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AttentionPainter: An Efficient and Adaptive
Stroke Predictor for Scene Painting

Yizhe Tang*, Yue Wang*, Teng Hu, Ran Yif, Xin Tan, Lizhuang Ma, Yu-Kun Lai, Paul L. Rosin

Abstract—Stroke-based Rendering (SBR) aims to decompose an input image into a sequence of parameterized strokes, which can be
rendered into a painting that resembles the input image. Recently, Neural Painting methods that utilize deep learning and reinforcement
learning models to predict the stroke sequences have been developed, but suffer from longer inference time or unstable training. To
address these issues, we propose AttentionPainter, an efficient and adaptive model for single-step neural painting. First, we propose a
novel scalable stroke predictor, which predicts a large number of stroke parameters within a single forward process, instead of the
iterative prediction of previous Reinforcement Learning or auto-regressive methods, which makes AttentionPainter faster than previous
neural painting methods. To further increase the training efficiency, we propose a Fast Stroke Stacking algorithm, which brings 13 times
acceleration for training. Moreover, we propose Stroke-density Loss, which encourages the model to use small strokes for detailed
information, to help improve the reconstruction quality. Finally, we design a Stroke Diffusion Model as an application of AttentionPainter,

which conducts the denoising process in the stroke parameter space and facilitates stroke-based inpainting and editing applications
helpful for human artists’ design. Extensive experiments show that AttentionPainter outperforms the state-of-the-art neural painting

methods.

Index Terms—Stroke-based Rendering, Neural Painting, Non-Photorealistic Rendering.

1 INTRODUCTION

TROKE-BASED Rendering (SBR) aims to recreate an im-
Sage by predicting a sequence of parameterized brush
strokes, which resembles the content of the input image and
imitates the sequential process of human painting, as shown
in Fig. 1(a). Recently, researchers have developed Neural
Painting methods (Deep Learning (DL)-based SBR), which
utilize deep learning and reinforcement learning models
to predict stroke sequences and achieve Stroke-based Ren-
dering, focusing on generating strokes sequentially and
mimicking the painting process.

SBR methods predict sequential parameterized strokes
(e.g., Oil, Bézier) that compose a final painting. Key differ-
ences from pixel-based painting generation methods (e.g.,
GANs/Diffusion Models) are twofold: 1) SBR methods
model the sequential stroke-by-stroke painting process,
while pixel-based generation outputs an entire image, with-
out the modeling of the sequential process. This sequen-
tial modeling enables applications like robotic painting,
painting education, painting games, efc., which cannot be
achieved by pixel-based painting generation. 2) By compos-
ing images from parameterized strokes, SBR ensures that
local textures adopt the stroke’s texture. In contrast, pixel-
based generation methods typically lack direct local texture
constraints, resulting in inconsistencies between local tex-
tures and real painting’s detailed texture (Fig. 2).
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The key to stroke-based neural painting is to find the
sequence of stroke parameters to reconstruct the image.
Previous methods can be divided into two categories, as
shown in Figs. 1(b-d): (1) The optimization-based meth-
ods [1], [2] directly optimize the randomly initialized stroke
parameters to find suitable values for reconstruction. The
reconstruction quality of this approach depends on the
number of optimization iterations, and high-quality results
require a long time of optimization. The inefficiency of
optimization-based methods makes it difficult to extend to
other applications. (2) Reinforcement Learning (RL)/auto-
regressive methods [3]-[6] use an agent network to predict
several strokes step-by-step. But these are inefficient in that
they can only predict a few strokes (e.g., 5) in a single
forward step and require iterative predictions to obtain the
final stroke sequence, which results in longer inference time.
Also, the training process of the RL methods is unstable [5],
and it is difficult to add extra conditions to the models.
Therefore, the inefficiency and poor scalability become the
development bottlenecks of neural painting.

In this paper, we propose AttentionPainter, an efficient
and adaptive model for single-step neural painting. Dif-
ferent from RL/auto-regressive methods that only predict
a small number (e.g., 5) of strokes based on the current
canvas, and require iterating many times for the final re-
sults, our AttentionPainter can predict a large number of
strokes within a single forward process, as shown in
Fig. 1(d). To handle a large number of strokes, we design
a transformer-based module to extract image features and
convert them to a sequence of stroke parameters. With
the single-step prediction approach, AttentionPainter has
a simpler and more stable training process compared to
RL/auto-regressive methods, is faster than all the previous
neural painting methods during the inference stage and can
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Fig. 1. Stroke-based Rendering (SBR) process and comparison be-
tween different methods. (a) SBR aims to recreate an image with a
sequence of strokes. (b) Optimization-based methods optimize a se-
quence of stroke parameters to reconstruct the input image, which
requires a separate optimization for each image. (c) Reinforcement
Learning (RL)/Auto-regressive methods train an agent to predict a small
number (k<10) of strokes at each step and iteratively obtain the final
sequence. (d) Our AttentionPainter predicts a large number of strokes
(m>100) within a single forward step, and is faster than the other
methods during inference.

be easily extended to other applications.

Another efficiency bottleneck is the stroke rendering
algorithm, where previous methods render the stroke one-
by-one and stack each stroke frame iteratively. We propose
the Fast Stroke Stacking method, which can significantly
reduce the iteration number of stroke stacking by selecting
the top k strokes for each pixel to stack, enabling simplified
stroke rendering process and shortening training time by
accelerating the backward process. To further improve the
reconstruction quality, we propose Stroke-density Loss for
detail reconstruction, which guides the model to adaptively
use smaller strokes in content-dense areas for detailed in-
formation, while larger strokes in content-sparse areas, thus
improving the reconstruction quality. Extensive experiments
show that with the above design, our AttentionPainter is
significantly faster and has better reconstruction results than
the state-of-the-art methods.

Moreover, we design a Stroke Diffusion Model (SDM),
as an application of AttentionPainter, which samples Gaus-
sian noise in the stroke parameter space and denoises it
into a meaningful stroke sequence that generates a plausible
painting. In SDM, our AttentionPainter plays an important
role in accelerating diffusion training and inference. We
also demonstrate two applications, stroke-based inpainting
and editing, to show how AttentionPainter can help human
artists create works.

Our contributions are summarized as follows:

o AttentionPainter, a scalable neural painting network,

2
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Fig. 2. Comparison with pixel-based oil painting generation methods
including StyTr2 [7], InST [8] and DiffuselT [9]. Pixel-based painting
generation methods lack the brush stroke texture and details, while ours
have more vivid brush stroke texture and details, similar to that of the
real painting in column 2. Please zoom in for more details.

is proposed. It can predict a large number of strokes
in a single forward step, instead of iterative pre-
diction used in previous methods, bringing simpler
training and faster inference.

o AttentionPainter proposes Fast Stroke Stacking (FSS),
which significantly reduces the iteration number of
stroke stacking by selecting the top k strokes for each
pixel to stack, shortening training time by accelerat-
ing the backpropagation process.

e AttentionPainter proposes Stroke-density Loss to im-
prove detail quality, which guides the model to use
smaller strokes in content-dense areas and larger
strokes in content-sparse areas.

o Stroke Diffusion Model (SDM) is designed as an ap-
plication of AttentionPainter, which conducts the de-
noising process in the stroke parameter space and
enables generating stroke parameter sequences that
compose new content.

