algorithm of the compound fractional risk process R•
α(t)

in the form of the direct superposition of trajectories of the classical risk process R(t)
and the inverse subordinator Yα(t), see Meerschaert and Sikorskii (2019, Sect. 5.2)
and “Appendix”.

The trajectory of the classical risk process R(t) starts with an initial capital u
and then continuously increases the surplus with a constant premium rate c. At ran-
dom, exponentially distributed intervals with mean 1/λ, the surplus is instantaneously
reduced by the size of a claim, which is also a random variable drawn from the expo-
nential distribution with mean μ.

The trajectory of the inverse subordinator Yα(t) can be obtained as follows. Let
� be a level of discretization, for example, we take � = 0.01. Let ξ1, ξ2, . . . be a
sequence of independent identically distributed random variables with the distribution
Dα(1). As it is shown in Gupta et al. (2021), the random variable with the distribution
Dα(1) can be expressed as

sin(απU )
(
sin((1 − α)πU )

) 1
α
−1

(
sin(πU )

) 1
α
∣∣ ln(V )

∣∣ 1
α
−1

,

whereU and V are independent random variables with the uniform distribution on the

interval [0, 1]. Let yi = i�, i = 0, 1, 2, . . ., and t0 = 0. Define ti = �
1
α

∑i
j=1 ξ j , i =

1, 2, . . .. Finally, the step plot for points (t0, y0), (t1, y1), (t2, y2), . . . is a discretized
trajectory of Yα(t). We note that the step plot for points (y0, t0), (y1, t1), (y2, t2), . . .
is a discretized trajectory of Dα(t). We can notice that the discretized trajectory of
Yα(t) is similar to a trajectory of a Poisson process but jumps have height � and time

between jumps is distributed as �
1
α Dα(1).

In Figure 3, we show 50 realizations of the inverse subordinator Yα(t) for several
values of α, and the R code is deferred to online supplement. Unlike the α-stable
subordinator itself, which is a pure jump process, its inverse is a continuous function
of time. This is because it takes time for the subordinator to reach a certain level,
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Fig. 3 Fifty realizations of the inverse subordinator Yα(t) for selected values of α
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Fig. 4 Convergence of the empirical finite-time ruin probability p̂k , k = 1000, . . . , 10000, for u = 1.2,
c = 3.5, λ = 1.4, μ = 1.1, T = 1.8, � = 0.01 and α = 0.5, 0.6, 0.7, 0.8. The theoretical finite-time ruin
probability is given by the horizontal line

and the inverse process reflects this. A key feature of the realizations is the presence
of flat periods or “resting times”. These flat periods correspond to the large jumps
in the original subordinator. When the subordinator makes a large jump, the inverse
subordinator’s value remains constant for a period, as it waits for the subordinator to
climb to the next level. The length of flat periods depends on α. We can see that the
process Yα(t) is almost equal to t if α is very close to 1. If α decreases, the process
Yα(t) stays for longer times at some values.

Let us now demonstrate that the empirical finite-time ruin probability converges
to the theoretical finite-time ruin probability as the number of realizations of the
compound fractional risk process R•

α(t) on the interval [0, T ] tends to infinity. Let
bk = 1 if ruin was observed for the k-th realization and bk = 0 otherwise, k =
1, 2, . . .. Define p̂k = 1

k

∑k
j=1 b j . By doing the Monte Carlo simulation in Figure 4,

we show sequences p̂k , k = 1000, . . . , 10000, for α = 0.5, 0.6, 0.7, 0.8, while other
parameters are fixed as u = 1.2, c = 3.5, λ = 1.4, μ = 1.1, T = 1.8, � = 0.01. We
can see that the empirical probability p̂k converges to the theoretical one shown by
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the horizontal line in the similar manner for various values of α as k → ∞; note that
the theoretical probability depends on α. According to the theory of the Monte Carlo
simulation, see, for example, Korn et al. (2010), we have also to look on the 95%-
confidence interval ( p̂k −1.96

√
p̂k(1 − p̂k)/

√
k, p̂k +1.96

√
p̂k(1 − p̂k)/

√
k), where

1.96 is the 97.5%-quantile of the standard normal distribution. In Figure 4, we observe
that the variance of curves at each k is close to p(1 − p)/k, where p = ψα(T ) is the
theoretical ruin probability, and the 95%-confidence intervals include p for various k,
confirming the agreement of the theoretical finite-time ruin probability with theMonte
Carlo simulation of it.

