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TOSSING HALF-COINS AND OTHER PARTIAL COINS:

SIGNED PROBABILITIES AND SIBUYA DISTRIBUTION

NIKOLAI LEONENKO AND IGOR PODLUBNY

Abstract. A method for numerical simulation of signed probability distributions for
the case of tossing 1/n-th of a coin is presented and illustrated by examples.

1. Introduction

What do fractional-order differentiation [1, 2, 3] on one hand, and “partial coins” [4],
on the other, have in common? The answer is: the need to simulate signed probability
distributions, and the use of Sibuya probability distribution.

Recently, we succeeded in developing the Monte Carlo method for numerical fractional-
order differentiation [1], and the key tool was the Sibuya distribution [5]. For orders of
differentiation higher than one, this led us to working with signed probability distribu-
tions, where the number of negative probabilities was finite and the number of positive
probabilities was infinite (or vice versa), and we showed how to deal with such situa-
tions [2, 3].

In the present paper we provide – to our best knowledge – the first examples of nu-
merical simulation of signed probability distributions related to random variables that
can be called partial coins, and in this case the numbers of negative and positive proba-
bilities are both infinite, which did not allow the use of our previous method. However,
the probability distributions of partial coins appeared to be related to the Sibuya dis-
tribution.

Below we start with explaining what are half-coins and other partial coins, and how
they are related to signed probability distributions. Then we turn to the Sibuya proba-
bility distribution and to our methods of its simulation. After that, we use the Sibuya
probability distribution for obtaining the decomposition of the partial coin probability
distributions into two probability distributions with only positive probabilities. Finally,
we provide examples of numerical simulation of partial coins.

2. Half-coins and other partial coins

A classical fair coin is a random variable X that takes the values 0 and 1 with prob-
ability 1/2, and the expectation equal to 1/2. Its probability generating function is
c(x) = (1 + x)/2. The addition of independent random variables corresponds to multi-
plication of their probability generating functions. Therefore, the probability generating
function of the sum of two fair coins is equal to ((1 + x)/2)2.

1
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Half of a coin, or more conveniently a half-coin, was introduced by Székely [4], who
noticed that it is natural to define a half-coin via its probability generating function

(1)

(
1 + x

2

)µ
=

∞∑
n=0

pnx
n, µ =

1

2
.

where the coefficients pn =
(
µ
n

)
have alternating signs starting from n = 1:

(2) p0 > 0, p1 > 0, p2 < 0, p3 > 0, p4 < 0, p5 > 0, p6 < 0, . . .

A half-coin corresponds to µ = 1/2, and it takes the values n with signed probabilities –
positive for n = 0, 1, 3, 5, . . ., and negative for n = 2, 4, 6, . . .. The repeated “flipping” of
two half-coins gives the expectation equal to 0.5, similarly to the case of the repeated
flipping of one normal coin.

Taking µ = 1/3 yields one-third-coins and the repeated “flipping” of three one-third-
coins makes a normal coin with the expectation equal to 0.5; µ = 1/4 defines quarter-
coins, the repeated flipping of four quarter-coins makes a normal coin, etc.

Non-integer values of µ produce µth-coins, and to get a normal coin it is necessary
to “flip” 1/µ of such µth-coins, which depending on µ can be a finite or even infinite
number of such partial coins.

Obviously, from (1) follows that

∞∑
n=0

pn = 1,

∞∑
n=0

|pn| = 21−µ.

For the case of µ = 1/2, Székely obtained an expression for the coefficients pn in terms
of the Catalan numbers Cn:

pn = (−1)n−1
√

2
Cn−1

4n
, n = 0, 1, 2, . . .

where

Cn =

(
2n
n

)
n+ 1

, n = 0, 1, 2, . . . ; C−1 = −1

2
.

3. Sibuya probability distribution

The probability distribution introduced by Sibuya [5] and studied first by Sibuya and
Shimitzu [6] and then, with some generalizations, by other authors [7, 8, 9], can be
introduced in the following way.

Let us consider the sequence of independent Bernoulli trials, in which the k-th trial
has probability of success α/k (0 < α < 1, k = 1, 2, . . .), and let Y ∈ {1, 2, . . .} be the
trial number in which the first success occurs. Then

P(Y = 1) = p1 = p1(α) = α,

P(Y = k) = pk = pk(α) = (1− α)(1− α

2
) . . . (1− α

k − 1
)
α

k
, k ≥ 2,



TOSSING HALF-COINS AND OTHER PARTIAL COINS 3

or, in other words, its probability mass function is

pk = P(Y = k) = (−1)k+1α(α− 1) . . . (α− k + 1)

k!
=

= (−1)k+1

(
α

k

)
, k = 1, 2, . . . ,

and its cumulative distribution functions is

Fk =
k∑
j=1

pj = 1− (−1)k
(
α− 1

k

)
= 1− 1

k B(k, 1− α)
=

= 1− Γ(k − α+ 1)

k Γ(k)Γ(1− α)
, k = 1, 2, . . . ,

where B(x, y) and Γ(x) are Euler’s beta and gamma functions.
The probability generating function of the Sibuya distribution is