2 RELATED WORK

2.1 Stroke-Based Rendering

Stroke-Based Rendering (SBR) aims to decompose an input
image into a sequence of parameterized strokes, which can
be rendered into a painting that resembles the input image.
It includes the process of turning the target image into a
sequence of stroke parameters and the process of rendering
the stroke parameters into a final image.

Different from SBR, there are some pixel-based painting
generation methods. They develop deep learning based
models to generate artistic images, including Convolutional
Neural Networks (CNNs [10]-[12], GANs [13]-[15], Varia-
tional Autoencoders (VAEs) [16], Normalizing Flow mod-
els [17], Diffusion models [18], [19], [8], [9]. However, these
models usually directly operate in the pixel space and lack
the modeling of the painting process similar to that of
human artists, who typically draw a sequence of shapes and
strokes to create a painting [20]. In other words, these pixel-
based painting generation methods directly generate an
image instead of predicting a sequence of stroke parameters.
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Their results often have an unrealistic stroke sense, as seen
in Fig. 2 colums 4-6, lacking oil stroke texture.

Different from these pixel-based painting generation
methods, instead of embedding an image into a natural
distribution (e.g. Gaussian distribution), SBR methods con-
vert an image into a sequence of parameterized strokes [21].
After the stroke parameters are generated, a rendering
algorithm or neural renderer utilizes those parameters to
recreate a new image. As shown in Fig. 2, SBR method’s
results have more vivid brush stroke texture and details,
similar to that of the real painting; in contrast, the results
of pixel-based painting generation methods often lack the
brush stroke texture.

Stroke-based rendering methods can be divided into
painterly rendering [22], [23], stippling [24], [25], sketch-
ing [26], [27], [28], [29], Scalable Vector Graphics [30]-[33],
etc. according to different rendering targets. Early meth-
ods [22], [23], [34]-[36] mainly depend on greedy search
algorithms to locate the position based on regions or edges,
and decide other characteristics of strokes. On the other
hand, the optimization based methods [37]-[40] iteratively
search the stroke parameters to achieve a lower energy
function [21]. However, most of these methods are very
time-consuming and often require manual adjustment of
hyperparameters to achieve better rendering results.

2.2 Neural Renderer

In order to visualize the stroke parameters obtained from the
given model, a Renderer is necessary to convert the param-
eterized representation into pixel-based images. Traditional
Renderer typically involves the operation of rasterization,
which makes the rendering process non-differentiable. The
emergence of differentiable Neural Renderers [2], [3], [41]-
[43] breaks this limitation and allows for the calculation of
gradients from the output images to the input parameters.
Neural Renderers are neural networks trained to simulate
the traditional non-differentiable renderers, where the train-
ing dataset of parameters and ground truth correspond-
ing pixel-level images can be easily created by the non-
differentiable renderer [20]. Due to the use of neural net-
works, the calculation on Neural Renderer is more efficient
and enables end-to-end training. SoftRas [43] proposed a
neural renderer for 3D mesh rendering, which supports ren-
dering colorized meshes with differentiable functions and
back-propagating supervision signals to mesh attributes.
For stroke-based rendering, Learning to Paint [3] first de-
signed a stroke representation of a quadratic Bezier curve
with thickness and transparency and a neural renderer
based on convolutional neural networks to simulate the
effects of brushes. To solve the coupling of shape and color
representations, Stylized Neural Painting [2] designed a
dual-pathway neural renderer that disentangles color and
shape through the rendering pipeline.

2.3 Neural Painting

In SBR, traditional methods usually adopt greedy search or
require user inputs to obtain the stroke position and other
parameters. With the development of deep learning (DL),
many stroke-based rendering methods based on neural net-
works have been proposed, which utilize deep learning and

3

reinforcement learning methods to predict stroke sequence
and imitate the process of human painting. Such SBR meth-
ods based on neural networks (DL-based SBR) are usually
called Neural Painting to distinguish from those traditional
methods, which are like a subfield of SBR. For neural
painting in specific domains, some previous methods, e.g.,
StrokeNet [42] and Sketch-RNN [44], use recurrent neural
networks (RNNs) [45] to generate sketch or stroke sequences
for simple characters and hand drawings. Recent neural
painting methods can be categorized into three types:

1) Reinforcement Learning (RL) based methods: Some
methods [3], [46], [47] propose to use reinforcement learning
in neural painting, using an agent network to predict several
strokes step-by-step, learning the structure of images and
reconstructing them. Recently, based on the Deep Rein-
forcement Learning (DRL) strategy, some researchers [4],
[48] propose that dividing the input image into foreground
and background [49] helps improve the drawing quality,
while some researchers [50] propose Content Masked Loss
to assign higher weights to the recognizable areas. However,
the training process of Reinforcement Learning methods is
often unstable [5], which limits their further applications.

2) Auto-regressive methods: All strokes of a single
image form a vector sequence, and sequence data is the
ideal data format for Transformers [51], [52]. Paint Trans-
former [5] is an auto-regressive Transformer-based neural
painting method. However, it can only predict a few strokes
(e.g., 5) in one step, and requires iterative predictions to
generate the final stroke sequence. Different from the Paint
Transformer, in this paper, we propose a more efficient way
to utilize an attention-based model to generate all strokes
during a single forward process.

3) Optimization-based or search-based methods: Li et
al. [53] propose a simple painterly rendering algorithm
using a differentiable rasterizer to facilitate backpropagation
between two domains. With the support of deep neural net-
works, optimization-based or search-based neural painting
methods [1], [2], [54] also have significant improvement and
can be naturally combined with style loss [10] to realize
Stroke-based style transfer. Curved-SBR [55] uses thin plate
spline interpolation [56] to achieve a more diverse brush-
stroke effect. However, these methods all suffer from the
problem of a long optimization time, which hinders their
wide applications.

Recently, VectorPainter [57] and ProcessPainter [58] ex-
plore multi-modal stroke-based painting generation, taking
a text prompt as input, with the former focusing on syn-
thesizing stylized vector graphics by rearranging vectorized
strokes, and the latter generating painting process videos
that mimic human artists’ techniques. Our task is different
from theirs, mainly predicting a sequence of stroke param-
eters to recreate a given input image, without the need for
textual guidance.

In contrast to previous neural painting methods, our
method can generate many strokes in a single forward
process without RL or an auto-regressive structure, and
has a more stable training process than previous methods.
Since our method is model-based and needs only a single
forward process, it is faster than those methods based on
optimization or search.
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Fig. 3. Stroke renderer and stroke design. Texture Renderer performs
geometric transformation based on a real stroke template, but it is not
differentiable. Neural Stroke Renderer is used to simulate the Texture
Renderer, but makes the process differentiable. For the stroke design,
we use Oil strokes and Bézier curve strokes in this paper.

3 PROBLEM FORMULATION AND PRELIMINARIES

Given an input image I, stroke-based rendering methods
predict a sequence of stroke parameters S = {s!,s?,...,;s"}
(e.g., shape, color, position), and use stroke renderer R to
paint strokes onto the canvas sequentially. The rendered
image 1 is expected to be similar to the input image I.