8 Appendix

8.1 Connections with results of Biard and Saussereau (2016)

Let us compare our findings with results of Biard and Saussereau (2016) who consid-
ered the model (1.1) in the framework of the Sparre–Andersen model with exponential
claims and the renewal counting process (1.2). For the infinite-time ruin probabil-
ity ψ∞ = P{Rα(s) < 0 for some s > 0}, they derived that the probability ψ∞
can be expressed as ψ∞ = (1 − γμ)e−γ u , u > 0, where γ is the unique solu-
tion of the equation γ α − γ α−1/μ + λ/cα = 0. For the finite-time ruin probability
ψα(t) = P{inf0≤s≤t Rα(s) < 0}, they derived that its Laplace transform is given by

ξ

∫ ∞

0
e−ξ tψα(t) = (1 − y(ξ))e− u

μ
(1−y(ξ)

, ξ > 0,

where y(ξ) is the unique solution of the equation

y(ξ) = λ

(
λ + ξ + c

μ

(
1 − y(ξ)

))−α

, ξ > 0.

They also derived that the density of the ruin time τ ∗
α = inf{t > 0 : Rα(t) < 0} in

the model (1.1) with exponential claims has the series representation

pτ∗
α
(t) = e−(u+ct)/μ

∞∑

m=0

(u + ct)m−1

m!μm

(
u + ct

m + 1

)
f ∗(m+1)
α (t),

where f ∗m
α (t) is the m-fold convolution of the probability density function of the

random variables defined in (1.3). They also derived some inequalities for the finite-
time ruin probability for the risk process (1.1) with light-tailed claim sizes. We note
that our results on the finite-time ruin probability are obtained for the risk process
R•

α(t) defined in (1.7) and have different nature because we have used a different
approach.
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8.2 Further properties of the density of the inverse stable subordinators

We give some alternative expressions for the density fα(x, t) of the inverse stable
subordinators; see, for example, Leonenko and Pirozzi (2022) and their references.

Instead of (2.2), the density of Xα(t) can be also given in the form

fα(x, t) = 1

tα
Mα

( x

tα

)
, x > 0, t > 0, (8.1)

where the M-Wright function Mα(z) is defined as

Mα(z) =
∞∑

k=0

(−z)k

k!�(−αk + (1 − α))
, z ∈ C, 0 < α < 1,

see Mainardi et al. (2010) for the properties of Mα(z). The further expression of the
density of Xα(t) is given by

fα(x, t) = 1

π

∫ ∞

0
uα−1e−tu+xuα cos(πα) sin

(
πα − xuα sin(πα)

)
du.

Also, in (2.2) the density gα(x) has the Mikusinski’s representation

gα(x) = α

1 − α

1

πx

∫ ∞

0
u(φ)e−u(φ)dφ,

where

u(φ) = sin((1 − α)φ)

sin φ

(
sin(αφ)

sin φ

) α
1−α

with the following asymptotics,

gα(x) ∼ C2
e−C1·x

α
1−α

x
2−α
2−2α

, x → 0,

gα(x) ∼ C3

x1+α
, x → ∞;

where

C1 = (1 − α)α
α

1−α , C2 = α
1

2−2α√
2π(1 − α)

, C3 = sin(πα)

π
�(1 + α).
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Thus, we have

fα(x, t) = C2

tα
(
1 + 2α−1

2−2α

)

α
x

2α−1
2−2α exp

{
− C1

t
α

1−α

x
1

1−α

}
, as x → ∞, and

fα(x, t) → 1

tα
sin(πα)

πα
�(1 + α), as x → 0.

8.3 Proof of Theorem 1

Note that

R•
α(t) = R (Yα(t)) , t ≥ 0, 0 < α < 1, (8.2)

where R(t) is the classical risk process, Yα(t) is given by (2.1), R(t) and Yα(t) are
independent. Then, we have

ψα(t) = P

[
inf

0≤s≤t
R•

α(s) < 0

]

=
∫ ∞

0
P

[
inf

0≤s≤t
R (Yα(s)) < 0 | Yα(t) = h

]
fα(h, t)dh

=
∫ ∞

0
P

[
inf

0≤b≤h
R(b) < 0

]
fα(h, t)dh =

∫ ∞

0
ψ(h) fα(h, t)dh,

that completes the proof.