GY (x) = ExY =

∞∑
k=1

xk(−1)k+1

(
α

k

)
(3)

=

∞∑
k=1

xk(−1)k+1w
(α)
k = 1− (1− x)α, |x| < 1.(4)

where

(5) w
(α)
k =

(
α

k

)
.

For 0 < α < 1, all coefficients in the power series expansion of the generating function
(4) are positive, monotonically decreasing, and their sum is equal to one.

4. Simulation of the signed distribution

It is known that summation of independent random variables corresponds to the
product of their generating functions. The way to the simulation of signed probability
distributions was indicated by Székely [4]:

Theorem 1 (G. Székely [4]). For every generalized generating function f of a signed
probability distribution there exist two generating functions g and h of ordinary non-
negative probability distributions such that fg = h.

The proof of this theorem can be found in [10, Theorem 1] or in [11, Lemma 3.6].
This theorem guarantees the existence of g and h, but not the uniqueness. We need

a pair of distributions g and h, the difference of which gives the signed distribution f .1

The Theorem 1 does not provide any method for constructing the functions g and h.
However, in the case of partial coins we succeeded in guessing these functions.

1This is similar to the situation with vectors: a = b− c = b1 − c1, where

a = [2,−1, 3, 5], with positive and negative components,
b = [5, 6, 7, 8], c = [3, 7, 4, 3], both vectors with only positive components,
b1 = [7, 8, 8, 10], c1 = [5, 9, 5, 5], both vectors with only positive components.
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For the 1/n-coin the generating function of its signed probability distribution f is:

(6) f(x) =

(
1 + x

2

)1/n

The pairs of suitable ordinary nonnegative probability distributions g and h are:

(7) gk(x) =
(

1− (1− x)1/n
)
xk,

(8) hk(x) = 21/nxk
(

(1 + x)1/n − (1− x2)1/n
)
,

where obviously f(x)gk(x) = hk(x), and k can be −1, 0, 1, 2, 3, 4, . . ..
The functions gk(x) are given by the generating function of the Sibuya distribution

multiplied by xk, and hk(x) are the products of f(x) and gk(x).
The pairs of distributions gk and hk with the support on {k + 1, k + 2, . . .} work.

(9) fgk = hk

(10) Fi = Hi −Gi

If k = −1, then g and h have the same support {0, 1, 2, 3, . . .}

5. Coefficients of the generating functions f , g, and h

Let us recall that the coefficients of the power series expansion of a probability gen-
erating function mean probabilities with which the random variable, say Y , take the
values from its support.

Let us denote α = 1/n. For 0 < α < 1 the expansion of the generating function

(11) f(x) =

(
1 + x

2

)α
into a power series produces coefficients with alternating signs.

The coefficients of the power series expansion of g(x) for 0 < α < 1 are all positive:

(12) gk(x) =
(

1− (1− x)α
)
xk.

We have to verify that the coefficients of the power series expansion of

(13) hk(x) = f(x)gk(x) = 2−αxk
(

(1 + x)α − (1− x2)α
)

are also all positive.
For this, we have to examine the power series expansion of the expression

(14) D(x) = (1 + x)α − (1− x2)α
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We have:

D(x) =

∞∑
m=1

(
α

m

)
xm −

∞∑
n=1

(−1)n
(
α

n

)
x2n(15)

=
∞∑
r=0

(
α

2r + 1

)
x2r+1 +

∞∑
r=1

(
α

2r

)
x2r −

∞∑
n=1

(−1)n
(
α

n

)
x2n(16)

=

∞∑
r=0

(
α

2r + 1

)
x2r+1 +

∞∑
n=1

{( α
2n

)
− (−1)n

(
α

n

)}
x2n(17)

=
∞∑
r=0

w
(α)
2r+1x

2r+1 +
∞∑
n=1

{
w

(α)
2n − (−1)nw(α)

n

}
x2n.(18)

For 0 < α < 1, the binomial coefficients w
(α)
k have alternating signs, and the coeffi-

cients at the odd powers of x are positive, so coefficients of the first sum in (18) are all
positive. We need to verify that the coefficients in the second sum are also positive.

Let us denote

b
(α)
k = |w(α)

k | =
∣∣∣∣(αk

)∣∣∣∣ ,
then

w
(α)
k =

(
α

k

)
= (−1)k−1b

(α)
k .