3.1 Stroke Renderer

Texture Renderer. Texture Renderer is the stroke renderer that
performs geometric transformations directly on the stroke
template. The Texture Renderer takes the stroke template
and geometric parameters as input, such as the stroke posi-
tion (z,y), stroke height and width h, w, and rotation angle
0. Then the texture renderer performs geometric transfor-
mations such as translation, scaling, and rotation, as shown
in Fig. 3(a). The Texture Renderer can preserve the texture of
the original stroke template well. However, the texture ren-
derer performs geometric transformation based on discrete
computer graphics operations, which makes the rendering
process non-differentiable, and prevents backpropagation
during end-to-end training.

Neural Renderer. To enable the backpropagation in the
training process, Learning to Paint [3] proposes to train
a neural network to simulate the rendering process of
the Texture Renderer, which is called the Neural Renderer.
Subsequently, various Neural Renderers have been devel-
oped, featuring different model architectures and stroke
designs [2], [5], [6], [55]. As illustrated in Fig. 3(b), the
Neural Renderer takes stroke parameters as input and pro-
duces a rendered stroke image, while the Texture Renderer
is employed to generate diverse types of ground truth for
training the Neural Renderer.

3.2 Stroke Design

In SBR, strokes are represented by stroke parameters. There
are several types of strokes, e.g., Bézier, Oil painting, Tape
art. Among them, Oil stroke and Bézier curve stroke are
two commonly adopted stroke types in stroke-based neural
painting methods, e.g., Learning To Paint [3] (both), CNP [6]
(oil), Parameterized Brushstrokes [1] (Bézier), so in this
paper, we experiment with these two kinds of strokes. (1)
Oil stroke, which uses 8 parameters to represent a stroke,
i.e., 1 center point for position (x,y), the stroke height and
width (h,w), the rotation angle 6, and (R, G, B). (2) Bézier
curve stroke, which uses the coordinates of 3 control points
(o, Y0, T1,Y1,%2,Y2) to control the shape of the Bézier
curve, 4 parameters (ro,%o,r1,%1) to control the thickness
and transparency of the two endpoints of the curve, and

TABLE 1
Setting comparison between different methods.

Method | Type | Single-Step Output Stroke Num
Learning to Paint [3] RL <10

CNP [6] RL <10

Paint Transformer [5] Auto-regressive <10

Stylized Neural Painting [2] | Optim-based —

Ours End-to-End >200

(R, G, B) to control the color. The above two types of strokes
are illustrated in Figs. 3(c)(d). The stroke renderer then takes
the stroke parameters as input and outputs the stroke map C
and alpha map A. The stroke map C values are stroke color
for each pixel inside the stroke area. The alpha map A refers
to the stroke mask for Oil strokes, while for Bézier curve
strokes, it refers to the transparency of the stroke.

4 ATTENTIONPAINTER
4.1 Overview: Single-Step Neural Painting

Our scalable stroke predictor, AttentionPainter, is a single-
step neural painting model, which can predict a large num-
ber of strokes in a single forward process. Different from
the RL/auto-regressive neural painting methods (e.g., Paint
Transformer [5], Learning to Paint [3]) that predict a small
number of strokes at each step and require iterative predic-
tion to get the final stroke sequence, our AttentionPainter
predicts all the strokes within a single forward process.
Without the iterative predictions, AttentionPainter is faster
than the previous methods during inference. We compare
our setting with previous methods in Tab. 1.

AttentionPainter contains three important parts to
achieve high-quality and fast neural painting. (1) Large-
Number Stroke Prediction in a Single Step. We design an
attention-based stroke predictor, which generates a large
number of strokes in a single step and avoids iterative
prediction as previous methods (in Sec. 4.2). (2) Fast Stroke
Stacking (FSS) for fast stroke rendering (in Sec. 4.3). The pre-
vious neural rendering methods stack all the stroke frames
one by one, which costs a lot of time when the number of
strokes is large. FSS is significantly faster than the previous
stacking method and helps accelerate the training process
of both AttentionPainter and StrokeDiffusion (in Sec. 5).
(3) Stroke-density loss for detail reconstruction, which en-
courages the model to put smaller strokes in high-density
regions and improve reconstruction quality (in Sec. 4.4).

The single-step neural painting pipeline is shown in
Fig. 4. The stroke predictor extracts features from the input
image I and predicts a sequence of stroke parameters S
using a Transformer-based structure. The stroke renderer R
then renders the stroke parameters into stroke frames for
each stroke. Finally, the fast stroke stacking quule stacks
the stroke frames into the final rendered image I.

4.2 Large-Number Stroke Prediction in a Single Step

We design a Single-Step Neural Painting pipeline. Different
from the RL/auto-regressive methods that can only generate
a few strokes in a single step, and repeat the forward process
multiple times to get the final results, our method predicts
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Fig. 4. AttentionPainter Architecture. Given an image I, 1) the Stroke Predictor predicts a large number of strokes in a single forward, which first
extracts features, and then predicts the stroke parameter sequence based on cross-attention and self-attention blocks. 2) With the predicted stroke
parameters, the Stroke Renderer renders the stroke frame for each stroke. 3) Finally, the Fast Stroke Stacking (FSS) module simplifies the stroke
stacking process by selecting the top & strokes for each pixel to stack, and creates the final rendering. AttentionPainter is trained with pixel-wise

loss and a newly proposed stroke-density loss.

all the strokes in a single forward step. We use an attention-
based network to solve this problem. Unlike Paint Trans-
former [5], our model eliminates the cumbersome iterative
prediction process.

4.2.1 Stroke Predictor

Given an input image I, we first use an embedding block to
convert the input image to a token sequence, as most vision
Transformers [59] do. The embedding block contains a con-
volution layer and a normalization layer!. After embedding,
we use ViT-small as the feature extractor to extract the patch
features of the input image. The stroke prediction head
adopts a Transformer structure with 1 cross-attention block
and 4 self-attention blocks. In the cross-attention block,
we calculate the correlation between the patch features f
and stroke queries (. Since the attention block is a global
operation, it helps to find the best strokes for the whole
image. After the cross-attention block, we use 4 vanilla self-
attention blocks to process the features, and the output of
the last self-attention block is set as the stroke parameter
sequence S, which is a single-step result and contains all the
strokes for rendering.

4.2.2 Neural Painting with Stroke Parameters

For each stroke s’ in the output stroke parameter sequence
S = {s!,s2,...,s"V}, the parameters can be divided into two
parts: geometry parameters s, and color parameters s, i.e.,
s = {sg,s.}. The stroke sequence S can also be divided into
geometry part S, and color part S.. During the training
stage, we use the Neural Renderer R,,cyrai (Sec. 3), which is
differentiable and enables back-propagation. During the in-
ference stage, we use the Texture Renderer Rcqtyre, Which
performs geometric transformations directly on the stroke
template, for better rendering results. Since most texture
renderings are not differentiable, the Texture Renderer can-
not perform backpropagation during training and can only
be used for inference.

Each stroke with the stroke parameters s is rendered
into a stroke frame, which contains an alpha map A* and

1. The conv layer’s input channel is typically 3, but can be extended
to 4 to include a 1-channel density map when calculating density loss.

a colored stroke map C’. The rendered stroke frames are
then stacked together into the final image I in an iterative
rendering process. Finally we can measure the difference
between the input image I and the final image I, where
we use the weighted combination of £/5g loss and stroke-
density loss L4, which will be introduced in Sec. 4.4. With
the differentiability of the Neural Renderer, it is feasible to
calculate the gradient of parameters in the Stroke Predictor,
and optimize the model for a better stroke parameter se-
quence. However, when stacking a large number of strokes,
the forward propagation will become complex, and the
backpropagation process will take too long and be too diffi-
cult. To solve this problem, we propose Fast Stroke Stacking
(in Sec. 4.3) to simplify stacking of the stroke frames to
render the image I.