8.4 Proof of Theorem 2

Using Theorem 1, Fubini’s theorem and (3.5), (3.7) and (3.9), we obtain

ψα(t) =
∫ ∞

0

[
ψ∞ − 1

π

∫ π

0
Fh(x)dx

]
fα(h, t)dh

= ψ∞ −
∫ ∞

0

[
1

π

∫ π

0
V (x)Uh(x)dx

]
fα(h, t)dh

= ψ∞ − 1

π

∫ π

0
V (x)dx

∫ ∞

0
Uh(x) fα(h, t)dh

= ψ∞ − 1

π

∫ π

0
V (x)dx

∫ ∞

0
e−h· c

μ (1+β−2
√

β cos x) fα(h, t)dh.
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From (2.4), we obtain that
∫ ∞
0 e−A(x)h fα(h, t)dh = Eα

(−A(x)tα
)
, where Eα(·) is

the Mittag–Leffler function. Hence, from (3.5) we have

ψα(t) = ψ∞ − 1

π

∫ π

0
V (x)

∫ ∞

0
Uα

h (x) fα(h, t)dhdx

= ψ∞ − 1

π

∫ π

0
V (x)Eα

(−tα A(x)
)
dx

that completes the proof.

8.5 Proof of Proposition 4

Note first that, by the definition of the inverse subordinator Yα(t) in (2.1) and as Dα(t)
is non-decreasing, that Yα(Dα(t)) = t and, as Dα is càdlàg, that Dα(Yα(t)) ≥ t (cf.
also Fig. 3 on page 16). Next, with definition (4.1) and (8.2), it holds that

τα = inf{t > 0 : R•
α(t) < 0}

= inf{t > 0 : R(Yα(t)) < 0}
≤ inf{Dα(s) : R(Yα(Dα(s))) < 0}
= inf{Dα(s) : R(s) < 0}
≤ Dα

(
inf{t : R(t) < 0}) (8.3)

= Dα(τ ),

where we have used that Dα is càdlàg in (8.3), but (4.3) follows from the defini-
tion (4.1).

8.6 Proof of Theorem 5

The proof in Mikosch (2009, Theorem 4.2.3) applies with minor adjustments only.
Indeed, with Yi := Zi − c Vi , consider the combined loss Sn := Y1 + · · · + Yn , which
occurs at time V1 + · · · + Vn . From the definition of the fractional risk process Rα(t)
and (5.1), we note that

ψα
u = P

(
max
k≥1

Sk ≥ u

)
.

To prove the assertion of the theorem, we will show by induction that the inequality

ψα
u;n := P

(
max
k≤n

Sk ≥ u

)
≤ e−rαu (8.4)

holds for all n = 1, 2, . . . . With Markov’s inequality (Chernoff’s bound), we obtain
that

P (S1 ≥ u) = P

(
erαY1 ≥ erαu

)
≤ e−rαu

E erαY1= e−rαu
E erα(Z1−cV1) = e−rαu,
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where we have used the characterizing equation (5.4). Thus, we note that the inequal-
ity (8.4) holds for n = 1. To establish the induction step from n to n + 1, we firstly
observe that

ψα
u;n+1 = P

(
max

k≤n+1
Sk ≥ u

)

≤ P(Y1 ≥ u) + P

(
Y1 < u and max

k=2,...,n+1
Y1 + (Sk − Y1) ≥ u

)

=
∫ ∞

u
dFY1(y) +

∫ u

−∞
P

(
y + max

k≤n
Sk ≥ u

)
dFY1(y).

These expressions can be bounded from above by

∫ ∞

u
dFY1(y) ≤

∫ ∞

u
e−rα(u−y)dFY1(y), (8.5)

and

∫ u

−∞
P

(
y + max

k≤n
Sk ≥ u

)
dFY1(y) =

∫ u

−∞
ψα

u−y;n dFY1(y) (8.6)

≤
∫ u

−∞
e−rα(u−y) dFY1(y), (8.7)

where we have used (8.4) in (8.6). Combination of (8.5) and (8.7) gives

ψα
u;n+1 ≤ E e−rα(u−Y1) = e−rαu

E erα(Z1−c V1) ≤ e−rαu,

where we have used (5.4) again. This completes the induction step. Thus, the assertion
of the theorem is proved.