This allows us to write{
w

(α)
2n − (−1)nw(α)

n

}
= (−1)2n−1b

(α)
2n − (−1)n · (−1)n−1b(α)n

= (−1)2n−1b
(α)
2n + (−1)2nb(α)n

= b(α)n − b
(α)
2n .

For 0 < α < 1, the sequence of positive numbers b
(α)
n (n = 1, 2, . . .) is monotonically

decreasing. Indeed, using the recurrence relation for the binomial coefficients (see [12,
eq. (7.23)]), we have:

b
(α)
n+1

b
(α)
n

=

∣∣∣∣∣w
(α)
n+1

w
(α)
n

∣∣∣∣∣ = 1− α+ 1

k + 1
< 1, k = 1, 2, 3. . . .(19)

Therefore, b
(α)
n > b

(α)
n+1, and b

(α)
n > b

(α)
2n , which means that all coefficients in (18) are

positive, and all coefficients in the power series expansion of hk(x) are positive. Also, it
follows from (8) that the sum of those coefficients is equal to one.

The above means that we have a family pairs of non-negative probability distributions
with the generating functions gk(x) and hk(x) given by (7) and (8) which can be used for
simulating the signed probability distribution with the generating function f(x) given
by (6).
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Figure 1. Coefficients of g(x) and f(x)

6. Numerical simulations

6.1. Evaluation of the coefficients of f(x) and g(x).

First, let us consider the generating function of the Sibuya distribution (4). The coeffi-
cients of the power series expansion of g(x) for 0 < α < 1 are all positive:

(20) gk(x) =
(

1− (1− x)α
)
xk =

∞∑
n=1

w̃(α)
n xn, w̃(α)

n > 0, n = 1, 2, 3, . . . ,

where

(21) w̃(α)
n = (−1)n+1

(
α

n

)
, n = 1, 2, 3, . . .

The coefficients w̃
(α)
n can be conveniently computed using the recurrence relation for

the binomial coefficients (see [12, eq. (7.23)]). For example, for α = 1
2 the results are

shown in Fig. 1 on the left.
The coefficients of the power series expansion of the partial-coin distribution (1) are

then computed as

(22) p
(α)
0 = 2−α, p(α)n = (−1)n+1w̃(α)

n , n = 1, 2, 3, . . .

For α = 1
2 the results are shown in Fig. 1 on the right. Starting from n = 2, the

coefficients pn, which are the probabilities P (X = n), have alternating signs:

P (X = 2m) < 0, P (X = 2m− 1) > 0, m = 1, 2, 3 . . .

6.2. Evaluation of the coefficients of h(x).

The coefficients qk of the power series expansion of h(x) can be computed using (8),
(14), and (18):

(23) q
(α)
k = 2−α

{
p2m−1, k = 2m− 1

w̃
(α)
m − p(α)2m, k = 2m
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It should be mentioned that expanding f(x), g(x), and h(x) in power series using a
reliable software for symbolic computations also produces the necessary coefficients.

6.3. Method of simulation.

Step 1. Compute the probabilities w̃
(α)
k and q

(α)
k , k = 1, 2, 3 . . .

Step 2. Compute the cumulated mass distribution functions G(x) and H(x).
Step 3. Generate a set of uniformly distributed points Ui in (0, 1).
Step 4. For each Ui find a pair of the values Gi and Hi; for this, the method of the

inverse cumulated mass probability function can be used.
Step 5. The differences of Hi and Gi give the values Fi = Hi−Gi of the simulated signed

distribution f .

This approach can be used for simulating the difference of any two probability distribu-
tions given by their probability mass functions.

6.4. Examples of numerical simulations of partial coins.

For providing a tool for numerical simulation, a dedicated MATLAB toolbox has been
created [14]. The function partialcoin has four input parameters (type of a coin,
number of terms in the expansion of the generating function, number of flips, power of
the factor), and returns the vectors of results of flips in the order of their appearance,
the total counts and the frequencies of ones and zeros, the expectation of the tossed
partial coin, and the expectation of such number of the tossed partial coins that make a
classical fair coin.

In Figs. 2–7 the results of numerical simulations are shown for a quarter-coin, a one-
third-coin, a half-coin, a three-quarters-coin, a four-fifths-coin, a four-fifths-coin, and a
five-sixths-coin.

The output Fi of each individual flip of a partial coin is computed using (10), and
each flip produces either zero or one. The results of the first one hundred flips are shown
in the right of Figs. 2–7, and the histograms are shown on the left.