It should be noted that while our method outputs a
temporally ordered stroke sequence, its generation order is
not explicitly optimized to replicate the delicate workflow
of a human artist, primarily due to the lack of sequential
human painting process data as supervision. Instead, the
key supervision signal in our training is applied to the final
rendered output image, not to the intermediate stroke se-
quence or the specific order in which strokes are generated.

4.3 Fast Stroke Stacking

During the rendering stage, previous neural painting meth-
ods [3], [5], [6] use a stroke-by-stroke process to stack all
the rendered stroke frames. This stacking strategy makes
the backpropagation difficult and complex during training
(see analysis below). To solve this problem, we propose the
Fast Stroke Stacking (FSS) algorithm, which simplifies the
rendering process by selecting the top % strokes of each pixel
to stack, instead of stacking all strokes iteratively. Our FSS
algorithm greatly shortens the training time by accelerating
the backward process, and facilitates the convergence dur-
ing training?.

2. Without FSS, our network would require more time for backprop-
agation, increasing training costs and making convergence difficult.
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Analysis of Traditional Stroke Stacking and Backprop-
agation. The traditional stroke rendering process can be
formulated as the following iterative form:

where i is the index of a stroke (: = 1,--- , N), N is the total
number of strokes, A’ is the alpha map of the i-th stroke,
and C’ is the colored stroke frame of the i-th stroke. This
formula describes the process of drawing a new stroke (the
i-th stroke) onto the current canvas (ii_l) to get the next
canvas (I). This process is repeated N times until the final
painting IV is obtained. We expand Eq. (1) to derive the
final painting IV as follows:

N—-1 N
V=3 [AFch JT -4 +AY-cY @
k=1 j=k+1

where the final painting IV can be written as the linear com-
bination of N colored stroke frames {C?,...,C"V}, and the
weights are calculated from their Alpha maps {A!, ..., AV }.

Our training target is to train the Stroke Predictor, so the

N

model gradients are related to the partial derivatives giﬁ
and o1 (1 <m < N), which can be calculated as:

acm
ot R N .
= -1 I a-A), 3)
8A j=m-+1
o1N N ,
%—m:Am. 1 a-.49. 4)

Therefore, when the stroke number N gets larger, the tra-
ditional stacking strategy suffers from a more complex back-
propagation process (O(NN?) complexity, detailed derivation
in the supplementary material), leading to an unaccept-
able long training time. Thankfully, we observe that most
computation is unnecessary in Eq. (1), and propose FSS to
significantly reduce the iteration number during backprop-
agation.

Observation of Unnecessary Computation. As shown
in Eq. (1) and Eq. (2), each canvas I'~! is multiplied with
the alpha map (1 — A%) (Va € 1 — A%,0 < a < 1). Since
the iterative step (Eq. (1)) is repeated for multiple times,
H;V:Z( 1 — A7) will quickly approach zero. This means that
most strokes have little influence on the final result after
several overlapping operations. Moreover, from Eq. (3) and

Eq. (4), we can see that both partial derivatives % and
;TI:” contain the factor H;V:m +1(1 = A7). This indicates
that for the m-th stroke, the pixels drawn by the sub-
sequent strokes hardly contribute to the backpropagation
gradients, because for these pixels (covered by some of the
subsequent strokes), the factor becomes zero, resulting in
zero gradient contribution for the partial derivatives. The
smaller the index m, the smaller the corresponding factor
becomes, leading to a reduced impact of that stroke on the
backpropagation gradients.

Fast Stroke Stacking. Therefore, for each pixel, we
choose the alpha value and stroke color value of the top
k strokes that cover the pixel, i.c., the strokes with the k

o

s |
T s |
) ®

Fig. 5. An example of FSS calculation process. For better illustration,
here we set the stroke number N as 3 (typically it is much larger, e.g.,
256), and the top-k as top-2, and we mark the strokes with different
colors to distinguish between each other.

largest indices among all the strokes covering the pixel®. For
a certain pixel, the neglected strokes are strokes with small
indices and less impact on the final painting. Not stacking
these strokes has a negligible influence on performance, but
helps to reduce unnecessary computation and simplify the
stacking process.

Specifically, we first initialize an Index Tensor Z (B x
N x H x W), where the i-th channel of 7 is assigned value ¢,
and B, N, H,W denote the batch size, the channel number,
the height and width of the image, respectively. Then we
binarize the stroke alpha map A to 0 or 1 with a threshold*
to obtain a binary stroke mask M (B x N x H x W), which is
then combined with the Index Tensor to obtain the indices of
strokes that cover each pixel. We calculate the Masked Index
Tensor Zp as the Hadamard product of M and Z, where
the in-stroke region in Ij\,, has value %, and the out-of-stroke
region has value 0. Then the top & strokes of a pixel (z,y)
are the strokes with the largest k indices in I/(\i’y). We select
the top k indices for each pixel, to construct the Top-k Index
Tensor 7'y, (B x k x H x W). An example of this calculation
process is shown in Fig. 5.

Then, given the original alpha map A with dimensions
(Bx N x HxW x 1) and stroke map with dimensions
C (B x N x Hx W x 3), along with the Top-k Index T, ,,
we obtain the alpha values and colors of the top k strokes
at each pixel by extracting elements from A and C based on
the given indices 7Ty :

A’ = Gather(A,indices = T),), )
C' = Gather(C,indices = T),), (6)

where the Gather(A/C,indices = T),) operation follows
the implementation in PyTorch, which extracts k values out
of a total of IV elements from the given tensor A or C along
the second dimension based on the specified indices 7.
Finally, we combine the top k stroke maps C’ (B X k x
H x W x 3) and top k alpha maps A" (B x kx Hx W x 1)

3. Each pixel has its own top k strokes. Despite selecting a subset
per pixel, experiments show that overall all strokes contribute to the
stacking.

4. During training, the neural renderer creates an alpha map with
values near 0 or 1. We apply binarization using a 0.5 threshold to make
it binary. Due to the bimodal distribution, a threshold of 0.5 is sufficient.



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

with Hadamard product, and conduct k£ (k < 10) times of
traditional stroke rendering step similar to Eq. (1), to obtain
the final image I:

=171 (1-A)+A" ", @)

where - represents the element-wise (Hadamard) product.
Due to the much fewer iterations (kK < 10 compared to
N = 256), our FSS algorithm can avoid a large amount
of unnecessary backpropagation computation and greatly
shorten the training process, improving the training effi-
ciency by tens of times compared to the original stacking
algorithm, with negligible degradation in quality.

4.4 Stroke-density Loss

In terms of visual perception, humans pay more attention
to complex areas with high density, where more semantic
information is stored. When painting on the canvas, human
painters draw small and dense strokes in those complex ar-
eas, while big and sparse strokes are drawn in those content-
sparse areas. Therefore, to draw like a human painter, we
propose the Stroke-density Loss, which is computed by
density map and stroke area map. Different from Im20Qil [51]
which uses density information as a probability map to
sample strokes, we optimize our AttentionPainter using
our newly proposed Stroke-density Loss, in order to draw
more and smaller strokes in content-dense areas, thereby
achieving better reconstruction of details.