8.7 Proof of Proposition 6

Using Pillai (1990, p. 272),we obtain that the Laplace transformof the randomvariable
V with cumulative distribution function (1.3) is

E e−r V = λ

λ + rα
, r > 0. (8.8)

With (8.8), the Cramér–Lindberg coefficient (5.4) satisfies

1 = E erα(Z−cV ) = E erα Z · E e−rαcV = E erα Z · λ

λ + (crα)α

and thus the assertion (5.5) holds.
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8.8 Proof of Proposition 8

For the fractional risk process Rα(t) defined in (1.1), the moment generating function
is

E e−s Rα(t) = E e−s(u+ct−∑Nα(t)
i=1 Zi )

= e−su
EE

(
e−s·∑Nα(t)

i=1 (cVi −Zi )
∣∣∣ Nα(t)

)
,

where we have employed the tower property of the expectation. With the explicit
expression (2.8), we obtain that

E e−s Rα(t) = e−su
∞∑

n=0

E e−∑n
i=0(scVi −s Zi ) · P(Nα(t) = n)

= e−su
∞∑

n=0

E e−∑n
i=0 scVi · E e

∑n
i=0 s Zi · P(Nα(t) = n) (8.9)

= e−su
∞∑

n=0

(
E e−scV )n · (

E es Z )n · (λtα)n

n! · E (n)
α (−λtα), (8.10)

where we have used that the claims Z1, Z2, . . . and the interarrival times V1, V2, . . .

are independent in (8.9) and (8.10); E (n) in (8.10) is the nth derivative of the Mittag–
Leffler function, cf. (2.9). Furthermore, we note that

Eα

(−λtα+ωtα E e−scV
E es Z ) =

∞∑

n=0

1

n!
(
E e−scV

E es Z · ωtα
)n

E (n)
α (−λtα),

(8.11)

where the Taylor expansion is applied to the function Eα(q1 + ωq2) at ω = 0, where
q1 = −λtα and q2 = tα E e−scV

E es Z , see Podlubny (1998, pp. 16, 100). Recall
now from (8.8) that E e−r V = λ

λ+rα . Collection of terms in (8.10) using (8.11) finally
reveals (6.2) that completes the proof.

8.9 Proof of Proposition 11

Let a := V@Rγ (Y ), then γ ≥ P(Y ≤ a). With Markov’s inequality, we obtain that

1 − γ ≤ P(Y > a) ≤ e−at
E etY .

Therefore, we have that

V@Rγ (Y ) = a ≤ inf
t>0

1

t
log

1

1 − γ
E etY = EV@Rγ (Y ).
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Now, we recall (see, for example, Föllmer and Schied 2004) that the average value-at-
risk is the smallest convex risk functional exceeding the value-at-risk. Thus, we obtain
that the assertion

V@Rγ (Y ) ≤ AV@Rγ (Y ) ≤ EV@Rγ (Y ),

holds that completes the proof.

8.10 Simulation of the compound fractional process

Using the simulation algorithms of the classical risk process R(t) and the inverse
subordinator Yα(t), the algorithm for testing the condition R•

α(t) < 0 for t ∈ [0, T ]
in the R package can be written as follows.

#Input: u, c, lambda , mu , alpha , T, Delta
#Output: IsRuined=TRUE if surplus is negative
before time T

IsRuined = FALSE
CurrentTotalPay = 0
NextClaimYt = 0
CurrentYt = 0
Current.t = 0
while (Current.t <= T && !IsRuined) {

gapPP = rexp(1, lam)
NextClaimYt = NextClaimYt + gapPP
Delta0=Delta
while(CurrentYt <NextClaimYt) {

if(Delta > NextClaimYt - CurrentYt)
Delta0 = NextClaimYt - CurrentYt

U = runif (1)
V = runif (1)
numer = sin(alpha*pi*U) *

(sin((1- alpha)*pi*U))^(1/alpha -1)
denom = (sin(pi*U))^(1/alpha)

* (abs(log(V)))^(1/alpha -1)
D1 = numer / denom
Current.t = Current.t + D1*Delta0 ^(1/alpha)
CurrentYt = CurrentYt + Delta0

}
CurrentTotalPay = CurrentTotalPay + rexp(1, 1 / mu)
CurrentSurplus = u + c * CurrentYt - CurrentTotalPay
if (Current.t <= T && CurrentSurplus < 0) {

IsRuined = TRUE
}

}
return(IsRuined)

The detailed explanation of the above R code is given in online supplement.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11749-025-00991-9.
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