6.5. Examples of numerical simulation of tossing two partial coins.

The function twopartialcoins of the dedicated MATLAB toolbox [14] serves for the
numerical simulation of tossing a pair of partial coins. Each partial coin is independently
simulated as described in Section 6.3, and each flip of a pair of two partial coins produces
the output equal to 0, 1, or 2.

The results of the first two hundred flips of two partial coins are shown in the right
of Figs. 8–10, and the histograms are shown on the left.

In Fig. 8, the results of the numerical simulation of flipping two half-coins are shown,
and the expectation close to 0.5 is the same as in the case of flipping one fair coin.

Flipping a one-third-coin and a a two-thirds-coin also gives the expectation close to
0.5, as in the case of flipping one fair coin (Fig. 9).

In Fig. 10, the simulation results are shown for a half-coin and a two-thirds-coin.
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Figure 2. A quarter-coin.
Flips: 10000; ones: 1183; zeros: 8817; expectation: 0.1183

Figure 3. A one-third-coin.
Flips: 10000; ones: 1650; zeros: 8350; expectation: 0.1650

Figure 4. A half-coin.
Flips: 10000; ones: 2519; zeros: 7481; expectation: 0.2519
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Figure 5. A three-quarters-coin.
Flips: 10000; ones: 3716; zeros: 6284; expectation: 0.3716

Figure 6. A four-fifths-coin.
Flips: 10000; ones: 3997; zeros: 6003; expectation: 0.3997

Figure 7. A five-sixths-coin.
Flips: 10000; ones: 4213; zeros: 5787; expectation: 0.4213
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Figure 8. Two half-coins.
Flips: 20000; ones on both partial coins: 1200; ones on one partial coin:
7525; zeros on both partial coins: 11275; expectation: 0.4962

Figure 9. A one-third-coin and a two-thirds-coin.
Flips: 20000; ones on both partial coins: 1029; ones on one partial coin:
7793; zeros on both partial coins: 11178; expectation: 0.4925

Figure 10. A half-coin and a two-thirds-coin.
Flips: 20000; ones on both partial coins: 1624; ones on one partial coin:
8357; zeros on both partial coins: 10019; expectation: 0.5802
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6.6. Tossing biased partial coins.

The normal biased coin has unequal probabilities a and b = 1− a for its sides, and its
probability generating function is

(24) f̂(x) = a+ bx

Let us take b < a. For a biased partial coin, the probability generating function is

(25) (a+ bx)µ = aµ
∞∑
n=0

(
b

a

)n
pnx

n, pn =

(
µ

n

)
,

and the coefficients of this series have alternating signs exactly as in (2).

In this case, the corresponding pairs ĝk and ĥk (k = −1, 0, 1, 2, . . .) of nonnegative
probability distributions for applying Theorem 1 are defined by the following probability
generating functions:

(26) ĝk(x) = (1− a−µ(a− bx)µ)xk

(27) ĥk(x) = ((a+ bx)µ − a−µ(a2 − b2x2)µ)xk.

The procedure of simulation is the same as in Section 6.3.
In the case of a < b, the variables a and b in relationships (24)–(27) should be mutually

swapped, and the simulated values of F̂i (see step 5 section 6.3) are then computed as

F̂i = 1− Ĥi + Ĝi.
The function biasedpartialcoin, which is also included in the dedicated MATLAB

toolbox [14], serves for the numerical simulation of tossing a biased partial coin.
The results of simulations of a biased half-coin for a = 0.4, b = 0.6 and for a = 0.6, b =

0.4 are shown in Fig. 11 and in Fig. 12, respectively. In Fig. 13 the results of simulation
of a three-quarters-coin with a = 0.7 and b = 0.3 are shown.

7. Conclusion

The case of a finite number of negative probabilities in a signed probability distribution
was considered and used for the Monte Carlo fractional differentiation in our recent works
[1, 2, 3].

To our best knowledge, the presented paper provides the first example of numerical
simulation of a signed probability distribution with infinite number of negative proba-
bilities.

The open question is how the probability generating functions g(x) and h(x) can be
constructed in the case of a probability generating function f(x) corresponding to a
general case of a signed probability distribution.
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Figure 11. A biased half-coin with a = 0.4 and b = 0.6.
Flips: 10000; ones: 9156; zeros: 844; expectation: 0.9156.

Figure 12. A biased half-coin with a = 0.4 and b = 0.6.
Flips: 10000; ones: 824; zeros: 9176 ; expectation: 0.0824.

Figure 13. A biased three-quarters-coin with a = 0.7 and b = 0.3.
Flips: 10000 ; ones: 847; zeros: 9153; expectation: 0.0847.



TOSSING HALF-COINS AND OTHER PARTIAL COINS 13

Figure 14. September 13th, 2024, room M13, Isaac Newton Institute,
Cambridge: the first successful simulation of a half-coin.
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