First, we calculate the stroke area of each stroke, to
enable control of stroke sizes under the guidance of the
density map. For the two types of strokes used in our
paper, ie., Oil stroke and Bézier curve stroke, considering
the complexity of computing area for Bézier curves, we only
apply the stroke-density loss for Oil stroke. Specifically, we
calculate the stroke area by the width and height parameters
(defined in Oil stroke parameters). We define a stroke area
map M greq, Where for each visible pixel in a stroke’s region,
it is assigned the area of that stroke:

Marea =M- (Sh . Sw)a (8)

where Sy, Sy, (B x N x 1) are the tensors with the height
and width values of all strokes from the stroke parameters
sequence S, and we consider the result of Sy, - Sy, as the area
of each stroke. M is the binary stroke mask obtained in FSS
process.

Then we gather the top k stroke area values in a manner
similar to that described in Eq. (5) and Eq. (6):

M., oo = Gather(Myeq, indices = Th), ©)

in which way we obtain the top k stroke area maps M/, .,

(BxkxHxW x1). Then, following the rendering formula
in Eq. (7), we replace C’' with M, to obtain the stroke
area image Iy, by Eq. (10), where each pixel value in I;;.cq
represents the area of the stroke at that pixel:

L =000, (A=A + A M,

area area

(10)

To compute the density map, we employ the Sobel
operator and average pooling to estimate the density detail
in the input image. Sobel operator and average pooling

Fig. 6. lllustration of improved block dividing strategy: for the original
divided blocks, we make their predicted regions extend a certain number
of pixels (e.g., 10 pixels) towards the neighboring blocks.

are commonly used methods to measure the density of
information in an image and are also used in Im2Qil [60].
The Sobel operator can reflect the boundaries or content-
dense regions of an image by high gradients in the image;
while the average pooling operation smoothes out these
responses to provide more stable density information. We
denote the estimated density map as I, which is calculated
as:

Gp =1%S,,Gy =158, I = Frean(y/G2 + G2), (11)

where S, and S, denote the Sobel Operator on Horizontal
and Vertical directions, and F},,cq, denotes the Mean Filter
used in average pooling. Subsequently, the stroke-density
loss is formulated as:

Lien = X7 X :iarea . Ida (12)

where X denotes the mean value of the elements of matrix
X. By minimizing L.y, the sizes of strokes in high-density
regions tend to decrease to lower values, resulting in smaller
strokes in these regions to better capture detail. We find
that our stroke-density loss can also be applied to previous
neural painting methods and improve their performance
(results presented in Sec. 6.5).

For the AttentionPainter training, we use two loss terms:
pixel-wise loss and stroke-density loss. The pixel-wise loss
achieves global reconstruction optimization, but some de-
tails of the image are still missing. The stroke-density loss
can effectively optimize the spatial distribution of strokes to
achieve better reconstruction results. For pixel-wise loss, we
directly use MSE loss Ly;sp = % S — ii)Q, and the
total loss function is:

Lap=Lyse + Aden, (13)

where ) is a hyper-parameter to balance the loss terms.

4.5

Our AttentionPainter can predict 256 strokes in one feed-
forward pass. For high resolution results with more strokes,
previous methods [2], [3], [5] usually apply divide-predict-
combine operation where the target image is first divided
into several non-overlapping blocks and then strokes for
each block are predicted. This results in an unnatural discon-
tinuity at the boundaries of adjacent image blocks. To over-
come this problem, we make several improvements in the
inference phase. First, we adjust the block dividing strategy

Inference Process
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Fig. 7. Stroke Diffusion Model (SDM) conducts diffusion and the denois-
ing process in the stroke parameter space, where the denoising stage
uses an attention-based network (8 cross-attention blocks and 8 self-
attention blocks). The proposed stroke predictor in AttentionPainter is
used to obtain the stroke parameters from images, and the denoised
stroke parameters are decoded to the output image by the Neural
Renderer and our FSS module.
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so that there are overlapping regions between neighboring
target blocks. Specifically, for the original divided blocks,
we make their predicted regions extend a certain number
of pixels (e.g., 10 pixels) towards the neighboring blocks (as
shown in Fig. 6). To allow for more diversity, we randomly
rotate (in a multiple of 90°) and flip these input blocks, in
which way there will be 8 types of input patterns (4 unique
rotations, with or without flipping). Then, we still predict
the stroke parameters for each target block image separately,
and render the strokes for each block. Afterwards, we rotate
and flip back these strokes in the reverse operation. Finally,
when re-combining these blocks, we make the strokes of
neighboring blocks overlap with each other in the overlap-
ping regions. With such a pipeline, the final generated image
has more natural transitions at the boundaries of the blocks,
reducing artifacts at the boundaries.

5 STROKE GENERATION WITH DIFFUSION MODEL

With AttentionPainter, we can quickly predict the stroke
parameters and render the final image, which further helps
extend stroke-based rendering to other applications. Previ-
ous neural painting methods focus on reconstructing the
input image with strokes, but they cannot generate a stroke-
based unseen painting. In this section, we design a Stroke
Diffusion Model (SDM), as an application of Attention-
Painter, which directly conducts the diffusion process and
denoising diffusion process in the stroke parameter space.
With SDM, we can sample Gaussian noise in the stroke
parameter space and denoise it into a meaningful stroke
sequence, where the strokes constitute a plausible painting.

5.1 Stroke Diffusion Model Design

Inspired by LDM [61], we first embed the image into
the stroke parameter space with the stroke predictor, and
decode the stroke parameters to the output image with
the neural stroke renderer and FSS module. Different from
previous diffusion models that add noise and denoise in
the image space or latent space, our Stroke Diffusion Model
is designed to generate stroke parameters for a conditional
image and denoise in the stroke parameter space. Since
the stroke parameters are a sequence of vectors, instead
of a 2D feature map, the UNet-based diffusion module is
less suitable here. To effectively process the stroke parame-
ters, we design a ViT-based diffusion module to deal with

Inpainting

AR

Original Image

Editing

Edited Results

Masked Image  Inpainted Results Masked Image Sketch Hint

Fig. 8. Applications of Stroke Diffusion Model (SDM). The left are
Stroke-based Inpainting results, and the right are Stroke-based Image
Editing results (the sketch hints are overlaid onto the results for better
visualization). Stroke Diffusion Model generates stroke parameters for
a conditional input and denoises in the stroke parameter space. The
conditional input is a masked image (left), or a masked image and
a sketch hint (right), and the output of Stroke Diffusion Model is a
sequence of stroke parameters, which are then rendered into a complete
painting.

the stroke sequence. As illustrated in Fig. 7, the diffusion
module contains 8 cross-attention blocks and another 8 self-
attention blocks. The cross-attention blocks are used to allow
for conditional input (a condition encoder encodes the con-
ditional input and the processed features then participate
in the cross-attention calculation). The loss function of our
SDM is:

Lspm = Ee)yemno)ellle — oz, t, E))3],  (14)

where E(x) is the stroke predictor, y is the conditional input
and &.(y) is the condition encoder, t is the timestep, and z;
is the noised sample (stroke parameters) at timestep ¢.

5.2 Stroke-based Inpainting

Given a partially painted image, our SDM generates a
sequence of stroke parameters, which are then rendered
into a complete painting. We refer to this process as Stroke-
based Inpainting (Fig. 8(a)). The conditional input for our in-
painting model is a masked image. Following the denoising
diffusion process in the stroke parameter space, the model
outputs the entire sequence of stroke parameters, which can
be rendered into the full stroke-based image.

5.3 Stroke-based Image Editing

Apart from inpainting from a masked image, we can further
add more conditions to the inpainting model to generate
more controllable strokes, which we refer to as Stroke-based
Image Editing. In the editing network, we add a sketch hint
of the masked region as one of the conditional inputs (using
a condition encoder trained on the sketch domain to encode
this sketch hint), and the users can edit the mask region
with the freehand sketches (Fig. 8(b)). Our SDM can edit the
painting according to the hint in the conditional sketch by
predicting a sequence of stroke parameters that represent
the editing strokes.

6 EXPERIMENTS
6.1 Implementation Details

Model Details: 1) For AttentionPainter, the embedding
layer is a convolution block that converts the image to
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TABLE 2
Quantitative comparison with state-of-the-art methods under different stroke numbers and two stroke types. Our AttentionPainter outperforms the
state-of-the-arts in almost all settings.

ImageNet CelebAMask-HQ
Stroke Type | Stroke number Method 2] SSH%/I 4 LPIPS | 2] SSIM1  LPIPS |
Paint Transformer [5] 0.0247  0.4328 0.1760 0.0176  0.5095 0.1692
Learning to Paint [3] 0.0124  0.4972 0.1700 0.0081  0.5922 0.1506
Semantic Guidance+RL [4] 0.0163 0.4721 0.1966 0.0097  0.5914 0.1629
250 Stylized Neural Painting [2] 0.0087  0.5030 0.1587 0.0048 0.5819 0.1516
Im?2oil [60] 0.0295  0.3803 0.1735 0.0168  0.4649 0.1549
CNP [6] 0.0109  0.4899 0.1576 0.0061 05711 0.1481
Ours 0.0087 0.5412 0.1576 0.0043 0.6616 0.1279
Paint Transformer [5] 0.0157  0.4756 0.1580 0.0102 0.5580 0.1550
Learning to Paint [3] 0.0079 0.5430 0.1413 0.0042 0.6421 0.1258
Semantic Guidance+RL [4] 0.0160  0.4723 0.1965 0.0094 05915 0.1623
1000 Stylized Neural Painting [2] 0.0061 0.5558 0.1403 0.0032 0.6362 0.1324
QOil Im2oil [60] 0.0176 0.4139 0.1430 0.0078 0.5290 0.1233
Stroke CNP [6] 0.0076  0.5491 0.1391 0.0039  0.6172 0.1353
Ours 0.0059 0.5765 0.1288 0.0030 0.6594 0.1206
Paint Transformer [5] 0.0103 0.5539 0.1386 0.0069 0.6139 0.1430
Learning to Paint [3] 0.0052 0.6025 0.1276 0.0025 0.6810 0.1181
Semantic Guidance+RL [4] 0.0159  0.4698 0.1970 0.0095  0.5891 0.1628
4000 Stylized Neural Painting [2] 0.0072  0.5692 0.1339 0.0048  0.6331 0.1303
Im2o0il [60] 0.0090 0.5208 0.1138 0.0035 0.6369 0.0948
CNP [6] 0.0058 0.6178 0.1186 0.0025 0.6849 0.1135
Ours 0.0035 0.6771 0.0922 0.0016 0.7395 0.0821
Learning to Paint [3] 0.0092 0.5427 0.1845 0.0042 0.6791 0.1434
250 Semantic Guidance+RL [4] 0.0133  0.4969 0.2057 0.0095 0.6164 0.1765
Parameterized Brushstrokes [1] | 0.0596  0.3907 0.1647 0.0809  0.3609 0.1691
Bézier Ours 0.0076 0.5744 0.1662 0.0031 0.7155 0.1301
Stroke Learning to Paint [3] 0.0055 0.6191 0.1439 0.0020 0.7512 0.1083
1000 Semantic Guidance+RL [4] 0.0124  0.5075 0.2054 0.0081  0.6395 0.1734
Parameterized Brushstrokes [1] | 0.0518  0.3734 0.1456 0.0719  0.3319 0.1616
Ours 0.0044 0.6606 0.1189 0.0016 0.7784 0.0880
Learning to Paint [3] 0.0030 0.7339 0.0828 0.0010 0.8229 0.0575
4000 Semantic Guidance+RL [4] 0.0123  0.5095 0.2064 0.0080  0.6402 0.1749
Parameterized Brushstrokes [1] | 0.0433  0.3767 0.1346 0.0589  0.3273 0.1543
Ours 0.0023 0.7818 0.0666 0.0008 0.8576 0.0477
patch tokens, the Feature Extractor is based on ViT-s/16, TABLE 3

and the Stroke head contains 1 cross-attention block and 4
self-attention blocks where the embedding dimension is 256.
The shape of query @ is determined by the stroke type, e.g.,
for oil stroke, we set (0 as a B x 256 x 8 tensor, and for Bézier
curve we set ) as B x256x 13, where B is the batch size, and
8 and 13 match the number of parameters for each stroke.
For the neural renderer used during training, the output
resolution is set to 128 x 128, following previous works [5],
[6]. For the inference stage, we use the same texture renderer
for our method and comparison methods, which performs
geometric transformation on the original stroke template.
The experimental results show that AttentionPainter can
generalize to arbitrary scenes. We can use an improved
block dividing strategy (detailed below) to divide the image
into smaller blocks and then predict strokes for each block
for more detailed reconstruction results or to handle images
with higher resolutions.

2) For SDM, the embedding dimension of the attention
block is 512 and the total number of diffusion steps is 1,000.
For inpainting task, we use another AttentionPainter to
encode the masked image into strokes and concatenate the
extra strokes with the noised strokes as the diffusion module
input. For the editing task, we use DexiNed model [62] to

Efficiency study of different neural painting methods. Our method has
the fastest inference speed.

Inference Time per Image |

Method Type Oil Stroke | Bézier Stroke
Stylized Neural Painting [2] Optim-based ~500s -
Parameterized Brushstrokes [1] | Optim-based - ~210s
Im?2oil [60] Optim-based ~100s -
Paint Transformer [5] Auto-regressive 0.27s -
Learning to Paint [3] RL 0.28s 0.26s
Semantic Guidance+RL [4] RL 1.82s 1.80s
CNP [6] RL 5.21s -
Ours | End-to-end | 0.08s | 0.08s

obtain the sketches and use cross-attention blocks to process
the sketch hint.

Training Details: 1) We train AttentionPainter on
CelebA [63] with 200 training epochs and the batch-size as
48. The learning rate warm ups to 6.25x10~% in 6 epochs,
and cosine decays towards 0 during the rest of the epochs.
We use 1 NVIDIA RTX 4090 GPU to train AttentionPainter,
and it takes about 20 hours for training. 2) We train SDM
on the CelebAMask-HQ [64] dataset to verify the generation
ability. For SDM, we set the batch size to 24, and the learning
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Fig. 9. Qualitative Comparison on Oil Stroke with state-of-the-art neural painting methods under 3,000 and 5,000 strokes, including Semantic
Guidance + RL [4], Learning to Paint [3], Paint Transformer [5], CNP [6], Stylized Neural Painting [2], and Im20Qil [60]. Compared with previous

methods, our AttentionPainter achieves the best reconstruction results.

rate to 4.8x107°. We use 1 NVIDIA RTX 4090 GPU to train
the SDM, and it takes about 2 days for training.

6.2 Comparison with Other Neural Painting Methods
6.2.1 Quantitative Comparison

We quantitatively compare our method with 7 state-of-the-
art methods, including Paint Transformer [5], Learning to
Paint [3], Semantic Guidance+RL [4], Stylized Neural Paint-
ing [2], Parameterized Brushstrokes [1], Im20il [60] and
Compositional Neural Painting (CNP) [6], with their official
codes and models. We use L5, SSIM [65], and LPIPS [66] as
metrics for our quantitative comparison.

We compare on 2 kinds of strokes (Oil stroke &
Bézier curve stroke) with several stroke number settings
(250, 1,000, 4,000) on CelebAMask-HQ [64] and ImageNet-
mini [67]. We rearrange the comparison methods for the

two stroke types into two groups: the comparison methods
for Oil stroke include Paint Transformer [5], Learning to
Paint [3], Semantic Guidance + RL [4], Stylized Neural
Painting [2], Im20il [60], CNP [6]; while the compari-
son methods for Bézier curve stroke include Learning to
Paint [3], Semantic Guidance + RL [4], and Parameterized
Brushstrokes [1].

The quantitative comparisons with state-of-the-art meth-
ods are reported in Tab. 2, where our method outperforms
previous methods in almost all settings. Especially, when
the stroke number is large, our method has an obvious
advantage over previous methods, where we get 0.0035 Lo
on ImageNet-mini with 4,000 strokes.

We also calculate the Fréchet Inception Distance
(FID) [68] score on the WikiArt dataset [69] to evaluate the
similarity of painterly effects between generated images and
real oil paintings. The results are shown in the supplemen-
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TABLE 4
Ablation study of Stroke Predictor architecture. The attention-based
painter performs better than convolution-based one.

CelebAMask-HQ
L2 | SSIM 1 LPIPS |

ImageNet

Stroke Num‘Architecture L2 SSIM® LPIPS |

11

250 Convolution |0.0104 0.5329 0.1770 [0.0063 0.6543 0.1458
Attention |0.0076 0.5744 0.1662 |0.0031 0.7155 0.1301
4000 Convolution |0.0049 0.6792 0.0909 |0.0027 0.7680 0.0698
Attention |0.0023 0.7818 0.0666 |0.0008 0.8576 0.0477

TABLE 5
Training efficiency study of FSS. With FFS, we achieve a 13x faster
speed than the traditional stacking strategy.

Method Training Time / Step | Training Time | Validation on ImageNet
forward backward | (200 epochs) | L2 | SSIM 1 LPIPS |

w/oFSS| 0.08s 6.34s 10.8 days 0.0032 0.6790  0.0855

w/ FSS 0.34s 0.14s 20.4 hours 0.0033 0.6729 0.0878

tary material.

6.2.2 Qualitative Comparison

Since our method can predict a large number of strokes in
a short time, we mainly show the results with large stroke
numbers (e.g., 3,000, 5,000). The qualitative comparison re-
sults are shown in Fig. 9, where we compare with existing
methods on oil strokes (more qualitative comparisons, in-
cluding the comparison on Bézier curve strokes, are shown
in the supplementary material Sec. 4 and Sec. 5). It can be
seen that our results are closer to the target images, and
have more detailed information than other methods. The Se-
mantic Guidance + RL has a low reconstruction quality that
loses the most detailed information. Other methods paint
more details but still have problems with small strokes. CNP
is capable of drawing tiny details, but sometimes it will
be stuck in a loop of repainting the same area due to the
unstable prediction of Reinforcement Learning, leading to
very poor results. Our method is good at painting small
strokes and can reconstruct more details compared with
previous methods.

6.2.3 Efficiency Comparison

In this section, we mainly discuss the efficiency of the
neural painting methods. Previous methods can be divided
into optimization-based, RL, and auto-regressive methods.
For each method, we measure the average inference time
of a single image with 4,000 strokes on a single NVIDIA
RTX 4090 GPU. The inference time is reported in Tab. 3.
We conclude that the optimization-based method is too
slow for applications. The RL/auto-regressive methods are
faster than optimization-based methods, while our method
achieves over three times faster than the previous methods
(0.08s vs. 0.27s). Specifically, compared with the fastest pre-
vious method Paint Transformer, our AttentionPainter is not
only three times faster than it, but also achieves much better
similarity (given from 0.0103 to 0.0035 for L2). Compared
with the best similarity method CNP, our AttentionPainter
not only achieves even better similarity (from 0.0058 to
0.0035 L2), but also achieves 65 times faster inference speed.

OSARAH P
ANDREW

Input Image

w/o Stroke-density w/ Stroke-density

Fig. 10. Ablation study of Stroke-density Loss. With stroke-density loss,
more details can be reconstructed.

6.3 Ablation Study
6.3.1 Ablation Study of Stroke Predictor Architecture

To validate the architecture of stroke predictor, we design
another stroke prediction head based on convolution layers
and FPN (denoted as ConvPainter). The ablation study
results are shown in Tab. 4. Compared with ConvPainter, At-
tentionPainter has better performance on all settings, which
indicates our attention-based network is more suitable for
stroke prediction.

6.3.2 Training Efficiency Study of Fast Stroke Stacking

We analyze the influence of Fast Stroke Stacking (FSS), and
the results are reported in Tab. 5. We compare the training
speed of AttentionPainter under both with FSS and without
FSS and set the batch size to 48. On a single NVIDIA RTX
4090, we achieve a 13 x faster training speed by using FSS.
Without FSS, it costs 6.42s per step; while with FSS, it only
costs 0.48s per step. The saved training time mainly comes
from the backpropagation process. FSS significantly accel-
erates the training process of AttentionPainter and makes it
more extensible.

Moreover, to validate that our FSS improves training
efficiency without affecting the final results, we further
compare the performance of the model with and without
FSS in Fig. 11. The results show that both models perform
almost identically, with only minor visual differences that
do not impact visual quality. Therefore, our FSS achieves
a significant boost in training speed while maintaining the
same training outcomes.

6.3.3 Ablation Study of Stroke-density Loss

In this section, we discuss the influence of stroke-density
loss. The stroke-density loss helps the model to focus on
more detailed information, and we illustrate the analysis
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TABLE 6
Ablation study of Stroke-density Loss. The metric results show that our
Stroke-density Loss works both for our AttentionPainter and SNP [2],
effectively improving the performance.

Method | L2, SSIMf LPIPS|
Ours w/o Stroke-density loss (1,000 strokes) | 0.0058 0.5395 0.1318
Ours w/ Stroke-density loss (1,000 strokes) | 0.0054 0.6048 0.1152
Ours w /o Stroke-density loss (4,000 strokes) | 0.0036 0.6207 0.1016
Ours w/ Stroke-density loss (4,000 strokes) | 0.0033 0.6729 0.0878
SNP w /o Stroke-density loss (500 strokes) 0.0101 0.4988 0.1623
SNP w/ Stroke-density loss (500 strokes) 0.0090 0.5099 0.1524
SNP w /o Stroke-density loss (1,000 strokes) | 0.0093 0.5279 0.1488
SNP w/ Stroke-density loss (1,000 strokes) | 0.0084 0.5368 0.1406

TABLE 7
Ablation study on hyper-parameters. The results show a trainable
feature extractor which predicts 256 strokes during a single forward
achieves the best performance, which is the setting adopted in our
experiments.

Method Validation on CelebAMask-HQ

‘ L2) SSIMt LPIPS|
128 Strokes per forward 0.0026  0.7076 0.0985
256 Strokes per forward (Ours) 0.0015  0.7343 0.0758
512 Strokes per forward 0.0037  0.6554 0.1208
256 Strokes per forward, W/ Efrozen \ 0.0130 0.5199 0.1549

results and zoom in on the detail parts in Fig. 10. With the
stroke-density loss, in the right column, more details of the
animal eyes and complex characters can be reconstructed,
while without the stroke-density loss, in the middle column,
such details are hardly reconstructed. The quantitative re-
sults in Tab. 6 also demonstrate that the stroke-density loss
helps better reconstruct the image, with better metric results.

6.3.4 Ablation Study of Hyperparameters

We explore two hyper-parameter settings, the number of
predicted strokes during a single forward, and whether the
feature extractor is frozen during training. The results are
reported in Table 7. We adopt the setting with the best
scores, i.e., a trainable feature extractor which predicts 256
strokes during a single forward. Moreover, we also present
the qualitative comparison results in Fig. 12. We find that 1)
when predicting fewer strokes in a single forward (e.g., 128),
the number of strokes is too few to fully reconstruct the
details. Although the number of divided patches is larger,
since the limited strokes cannot adequately capture the fine
details or complex structures within each patch, the results
contain some artifacts. 2) When predicting more strokes
during a single forward (e.g., 512), the number of output
stroke parameters doubles, which makes it harder for the
stroke predictor to learn the correct stroke parameters due
to increased model complexity, leading to poor generated
results. As shown in Fig. 12, the model with 256 paths in
a single forward pass generates the most detailed results,
while the other two models exhibit reduced painting accu-
racy or display black slits in the output (second column,
second row).
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Ours w/o FSS
10.8-days training

Ours w/ FSS
20.4-hours training

Target Image

Fig. 11. Ablation study of FSS, where the difference in generation effects
between the two models is very tiny, showing that the FSS largely

512 strokes per forward

Target Image

Fig. 12. Ablation study of predicting different numbers of strokes in a
single forward step, where the model predicting 256 strokes in a single
forward step achieves the best performance. The results of all ablated
models in this figure are with 4,096 strokes in total.

128 strokes per forward

256 strokes per forward (Ours)

6.4 User Study

To further validate the effectiveness of our method, we
conduct a user study to measure the user preference be-
tween AttentionPainter and previous methods. We invite
40 volunteers who are mostly computer science related
researchers to participate in our study, and each volunteer
is asked to rank 20 groups of the oil paintings generated
by our method and 4 previous methods from 1st to 5th (1st
means the best). We ask the volunteers to take into account
three aspects for their ranking: 1) The overall visual effect
is good and similar to the target image; 2) The details of
the target image are painted more carefully; 3) The painting
looks more like human work, and the traces of machine
painting are not obvious. Then we calculate the average
ranking and ranking 1st rate, as is shown in Tab. 8. It can be
seen that our method gets 1.39 average ranking and 77.91%
ranking 1st rate, which greatly outperforms other methods,
demonstrating that the paintings generated by our method
are more preferred by users.

6.5 Analysis of Stroke-density Loss

In our AttentionPainter, we use Stroke-density Loss to re-
construct the detailed information. Surprisingly, we also
find that our Stroke-density Loss can be applied to some
previous methods to generate more attractive images. We
apply the Stroke-density Loss to Stylized Neural Painting
(SNP) [2], and it turns out to have obviously better results.
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TABLE 8
User study results. Our method gets the highest average ranking,
outperforming other methods.

Learning Paint  Stylized Neu- .
Methods ‘ To Paint Transformer ral Painting Tm20il Ours
Avg. Rank 2.61 3.76 3.34 3.90 1.39
Rank 1st (%) | 6.27% 3.58% 9.10% 3.13% 77.91%

SNP SNP w/ density

‘ Inbut

Fig. 13. Results of applying Stroke-density Loss to Stylized Neural
Painting (SNP) under 500 Strokes.

For SNP, we combine the Stroke-density Loss with £; Loss
instead of only using £; Loss. The qualitative comparison
results are shown in Fig. 13. It can be seen that SNP with
Stroke-density method can reconstruct more detailed infor-
mation like animals” eyes and stripes. Moreover, SNP with
Stroke-density Loss method can cover the whole canvas
with strokes, while the original method may leave some
regions blank. The quantitative results are shown in Table 6.
The L5, SSIM [65], and LPIPS [66] results also demonstrate
that Stroke-density Loss helps reconstruct the image better.

7 LIMITATIONS

Currently, although AttentionPainter is able to predict a
large number of strokes in a single forward prediction, it
still lacks the ability to reconstruct very densely detailed
regions with sufficiently fine strokes under a limited number
of strokes. In addition, although our method is able to
reconstruct high-resolution images with the block dividing
strategy, it inevitably ignores the global information of the
whole image. Meanwhile, how to adaptively adjust the
number of predicted strokes to achieve reconstruction at
different levels of refinement or abstraction for input images
of arbitrary resolution is also one of our future research
directions.

Furthermore, the shapes of the generated strokes are con-
strained by the stroke’s parameterized representation and
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the rendering process (Sec. 3.1). The texture renderer applies
only rigid transformations (translation, scaling, rotation) to
the stroke template, lacking the ability to bend or warp it.
This limitation leads to generated strokes resembling the
template shape and exhibiting less free-form variation than
human-created strokes. Addressing this limitation, poten-
tially through exploring non-rigid deformations or more
complex stroke representations, remains an interesting di-
rection for future work.

Additionally, the temporal order of the generated stroke
sequence is not explicitly optimized to replicate the delicate
workflow of a human artist, primarily due to the lack of
sequential human painting process data as supervision.
While this does not affect the final rendering quality, en-
abling human-aligned stroke ordering remains an important
direction for future work.

Since our stroke predictor is a Transformer-based model,
for the same input image, the output stroke parameters
are the same (the stroke predictor has no randomness).
Although we introduced 8 different input patterns by ran-
dom rotation and flipping, the non-randomness defect of
the model has not been fully addressed. How to introduce
reasonable randomness into the model to promote more
diverse stroke-painting results remains a future research
direction.

8 CONCLUSION

We propose AttentionPainter, an efficient and adaptive
model for single-step neural painting. We propose a stroke
predictor that can predict a large number of strokes in a
single forward pass, a fast stroke stacking algorithm to
render the final image, and a stroke-density loss to bet-
ter reconstruct details. We also design a stroke diffusion
model as an application of our AttentionPainter, which
can generate new content with strokes and demonstrate
its applications in stroke-based inpainting and editing. At-
tentionPainter outperforms the state-of-the-art methods in
terms of reconstruction quality, efficiency, and scalability,
showing the promising potential of neural painting methods
for the artists’ community.
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